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Extremes of local times for simple random walks on
symmetric trees
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Abstract

We consider local times of the simple random walk on the b-ary tree of depth n

and study a point process which encodes the location of the vertex with the maxi-
mal local time and the properly centered maximum over leaves of each subtree of
depth rn rooted at the (n − rn) level, where (rn)n≥1 satisfies limn→∞ rn = ∞ and
lim supn→∞ rn/n < 1. We show that the point process weakly converges to a Cox
process with intensity measure αZ∞(dx) ⊗ e−2

√
log b ydy, where α > 0 is a constant

and Z∞ is a random measure on [0, 1] which has the same law as the limit of a crit-
ical random multiplicative cascade measure up to a scale factor. As a corollary, we
establish convergence in law of the maximum of local times over leaves to a randomly
shifted Gumbel distribution.

Keywords: local times; simple random walk; trees; derivative martingale; random multiplicative
cascade measure.
AMS MSC 2010: 60J55; 60J10; 60G70.
Submitted to EJP on March 7, 2017, final version accepted on March 29, 2018.

1 Introduction

Much efforts have been made in the study of the so-called log-correlated random
fields such as branching Brownian motion (BBM), branching random walk (BRW), and
two-dimensional discrete Gaussian free field (DGFF). One of the remarkable features of
these models is that laws of their maxima share common properties: each of the laws
weakly converges to a randomly shifted Gumbel distribution [34, 1, 21]. It is believed
that each of the limiting extremal processes of a wide class of log-correlated fields
converges to a so-called randomly shifted decorated Poisson point process [39] and it is
established for the BBM [2, 5], the BRW [37], and the two-dimensional DGFF [15].

It is well-known that local times of random walks on graphs have close relationships
with DGFFs thanks to “the generalized second Ray-Knight theorem” [30] (this goes back
to the Dynkin isomorphism [29]) which has many applications, for example, to the cover
time [25, 24, 40]. Since the occupation time field of the simple random walk on the tree
or on the two-dimensional lattice is closely related to the BRW or two-dimensional DGFF
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Extremes of local times on symmetric trees

respectively, it is natural to expect that their maxima and cover times belong to the
universality class mentioned above: it is known that the cover times have subleading
terms similar to other log-correlated fields [27, 9] and that they are tight [20, 10, 11],
but further details are still open.

In this paper, we consider local times of the simple random walk on the b-ary tree
of depth n at a time much larger than the maximal hitting time of any vertex and study
convergence of a point process encoding extreme local maxima of the local times as
n→∞.

To state our result, we begin with some notation. We fix an arbitrary integer b ≥ 2

throughout the paper. We will write T to denote the b-ary tree with root ρ: this is a
rooted tree whose vertices have exactly b children. Let Ti be the set of vertices in the i-th
generation of T . Set T≤n := ∪ni=0Ti. For v ∈ T , we will write |v| to denote the depth of v,
i.e. the generation to which v belongs. For u ∈ T , let Tu be the subtree of T rooted at u,
and we define Tui and Tu≤n similarly. For v, u ∈ T , let v ∧ u be the most recent common
ancestor of v and u.

Let X = (Xt, t ≥ 0, Pv, v ∈ T≤n) be the continuous-time simple random walk on T≤n
with exponential holding times of parameter 1. We define the local time of X by

Lnt (v) :=
1

deg(v)

∫ t

0

1{Xs=v}ds, v ∈ T≤n, t ≥ 0,

where deg(v) is the degree of v, and the inverse local time at ρ by

τ(t) := inf{s ≥ 0 : Lns (ρ) > t}, t ≥ 0.

Let E(T ) be the set of all edges on T . Let (Ye)e∈E(T ) be independent and identically
distributed random variables whose common law is the normal distribution with mean
0 and variance 1/2. To each v ∈ T , we assign hv :=

∑|v|
i=1 Yevi , where ev1, . . . , e

v
|v| are the

edges on the unique shortest path from ρ to v. We will call (hv)v∈T a BRW on T . It is
well-known that the so-called derivative martingale

Dn :=
∑
v∈Tn

(√
log b n− hv

)
e−2
√

log b(
√

log b n−hv)

converges almost surely as n→∞, and the limit

D∞ := lim
n→∞

Dn (1.1)

is positive and finite almost surely (see, for example, [12, Theorem 5.1, 5.2] or [1,
Proposition A.3]). To each v ∈ T , we assign a distinct label (v1, . . . , v|v|) with vi ∈
{0, . . . , b − 1} for all 1 ≤ i ≤ |v| so that the vertices with labels (v1, . . . , v|v|, k), k ∈
{0, . . . , b− 1} are children of v. We define the location of v ∈ T by

σ(v) :=

|v|∑
i=1

vi
bi
. (1.2)

For each n ∈ N and x ∈ [0, 1], let v(x) be the vertex in Tn with x ∈ [σ(v(x)), σ(v(x))+b−n).

We define the random measure called a (critical) random multiplicative cascade measure
by

Zn(dx) := bn
(√

log b n− hv(x)

)
e−2
√

log b(
√

log b n−hv(x))dx, (1.3)

where dx is the Lebesgue measure on [0, 1]. Barral, Rhodes, and Vargas [7] observed
that

the weak limit Z∞ := lim
n→∞

Zn exists almost surely. (1.4)
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For each v ∈ Tn, set Iv := [σ(v), σ(v) + b−n]. The random measure Z∞ satisfies that

(Z∞(Iv))v∈Tn
d
=
(
e−2
√

log b(
√

log b n−hv)D(v)
∞

)
v∈Tn

,

where “
d
=” means that the laws of the left and the right are the same and D(v)

∞ , v ∈ Tn
are independent copies of D∞ which are independent of (hv)v∈Tn . See [8, 23] for more
details on Z∞.

For each (x, y) ∈ [0, 1]×R, we write δ(x,y) to denote the Dirac measure at (x, y). For
each 0 ≤ m ≤ n, we define the point process on [0, 1]×R by

Ξ
(m)
n,t :=

∑
u∈Tn−m

δ(
σ
(

argmaxv∈Tum
Ln
τ(t)

(v)
)
, maxv∈Tum

√
Ln
τ(t)

(v)−
√
t−an(t)

), (1.5)

where the centering sequence an(t) is given by

an(t) :=
√

log b n− 3

4
√

log b
log n− 1

4
√

log b
log

(√
t+ n√
t

)
, (1.6)

and for each u ∈ Tn−m, argmaxv∈Tum Lnτ(t)(v) is the vertex v∗ on Tum ⊂ Tn with Lnτ(t)(v∗) =

maxv∈Tum L
n
τ(t)(v). (If two or more vertices on Tum attain the maximum, we take the one

whose location (recall the definition from (1.2)) is the largest among such vertices.) We
regard Ξ

(m)
n,t as an element of all Radon measures on Borel sets of [0, 1]×R topologized

with the vague topology. Since this space is metrizable as a complete separable metric
space, we can consider convergence in law of sequences of random measures. Given
a random measure ν on [0, 1] × R, we will write PPP(ν) to denote a point process on
[0, 1]×R which, conditioned on ν, is a Poisson point process with intensity measure ν
(that is PPP(ν) is a Cox process). We now state the main result of this paper:

Theorem 1.1. There exists c1 > 0 such that for any sequence (tn)n≥1 with limn→∞
√
tn
n =

θ ∈ [0,∞] and tn ≥ c1n log n for each n ∈ N, and any sequence (rn)n≥1 with limn→∞ rn =

∞ and lim supn→∞ rn/n < 1, the point process Ξ
(rn)
n,tn converges in law to a Cox process

PPP

(
4√
π
β∗γ∗Z∞(dx)⊗ 2

√
log b e−2

√
log b ydy

)
(1.7)

as n→∞, where Z∞ is the random measure on [0, 1] in (1.4),

β∗ :=


√

θ+1
θ+
√

log b
if θ ∈ [0,∞),

1 if θ =∞,

(1.8)

and

γ∗ := lim
`→∞

∫ `

`2/5
ze2
√

log b zP

(
max
v∈T`

hv >
√

log b `+ z

)
dz. (1.9)

Remark 1.2. The existence of the limit (1.9) is non-trivial. It is proved in the proof of
Proposition 5.1. Results similar to Theorem 1.1 are known for the BBM [4] and the
two-dimensional DGFF [13, 14]. Our setting is inspired by [16]. The convergence of the
full extremal process has been established for the BBM [2, 5], the BRW [37], and the
two-dimensional DGFF [15]. Related convergence for the local times on the b-ary tree
will be studied in a sequel paper.

By Theorem 1.1 and a tail estimate of the maximum of local times over leaves
(Proposition 3.1(i) below), we have:
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Corollary 1.3. There exists c1 > 0 such that for all λ ∈ R and any sequence (tn)n≥1 with

limn→∞
√
tn
n = θ ∈ [0,∞] and tn ≥ c1n log n for each n ∈ N,

lim
n→∞

Pρ

(
max
v∈Tn

√
Lnτ(tn)(v) ≤

√
tn + an(tn) + λ

)
= E

[
e
− 4√

π
β∗γ∗D∞e

−2
√

log b λ
]
, (1.10)

where D∞, β∗ and γ∗ are given by (1.1), (1.8) and (1.9), respectively.

Remark 1.4. Let (hv)v∈T be a BRW on T . By Theorem 2.2 and Lemma A.7, one can
show that for all λ ∈ R and any sequence (tn)n≥1 with limn→∞

√
tn/n

2 =∞,

lim
n→∞

P

(
max
v∈Tn

hv ≤ mn + λ

)
= lim
n→∞

Pρ

(
max
v∈Tn

√
Lnτ(tn)(v) ≤

√
tn +mn + λ

)
= E

[
e
− 4√

π
γ∗D∞e

−2
√

log bλ
]
, (1.11)

where γ∗ is given in (1.9) and the centering sequence mn is defined by

mn :=
√

log b n− 3

4
√

log b
log n.

(Note that the convergence of the maximum of the BRW has already been established
in [6, 1, 22].) The centering sequence an(tn) in (1.10) is different from mn by the term

1
4
√

log b
log
(√

tn+n√
tn

)
which is non-negligible only when θ <∞.

The organization of the paper is as follows. Section 2 gives preliminary lemmas which
we use repeatedly throughout the paper. In Section 3, we obtain tail probabilities of the
maximum of local times over leaves which are essential to next sections. One can find
that for each leaf v, the law of the local time process along the path from ρ to v is the
same as that of a zero-dimensional squared Bessel process (see Lemma 2.3). By this
and the Markov property of local time processes (see Lemma 2.1), roughly speaking,
one can regard the field of local times over the set of leaves as a branching Bessel
process. This gives hints of how to estimate the tail of the maximum of local times over
leaves: we use the constraint first and second moment methods developed in the BBM,
BRW, and two-dimensional DGFF settings. (See, for example, [18, 1, 21]. We especially
use techniques in [28, 21].) Typical behavior of a vertex with extreme local time is as
follows: the local time process along the path from the root to the vertex stays below the
curve defined in (3.5) and finally reach the maximal value at the vertex (see the proof of
Proposition 3.1). In Section 4, we show that two leaves with local times near maxima
are either very close or far away. This suggests that local maximizers are distributed as
a Poisson nature. More technically, this implies that Ξ

(n−q)
n,tn |[0,1]×[z, ∞) = Ξ

(rn)
n,tn |[0,1]×[z, ∞)

with probability tending to 1 as n→∞ and then q →∞, which is one of the key steps
in the proof of Theorem 1.1. In Section 5, we obtain a limiting tail of the maximum of
local times over leaves which is crucial to study the Laplace functional of Ξ

(n−q)
n,tn . In the

estimate, entropic repulsion (Lemma 2.4(ii)) plays an important role: this enables us to
compute the tail of the maximum by using the reflection principle of a Brownian motion.
In Section 6, we give the proof of Theorem 1.1 and Corollary 1.3.

We should emphasize that it is more convenient to study “continuous” version of
local times rather than the original “discrete” ones especially when we estimate tail
probabilities of the maximum of the local times over leaves. To take the advantage,
motivated by [35, 40], we consider the local time process of the Brownian motion on the
associated metric tree as the “continuous” version.

We will write c1, c2, . . . to denote positive universal constants whose values are fixed
within each argument. We use c1(M), c2(M) . . . for positive constants which depend on
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M . Given sequences (cn)n≥1 and (c′n)n≥1, we write c′n = O(cn) if there exists a universal
constant C such that |c′n/cn| ≤ C for all n ≥ 1. We write |S| to denote the cardinality of a
set S.

2 Preliminary lemmas

In this section, we collect some lemmas which we use repeatedly throughout the
paper. We first recall the metric tree and the Brownian motions on it. In the study of
local times of random walks on graphs, Lupu [35] and Zhai [40] used the corresponding
metric graphs and Brownian motions. We follow the approach and find it advantageous
in obtaining precise tail probabilities of the maximum of local times over leaves on
the b-ary tree. Given a graph G, we will write E(G) to denote the edge set of G. Let
T be the b-ary tree. We regard each e ∈ E(T ) as an interval of length 1/2 by setting
Ie := {e} ×

(
0, 1

2

)
. Set Īe := Ie ∪ {e−, e+}, where e−, e+ ∈ T be the endpoints of the edge

e. Let πe be the map from Ie to
(
0, 1

2

)
defined by πe((e, x)) := x. We extend πe to the map

from Īe to
[
0, 1

2

]
by setting πe(e−) := 0, πe(e

+) := 1
2 . We define a metric tree of depth n

by
T̃≤n := T≤n ∪

⋃
e∈E(T≤n)

Ie.

For each k ∈ N and v ∈ T , we will write T̃ v≤k to denote the metric tree corresponding to

the subtree T v≤k. We define the metric d(·, ·) on T̃≤n as follows: for x, y ∈ T̃≤n, let ex and
ey be the edges with x ∈ Iex and y ∈ Iey , respectively. In the case Iex 6= Iey , we define
d(x, y) by

min

{
|πex(x)− πex(v)|+ 1

2
dg(v, u) + |πey (u)− πey (y)| : v ∈ {e−x , e+

x }, u ∈ {e−y , e+
y }
}
,

where dg is the graph distance on T≤n. In the case Iex = Iey , we set d(x, y) := |πex(x)−
πey (y)|. We define a measure m on T̃≤n by

m(dx) :=
∑

e∈E(T≤n)

1Ie(x)νe(dx),

where νe := ν ◦ πe, and ν is the Lebesgue measure on (0, 1/2). We have a m-symmetric
Hunt process on T̃≤n with continuous sample paths such that on each Ie, it behaves
like a standard Brownian motion on (0, 1/2) until it hits {e−, e+}, and when it starts at
a vertex v, it chooses one of the edges incident to v uniformly at random, and moves
on it as described above. See, for example, [31, 33, 35] for the construction. We write
X̃ = (X̃t, t ≥ 0, P̃x, x ∈ T̃≤n) to denote the process and call it a Brownian motion on T̃≤n.
It is known that X̃ restricted to T≤n behaves like a simple random walk on T≤n in the
following sense: for all v ∈ T≤n and 1 ≤ i ≤ deg(v),

P̃v(X̃Sv = vi) =
1

deg (v)
, (2.1)

where v1, . . . , vdeg(v) are vertices on T≤n adjacent to v, and Sv is the hitting time of

{v1, . . . , vdeg(v)} by X̃. See, for example, [31, Theorem 2.1] or [35, Section 2]. By [35,

Section 2], X̃ has a space-time continuous local time {L̃nt (x) : (t, x) ∈ [0,∞)× T̃≤n} and
the following holds for each v ∈ T≤n under P̃v:

L̃nSv (v)
d
= Exp (deg(v)) , (2.2)

where Exp(m) is an exponential random variable with mean m−1. We define the inverse
local time by

τ̃(t) := inf{s ≥ 0 : L̃ns (ρ) > t}, t > 0.
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By (2.1) and (2.2), we have(
L̃nτ̃(t)(v)

)
v∈T≤n

under P̃ρ
d
=
(
Lnτ(t)(v)

)
v∈T≤n

under Pρ. (2.3)

The following is the Markov property of local times of the Brownian motion on T̃≤n. The
discrete version can be found in [24, Lemma 2.6].

Lemma 2.1. Fix n ∈ N, t > 0, and a ∈ T≤n\Tn. Let F↑ be the σ-field generated by

L̃nτ̃(t)(x), x ∈ {a} ∪ T̃≤n\T̃ a≤n−|a|. Then, the law of
{
L̃nτ̃(t)(x) : x ∈ T̃ a≤n−|a|\{a}

}
under

P̃ρ(·|F↑) is the same as that of

{
L̃↓
τ̃↓
(
L̃n
τ̃(t)

(a)
)(x) : x ∈ T̃ a≤n−|a|\{a}

}
under P̃a, where{

L̃↓s(x) : (s, x) ∈ [0,∞)× T̃ a≤n−|a|
}

is a local time of a Brownian motion on T̃ a≤n−|a| and

τ̃↓(s) := inf{r : L̃↓r(a) > s}.
The proof of Lemma 2.1 is given in Section A.2.
The generalized second Ray-Knight theorem connects local times and BRWs:

Theorem 2.2. ([40]) For all t > 0 and n ∈ N, on the same probability space, one
can construct a local time (Lnτ(t)(v))v∈T≤n and two BRWs (hv)v∈T≤n , (h′v)v∈T≤n on T≤n
satisfying the following:

(Lnτ(t)(v))v∈T≤n and (hv)v∈T≤n are independent, (2.4)

Lnτ(t)(v) + (hv)
2 =

(
h′v +

√
t
)2

, for each v ∈ T≤n, almost surely. (2.5)

The construction of the coupling in Theorem 2.2 can be found in the proof of Theorem
3.1 of [40]. (Note that Zhai constructed the coupling in a more general setting and that
in the context of [40], the law of the DGFF on a b-ary tree is the same as that of our BRW
scaled by

√
2.) Let C[0, ∞) be the space of real-valued continuous functions on [0, ∞)

and B (C[0, ∞)) be the σ-field generated by cylinder sets in C[0, ∞). Given v ∈ T and
s ∈ [0, |v|], let vs be the point on the unique path from ρ to v with d(ρ, vs) = s/2. We have
a nice connection between the local time and the 0-dimensional squared Bessel process.

Lemma 2.3. ([9, Lemma 7.7]) For all t > 0 and v ∈ Tn,{
L̃nτ̃(t)(vs) : 0 ≤ s ≤ n

}
under P̃ρ

d
=

{
1

2
Xs : 0 ≤ s ≤ n

}
under Q0

2t,

where Qdx is a law on (C[0,∞), B (C[0,∞))) under which the coordinate process {Xs :

s ≥ 0} is a d-dimensional squared Bessel process started at x.

Note that our setting is different from that of [9, Lemma 7.7]. Notwithstanding,
given Lemma A.1, the proof of Lemma 2.3 is almost the same as that of [9, Lemma
7.7], so we omit the proof of Lemma 2.3. It is known that the laws of 0-dimensional and
1-dimensional squared Bessel processes are related to each other by the Radon-Nikodym
derivative

dQ0
x

dQ1
x

|Ft∩{H0>t} =

(
x

Xt

)1/4

exp

(
−3

8

∫ t

0

1

Xs
ds

)
, (2.6)

for all t > 0 and x > 0, where H0 := inf{t ≥ 0 : Xt = 0} and Ft is the σ-field generated
by {Xs : s ≤ t}. See, for example, [9, (7.31)]. The transition semigroup {Q0

t : t ≥ 0} of a
0-dimensional squared Bessel process is given by

Q0
t (x, ·) = exp

(
− x

2t

)
δ0 + Q̃t(x, ·), x > 0, (2.7)
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where δ0 is the Dirac measure at 0. Q̃t(x, ·) in (2.7) has the density

q0
t (x, y) =

1

2t

√
x

y
exp

(
−x+ y

2t

)
I1

(√
xy

t

)
, x, y ∈ (0,∞), (2.8)

where I1(·) is the modified Bessel function of the first kind

I1(z) =

∞∑
k=0

(z
2

)2k+1 1

k!(k + 1)!
. (2.9)

We will use the following asymptotic behavior of I1(·):

I1(z) =
ez√
2πz

(1 +O(1/z)), as z →∞. (2.10)

See, for example, [38, Chapter XI, §1] or [17, Section 2] for the details on squared Bessel
processes.

Let (Bs, s ≥ 0, PBx , x ∈ R) be a Brownian motion on R with variance 1/2. To estimate
tail probabilities of the maximum of local times over leaves, we frequently use the
following.

Lemma 2.4. ([21, Lemma 3.6]) Fix a constant C > 0. For z > 0 and s > 0, set

µs,z(x)dx := PB0 (Bs ∈ dx,Br ≤ z, 0 ≤ ∀r ≤ s)

=
1√
πs

(
e−

x2

s − e−
(2z−x)2

s

)
dx, x ≤ z, (2.11)

µ∗s,z(x)dx := PB0

(
Bs ∈ dx,Br ≤ z + z

1
20 + C(r ∧ (s− r)) 1

20 , 0 ≤ ∀r ≤ s
)
.

(i) There exists c1 > 0 such that for any z > 1, s > 0, and x ≤ z + z
1
20 ,

µ∗s,z(x) ≤ c1z(z + z
1
20 − x)s−

3
2 e−

x2

s .

(ii) There exists δz with limz→∞ δz = 0 such that for all z > 1, x ≤ 0, and s ≥ x2 + z2,

µ∗s,z(x) ≤ (1 + δz)µs,z(x).

3 Tail of maximum of local time over leaves

The aim of this section is to obtain the following tail estimates of the maximum of
local times of the simple random walk on the b-ary tree over leaves. Recall the definition
of an(t) from (1.6).

Proposition 3.1. (i) There exist c1, c2 ∈ (0, ∞) such that for all t > 0, y ≥ 0, and n ∈ N,

Pρ

(
max
v∈Tn

√
Lnτ(t)(v) ≥

√
t+ an(t) + y

)
≤ c1(1 + y)e−2

√
log b ye−c2

y2

n . (3.1)

(ii) There exist c3 > 0 and n0 ∈ N such that for all n ≥ n0, y ∈ [0, 2
√
n], and t ≥ n,

Pρ

(
max
v∈Tn

√
Lnτ(t)(v) ≥

√
t+ an(t) + y

)
≥ c3(1 + y)e−2

√
log b y. (3.2)

An outline of the proof of Proposition 3.1(i) is as follows: Recall the definition of vs
defined before Lemma 2.3. We will prove in Lemma 3.2 that for each v ∈ Tn, the local

time process (
√
L̃nτ̃(t)(vs))s∈[0,n] does not cross the curve gy,t,n(·) (see (3.5) for definition)
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Extremes of local times on symmetric trees

with probability at least 1− c(1 + y)e−2
√

log b ye−c
′ y2
n . Thus, we can focus our attention on

a truncated version of the event in Proposition 3.1 which says that there exists a leaf

v ∈ Tn satisfying the following: the local time process (
√
L̃nτ̃(t)(vs))s∈[0,n] stays below the

barrier gy,t,n(·) and reaches the maximal value
√
t+ an(t) + y at s = n. Using Lemma 2.3

and (2.6), we reduce the barrier estimate for the local time process to an analogue for a
Brownian motion and then apply Lemma 2.4.

In the proof of Proposition 3.1(ii), we will apply the second moment method to
Z =

∑
v∈Tn 1Anv (t), where Anv (t), v ∈ Tn are events which will be defined in (3.25). In

order to get the lower bound on the first moment Ẽρ[Z], we apply Lemma 2.3 and (2.6)

and reduce the estimate of Ẽρ[Z] to a barrier estimate for a Brownian motion. We need

more work to obtain the upper bound on the second moment Ẽρ[Z2]. Fix leaves u, v ∈ Tn
with u 6= v and set ` = |u ∧ v|. The event Anu(t) ∩ Anv (t) is described in terms of local

time processes L↑ = (
√
L̃nτ̃(t)(vs))s∈[0,`] and L↓,w = (

√
L̃nτ̃(t)(ws))s∈[`,n], w = u, v. By the

Markov property of the local time (Lemma 2.1) and independence of Brownian motions
on different subtrees, conditioned on L↑, L↓,u and L↓,v are independent. Thanks to the
independence, the estimate of P̃ρ[Anu(t) ∩Anv (t)] is reduced to barrier estimates for L↑,
L↓,u, and L↓,v.

We first prove Proposition 3.1(i). Fix κ ∈
(

1
2
√

log b
,∞
)

. For y > 0 and n ∈ N, we define

the event Gny (t) by{
∃v ∈ Tn,∃s ∈ [0, n] :

√
L̃nτ̃(t)(vs) ≥

√
t+

an(t)

n
s+ κ(log(s ∧ (n− s)))+ + y + 1

}
, (3.3)

where c+ := max{c, 0}. We prove that Gny (t) is a rare event, that is, every local time

process along the path from the root to a leaf stays below the curve s 7→
√
t+ an(t)

n s+

κ(log(s ∧ (n− s)))+ + y + 1 with high probability:

Lemma 3.2. There exist c1, c2 ∈ (0, ∞) such that for all t > 0, n ∈ N, and y ≥ 0,

P̃ρ(G
n
y (t)) ≤ c1(1 + y)e−2

√
log b ye−c2

y2

n . (3.4)

Proof. We first consider the case y > M , where M is sufficiently large constant. Set

gy,t,n(s) :=
√
t+

an(t)

n
s+ κ(log(s ∧ (n− s)))+ + y + 1, 0 ≤ s ≤ n, (3.5)

my,t,n(j) :=
√
t+

an(t)

n
j + κ min

j≤r≤j+1
(log(r ∧ (n− r)))+ + y + 1, 0 ≤ j ≤ n− 1.

Recall the probability measure Qdx defined in Lemma 2.3 and set

τ := inf
{
s ≥ 0 :

√
Xs/2 ≥ gy,t,n(s)

}
,

where X is a coordinate process. Fix δ ∈ (0, 1). By Lemma 2.3, P̃ρ(Gny (t)) is bounded
from above by

P̃ρ

(
0 ≤ ∃j ≤ n− 1, ∃v ∈ Tj+1, ∃s ∈ (j, j + 1] :√
L̃nτ̃(t)(vr) < gy,t,n(r), 0 ≤ ∀r ≤ j,

√
L̃nτ̃(t)(vs) ≥ gy,t,n(s)

)

≤
n−1∑
j=0

bj+1Q0
2t

(
τ ∈ (j, j + 1],

√
Xj+1/2 ≥ δmy,t,n(j)

)
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Extremes of local times on symmetric trees

+

n−1∑
j=0

bj+1Q0
2t

(
τ ∈ (j, j + 1],

√
Xj+1/2 < δmy,t,n(j)

)

=:

n−1∑
j=0

bj+1I
(1)
j +

n−1∑
j=0

bj+1I
(2)
j . (3.6)

Fix 0 ≤ j ≤ n−1. We first estimate I(2)
j . By the strong Markov property of a 0-dimensional

squared Bessel process and (2.7), we have

I
(2)
j = Q0

2t

[
1{τ∈(j,j+1)}Q

0
Xτ

(√
Xj+1−τ/2 < δmy,t,n(j)

)]

= Q0
2t

[
1{τ∈(j,j+1)} exp

(
− Xτ

2(j + 1− τ)

)]
+Q0

2t

[
1{τ∈(j,j+1)}

∫ 2δ2(my,t,n(j))2

0

√
Xτ/z

2(j + 1− τ)
e−

Xτ+z
2(j+1−τ) I1

( √
Xτz

j + 1− τ

)
dz

]
=: J1 + J2. (3.7)

By the definition of τ , we have

J1 ≤ exp{−(my,t,n(j))2}. (3.8)

Assume that τ ∈ (j, j + 1). Recall the definition of I1 from (2.9). If z ≤ M(j+1−τ)2

Xτ
, then

we have

I1

( √
Xτz

j + 1− τ

)
≤
∞∑
k=0

(
√
M/2)2k+1 1

k!(k + 1)!
≤ c1(M). (3.9)

If z > M(j+1−τ)2

Xτ
, then by (2.10) and the assumption that M is sufficiently large, we have

I1

( √
Xτz

j + 1− τ

)
≤ c2

e
√
Xτz

j+1−τ√ √
Xτz

j+1−τ

. (3.10)

By (3.9) and (3.10), we have

J2 ≤ c3(M)

(
max

j≤r≤j+1
gy,t,n(r)

)
exp{−c4(my,t,n(j))2}, (3.11)

where we have used the inequality (j + 1 − τ)−1/2e−
(
√
Xτ−

√
z)2

2(j+1−τ) ≤ e−c4(my,t,n(j))2 for all
z ∈ [0, 2δ2(my,t,n(j))2]. By (3.8) and (3.11), we have

n−1∑
j=0

bj+1I
(2)
j ≤ c5(M)

n−1∑
j=0

bj+1e−c6(
√
t+y+1)2e−c7(

√
t+y+1)j ≤ c8(M)e−c6(

√
t+y+1)2 , (3.12)

where in the last inequality, we have used the assumption that y > M andM is sufficiently
large.

Next, we will estimate I(1)
j . Fix 1 ≤ j ≤ n− 1. By (2.6), I(1)

j is equal to

Q1
2t

[(
2t

Xj+1

)1/4

exp

(
−3

8

∫ j+1

0

ds

Xs

)
1{
τ∈(j,j+1],

√
Xj+1/2≥δmy,t,n(j)

}
∩{H0>j+1}

]
. (3.13)
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Recall that (Bs, s ≥ 0, PBx , x ∈ R) is a Brownian motion on R with variance 1/2. Since
the law of a 1-dimensional squared Bessel process is the same as that of a square of a

standard Brownian motion on R, (3.13) is bounded from above by
√ √

t
δmy,t,n(j) times

PB√
t

(
Br < gy,t,n(r), ∀r ∈ [0, j], Bs ≥ gy,t,n(s), ∃s ∈ [j, j + 1]

)

≤ EB0

[
1{Br<gy,t,n(r)−

√
t, ∀r∈[0,j]}P

B
Bj

(
Bs ≥ gy,t,n(j + s)−

√
t, ∃s ∈ [0, 1]

)]
, (3.14)

where we have used the translation invariance and Markov property of B in the last
inequality.

Let P̃Bj be the probability measure defined by

P̃Bj (A) = EB0

[
1A exp

{
2an(t)

n
Bj −

(an(t))2

n2
j

}]
, A ∈ σ(Bs : s ≤ j). (3.15)

By the Girsanov theorem, under P̃Bj , the process{
B̃s := Bs −

an(t)

n
s : 0 ≤ s ≤ j

}
(3.16)

is a Brownian motion on R with variance 1/2 started at 0. By the change of measure
(3.15), the right of (3.14) is bounded from above by

ẼBj

e− 2an(t)
n B̃j− (an(t))2

n2 j1{B̃r<y+c9+κ log(j∧(n−j))+c10(r∧(j−r))1/20, ∀r∈[0,j]}
×PB

B̃j
[max0≤s≤1Bs ≥ y − c11 + κ log(j ∧ (n− j))]



≤ ẼBj

e
− 2an(t)

n B̃j− (an(t))2

n2 j1{B̃r<y+c9+κ log(j∧(n−j))+c10(r∧(j−r))1/20, ∀r∈[0,j]}
×1{B̃j<y−c11+κ log(j∧(n−j))}
×PB

B̃j
[max0≤s≤1Bs ≥ y − c11 + κ log(j ∧ (n− j))]


+ ẼBj

e− 2an(t)
n B̃j− (an(t))2

n2 j1{B̃r<y+c9+κ log(j∧(n−j))+c10(r∧(j−r))1/20, ∀r∈[0,j]}
×1{B̃j∈[y−c11+κ log(j∧(n−j)), y+c9+κ log(j∧(n−j))]}

 . (3.17)

To estimate the tail of max0≤s≤1Bs in the first term of the right of (3.17), we use the
following:

PB0

(
max

0≤s≤1
Bs ≥ λ

)
≤ e−λ

2

, for each λ > 0 (3.18)

(see, for example, [32, Chapter 2, (8.4)]). By Lemma 2.4(i) and (3.18), the right of (3.17)
is bounded from above by

c12e
− 2an(t)

n y− (an(t))2

n2 j

(
1 +

y

j + 1

)
(y + c9 + κ log(j ∧ (n− j)))

× j− 3
2 (j ∧ (n− j))−2

√
log b κe−c13

y2

j+1 . (3.19)

Similarly, in the case j = 0, by (2.6) and (3.18), we have

I
(1)
0 ≤ c14P

B
0

(
max

0≤s≤1
Bs ≥ y + 1

)
≤ c14e

−(y+1)2 . (3.20)
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Thus, by (3.19), (3.20), and the condition κ > 1/(2
√

log b), we have

n−1∑
j=0

bj+1I
(1)
j ≤ c15(1 + y)e−2

√
log b ye−c16

y2

n . (3.21)

Thus, by (3.6), (3.12) and (3.21), we have (3.4) for y > M . For y ≤M , (3.4) holds if we
take c1 in (3.4) sufficiently large depending on M .

We now prove Proposition 3.1(i).

Proof of Proposition 3.1(i). Recall the definitions of the event Gny (t) and the function
gy,t,n(·) from (3.3) and (3.5). In view of Lemma 3.2, it is natural to impose the restriction
that local time processes stay below the curve s 7→ gy,t,n(s): we have

Pρ

(
max
v∈Tn

√
Lnτ(t)(v) ≥

√
t+ an(t) + y

)
≤ P̃ρ (∪v∈TnEnv (t)) + P̃ρ(G

n
y (t)), (3.22)

where for each v ∈ Tn, we define the event Env (t) by{√
L̃nτ̃(t)(vs) ≤ gy,t,n(s), ∀s ∈ [0, n],

√
L̃nτ̃(t)(v) ∈

[√
t+ an(t) + y,

√
t+ an(t) + y + 1

]}
.

Fix any v ∈ Tn. Recall the process B̃ from (3.16). By Lemma 2.3, (2.6), and the change
of measure (3.15) with j = n, P̃ρ(Env (t)) is bounded from above by√ √

t√
t+ an(t) + y

ẼBn

[
e−

2an(t)
n B̃n− (an(t))2

n 1{
B̃s≤y+1+c1κ(s∧(n−s))

1
20 , ∀s∈[0,n], B̃n∈[y,y+1]

}] .
(3.23)

By Lemma 2.4(i), the right of (3.23) is bounded from above by

c2b
−n(1 + y)e−2

√
log b ye−c3

y2

n . (3.24)

Thus, by (3.22), (3.24), and Lemma 3.2, we have (3.1).

Next, we prove Proposition 3.1(ii). Fix δ ∈ (0, 1). For v ∈ Tn, set the event

Anv (t) :=

δ
√
t ≤

√
L̃nτ̃(t)(vs) <

√
t+ an(t)

n s+ y + 1, ∀s ∈ [0, n],√
L̃nτ̃(t)(v) ∈ [

√
t+ an(t) + y,

√
t+ an(t) + y + 1)

 . (3.25)

To obtain Proposition 3.1(ii), we will apply the second moment method to
∑
v∈Tn 1Anv (t).

We first need the following:

Lemma 3.3. There exist c1 > 0 and n0 ∈ N such that for all n ≥ n0, y ∈ [0, 2
√
n], t ≥ n,

and v ∈ Tn,
P̃ρ(A

n
v (t)) ≥ c1b−n(1 + y)e−2

√
log b y. (3.26)

Proof. Fix any t ≥ n. By Lemma 2.3 and (2.6), P̃ρ(Anv (t)) is bounded from below by

c1

√ √
t√

t+ an(t) + y + 1
PB0

(
−(1− δ)

√
t ≤ Bs < an(t)

n s+ y+ 1, ∀s ∈ [0, n],
Bn ∈ [an(t) + y, an(t) + y + 1)

)

≥ c1

√ √
t√

t+ an(t) + y + 1
(J1 − J2), (3.27)
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where we set

J1 := PB0

(
Bs <

an(t)

n
s+ y + 1, ∀s ∈ [0, n], Bn ∈ [an(t) + y, an(t) + y + 1)

)
,

J2 := PB0

(
Bs < −(1− δ)

√
t, ∃s ∈ [0, n], Bn ∈ [an(t) + y, an(t) + y + 1)

)
.

We first obtain an upper bound of J2. By using the density

PB0

(
Bs ∈ dx, max

r∈[0,s]
Br ∈ dz

)
=

4(2z − x)√
πs3

e−
(2z−x)2

s dxdz, s > 0, x ≤ z, z ≥ 0, (3.28)

(see, for example, [32, Chapter 2, Proposition 8.1]), for all n ∈ N and y ∈ [0, 2
√
n], we

have

J2 = PB0

(
max

0≤s≤n
Bs > (1− δ)

√
t, Bn ∈ (−an(t)− y − 1,−an(t)− y]

)

≤ c2b−nne−c3
√
t

√√
t+ n√
t

e−2
√

log b y, (3.29)

where we have used the symmetry of B in the first equality.
Next, we obtain a lower bound of J1. Recall the process B̃ from (3.16). By the change

of measure (3.15) with j = n, we have

J1 = ẼBn

[
e−

2an(t)
n B̃n− (an(t))2

n 1{B̃s<y+1, ∀s∈[0,n], B̃n∈[y, y+1)}

]
. (3.30)

By the reflection principle (2.11), for all n ≥ n0 (n0 is sufficiently large) and y ∈ [0, 2
√
n],

(3.30) is bounded from below by

c4b
−n

√√
t+ n√
t

(y + 1)e−2
√

log b y, (3.31)

where we used e−
(y+1−z)2

n − e−
(y+1+z)2

n ≥ c5 y+1
n for all z ∈ [1/2, 1]. Thus, by (3.27), (3.29),

and (3.31), we have (3.26).

To obtain upper bounds of P̃ρ (Anu(t) ∩Anv (t)) , u, v ∈ Tn, we need the following:

Lemma 3.4. (1) There exists c1 > 0 such that for all n ∈ N, t > 0, v ∈ Tn, 0 ≤ ` ≤ n− 1,
s < (

√
t+ an(t)

n `+ y + 1)2, and y ≥ 0,

P̃v`

√L̃↓τ̃↓(s)(vr) < √t+ an(t)
n r+y+1, ∀r ∈ [`, n],√

L̃↓
τ̃↓(s)

(v) ∈ [
√
t+an(t)+y,

√
t+an(t)+y+1)


≤ c1(n− `)−3/2

√ √
s√

t+ an(t) + y

(√
t−
√
s+

an(t)

n
`+ y + 1

)
e−

(
√
t−
√
s+an(t)+y)2

n−` , (3.32)

where
{
L̃↓r(x) : (r, x) ∈ [0,∞)× T̃ v`≤n−`

}
is a local time of a Brownian motion on T̃ v`≤n−`

and τ̃↓(s) := inf{r ≥ 0 : L̃↓r(v`) > s}.
(2) There exists c3 > 0 such that for all n ∈ N, t > 0, v ∈ Tn, and y ≥ 0,

P̃ρ(A
n
v (t)) ≤ c3b−n(y + 1)e−2

√
log b y. (3.33)
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Proof. We first prove (1). Recall the process B̃ from (3.16). By Lemma 2.3, (2.6), and
the change of measure (3.15), the left of (3.32) is bounded from above by√ √

s√
t+ an(t) + y

ẼBn−`

e− 2an(t)
n B̃n−`− (an(t))2

n2 (n−`)1{B̃n−`∈√t−√s+ an(t)
n `+y+[0,1)}

×1{B̃r<√t−√s+ an(t)
n `+y+1, ∀r∈[0,n−`]}

 . (3.34)

By the reflection principle (2.11), (3.34) is bounded from above by

c1

√ √
s√

t+ an(t) + y
(n− `)−3/2

(√
t−
√
s+

an(t)

n
`+ y + 1

)
e−

(
√
t−
√
s+an(t)+y)2

n−` ,

where we have used the inequality 1− e−x ≤ x for each x ≥ 0. Thus, we have obtained
(3.32). The inequality (3.33) immediately follows from (1) with s = t and ` = 0.

Proof of Proposition 3.1(ii). Fix any n ≥ n0, t ≥ n and y ∈ [0, 2
√
n], where we take n0 ∈ N

large enough. Set
Z :=

∑
v∈Tn

1Anv (t).

We have

Pρ

(
max
v∈Tn

√
Lnτ(t)(v) ≥

√
t+ an(t) + y

)
≥ P̃ρ(Z ≥ 1) ≥

(
Ẽρ[Z]

)2

Ẽρ[Z2]
. (3.35)

By Lemma 3.3, we have
Ẽρ[Z] ≥ c1(1 + y)e−2

√
log b y. (3.36)

The rest of the proof focuses on obtaining an upper bound of Ẽρ[Z2]. We have

Ẽρ[Z
2] = Ẽρ[Z] +

n−1∑
`=0

∑
v,u∈Tn,
|v∧u|=`

P̃ρ(A
n
v (t) ∩Anu(t)). (3.37)

By Lemma 3.4 (2), we have

Ẽρ[Z] ≤ c2(y + 1)e−2
√

log b y. (3.38)

Fix 1 ≤ ` ≤ n− 1 and v, u ∈ Tn with |v ∧ u| = `. Let
{
L̃↓s(x) : (s, x) ∈ [0,∞)× T̃ v`≤n−`

}
be

a local time of a Brownian motion on T̃ v`≤n−`. Set τ̃↓(s) := inf{r ≥ 0 : L̃↓r(v`) > s}. For

w ∈ {v, u} and s ≥ 0, we define the event C↓w(s) byδ
√
t ≤

√
L̃↓
τ̃↓(s)

(wr) <
√
t+ an(t)

n r + y + 1, ∀r ∈ [`, n],√
L̃↓
τ̃↓(s)

(w) ∈ [
√
t+ an(t) + y,

√
t+ an(t) + y + 1)

 .

By Lemma 2.1, we have

P̃ρ(A
n
v (t) ∩Anu(t))

= Ẽρ

1{
δ
√
t≤
√
L̃n
τ̃(t)

(vs)<
√
t+

an(t)
n s+y+1, ∀s∈[0, `]

}P̃v`
 ⋂
w∈{v,u}

C↓w

(
L̃nτ̃(t)(v`)

)
= Ẽρ

1{
δ
√
t≤
√
L̃n
τ̃(t)

(vs)<
√
t+

an(t)
n s+y+1, ∀s∈[0, `]

} ∏
w∈{v,u}

P̃v`

(
C↓w

(
L̃nτ̃(t)(v`)

))

≤
d(1−δ)

√
t+

an(t)
n `+ye∑

i=0

Ẽρ


1{
δ
√
t≤
√
L̃n
τ̃(t)

(vs)<
√
t+

an(t)
n s+y+1, ∀s∈[0, `]

}
×1{√

L̃n
τ̃(t)

(v`)∈
√
t+

an(t)
n `+y+1+[−i−1, −i)

}
×
∏
w∈{v,u} P̃v`

(
C↓w

(
L̃nτ̃(t)(v`)

))
 , (3.39)

EJP 23 (2018), paper 40.
Page 13/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP164
http://www.imstat.org/ejp/


Extremes of local times on symmetric trees

where we have used the independence of C↓v (s) and C↓u(s) for each s ≥ 0. (The inde-
pendence follows from that of two types of excursions of a Brownian motion around

v` on T̃
v`+1

≤n−`−1 ∪ I{v`, v`+1} or on T̃
u`+1

≤n−`−1 ∪ I{v`, u`+1}.) Fix i ≤
⌈
(1− δ)

√
t+ an(t)

n `+ y
⌉
.

Lemma 3.4 implies that under
{√

L̃nτ̃(t)(v`) ∈
√
t+ an(t)

n `+ y + 1 + [−i− 1, − i)
}

, for all

w ∈ {v, u}, P̃v` [C↓w(L̃nτ̃(t)(v`)] is bounded from above by

c3(n− `)− 3
2 (i+ 1)

√√
t+ an(t)

n `+ y + 1− i
√
t+ an(t) + y

e−
( an(t)

n
(n−`)+i−1)

2

n−` . (3.40)

By almost the same argument as the proof of Lemma 3.4 (1), we have

P̃ρ

√L̃nτ̃(t)(vs) <
√
t+ an(t)

n s+ y + 1, ∀s ∈ [0, `],√
L̃nτ̃(t)(v`) ∈

√
t+ an(t)

n `+y+1+[−i−1, − i)


≤ c4

√√√√ √
t

√
t+ an(t)

n `+ y − i
b−``−

3
2 (i+ 1)(y + 1)e−2

√
log b ye

2an(t)
n ie

3 logn
2n `e

log

(√
t+n√
t

)
2n `.

(3.41)

By (3.40) and (3.41), the right of (3.39) is bounded from above by

c5b
−2n+``−

3
2 (n− `)−3n3(y + 1)e−2

√
log b ye−

3 logn
2n `e−

log

(√
t+n√
t

)
2n `

√√
t+ an(t)

n `+ y
√
t

. (3.42)

By (3.42), we have

n−1∑
`=1

∑
v,u∈Tn,
|v∧u|=`

P̃ρ(A
n
v (t) ∩Anu(t)) ≤ c6(y + 1)e−2

√
log b y. (3.43)

In the case ` = 0, by Lemma 3.4 (2), we have∑
v,u∈Tn,
|v∧u|=0

P̃ρ(A
n
v (t) ∩Anu(t)) =

∑
v,u∈Tn,
|v∧u|=0

P̃ρ(A
n
v (t))P̃ρ(A

n
u(t)) ≤ c7(y + 1)e−2

√
log b y, (3.44)

where we have used the independence of Anv (t) and Anu(t) for each v, u ∈ Tn with
|v ∧ u| = 0 in the first equality. (The independence follows from that of two types of
excursions of a Brownian motion on T̃≤n around ρ restricted to T̃ v1≤n−1 ∪ I{ρ,v1} or to

T̃u1

≤n−1 ∪ I{ρ,u1}). Thus, by (3.35)–(3.38) and (3.43)–(3.44), we have (3.2).

4 Geometry of near maxima

In this section, we will prove that two leaves with local times near maxima are either
very close or far away. More specifically, the following is the aim of this section.

Proposition 4.1. There exist c1, c2 ∈ (0,∞), n0, r0 ∈ N, and t0 > 0 such that for all
n ≥ n0, t ≥ t0, and r0 ≤ r ≤ n/4,

Pρ

(
∃v, u ∈ Tn with r ≤ |v ∧ u| ≤ n− r :√
Lnτ(t)(v),

√
Lnτ(t)(u) ≥

√
t+ an(t)− c1 log r

)
≤ c2r−1/8. (4.1)

Remark 4.2. Results similar to Proposition 4.1 are known for the BBM [3] and the
two-dimensional DGFF [28].
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Extremes of local times on symmetric trees

For n ∈ N, t > 0, and k ∈ Z, set

Γnk (t) :=
{
v ∈ Tn :

√
Lnτ(t)(v) ∈ [

√
t+ an(t)− k − 1,

√
t+ an(t)− k]

}
.

Remark 4.3. Fix n′ > n ≥ 1, t > 0, and k ∈ Z. Set

Γn
′,n
k (t) :=

{
v ∈ Tn :

√
Ln
′

τ(t)(v) ∈ [
√
t+ an(t)− k − 1,

√
t+ an(t)− k]

}
.

Since the law of the simple random walk on T≤n′ watched only on T≤n is the same as

that of the simple random walk on T≤n, we have |Γn
′,n
k (t)| d= |Γnk (t)|.

An outline of the proof of Proposition 4.1 is as follows: In Lemma 4.4, we will estimate
a tail probability for the size of a level set of the local time and reduce the estimate to a
tail estimate for the maximum of the local time. Note that the event in Proposition 4.1
implies that there exist k ∈ {r, . . . , n− r} and w ∈ Tk satisfying the following: there exist
children w1, w2 of w such that the maxima of local times over Twin−k−1, i = 1, 2 are larger

than
√
t+ an(t)− c1 log r. We will estimate the probability of this event by conditioning

on the level set in Tk and applying the Markov property (Lemma 2.1) and independence
of Brownian motions on different subtrees. The estimate will be reduced to tail estimates
for the size of the level set and for the maximum of the local time.

In the proof of Proposition 4.1, we will use the following repeatedly.

Lemma 4.4. (i) There exist c1 > 0 and t0 > 0 such that for all n ∈ N, t ≥ t0, k ≤ −1, and
λ ∈ R with k + λ ≥ 0,

Pρ

(
|Γnk (t)| ≥ e2

√
log b (k+λ)

)
≤ c1(λ+ 1)e

−2
√

log b

(
λ− 3

4
√

log b
log(d(k+λ)2e∨1)− 1

4
√

log b
log

(√
t+an(t)−k−1+d(k+λ)2e∨1√

t+an(t)−k−1

))
. (4.2)

(ii) There exist c2 > 0 and t0 > 0 such that for all n ∈ N, t ≥ t0, λ > 0, and k ≥ 0 with√
t+ an(t)− k − 1 ≥ c2, (4.2) holds.

Proof. (i) Fix n ∈ N, t > 0, k ≤ −1, and λ ∈ R with k + λ ≥ 0. Set r := d(k + λ)2e ∨ 1

and y := λ− 3
4
√

log b
log r − 1

4
√

log b
log
(√

t+an(t)−k−1+r√
t+an(t)−k−1

)
. If y < 0, then it is clear that (4.2)

holds because Pρ
(
|Γnk (t)| ≥ e2

√
log b (k+λ)

)
≤ 1 ≤ (λ + 1)e−2

√
log b y. So, we may assume

that y ≥ 0. Fix any K > 0. We have

Pρ

(
max
v∈Tn+r

√
Ln+r
τ(t) (v) ≥

√
t+ an+r(t) + y

)
≥ Pρ

(
|Γn+r,n
k (t)| ≥ K, max

v∈Tn+r

√
Ln+r
τ(t) (v) ≥

√
t+ an+r(t) + y

)
= Pρ

(
|Γn+r,n
k (t)| ≥ K

)
− Pρ

(
|Γn+r,n
k (t)| ≥ K, max

v∈Tn+r

√
Ln+r
τ(t) (v) <

√
t+ an+r(t) + y

)
.

(4.3)

We estimate the second term on the right-hand side of (4.3). By Lemma 2.1, we have

Pρ

(
|Γn+r,n
k (t)| ≥ K, max

v∈Tn+r

√
Ln+r
τ(t) (v) <

√
t+ an+r(t) + y

)
≤
∑
S⊂Tn,
|S|≥K

Pρ

(
Γn+r,n
k (t) = S, max

v∈Tur

√
Ln+r
τ(t) (v) <

√
t+ an+r(t) + y, ∀u ∈ S

)

=
∑
S⊂Tn,
|S|≥K

Eρ

[
1{Γn+r,n

k (t)=S}
∏
u∈S

P̃u

(
max
v∈Tur

√
L̃↓
τ̃↓
(
Ln+r
τ(t)

(u)
)(v) <

√
t+ an+r(t) + y

)]
, (4.4)
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Extremes of local times on symmetric trees

where for each u ∈ Tn,
{
L̃↓s(x) : (s, x) ∈ [0, ∞)× T̃u≤r

}
is a local time of a Brownian

motion on T̃u≤r and τ̃↓(q) := inf{s ≥ 0 : L̃↓s(u) > q}. We omit the subscript u in L̃↓s(x) and
τ̃↓ to simplify the notation.

We estimate each probability on the right-hand side of (4.4). Fix S ⊂ Tn with |S| ≥ K
and u ∈ S. Note that under the event that Γn+r,n

k (t) = S, we have

√
t+ an+r(t) + y ≤

√
Ln+r
τ(t) (u) + ar

(
Ln+r
τ(t) (u)

)
+ k + λ+ 1.

By this and Proposition A.3 for t ≥ t0, where t0 is sufficiently large, we have

P̃u

(
max
v∈Tur

√
L̃↓
τ̃↓
(
Ln+r
τ(t)

(u)
)(v) <

√
t+ an+r(t) + y

)

≤ 1− P̃u

(
max
v∈Tur

√
L̃↓
τ̃↓
(
Ln+r
τ(t)

(u)
)(v) ≥

√
Ln+r
τ(t) (u) + ar

(
Ln+r
τ(t) (u)

)
+ k + λ+ 1

)
≤ 1− c1e−2

√
log b (k+λ+1). (4.5)

By (4.3)–(4.5), we have

Pρ

(
max
v∈Tn+r

√
Ln+r
τ(t) (v) ≥

√
t+ an+r(t) + y

)
≥
(

1− exp
{
−c1Ke−2

√
log b(k+λ+1)

})
Pρ
(
|Γn+r,n
k (t)| ≥ K

)
. (4.6)

By Remark 4.3, (4.6) with K := e2
√

log b(k+λ), and Proposition 3.1(i), we have (4.2).

(ii) The proof of (ii) is almost the same as that of (i), so we omit the detail.

For the rest of this section, we focus on proving the following.

Lemma 4.5. Fix 0 < c < c < 3
4
√

log b
. There exist c1 > 0, n0, s0 ∈ N, and t0 > 0 such that

for all n ≥ n0, t ≥ t0, and s0 ≤ s ≤ n− s0,

Pρ

[
∃v, u ∈ Tn with |v ∧ u| = s :√
Lnτ(t)(v),

√
Lnτ(t)(u) ≥

√
t+ an(t)− (c− c) log(s ∧ (n− s))

]
≤ c1(log(s ∧ (n− s)))8(s ∧ (n− s))−3+4c

√
log b−2c

√
log b

+ c1(log(s ∧ (n− s)))6(s ∧ (n− s))−2c
√

log b. (4.7)

Before we prove this, let us show that Lemma 4.5 implies Proposition 4.1.

Proof of Proposition 4.1 via Lemma 4.5. Fix any n ≥ n0, t ≥ t0, and r0 ≤ r ≤ n/4, where
we take n0, r0 ∈ N and t0 > 0 sufficiently large. By Lemma 4.5 with c = 5

8
√

log b
and

c = 11
16
√

log b
, the left of (4.1) is bounded from above by

c1

n−r∑
s=r

{
(log(s ∧ (n− s)))8(s ∧ (n− s))−3/2 + (log(s ∧ (n− s)))6(s ∧ (n− s))−5/4

}
.

This is bounded from above by c2r−1/8.

Proof of Lemma 4.5. Fix any n ≥ n0, t ≥ t0, s0 ≤ s ≤ n − s0, where we take n0, s0 ∈ N
and t0 > 0 sufficiently large. Set z := c log(s ∧ (n− s)). The left of (4.7) is bounded from
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Extremes of local times on symmetric trees

above by

Pρ


∃k ∈ Z with

√
t+ as(t)− k > 0, ∃j ≥ −k s.t.

|Γn,sk (t)| ∈
[
e2
√

log b(k+j), e2
√

log b(k+j+1)
)
,

∃w ∈ Γn,sk (t), ∃w1, w2 ∈ Tw1 with w1 6= w2 s.t. ∀i ∈ {1, 2},
maxv∈Twin−s−1

√
Lnτ(t)(v) ≥

√
t+ an(t)− c log(s ∧ (n− s)) + z

 . (4.8)

For k ∈ Z, we set j∗(k, z) := dmax{|k|, z}e. Fix sufficiently large constant t∗ > 0. We will
decompose (4.8) into three terms with respect to k and j: (i) k ≤

√
t+ as(t)− t∗ − 1 and

−k ≤ j ≤ j∗(k, z); (ii) k ≤
√
t+ as(t)− t∗ − 1 and j > j∗(k, z); (iii) k ≥

√
t+ as(t)− t∗ − 1.

Then, (4.8) is bounded from above by

∑
k∈Z,√

t+as(t)−k−1≥t∗

j∗(k,z)∑
j=−k

Pρ


|Γn,sk (t)| ∈

[
e2
√

log b(k+j), e2
√

log b(k+j+1)
)
,

∃w ∈ Γn,sk (t),∃w1, w2 ∈ Tw1 with w1 6= w2 s.t.∀i ∈ {1, 2},
maxv∈Twin−s−1

√
Lnτ(t)(v) ≥

√
t+ an(t)− c log(s∧ (n− s)) + z


+

∑
k∈Z,√

t+as(t)−k−1≥t∗

Pρ

(
|Γn,sk (t)| ≥ e2

√
log b(k+j∗(k,z))

)

+
∑
k∈Z,

0<
√
t+as(t)−k≤t∗+1

Pρ


∃w ∈ Ts with

√
Lnτ(t)(w) ≤ t∗ + 1,

∃w1, w2 ∈ Tw1 with w1 6= w2 s.t. ∀i ∈ {1, 2},
maxv∈Twin−s−1

√
Lnτ(t)(v) ≥

√
t+ an(t)− c log(s∧ (n− s)) + z


=:

∑
k∈Z,√

t+as(t)−k−1≥t∗

j∗(k,z)∑
j=−k

J1(k, j) + J2 +
∑
k∈Z,

0<
√
t+as(t)−k≤t∗+1

J3(k). (4.9)

For each w ∈ Ts, let L̃↓ be a local time of a Brownian motion on T̃w≤n−s and set τ̃↓(q) :=

inf{p ≥ 0 : L̃↓p(w) > q}. We omit the subscript w in L̃↓ and τ̃↓(q). Fix k ≤
√
t+as(t)− t∗−1

and −k ≤ j ≤ j∗(k, z). Set Ik,j := [e2
√

log b(k+j), e2
√

log b(k+j+1)). J1(k, j) is bounded from
above by ∑

S⊂Ts,
|S|∈Ik,j

∑
w∈S

∑
w1,w2∈Tw1 ,
w1 6=w2

Jk,j1 (S,w,w1, w2), (4.10)

where Jk,j1 (S,w,w1, w2) is given by

Pρ

[
Γn,sk (t) = S, max

v∈Twin−s−1

√
Lnτ(t)(v) ≥

√
t+ an(t)− c log(s ∧ (n− s)) + z, ∀i ∈ {1, 2}

]
.

(4.11)
Fix S ⊂ Ts with |S| ∈ Ik,j , w ∈ S, and w1, w2 ∈ Tw1 with w1 6= w2. By Lemma 2.1

and the independence of two types of excursions restricted to T̃w1

≤n−s−1 ∪ I{w,w1} or to

T̃w2

≤n−s−1 ∪ I{w,w2}, (4.11) is equal to

Eρ


1{Γn,sk (t)=S}

×
∏

i∈{1, 2}

P̃w

(
max

v∈Twin−s−1

√
L̃↓
τ̃↓
(
Ln
τ(t)

(w)
)(v) ≥

√
t+ an(t)− c log(s ∧ (n− s)) + z

)  .
(4.12)
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Extremes of local times on symmetric trees

By the symmetry of the b-ary tree and (2.3), (4.12) is bounded from above by

Pρ [Γn,sk (t) = S]

× Pρ

(
max
v∈Tn−s

√
Ln−s
τ((
√
t+as(t)−k)2)

(v) ≥
√
t+ an(t)− c log(s ∧ (n− s)) + z

)2

. (4.13)

By (4.13), (4.10) is bounded from above by

c1e
2
√

log b(k+j)Pρ

(
|Γn,sk (t)| ≥ e2

√
log b(k+j)

)
× Pρ

(
max
v∈Tn−s

√
Ln−s
τ((
√
t+as(t)−k)2)

(v) ≥
√
t+ an(t)− c log(s ∧ (n− s)) + z

)2

. (4.14)

We estimate (4.14) in different ways according to three cases: (a) k ≥ −z and j ≥ 0; (b)
k < −z; (c) j < 0. In the case (a), we use Proposition 3.1(i), Lemma 4.4, and Remark 4.3.
In the case (b), we only use Lemma 4.4 and Remark 4.3 and estimate the square of the
probability in (4.14) just by 1. In the case (c), we only use Proposition 3.1(i) and estimate
the probability in the first display of (4.14) just by 1. Note that for k ∈ Z with k ≥ −z, we
have

√
t+ an(t)− c log(s ∧ (n− s)) + z ≥ (

√
t+ as(t)− k) + an−s((

√
t+ as(t)− k)2)

+

(
3

4
√

log b
− c
)

log(s ∧ (n− s)) + k + z − c2.

Recall that z = c log(s ∧ (n− s)). By these observations, for sufficiently large t∗, the first
term of (4.9) is bounded from above by

c3(log(s ∧ (n− s)))8(s ∧ (n− s))−3+4c
√

log b−2c
√

log b

+ c3(log(s ∧ (n− s)))(s ∧ (n− s))−2c
√

log b. (4.15)

Next, we estimate the second term of (4.9). By Lemma 4.4 and Remark 4.3, we have

J2 ≤ c4(log(s ∧ (n− s)))6(s ∧ (n− s))−2c
√

log b. (4.16)

Finally, we estimate the third term of (4.9). Fix k ≥
√
t + as(t) − t∗ − 1. By Lemma

2.1, J3(k) is bounded from above by∑
w∈Ts

∑
w1,w2∈Tw1 ,
w1 6=w2

Jk3 (w,w1, w2), (4.17)

where Jk3 (w,w1, w2) is given by

Eρ


1{√

Ln
τ(t)

(w)≤t∗+1
}

×
∏

i∈{1,2}

P̃w

[
max

v∈Twin−s−1

√
L̃↓
τ̃↓
(
Ln
τ(t)

(w)
)(v) ≥

√
t+ an(t)− c log(s ∧ (n− s)) + z

]  .
(4.18)

By (4.18) together with the symmetry of the b-ary tree, (4.17) is bounded from above by

c5b
sPρ

(
max
v∈Tn−s

√
Ln−sτ((t∗+1)2)(v) ≥

√
t+ an(t)− c log(s ∧ (n− s)) + z

)2

. (4.19)
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Extremes of local times on symmetric trees

Since t0 and n0 are sufficiently large, we have

√
t+ an(t)− c log(s ∧ (n− s)) + z ≥ (t∗ + 1) + an−s((t∗ + 1)2)

+
1

2

√
log b s− c log(s ∧ (n− s)) + z.

By Proposition 3.1(i) and (4.19), the third term of (4.9) is bounded from above by

c6s
2b−s(s ∧ (n− s))4(c−c)

√
log b. (4.20)

Thus, by (4.9), (4.15), (4.16), and (4.20), we have (4.7).

5 Limiting tail of the maximum of local times

The aim of this section is to prove the exact asymptotics of the tail of the maximum
of local times. Recall the constants β∗ and γ∗ from (1.8) and (1.9).

Proposition 5.1. Fix positive sequences (y+
j )j≥1, (y

−
j )j≥1 with y−j ≤ y+

j for each j ≥
1 and limj→∞ y−j = ∞. For each j ≥ 1, fix sequences (t+n (j))n≥1, (t

−
n (j))n≥1 with

limn→∞

√
t+n (j)
n = limn→∞

√
t−n (j)
n = θ ∈ [0,∞] and t−n (j) ≤ t+n (j) for each n ≥ 1. For

all ε > 0, there exists j0 ∈ N such that the following holds for each j ≥ j0: there exists
n0(j) ∈ N such that for all n ≥ n0(j),

Pρ

(
maxv∈Tn

√
Lnτ(t)(v) >

√
t+ an(t) + yj

)
yje−2

√
log b yj

∈
[

4√
π
β∗γ∗ − ε,

4√
π
β∗γ∗ + ε

]
, (5.1)

uniformly in yj and t with

y−j ≤ yj ≤ y
+
j , t ≥ c∗n log n and t−n (j) ≤ t ≤ t+n (j), (5.2)

for some constant c∗ > 0 not depending on ε, j, n.

Fix δ ∈ (0, 1) and κ > 1
2
√

log b
. Fix t > 0, y > 0, `(y) ∈ N, n > `(y). We will approximate

the tail probability of the maximum of local times by Ẽρ[Λny,`(y)(t)], where

Λny,`(y)(t) :=
∑

v∈Tn−`(y)

1Fn
v,y,`(y)

(t),

and for each v ∈ Tn−`(y),

Fnv,y,`(y)(t) :=

δ
√
t ≤

√
L̃nτ̃(t)(vs) ≤

√
t+ an(t)

n s+ y, ∀s ∈ [0, n− `(y)],

maxu∈Tv
`(y)

√
L̃nτ̃(t)(u) >

√
t+ an(t) + y

 .

To do so, we need an intermediate approximation Ẽρ[Λ̃ny,`(y)(t)], where

Λ̃ny,`(y)(t) :=
∑

v∈Tn−`(y)

1F̃n
v,y,`(y)

(t),

and for each v ∈ Tn−`(y),

F̃nv,y,`(y)(t) :=

δ
√
t ≤

√
L̃nτ̃(t)(vs) ≤

√
t+ an(t)

n s+y+y
1
20 +κ(log(s∧(n−`(y)−s)))+,

∀s ∈ [0, n− `(y)], maxu∈Tv
`(y)

√
L̃nτ̃(t)(u) >

√
t+ an(t) + y

 .
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Extremes of local times on symmetric trees

An outline of the proof of Proposition 5.1 is as follows: The difference between the upper
barriers in Fnv,y,`(y)(t) and F̃nv,y,`(y)(t) is so tiny that thanks to the entropic repulsion

(Lemma 2.4 (ii)), we can approximate Ẽρ[Λ
n
y,`(y)(t)] by Ẽρ[Λ̃

n
y,`(y)(t)] (Lemma 5.2). In

Lemma 5.3, applying an argument similar to the proof of Proposition 3.1(ii), we will
show that the second moment Ẽρ[(Λny,`(y)(t))

2] is close to Ẽρ[Λny,`(y)(t)]. In Lemma 5.4,
we will prove that the tail probability of the maximum of the local time is approximated
by Ẽρ[Λny,`(y)(t)]: the upper bound follows from Lemmas 3.2, 5.2 and the lower bound
follows from Lemma 5.3. Applying Lemmas 2.1, 2.3, (2.6), and the reflection principle
(2.11), we can represent Ẽρ[Λny,`(y)(t)] in terms of a tail probability of the local time
at a relatively large time. The generalized second Ray-Knight theorem (Theorem 2.2)
implies that the tail probability is approximated by an analogue for the maximum of BRW.
Proposition 5.1 follows from these approximations.

In Lemma 5.4, we show that Pρ(maxv∈Tn

√
Lnτ(t)(v) ≥

√
t+ an(t) + y)/Ẽρ[Λ

n
y,`(y)(t)] is

close to 1. To obtain the upper bound in this statement, we need the following:

Lemma 5.2. There exist c1, c2 ∈ (0,∞), y0 > 0, and {δy′ : y′ > 0} with limy′→∞ δy′ = 0

such that the following holds: for all y ≥ y0 and `(y) > e
8
√

log b
3 y1/20 , there exists n0 =

n0(y, `(y)) ∈ N such that for all n ≥ n0 and t ≥ c1n log n,

Ẽρ

[
Λny,`(y)(t)

]
Ẽρ

[
Λ̃ny,`(y)(t)

] ≥ (1− δy)
(

1− c2(`(y))−1/2 − δy
)
. (5.3)

Proof. Fix any y ≥ y0 and `(y) > e
8
√

log b
3 y1/20 , where we take y0 > 0 large enough.

Throughout the proof, given n ∈ N, we assume that t ≥ c∗n log n, where c∗ is a sufficiently
large positive constant. Fix v ∈ Tn−`(y). Let L̃↓ be a local time of a Brownian motion on

T̃ v≤`(y) and set τ̃↓(s) := inf{r ≥ 0 : L̃↓r(v) > s}. Recall the definitions of µn−`(y),y, µ
∗
n−`(y),y,

and δy from Lemma 2.4. By Lemma 2.1, we have

P̃ρ

(
F̃nv,y,`(y)(t)

)
− P̃ρ

(
Fnv,y,`(y)(t)

)

= Ẽρ


1{
δ
√
t≤
√
L̃n
τ̃(t)

(vs)≤
√
t+

an(t)
n s+y+y

1
20 +κ(log(s∧(n−`(y)−s)))+, ∀s∈[0, n−`(y)]

}
×P̃v

(
maxu∈Tv

`(y)

√
L̃↓
τ̃↓
(
Ln
τ(t)

(v)
)(u) >

√
t+ an(t) + y

) 

− Ẽρ


1{
δ
√
t≤
√
L̃n
τ̃(t)

(vs)≤
√
t+

an(t)
n s+y, ∀s∈[0, n−`(y)]

}
×P̃v

(
maxu∈Tv

`(y)

√
L̃↓
τ̃↓
(
Ln
τ(t)

(v)
)(u) >

√
t+ an(t) + y

) . (5.4)

Recall the process B̃ from (3.16). By Lemma 2.3, (2.6), and the change of measure (3.15),
(5.4) is bounded from above by

ẼBn−`(y)

[
1{
−(1−δ)

√
t− an(t)

n s≤B̃s≤y+y
1
20 +κ(log(s∧(n−`(y)−s)))+, ∀s∈[0, n−`(y)]

}ψ(B̃n−`(y))

]
− ẼBn−`(y)

[
1{−(1−δ)

√
t− an(t)

n s≤B̃s≤y, ∀s∈[0, n−`(y)]}ψ(B̃n−`(y))
]
, (5.5)

where

ψ(x) :=

√√√√ √
t

√
t+ an(t)

n (n− `(y)) + x
· e−

2an(t)
n x− (an(t))2

n2 (n−`(y))

× P̃v

(
max
u∈Tv

`(y)

√
L̃↓
τ̃↓((
√
t+

an(t)
n (n−`(y))+x)2)

(u) >
√
t+ an(t) + y

)
. (5.6)
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By Lemma 2.4, (5.5) is bounded from above by∫
[0, y+y

1
20 ]∪[−(1−δ)

√
t− an(t)

n (n−`(y)), −`(y)]

µ∗n−`(y), y(x)ψ(x)dx

+

∫ 0

−`(y)

δyµn−`(y), y(x)ψ(x)dx

=: J1 + J2. (5.7)

By Proposition 3.1(i) and the assumption `(y) > e
8
√

log b
3 y1/20 , taking n0(y, `(y)) ∈ N large

enough, we have for all n ≥ n0(y, `(y))

J1 ≤ c1b−(n−`(y))ye−2
√

log b y(`(y))−1/2. (5.8)

By the change of measure (3.15), J2 is bounded from above by

δyE
B
0


1{ an(t)

n (n−`(y))−`(y)≤Bn−`(y)≤
an(t)
n (n−`(y))}

×1{−(1−δ)
√
t≤Bs≤ an(t)

n s+y, ∀s∈[0, n−`(y)]}

√ √
t√

t+Bn−`(y)

×P̃v
(

maxu∈Tv
`(y)

√
L̃↓
τ̃↓((
√
t+Bn−`(y))2)

(u) >
√
t+ an(t) + y

)


+ δyE
B
0


1{

an(t)
n (n−`(y))−`(y)≤Bn−`(y)≤

an(t)
n (n−`(y)), min

s∈[0, n−`(y)]
Bs < −(1− δ)

√
t
}

×
√ √

t√
t+Bn−`(y)

P̃v

(
max
u∈Tv

`(y)

√
L̃↓
τ̃↓((
√
t+Bn−`(y))2)

(u) >
√
t+ an(t) + y

)


=: J2,1 + J2,2. (5.9)

By Lemma 2.3 and (2.6), we have for each n ≥ 1

J2,1 ≤ c2δyP̃ρ(Fnv,y,`(y)(t)), (5.10)

where we have used the fact that under the event that
√
Xs/2 ≥ δ

√
t for all 0 ≤ s ≤

n− `(y), we have exp
(

3
8

∫ n−`(y)

0
ds
Xs

)
≤ c2 under the assumption t ≥ c∗n log n.

By the symmetry of B, (3.28), and Proposition 3.1(i), taking n0 = n0(y, `(y)) ∈ N large
enough, we have for all n ≥ n0

J2,2 ≤ c3δyb−(n−`(y))e−2
√

log b y, (5.11)

where we have used the assumption t ≥ c∗n log n, c∗ is large enough. Thus, by (5.4)–
(5.11), we have

(1+ c2δy)Ẽρ(Λ
n
y,`(y)(t)) ≥ Ẽρ(Λ̃

n
y,`(y)(t))− c1ye

−2
√

log b y(`(y))−1/2− c3δye−2
√

log b y. (5.12)

In the remainder of the proof, we obtain a lower bound of Ẽρ(Λ̃ny,`(y)(t)). Recall the

definition of the event Gn−`(y)

y+y1/20−2
(t) from (3.3). Let G̃ be the slightly modified version of

this event given by{
∃v ∈ Tn−`(y),∃s ∈ [0, n− `(y)] :√
L̃nτ̃(t)(vs) >

√
t+ an(t)

n s+κ(log(s∧ (n− `(y)− s)))+ +y+y1/20

}
.

Ẽρ(Λ̃
n
y,`(y)(t)) is bounded from below by

P̃ρ

∃v ∈ Tn−`(y) :
mins∈[0, n−`(y)]

√
L̃nτ̃(t)(vs) ≥ δ

√
t,

maxu∈Tv
`(y)

√
L̃nτ̃(t)(u) >

√
t+ an(t) + y

 ∩ (G̃)c

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≥ Pρ
[

max
u∈Tn

√
Lnτ(t)(u) >

√
t+ an(t) + y

]
− P̃ρ

[
G
n−`(y)

y+y1/20−2
(t)
]

− P̃ρ

∃v ∈ Tn−`(y) :
mins∈[0, n−`(y)]

√
L̃nτ̃(t)(vs) < δ

√
t,

maxu∈Tv
`(y)

√
L̃nτ̃(t)(u) >

√
t+ an(t) + y

 , (5.13)

where we have used the inequality an(t)
n s ≥ an−`(y)(t)

n−`(y) s− 1, s ∈ [0, n− `(y)], which implies
that

P̃ρ[G̃] ≤ P̃ρ
[
G
n−`(y)

y+y1/20−2
(t)
]
. (5.14)

(Note that we have also used the fact that the law of {L̃nτ̃(t)(x) : x ∈ T̃≤n−`(y)} is the same

as that of {L̃n−`(y)
τ̃(t) (x) : x ∈ T̃≤n−`(y)}.)

Fix v ∈ Tn−`(y). Recall the definitions of L̃↓ and τ̃↓(·) from the beginning of the proof.
By Lemma 2.1, the third term on the right-hand side of (5.13) is bounded from above by

bn−`(y)Ẽρ


1{

mins∈[0, n−`(y)]

√
L̃n
τ̃(t)

(vs)<δ
√
t,
√
L̃n
τ̃(t)

(v)>0
}

×P̃v

(
maxu∈Tv

`(y)

√
L̃↓
τ̃↓
(
L̃n
τ̃(t)

(v)
)(u) >

√
t+ an(t) + y

)  . (5.15)

By Lemma 2.3, (2.6), and the symmetry of the Brownian motion, (5.15) is bounded from
above by

bn−`(y)EB0


1{maxs∈[0, n−`(y)] Bs>(1−δ)

√
t, Bn−`(y)<

√
t}

√ √
t√

t−Bn−`(y)

×P̃v

(
maxu∈Tv

`(y)

√
L̃↓
τ̃↓
(
(
√
t−Bn−`(y))

2
)(u) >

√
t+ an(t) + y

)
 . (5.16)

We estimate the indicator function in the expectation in (5.16) from above by
∑3
i=1 1Ei ,

where

E1 := {(1− δ)
√
t ≤ Bn−`(y) ≤

√
t},

E2 := {−an(t) +
√

log b `(y) ≤ Bn−`(y) < (1− δ)
√
t, max

s∈[0,n−`(y)]
Bs > (1− δ)

√
t},

E3 := {Bn−`(y) < −an(t) +
√

log b `(y), max
s∈[0,n−`(y)]

Bs > (1− δ)
√
t}.

Let Hi, i ∈ {1, 2, 3} be the expectation obtained from the one in (5.16) by replacing the
indicator function in it with 1Ei . In particular, the right of (5.16) is bounded from above
by bn−`(y)(H1 +H2 +H3).

To estimate H1, we use Proposition 3.1(i) and the density of Bn−`(y). To estimate
H2, we use Proposition 3.1(i) and (3.28). To estimate H3, we use (3.28) and bound the
probability in H3 from above just by 1. Taking n0 = n0(y, `(y)) ∈ N large enough, for all
n ≥ n0, (5.16) is bounded from above by

c4εnye
−2
√

log b y, (5.17)

where εn, n ≥ 0 is a sequence with εn → 0 as n→∞. By (5.13) and (5.17) together with
Proposition 3.1(ii) and Lemma 3.2, taking n0 = n0(y, `(y)) ∈ N large enough, we have for
all n ≥ n0

Ẽρ(Λ̃
n
y,`(y)(t)) ≥ c5ye

−2
√

log b y. (5.18)

By (5.12) and (5.18), we have (5.3).
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To obtain a lower bound for Pρ(maxv∈Tn

√
Lnτ(t)(v) ≥

√
t+an(t) + y)/Ẽρ[Λ

n
y,`(y)(t)], we

need the following:

Lemma 5.3. There exist c1, c2 ∈ (0, ∞), y0 > 0 such that the following holds: for all

y ≥ y0 and `(y) > e
8
√

log b
3 y1/20 , there exists n0 = n0(y, `(y)) ∈ N such that for all n ≥ n0

and t ≥ c1n log n,

Ẽρ

[(
Λny,`(y)(t)

)2
]

Ẽρ

[
Λny,`(y)(t)

] ≤ 1 + c2y
−1/2. (5.19)

Proof. Fix any y ≥ y0 and `(y) > e
8
√

log b
3 y1/20 , where we take y0 > 0 large enough.

Throughout the proof, given n ∈ N, we assume t ≥ c∗n log n for some sufficiently large
c∗ > 0. We have

Ẽρ

[(
Λny,`(y)(t)

)2
]

= Ẽρ[Λ
n
y,`(y)(t)] +

n−`(y)∑
k=1

∑
v,w∈Tn−`(y),
|v∧w|=n−`(y)−k

P̃ρ

(
Fnv,y,`(y)(t) ∩ F

n
w,y,`(y)(t)

)
.

(5.20)
Fix 1 ≤ k ≤ n− `(y)− 1 and v, w ∈ Tn−`(y) with |v ∧ w| = n− `(y)− k. Let L̃↓ be a local

time of a Brownian motion on T̃ v∧w≤`(y)+k and set τ̃↓(s) := inf{r ≥ 0 : L̃↓r(v ∧ w) > s}. By

Lemma 2.1, P̃ρ(Fnv,y,`(y)(t) ∩ F
n
w,y,`(y)(t)) is equal to

Ẽρ

[
1{
δ
√
t≤
√
L̃n
τ̃(t)

(vs)≤
√
t+

an(t)
n s+y, ∀s∈[0, n−`(y)−k]

} ∏
x∈{v, w}

P x

]
, (5.21)

where for each x ∈ {v, w},

P x := P̃v∧w


∀s ∈ [n− `(y)− k, n− `(y)],

δ
√
t ≤

√
L̃↓
τ̃↓
(
L̃n
τ̃(t)

(v∧w)
)(xs) ≤

√
t+ an(t)

n s+ y,

maxu∈Tx
`(y)

√
L̃↓
τ̃↓
(
L̃n
τ̃(t)

(v∧w)
)(u) >

√
t+ an(t) + y

 .

Fix 0 ≤ i ≤ b(1− δ)
√
t+ an(t)

n (n− `(y)− k) + yc. Assume that√
L̃nτ̃(t)(v ∧ w) ∈

√
t+

an(t)

n
(n− `(y)− k) + y − i+ (−1, 0] . (5.22)

Under the assumption (5.22), we estimate the probabilities in (5.21). Fix x ∈ {v, w}. Let
L̃↓↓ be a local time of a Brownian motion on T̃ x≤`(y). We define the inverse local time by

τ̃↓↓(s) := inf{r ≥ 0 : L̃↓↓r (x) > s}. By Lemma 2.1, P x is equal to

Ẽv∧w



1δ√t≤
√
L̃↓
τ̃↓(L̃nτ̃(t)(v∧w))

(xs)≤
√
t+

an(t)
n s+y, ∀s∈[n−`(y)−k, n−`(y)]



×P̃x

maxu∈Tx
`(y)

√√√√L̃↓↓

τ̃↓↓

(
L̃↓
τ̃↓(L̃nτ̃(t)(v∧w))

(x)

)(u) >
√
t+ an(t) + y




. (5.23)

By Lemma 2.3, (2.6), and the change of measure (3.15)–(3.16), (5.23) is bounded from
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above by

ẼBk



e−
2an(t)
n B̃k− (an(t))2

n2 k

√ √
L̃n
τ̃(t)

(v∧w)√
L̃n
τ̃(t)

(v∧w)+
an(t)
n k+B̃k

×1{
δ
√
t− an(t)

n s≤
√
L̃n
τ̃(t)

(v∧w)+B̃s≤
√
t+

an(t)
n (n−`(y)−k)+y, ∀s∈[0,k]

}

×P̃x

 max
u∈Tx

`(y)

√
L̃↓↓

τ̃↓↓
((√

L̃n
τ̃(t)

(v∧w)+
an(t)
n k+B̃k

)2
)(u) >

√
t+ an(t) + y




. (5.24)

By (5.22) and (2.11), (5.24) is bounded from above by∫ (1−δ)
√
t+

an(t)
n (n−`(y))+y+1

0

1√
πk

(
e−

(i+1−z)2
k − e−

(i+1+z)2

k

)

× e
2an(t)
n z− 2an(t)

n (i+1)− (an(t))2

n2 k

√√√√√t+ an(t)
n (n− `(y)− k) + y − i

√
t+ an(t)

n (n− `(y)) + y − z

× P̃x

(
max
u∈Tx

`(y)

√
L̃↓↓
τ̃↓↓
(
(
√
t+

an(t)
n (n−`(y))+y+1−z)

2
)(u) >

√
t+ an(t) + y

)
dz.

(5.25)

We use the following estimate in the integrand of (5.25): e−
(i+1−z)2

k − e−
(i+1+z)2

k ≤ 1 for

each 1 ≤ k ≤ byc, and e−
(i+1−z)2

k − e−
(i+1+z)2

k ≤ 4(i+1)z
k for each byc ≤ k ≤ n− `(y)− 1. By

this and Proposition 3.1(i), the right-hand side of (5.25) is bounded from above by

c1Ab
−ke−

2an(t)
n ie

3k logn
2n e

k log

(√
t+n√
t

)
2n

√√
t+ an(t)

n (n− `(y)− k) + y − i
√
t+ n

, (5.26)

where A := k−1/2(`(y))−1/2 if 1 ≤ k ≤ byc, and A := k−3/2(i+ 1) if byc ≤ k ≤ n− `(y)− 1.
Recall the events in the indicator function in (5.21) and in (5.22). We estimate the
probability of the intersection of these events. Using Lemma 2.3, (2.6), and and the
change of measure (3.15)–(3.16) for n ≥ n0 (n0 = n0(y, `(y)) ∈ N large enough), we have

P̃ρ

δ√t ≤√L̃nτ̃(t)(vs) ≤
√
t+ an(t)

n s+y, ∀s ∈ [0, n−`(y)−k],√
L̃nτ̃(t)(v ∧ w) ∈

√
t+ an(t)

n (n− `(y)−k) + y− i+ (−1, 0]


≤ ẼBn−`(y)−k

1{B̃s≤y, ∀s∈[0, n−`(y)−k], B̃n−`(y)−k−y∈(−i−1, −i]}

×e−
2an(t)
n B̃n−`(y)−k−

(an(t))2

n2 (n−`(y)−k)

√ √
t√

t+
an(t)
n (n−`(y)−k)+B̃n−`(y)−k

 .
(5.27)

By (2.11), the right of (5.27) is bounded from above by∫ i+1

i

1√
π(n− `(y)− k)

(
e−

(y−z)2
n−`(y)−k − e−

(y+z)2

n−`(y)−k

)

× e
2an(t)
n z− 2an(t)

n y− (an(t))2

n2 (n−`(y)−k)

√√√√ √
t

√
t+ an(t)

n (n− `(y)− k) + y − z
dz. (5.28)

We will use the following in the integrand of (5.28): e−
(y−z)2
n−`(y)−k − e−

(y+z)2

n−`(y)−k ≤ 4yz
n−`(y)−k

for each 1 ≤ k ≤ n− `(y)− byc, and e−
(y−z)2
n−`(y)−k − e−

(y+z)2

n−`(y)−k ≤ 1 for each n− `(y)− byc ≤
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k ≤ n− `(y)− 1. By this, the right-hand side of (5.28) is bounded from above by

c2A
′b−(n−`(y)−k)e

2an(t)
n ie−2

√
log b y

×e
3(n−`(y)−k)

2n logne
(n−`(y)−k) log

(√
t+n√
t

)
2n

√ √
t√

t+
an(t)
n (n−`(y)−k)+y−i−1

,
(5.29)

where A′ := (n− `(y)−k)−3/2(i+1)y if 1 ≤ k ≤ n− `(y)−byc, and A′ := (n− `(y)−k)−1/2

if n− `(y)− byc ≤ k ≤ n− `(y)− 1.

We divide the sum over 1 ≤ k < n− `(y) in (5.20) into sums over the following: (a)
1 ≤ k ≤ byc; (b) byc < k ≤ b(n − `(y))/2c; (c) b(n − `(y))/2c < k ≤ n − `(y) − byc; (d)
n− `(y)− byc < k ≤ n− `(y)− 1. We make remarks on how to estimate the sums over

difficult regimes, (b) and (c): In the regime (b), we use the fact that k−
3
2 e

3k logn
2n e

k log(

√
t+n√
t

)

2n

is bounded from above by a universal constant. In the regime of (c), we use the estimate

1

(n− `(y)− k)
3
2

√√
t+ an(t)

n (n− `(y)− k) + y
√
t

≤ c

(n− `(y)− k)
3
2

+
c

t
1
4 (n− `(y)− k)

,

for some universal constant c.

By (5.21), (5.26), and (5.29), we have

n−`(y)−1∑
k=1

∑
v,w∈Tn−`(y),
|v∧w|=n−`(y)−k

P̃ρ

(
Fnv,y,`(y)(t) ∩ F

n
w,y,`(y)(t)

)
≤ c3y1/2e−2

√
log b y. (5.30)

In the case k = n− `(y), by the independence of excursions of a Brownian motion around
ρ, we have∑
v,w∈Tn−`(y),
|v∧w|=0

P̃ρ

(
Fnv,y,`(y)(t) ∩ F

n
w,y,`(y)(t)

)
=

∑
v,w∈Tn−`(y),
|v∧w|=0

P̃ρ

(
Fnv,y,`(y)(t)

)
P̃ρ

(
Fnw,y,`(y)(t)

)

≤
(
Ẽρ[Λ

n
y,`(y)(t)]

)2

. (5.31)

Thus, by (5.20), (5.30), and (5.31), we have

Ẽρ

[(
Λny,`(y)(t)

)2
]
≤ Ẽρ[Λny,`(y)(t)] + c3y

1/2e−2
√

log b y +
(
Ẽρ[Λ

n
y,`(y)(t)]

)2

. (5.32)

We will obtain upper and lower bounds of Ẽρ[Λny,`(y)(t)]. By (5.12) and (5.18), taking
n0 = n0(y, `(y)) large enough, we have for all n ≥ n0

Ẽρ[Λ
n
y,`(y)(t)] ≥ c4ye

−2
√

log b y. (5.33)

By the arguments in (5.4) and (5.5), Ẽρ[Λny,`(y)(t)] is bounded from above by bn−`(y) times
the second term of (5.5). By this together with (2.11) and Proposition 3.1(i), we have

Ẽρ[Λ
n
y,`(y)(t)] ≤ c5ye

−2
√

log b y. (5.34)

Thus, by (5.32)–(5.34), we have (5.19).

Using Lemma 5.2 and 5.3, we prove the following:
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Lemma 5.4. There exist c1, c2, c3 ∈ (0, ∞), y0 > 0, and {δy′ : y′ > 0} with limy′→∞ δy′ = 0

such that the following holds: for all y ≥ y0 and `(y) > e
8
√

log b
3 y1/20 , there exists n0 =

n0(y, `(y)) ∈ N such that for all n ≥ n0 and t ≥ c1n log n,

Pρ

(
maxv∈Tn

√
Lnτ(t)(v) >

√
t+ an(t) + y

)
Ẽρ

[
Λny,`(y)(t)

] ≤ (1 + δy)
(

1 + e−c2 y
1/20

+ δy

)
, (5.35)

Pρ

(
maxv∈Tn

√
Lnτ(t)(v) >

√
t+ an(t) + y

)
Ẽρ

[
Λny,`(y)(t)

] ≥ 1− c3y−1/2. (5.36)

Proof. Fix any y ≥ y0, `(y) > e
8
√

log b
3 y1/20 , n ≥ n0, and t ≥ c∗n log n, where we take y0 > 0,

n0 = n0(y, `(y)) ∈ N, c∗ > 0 large enough. We first obtain the upper bound. Recall the

event Gn−`(y)

y+y1/20−2
(t) from (3.3) and εn from (5.17). Recall the inequality in (5.14). We

have

Pρ

(
max
v∈Tn

√
Lnτ(t)(v) >

√
t+ an(t) + y

)
= Pρ

(
∃v ∈ Tn−`(y) : max

u∈Tv
`(y)

√
Lnτ(t)(u) >

√
t+ an(t) + y

)
≤ Ẽρ[Λ̃ny,`(y)(t)] + P̃ρ

(
G
n−`(y)

y+y1/20−2
(t)
)

+ P̃ρ

∃v ∈ Tn−`(y) :
maxu∈Tv

`(y)

√
L̃nτ̃(t)(u) >

√
t+an(t)+y,

mins∈[0, n−`(y)]

√
L̃nτ̃(t)(vs) < δ

√
t


≤
(

1 + c1e
−2
√

log b y1/20 + εn

)
Ẽρ[Λ̃

n
y,`(y)(t)], (5.37)

where we have used Lemma 3.2, (5.17), and (5.18) in the last inequality. By (5.37) and
Lemma 5.2, we have (5.35). By Lemma 5.3, we have

Pρ

(
max
v∈Tn

√
Lnτ(t)(v) >

√
t+ an(t) + y

)
≥ P̃ρ

(
Λny,`(y)(t) ≥ 1

)
≥

(
Ẽρ[Λ

n
y,`(y)(t)]

)2

Ẽρ

[(
Λny,`(y)(t)

)2
]

≥
(

1− c2y−1/2
)
Ẽρ[Λ

n
y,`(y)(t)],

which proves (5.36).

For each interval I ⊂ R, set

Λny,`(y),I(t) :=
∑

v∈Tn−`(y)

1
Fn
v,y,`(y)

(t)∩
{√

L̃n
τ̃(t)

(v)∈
√
t+

an(t)
n (n−`(y))+I

}. (5.38)

Set the interval
J`(y) :=

(
−`(y) + y,−(`(y))2/5 + y

]
. (5.39)

Then the following holds:

Lemma 5.5. There exist c1, c2 ∈ (0, ∞) and y0 > 0 such that the following holds: for all

y ≥ y0 and `(y) > e
8
√

log b
3 y1/20 , there exists n0 = n0(y, `(y)) ∈ N such that for all n ≥ n0

and t ≥ c1n log n,

Ẽρ

[
Λny,`(y),J`(y)

(t)
]

Ẽρ

[
Λny,`(y)(t)

] ≥ 1− c2(`(y))−1/5. (5.40)
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Proof. Fix any y ≥ y0 and `(y) > e
8
√

log b
3 y1/20 , where we take y0 > 0 large enough.

Throughout the proof, given n ∈ N, we assume that t ≥ c∗n log n for some sufficiently
large c∗ > 0. Fix v ∈ Tn−`(y) and any interval I ⊂ R. Recall the definition of ψ from
(5.6). By similar arguments to those in (5.4) and (5.5), taking n0 = n0(y, `(y)) ∈ N large
enough, we have for all n ≥ n0,

P̃ρ

(
Fnv,y,`(y)(t) ∩

{√
L̃nτ̃(t)(v) ∈

√
t+

an(t)

n
(n− `(y)) + I

})
≤ ẼBn−`(y)

[
1{−(1−δ)

√
t− an(t)

n s≤B̃s≤y, ∀s∈[0, n−`(y)], B̃n−`(y)∈I}ψ(B̃n−`(y))
]
. (5.41)

By Proposition 3.1(i) and (2.11), (5.41) is bounded from above by

c1b
−(n−`(y))(`(y))−3/2ye−2

√
log b y

×
∫

(y−I)∩In,t,y
z(log `(y) + z)e−c2

z2

`(y)

√√√√ √
t+ n

√
t+ an(t)

n (n− `(y)) + y − z + `(y)
dz, (5.42)

where In,t,y := [0, (1 − δ)
√
t + an(t)

n (n − `(y)) + y] and we have used the inequality

e−
(y−z)2
n−`(y) − e−

(y+z)2

n−`(y) ≤ 4yz
n−`(y) for z ≥ 0. In the cases I = (−∞, y − `(y)] and I =(

y − (`(y))
2
5 , ∞

)
, the right-hand side of (5.42) is bounded from above by

c3b
−(n−`(y))(`(y))−1/5ye−2

√
log b y

for all n ≥ n0, where n0 = n0(y, `(y)) ∈ N large enough. By this and (5.33), we have

Ẽρ

[
Λny,`(y)(t)

]
= Ẽρ

[
Λny,`(y),J`(y)

(t)
]

+ Ẽρ

[
Λny,`(y),(−∞, y−`(y)](t)

]
+ Ẽρ

[
Λn
y,`(y),(y−(`(y))2/5, ∞)(t)

]
≤ Ẽρ

[
Λny,`(y),J`(y)

(t)
]

+ c4(`(y))−1/5Ẽρ

[
Λny,`(y)(t)

]
,

which implies (5.40).

Proof of Proposition 5.1. Let (hv)v∈T be a BRW on T defined in Section 1. By Lemma
A.7, one can show that the sequence(∫ `

`2/5
ze2
√

log b zP

[
max
u∈T`

hu >
√

log b `+ z

]
dz

)
`≥1

(5.43)

is bounded from above and away from 0. Fix a nondecreasing sequence (`0(y+
k ))k≥1 with

`0(y+
k ) > e

8
√

log b
3 (y+k )1/20 for each k ≥ 1. By the boundedness of the sequence (5.43), there

exists a subsequence (`0(y+
kj

))j≥1 of (`0(y+
k ))k≥1 such that the limit

γ̃∗ := lim
j→∞

∫ `0(y+kj
)

(`0(y+kj
))2/5

ze2
√

log b zP

 max
u∈T

`0(y
+
kj

)

hu >
√

log b `0(y+
kj

) + z

 dz ∈ (0,∞) (5.44)

exists. We set
`j := `0(y+

kj
), j ≥ 1.

Note that by the definition of `0(y+
j ), for any yj with yj ≤ y+

j , we have

`j ≥ `0(y+
j ) > e

8
√

log b
3 (y+j )1/20 ≥ e

8
√

log b
3 (yj)

1/20

.
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Fix j ≥ 1 and yj with y−j ≤ yj ≤ y+
j . Recall definitions J`j and Λnyj ,`j ,J`j

(t) from (5.39)

and (5.38). Fix v∗ ∈ Tn−`j . Let L̃↓ be a local time of a Brownian motion on T̃ v
∗

≤`j . We

set τ̃↓(s) := inf{r ≥ 0 : L̃↓r(v
∗) > s}. Recall P̃Bn−`j and B̃ from (3.15) and (3.16). We

define φ(x) by replacing y, `(y), and v in the definition of ψ(x) in (5.6) by yj , `j , and v∗,
respectively. By similar arguments to those in (5.4) and (5.5), we have for t ≥ n log n,

P̃ρ

[
Fnv∗,yj ,`j (t) ∩

{√
L̃nτ̃(t)(v

∗) ∈
√
t+

an(t)

n
(n− `j) + J`j

}]
=

(
1 +O

(
1

log n

))
ẼBn−`j

[
1{B̃s≤yj , ∀s∈[0, n−`j ], B̃n−`j∈J`j}φ

(
B̃n−`j

)]
−
(

1 +O

(
1

log n

))
ẼBn−`j

[1{B̃s≤yj , ∀s∈[0, n−`j ], B̃n−`j∈J`j}
×1{B̃s<−(1−δ)

√
t− an(t)

n s, ∃s∈[0, n−`j ]}φ
(
B̃n−`j

) ]
=: K1 −K2, (5.45)

where we have used the fact that for t ≥ n log n, exp
(
− 3

8

∫ n−`j
0

ds
Xs

)
= 1 + O((log n)−1)

under the event that
√
Xs/2 ≥ δ

√
t for all 0 ≤ s ≤ n− `j .

We first estimate K2. By (3.28) and Proposition 3.1(i), for all ε > 0 and j ≥ 1, there
exists n0(j) = n0(y−j , y

+
j , `j) ∈ N such that for all n ≥ n0(j), we have

K2 ≤ c1b−(n−`j)
√
`jn

1−(1−δ)2c∗yje
−2
√

log b yj ≤ εb−(n−`j)yje
−2
√

log b yj , (5.46)

uniformly in yj and t satisfying (5.2) (we take c∗ large enough). Next, we estimate K1.
By the density (2.11), K1 is equal to∫ `j

(`j)2/5

1 +O(1/ log n)√
π(n− `j)

(
e
−

(z−yj)
2

n−`j − e−
(z+yj)

2

n−`j

)

× e
2an(t)
n z− 2an(t)

n yj− (an(t))2

n2 (n−`j)

√√√√ √
t

√
t+ an(t)

n (n− `j) + yj − z
P̃v∗ [A

n,t
yj ,`j

(z)]dz

= b−(n−`j)(1 +O(1/ log n))
4√
π
yje
−2
√

log b yj

×
∫ `j

(`j)2/5
ze2
√

log b z

√√√√ √
t+ n

√
t+ an(t)

n (n− `j) + yj − z
Pρ[B

n,t
yj ,`j

(z)] dz, (5.47)

where we have set

An,tyj ,`j (z) :=

{
max
u∈Tv∗`j

√
L̃↓
τ̃↓(sn,tyj,`j

(z))
(u) >

√
t+ an(t) + yj

}
,

Bn,tyj ,`j (z) :=


maxu∈T`j L

`j

τ(sn,tyj,`j
(z))

(u)− sn,tyj ,`j (z)

2
√
sn,tyj ,`j (z)

>
√

log b `j + z + ∆n,t
yj ,`j

(z)

 .

Here,

sn,tyj ,`j (z) :=

(√
t+

an(t)

n
(n− `j) + yj − z

)2

and ∆n,t
yj ,`j

(z) is the remainder term so that P̃v∗ [A
n,t
yj ,`j

(z)] = Pρ[B
n,t
yj ,`j

(z)]. (Note that by

the symmetry of the b-ary tree, the law of the Brownian motion on T̃ v
∗

≤`j starting at v∗ is
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the same as that of the Brownian motion on T̃≤`j starting at ρ.) One can show that for
each j ≥ 1,

lim
n→∞

∆n,t
yj ,`j

(z) = 0, uniformly in z ∈ [(`j)
2/5, `j ] and yj , t satisfying (5.2). (5.48)

By Theorem 2.2, we have for any fixed m ∈ N(
Lmτ(s)(v)− s

2
√
s

)
v∈Tm

−→ (hv)v∈Tm in law as s→∞,

where (hv)v∈T is a BRW. By this together with the definition of γ̃∗ in (5.44) and (5.48), for
all ε > 0, there exists j0 ∈ N such that the following holds: for each j ≥ j0, there exists
n0(j) = n0(y−j , y

+
j , `j) ∈ N such that for all n ≥ n0(j),∣∣∣∣∣

∫ `j

(`j)2/5
Pρ

[
Bn,tyj ,`j (z)

]
· ze2

√
log b zdz − γ̃∗

∣∣∣∣∣ < ε, (5.49)

uniformly in yj and t satisfying (5.2). Thus, by (5.45)–(5.47), (5.49), and the definition
(1.8) of β∗, for all ε > 0, there exists j0 ∈ N such that the following holds: for each j ≥ j0,
there exists n0(j) = n0(y−j , y

+
j , `j) ∈ N such that for all n ≥ n0(j),∣∣∣∣Ẽρ [Λnyj ,`j ,J`j (t)

]
(yj)

−1e2
√

log b yj − 4√
π
β∗γ̃∗

∣∣∣∣ < ε, (5.50)

uniformly in yj and t satisfying (5.2). By Lemma 5.4, 5.5, and (5.50), for all ε > 0,
there exists j0 ∈ N such that the following holds: for each j ≥ j0, there exists n0(j) =

n0(y−j , y
+
j , `j) ∈ N such that for all n ≥ n0(j), (5.1) holds by replacing γ∗ with γ̃∗ uniformly

in yj and t satisfying (5.2) (we take c∗ > 0 large enough). Let γ̂∗ be the limit of any
convergent subsequence of (5.43). By taking a sub-subsequence, if necessary, and
repeating the above argument, we have (5.1) if we replace γ∗ with γ̂∗. Thus, the full
sequence (5.43) converges to a finite positive constant and we write γ∗ to denote the
limit. Therefore, we have (5.1).

6 Proof of Theorem 1.1 and Corollary 1.3

In this section, we prove Theorem 1.1 and Corollary 1.3. We begin with preliminary
lemmas. Let (hv)v∈T be a BRW on T defined in Section 1. For each n ∈ N, we set

D(2)
n :=

∑
v∈Tn

(√
log b n− hv

)2

e−4
√

log b (
√

log b n−hv).

Then the following holds:

Lemma 6.1. For all ε > 0,

lim
n→∞

P
(
D(2)
n ≥ ε

)
= 0. (6.1)

Proof. Set mn :=
√

log b n − 3
4
√

log b
log n. Fix any y > 0. By the simple equality

1{maxv∈Tn hv≤mn+y} + 1{maxv∈Tn hv>mn+y} = 1, we bound the probability P(D
(2)
n ≥ ε)

from above by

P

(∑
v∈Tn

(√
log b n− hv

)2

e−4
√

log b (
√

log b n−hv)1{hv≤mn+y} ≥ ε

)

+ P

(
max
v∈Tn

hv > mn + y

)
. (6.2)
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Since hv is a Gaussian random variable with mean 0 and variance n/2 for each v ∈ Tn,
a simple calculation implies that

lim
n→∞

E

[∑
v∈Tn

(√
log b n− hv

)2

e−4
√

log b (
√

log b n−hv)1{hv≤mn+y}

]
= 0.

By this, Lemma A.7(i), and (6.2), we have

lim sup
n→∞

P
(
D(2)
n ≥ ε

)
≤ c1(1 + y)e−2

√
log b y.

Since we can take arbitrary y ∈ (0, ∞), this implies (6.1).

Recall the definition of σ(·) from (1.2). For a ∈ R, an interval I ⊂ R, t > 0, and
r, n ∈ N with r < n, we set

Bσr,t,n(I; a) :=
{√

Lnτ(t)(v)−
√
t− an(t) /∈ I, ∀v ∈ Tn with σ(vr) ∈

[
a− b−r, a

]}
. (6.3)

Then we have the following:

Lemma 6.2. There exists c1 > 0 such that the following holds: for any finite interval
I ⊂ R, there exist c2(I) > 0 and r0(I) ∈ N such that for all t > 0, a ∈ R, r ≥ r0(I), and
n > r,

Pρ

[(
Bσr,t,n(I; a)

)c
]
≤ c2(I)r3e−c1r. (6.4)

Proof. Fix any finite interval I ⊂ R. Let {I, I} be the boundary of I with I < I. Fix any
t > 0, a ∈ R, r ≥ r0(I), and n > r, where we take r0(I) > |I| large enough. Recall the
event Gnr (t) from (3.3). Pρ[

(
Bσr,t,n(I; a)

)c
] is bounded from above by

P̃ρ


∃v ∈ Tn with σ(vr) ∈ [a− b−r, a] s.t. ∀s ∈ [0, n],√
L̃nτ̃(t)(vs) ≤

√
t+ an(t)

n s+κ(log(s∧(n−s)))++r+1,√
L̃nτ̃(t)(v)−

√
t− an(t) ∈ I

+ P̃ρ (Gnr (t)) . (6.5)

Next, we estimate the number of v ∈ Tn satisfying σ (vr) ∈ [a− b−r, a]. We may assume
a ∈ [0, 1]. We have a sequence (xi)i≥1 with xi ∈ {0, . . . , b− 1} such that a =

∑∞
i=1

xi
bi . In

particular, we have
∑r
i=1

vi−xi
bi ∈ [−b−r, b−r] for all v ∈ Tn with σ (vr) ∈ [a− b−r, a] and

the label (v1, . . . , vn). By this and a simple observation, one can see that {v ∈ Tn : σ(vr) ∈
[a− b−r, a]} is a subset of

{v ∈ Tn : vi = xi, 1 ≤ ∀i ≤ r}

∪
r⋃
i=1

{v ∈ Tn : vj = xj , 1 ≤ ∀j ≤ i− 1, vi − xi > 0, vj′ = xj′ − (b− 1), i < ∀j′ ≤ r}

∪
r⋃
i=1

{v ∈ Tn : vj = xj , 1 ≤ ∀j ≤ i− 1, vi − xi < 0, vj′ = xj′ + (b− 1), i < ∀j′ ≤ r} .

This implies ∣∣{v ∈ Tn : σ(vr) ∈
[
a− b−r, a

]}∣∣ ≤ c1rbn−r. (6.6)

By (6.6) and similar arguments to those in (3.23) and (3.24), the first term on the right-
hand side of (6.5) is bounded from above by c2(I)b−rr3. By this and Lemma 3.2, we have
(6.4).
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Proof of Theorem 1.1. Recall definitions of Z∞, Ξ
(m)
n,t , β∗, and γ∗ from (1.4), (1.5), (1.8),

and (1.9). Fix any sequence of positive integers (rn)n≥1 with limn→∞ rn = ∞ and
lim supn→∞ rn/n < 1. Fix any (tn)n≥1 with limn→∞

√
tn/n = θ ∈ [0,∞] and tn ≥ c∗n log n,

where c∗ is a sufficiently large positive constant. By, for example, [26, Proposition
11.1.VIII], in order to show the convergence of the point process Ξ

(rn)
n,tn to the Cox

process (1.7) as n → ∞, it is enough to prove the following: for all positive values
a1, . . . , am and finite intervals Ai := (Ai, Ai] ⊂ [0, 1], Bi := (Bi, Bi], 1 ≤ i ≤ m with
(Ai ×Bi) ∩ (Aj ×Bj) = ∅ for any i 6= j,

lim
n→∞

Eρ

[
exp

{
−

m∑
i=1

aiΞ
(rn)
n,tn (Ai ×Bi)

}]

= E

[
exp

{
− 4√

π
β∗γ∗

m∑
i=1

(
1− e−ai

)
Z∞(Ai)

(
e−2
√

log b Bi − e−2
√

log b Bi
)}]

. (6.7)

Let q < n be a positive integer. To show (6.7), we first prove convergence of Ξ
(n−q)
n,tn as

n→∞, q →∞. Recall the events (6.3). We have

Eρ

[
exp

{
−

m∑
i=1

aiΞ
(n−q)
n,tn (Ai ×Bi)

}]

= Eρ

[
exp

{
−

m∑
i=1

aiΞ
(n−q)
n,tn (Ai ×Bi)

}
1⋂m

i=1 Bσq,tn,n(Bi;Ai)∩Bσq,tn,n(Bi;Ai)

]

+ Eρ

[
exp

{
−

m∑
i=1

aiΞ
(n−q)
n,tn (Ai ×Bi)

}
1⋃m

i=1(Bσq,tn,n(Bi;Ai))
c∪(Bσq,tn,n(Bi;Ai))

c

]
=: J1 + J2. (6.8)

We estimate J1 in (6.8). Under the event
⋂m
i=1 Bσq,tn,n

(
Bi;Ai

)
∩ Bσq,tn,n (Bi;Ai), we

have for all v ∈ Tq and 1 ≤ i ≤ m,

1{
σ
(

arg maxu∈Tv
n−q

Ln
τ(tn)

(u)
)
∈Ai, maxu∈Tv

n−q

√
Ln
τ(tn)

(u)−
√
tn−an(tn)∈Bi

}
= 1{

σ(v)∈Ai, maxu∈Tv
n−q

√
Ln
τ(tn)

(u)−
√
tn−an(tn)∈Bi

}. (6.9)

Thus, we have

J1 = Eρ

exp

−∑
v∈Tq

m∑
i=1

ai1{σ(v)∈Ai, maxu∈Tv
n−q

√
Ln
τ(tn)

(u)−
√
tn−an(tn)∈Bi

}



− Eρ

exp

−∑
v∈Tq

m∑
i=1

ai1{σ(v)∈Ai, maxu∈Tv
n−q

√
Ln
τ(tn)

(u)−
√
tn−an(tn)∈Bi

}


1⋃m
i=1(Bσq,tn,n(Bi;Ai))

c∪(Bσq,tn,n(Bi;Ai))
c


=: J1,1 − J1,2. (6.10)

By Lemma 6.2, we have

max{J2, J1,2} ≤
m∑
i=1

c1(Bi)q
3e−c2q. (6.11)

We estimate J1,1. By Theorem 2.2, on the same probability space (we will write P to
denote the probability measure), we can construct a local time (Lnτ(tn)(v))v∈T≤n and two
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BRWs (hv)v∈T≤n , (h′v)v∈T≤n satisfying (2.4) and (2.5). Fix δ ∈ (0, 1/3). We set

Cq :=

{
|hv|, |h′v| ≤

√
log b q − 3

4
√

log b
(1− δ) log q, ∀v ∈ Tq

}
. (6.12)

For each v ∈ Tq, let L̃↓ be a local time of a Brownian motion on T̃ v≤n−q and set τ̃↓(p) :=

inf{s ≥ 0 : L̃↓s(v) > p}. We omit the subscript v in L̃↓ and τ̃↓. By Lemma 2.1, we have

J1,1 = E

1Cq
∏
v∈Tq

Kv

+ E

1(Cq)
c

∏
v∈Tq

Kv

 =: J1,1,1 + J1,1,2, (6.13)

where for each v ∈ Tq, we have set

Kv := Ẽv

exp

−
m∑
i=1

ai1σ(v)∈Ai, maxu∈Tv
n−q

√
L̃↓
τ̃↓(Lnτ(tn)

(v))
(u)−

√
tn−an(tn)∈Bi




 .
(6.14)

By Lemma A.7, we have

J1,1,2 ≤ c3(log q) · (q)− 3
2 δ. (6.15)

We estimate J1,1,1. Fix v ∈ Tq. For each 1 ≤ i ≤ m, we set

E(i)
v (n, tn, q) :=

{
max
u∈Tvn−q

√
L̃↓
τ̃↓
(
Ln
τ(tn)

(v)
)(u)−

√
tn − an(tn) ∈ Bi

}
.

Since A1 ×B1, . . . , Am ×Bm are disjoint, Kv is equal to

Ẽv

[
m∏
i=1

{
1− (1− e−ai)1{σ(v)∈Ai}1E(i)

v (n,tn,q)

}]

= Ẽv

[
1−

m∑
i=1

(1− e−ai)1{σ(v)∈Ai}1E(i)
v (n,tn,q)

]

= exp

{
log

(
1−

m∑
i=1

(
1− e−ai

)
1{σ(v)∈Ai}P̃v[E

(i)
v (n, tn, q)]

)}
. (6.16)

On the event Cq, by (2.5), we have for all v ∈ Tq
√
tn + an(tn) =

√
Lnτ(tn)(v) + an−q

(
Lnτ(tn)(v)

)
+
√

log b q − h′v + δnv,q, (6.17)

where

δnv,q :=
3 log (1− q/n)

4
√

log b
+

log
(
1 +O

(
q/
√
tn
))

4
√

log b
+O

(
q2/
√
tn
)
. (6.18)

We take any sufficiently small ε > 0 and sufficiently large q0 ∈ N which depends on
B1, . . . , Bm and ε. We assume that q ≥ q0 and n ≥ n0, where we take sufficiently large
n0 = n0(q, ε) ∈ N. By Proposition 5.1 and (6.17)–(6.18), under the event Cq, we have for

all 1 ≤ i ≤ m and v ∈ Tq, P̃v[E(i)
v (n, tn, q)] is bounded from below by

P̃v

maxu∈Tvn−q

√
L̃↓
τ̃↓
(
Ln
τ(tn)

(v)
)(u)−

√
Lnτ(tn)(v)− an−q

(
Lnτ(tn)(v)

)
≥
√

log b q − h′v +Bi + δnv,q


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− P̃v

maxu∈Tvn−q

√
L̃↓
τ̃↓
(
Ln
τ(tn)

(v)
)(u)−

√
Lnτ(tn)(v)− an−q

(
Lnτ(tn)(v)

)
≥
√

log b q − h′v +Bi + δnv,q


≥ (1− c4ε)

4√
π
β∗γ∗

(√
log b q − h′v +Bi

)
e−2
√

log b (
√

log b q−h′v+Bi)

− (1 + c4ε)
4√
π
β∗γ∗

(√
log b q − h′v +Bi

)
e−2
√

log b (
√

log b q−h′v+Bi). (6.19)

We set

D(2)
q :=

∑
v∈Tq

(√
log b q − h′v

)2

e−4
√

log b (
√

log b q−h′v),

Wq :=
∑
v∈Tq

e−2
√

log b (
√

log b q−h′v).

Recall the random measure Zq from (1.3). By (6.16), (6.19), and Taylor’s expansion of

the function x 7→ log(1 − x), under the event Cq ∩
{
D

(2)
q < ε

}
∩ {Wq < ε},

∏
v∈Tq Kv is

bounded from above by

ec5(B1,...,Bm)ε · exp

{
− 4√

π
β∗γ∗

m∑
i=1

(
1− e−ai

)
Zq(Ai) ·

(
e−2
√

log b Bi − e−2
√

log b Bi
)}

× exp

{
c4ε

4√
π
β∗γ∗

m∑
i=1

(
1− e−ai

)
Zq(Ai)

(
e−2
√

log b Bi + e−2
√

log b Bi
)}

. (6.20)

We can obtain a similar lower bound of
∏
v∈Tq Kv. By Lemma A.7, Lemma 6.1, and the

fact that limq→∞Wq = 0 almost surely (see [36]), we have

lim
q→∞

P
(

(Cq)
c ∪
{
D(2)
q ≥ ε

}
∪ {Wq ≥ ε}

)
= 0. (6.21)

Thus, by the above estimates, taking n→∞, then q →∞, and finally ε→ 0, we have∣∣∣∣Eρ [e−∑m
i=1 aiΞ

(n−q)
n,tn

(Ai×Bi)
]
− E

[
e
− 4√

π
β∗γ∗

∑m
i=1(1−e−ai)Z∞(Ai)

(
e−2
√

log b Bi−e−2
√

log b Bi

)]∣∣∣∣
→ 0. (6.22)

Next, by using (6.22), we will prove (6.7). Let z∗ be a real number with z∗ <

min1≤i≤mBi. Take q0 = q0(z∗) ∈ N large enough and fix any q ≥ q0. Take n ∈ N large
enough so that q < n− rn < n− q and q < n/4. We set

Unz∗,q(tn) :=

{
∃v, u ∈ Tn with q ≤ |v ∧ u| ≤ n− q s.t.√
Lnτ(tn)(v),

√
Lnτ(tn)(u) ≥

√
tn + an(tn) + z∗

}
.

Under the event
(
Unz∗,q(tn)

)c
, we have{

arg max
u∈Tvrn

Lnτ(tn)(u) : v ∈ Tn−rn , max
u∈Tvrn

√
Lnτ(tn)(u) ≥

√
tn + an(tn) + z∗

}
=

{
arg max

u∈Tvn−q
Lnτ(tn)(u) : v ∈ Tq, max

u∈Tvn−q

√
Lnτ(tn)(u) ≥

√
tn + an(tn) + z∗

}
. (6.23)

By (6.22), (6.23), and Proposition 4.1, we have (6.7).

Proof of Corollary 1.3. Corollary 1.3 immediately follows form Theorem 1.1 and Proposi-
tion 3.1(i). We omit the details.
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A Appendix

In this section, we give proof of some technical estimates.

A.1 Gaussian process associated with Brownian motion on metric tree

We adopt the notation in Section 2. Let X̃ = (X̃t, t ≥ 0, P̃x, x ∈ T̃≤n) be a Brownian

motion on T̃≤n. Let {h̃x : x ∈ T̃≤n} be a centered Gaussian process with E(h̃xh̃y) =

Ẽx(L̃nHρ(y)) for all x, y ∈ T̃≤n, where Hx := inf{t ≥ 0 : X̃t = x}. We will call h̃ a Gaussian

process associated with the Brownian motion X̃. We have an explicit representation of
the covariance of h̃.

Lemma A.1. For all x, y ∈ T̃≤n,

E(h̃xh̃y) = d(ρ, x) + d(ρ, y)− d(x, y).

In particular, the law of {h̃vs : 0 ≤ s ≤ n} is the same as that of a standard Brownian
motion {Ws : 0 ≤ s ≤ n} on R, where vs is the point on the unique path in T̃≤n from ρ to
v with d(ρ, vs) = s/2.

Proof. Let {z1, z2}, {w1, w2} be edges of T with x ∈ I{z1,z2} and y ∈ I{w1,w2}. Let θs, s ≥ 0

be shift operators. We have

E(h̃xh̃y) = Ẽx(L̃nHρ(y))

= Ẽx

(
L̃nHz1∧Hz2 (y) + L̃nHρ(y) ◦ θHz1∧Hz2

)
= Ẽx(L̃nHz1∧Hz2 (y)) + P̃x(Hz1 < Hz2)Ẽz1(L̃nHρ(y)) + P̃x(Hz2 < Hz1)Ẽz2(L̃nHρ(y)). (A.1)

Note that we have Ẽw(L̃nHρ(w
′)) = Ẽw′(L̃

n
Hρ

(w)), w,w′ ∈ T̃≤n; see, for example, [30,

Lemma 5.1]. Since X̃ behaves like a standard Brownian motion on each I{w,w′} ({w,w′}
is an edge of T ), we have P̃x(Hw < Hw′) = d(x,w′)/d(w,w′), x ∈ I{w,w′}; see, for example,
[32, Chapter 2, Exercise 8.13]. By these, the right hand side of (A.1) is equal to

Ẽx(L̃nHz1∧Hz2 (y)) +
d(x, z2)

d(z1, z2)
Ẽy(L̃nHρ(z1)) +

d(x, z1)

d(z1, z2)
Ẽy(L̃nHρ(z2)). (A.2)

Similar arguments imply that for each i ∈ {1, 2},

Ẽy(L̃nHρ(zi)) =
d(y, w2)

d(w1, w2)
Ẽw1

(L̃nHρ(zi)) +
d(y, w1)

d(w1, w2)
Ẽw2

(L̃nHρ(zi)). (A.3)

(In (A.3), we have used the equality Ẽy(L̃nHw1
∧Hw2

(zi)) = 0 for each i ∈ {1, 2}.) Note that

by (2.3) and [25, Lemma 2.1], for all i, j ∈ {1, 2},

Ẽwi(L̃
n
Hρ(zj)) = Ewi(L

n
Hρ(zj)) = d(ρ, wi) + d(ρ, zj)− d(wi, zj). (A.4)

We have

Ẽx(L̃nHz1∧Hz2 (y)) = 0, if I{z1,z2} 6= I{w1,w2}. (A.5)

Assume that I{z1,z2} = I{w1,w2}. Note that a Brownian motion on T̃≤n starting at x killed
upon Hz1 ∧ Hz2 has the same law as a standard Brownian motion on (0, 1

2 ) stating at
d(x, z1) killed upon H0 ∧ H1/2. Let {LB

t (z) : t ≥ 0} be a local time at z of a standard
Brownian motion {Bt, t ≥ 0, PBw , w ∈ R} on R. By this and [38, Chapter VI, Exercise 2.8],
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we have

Ẽx(L̃nHz1∧Hz2 (y)) = EBd(x,z1)(L
B
H0∧H1/2

(d(y, z1)))

=
d(x, z2)

d(z1, z2)
d(y, z1) +

d(x, z1)

d(z1, z2)
d(y, z2)− d(x, y), if I{z1,z2} = I{w1,w2}.

(A.6)

Thus, by (A.1)–(A.6), we have

E(h̃xh̃y) = d(ρ, x) + d(ρ, y)− d(x, y).

A.2 Proof of Lemma 2.1

In this section, we use notation in Section 2. Let X̃ = (X̃t, t ≥ 0, P̃x, x ∈ T̃≤n) be a

Brownian motion on T̃≤n. Let {h̃x : x ∈ T̃≤n} be a centered Gaussian process associated
with X̃ (see Section A.1 for the definition). In the proof of Lemma 2.1, we will use a
variation of Theorem 2.2:

Theorem A.2. ([30, Theorem 1.1]) Fix n ∈ N. For any c ∈ R and t > 0,

the law of

{
L̃nτ̃(t)(x) +

1

2
(h̃x + c)2 : x ∈ T̃≤n

}
under P̃ρ × P is the same as

that of

{
1

2
(h̃x +

√
2t+ c2)2 : x ∈ T̃≤n

}
under P.

Proof of Lemma 2.1. Fix n ∈ N, t > 0, and a ∈ T≤n\Tn. Let X̃↓ = (X̃↓s , s ≥ 0, P̃ ↓a ) be a
Brownian motion on T̃ a≤n−|a| starting at a. Let {L̃↓s(x) : (s, x) ∈ [0,∞) × T̃ a≤n−|a|} be a

local time of X̃↓. Set τ̃↓(s) := inf{r ≥ 0 : L̃↓r(a) > s}. By Lemma A.1, we have{
h̃x : x ∈ T̃≤n

}
under P

d
=
{
h̃↓x + h̃a : x ∈ T̃ a≤n−|a|

}
∪
{
h̃x : x ∈ T̃≤n\T̃ a≤n−|a|

}
under P↓ × P, (A.7)

where {h̃↓x : x ∈ T̃ a≤n−|a|} is a Gaussian process associated with X̃↓ under P↓.

Fix m, r ∈ N, λ1, · · · , λm ∈ [0,∞), µ1, · · · , µr ∈ [0,∞), x1, · · · , xm ∈ T̃ a≤n−|a|\{a}, and

y1, · · · , yr ∈ (T̃≤n\T̃ a≤n−|a|) ∪ {a}. Let E, Ẽ, E↓ be expectations of the product measures

P̃ρ × P̃ ↓a × P, P̃ρ × P, P̃ ↓a × P↓, respectively. By (A.7), we have

E

e−∑m
i=1 λi

(
L̃↓
τ̃↓(L̃nτ̃(t)(a))

(xi)+
1
2 (h̃xi )

2

)
· e−

∑r
i=1 µi(L̃

n
τ̃(t)(yi)+

1
2 (h̃yi )

2)


= Ẽ

e−∑r
i=1 µi(L̃

n
τ̃(t)(yi)+

1
2 (h̃yi )

2)E↓

e−∑m
i=1 λi

(
L̃↓
τ̃↓(L̃nτ̃(t)(a))

(xi)+
1
2 (h̃↓xi

+h̃a)2

)
 . (A.8)

Applying Theorem A.2 to the local time and the associated Gaussian process on T̃ a≤n−|a|,
the right of (A.8) is equal to

Ẽ

[
e−
∑r
i=1 µi(L̃

n
τ̃(t)(yi)+

1
2 (h̃yi )

2)E↓

[
e
−
∑m
i=1 λi

(
1
2

(
h̃↓xi

+
√

2L̃n
τ̃(t)

(a)+(h̃a)2
)2
)]]

. (A.9)

Again, by Theorem A.2, the expectation of (A.9) is equal to

E

[
e−
∑r
i=1 µi( 1

2 (h̃yi+
√

2t)2)E↓

[
e
−
∑m
i=1 λi

(
1
2

(
h̃↓xi

+
√

(h̃a+
√

2t)2
)2
)]]

. (A.10)
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By the symmetry of h̃↓, conditioned on h̃a, the law of (h̃↓ + |h̃a +
√

2t|)2 is the same as
that of (h̃↓ + h̃a +

√
2t)2. By this and (A.7), the expectation in (A.10) is equal to

E

[
e−
∑r
i=1 µi( 1

2 (h̃yi+
√

2t)2) · e−
∑m
i=1 λi

(
1
2 (h̃xi+

√
2t)

2
)]
. (A.11)

By Theorem A.2, the expectation in (A.11) is equal to

Ẽ

[
e−
∑r
i=1 µi(L̃

n
τ̃(t)(yi)+

1
2 (h̃yi )

2) · e−
∑m
i=1 λi

(
L̃nτ̃(t)(xi)+

1
2 (h̃xi)

2
)]
. (A.12)

The above argument implies that{
L̃↓
τ̃↓
(
L̃n
τ̃(t)

(a)
)(x) : x ∈ T̃ a≤n−|a|

}
∪
{
L̃nτ̃(t)(x) : x ∈ T̃≤n\T̃ a≤n−|a|

}
under P̃ρ × P̃ ↓a

d
=
{
L̃nτ̃(t)(x) : x ∈ T̃≤n

}
under P̃ρ.

This yields the statement of Lemma 2.1.

A.3 Tail of maximum of local time revisited

In the proof of Proposition 4.1, we need a version of Proposition 3.1(ii):

Proposition A.3. There exist c1 > 0 and t0 > 0 such that for all n ∈ N, t ≥ t0, and
y ∈ [0, 2

√
n],

Pρ

(
max
v∈Tn

√
Lnτ(t)(v) ≥

√
t+ an(t) + y

)
≥ c1e−2

√
log b y. (A.13)

Remark A.4. The assumption of t in Proposition A.3 is weaker than that of Proposition
3.1(ii). This is the main requirement in the proof of Proposition 4.1.

Fix ε ∈ (0, 1/4). For n ∈ N, t > 0, y > 0, 0 < r < n, and v ∈ Tn, set

Anv,r(t) :=


√
L̃nτ̃(t)(vs) ∈

√
t+ `y,t,n(s) + [−gn(s), − fn(s)), ∀s ∈ [r, n− r],√

L̃nτ̃(t)(v) ∈ [
√
t+ an(t) + y,

√
t+ an(t) + y + 1),√

L̃nτ̃(t)(vs′) ≥
√
t+ `y,t,n(s′)− r1/2+2ε, ∀s′ ∈ [0, r] ∪ [n− r, n]

 ,

where

`y,t,n(s) :=

(
an(t)

n
+
y

n

)
s, 0 ≤ s ≤ n,

fn(s) := min
{
s1/2−ε, (n− s)1/2−ε

}
, gn(s) := min

{
s1/2+ε, (n− s)1/2+ε

}
.

To prove Proposition A.3, we will apply the second moment method to
∑
v∈Tn 1Anv,r(t). We

first need the following:

Lemma A.5. There exist r0 ∈ N and c1 > 0 such that for all r0 ≤ r ≤ n/4, t > 4r1+4ε,
y ∈ [0, 2

√
n], and v ∈ Tn,

P̃ρ(A
n
v,r(t)) ≥ c1b−ne−2

√
log b y. (A.14)

Proof. Fix r0 ≤ r ≤ n/4, t > 4r1+4ε, and y ∈ [0, 2
√
n], where we take r0 ∈ N large enough.

By Lemma 2.3 and (2.6), P̃ρ(Anv,r(t)) is bounded from below by

c1

√ √
t√

t+ an(t) + y + 1
PB0

−gn(s) ≤ Bs − `y,t,n(s) < −fn(s), ∀s ∈ [r, n− r],
Bn ∈ [an(t) + y, an(t) + y + 1),
Bs′ ≥ `y,t,n(s′)− r1/2+2ε, ∀s′ ∈ [0, r] ∪ [n− r, n]

 , (A.15)
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where we have used the following: under the event that
√
Xs/2 ≥

√
t+ `y,t,n(s)− gn(s)

for all s ∈ [r, n − r] and
√
Xs′/2 ≥

√
t + `y,t,n(s′) − r1/2+2ε for all s′ ∈ [0, r] ∪ [n − r, n],

we have exp
(
− 3

8

∫ n
0

ds
Xs

)
≥ c1. Since

{
Bs −Bn sn : 0 ≤ s ≤ n

}
is independent of Bn and

has the same law as that of a Brownian bridge from 0 to 0 on [0, n], the right-hand side
of (A.15) is bounded from below by

c1

√ √
t√

t+ an(t) + y + 1
Pn0→0

[
−gn(s) ≤ Xs < −fn(s)− 1, ∀s ∈ [r, n− r],
Xs′ ≥ −r1/2+2ε, ∀s′ ∈ [0, r] ∪ [n− r, n]

]
× PB0 (Bn ∈ [an(t) + y, an(t) + y + 1]) , (A.16)

where for T > 0 and p, q ∈ R, PTp→q is a probability law on (C[0, T ],B(C[0, T ])) (C[0, T ]

is the space of all continuous functions on [0, T ] and B(C[0, T ]) is the σ-field generated
by cylinder sets in C[0, T ]) under which the coordinate process {Xs : 0 ≤ s ≤ T} is a
Brownian bridge with variance 1/2 from p to q on [0, T ]. We have

Pn0→0

[
−gn(s) ≤ Xs < −fn(s)− 1, ∀s ∈ [r, n− r],
Xs′ ≥ −r1/2+2ε, ∀s′ ∈ [0, r] ∪ [n− r, n]

]

= En0→0


1{−gn(r)≤Xr<−fn(r)−1, −gn(n−r)≤Xn−r<−fn(n−r)−1}
×Pn−2r

Xr→Xn−r (−gn(s+ r) ≤ Xs < −fn(s+ r)− 1,∀s ∈ [0, n− 2r])

×P r0→Xr
(
Xs ≥ −r1/2+2ε, ∀s ∈ [0, r]

)
×P rXn−r→0

(
Xs ≥ −r1/2+2ε, ∀s ∈ [0, r]

)


≥ c2Pn0→0 (−gn(s) ≤ Xs < −fn(s)− 1, ∀s ∈ [r, n− r]) , (A.17)

where we have used [19, Lemma 2.2(a)] in the second inequality which implies that the
last two probabilities in the expectation in the second display of (A.17) are bounded from
below by some constants. By the symmetry of a Brownian bridge, [19, Lemma 2.7 and
Proposition 6.1], we have for r0 ≤ r < n/4 with r0 large enough

Pn0→0 (−gn(s) ≤ Xs < −fn(s)− 1, ∀s ∈ [r, n− r]) ≥ c3Pn0→0 (Xs ≥ 0, ∀s ∈ [r, n− r]) .
(A.18)

Using [19, Lemma 2.2(a)], one can show that the right of (A.18) is bounded from below
by c4/n for some c4 > 0. Thus, by (A.15)–(A.18), we have (A.14).

Next, we need the following:

Lemma A.6. (i) There exist r0 ∈ N and c1 > 0 such that for all t > 0, r0 ≤ r ≤ n/4,

y ∈ [0, 2
√
n], k ∈ {r, r + 1, . . . , n − r − 1}, v ∈ Tn, and

(√
t+ `y,t,n(k)− gn(k)

)2 ≤ q ≤(√
t+ `y,t,n(k)− fn(k)

)2
,

P̃vk

√L̃↓τ̃↓(q)(vs) < √t+ `y,t,n(s)− fn(s), ∀s ∈ [k, n− r],√
L̃↓
τ̃↓(q)

(v) ∈ [
√
t+ an(t) + y,

√
t+ an(t) + y + 1)


≤ c1r1/2+ε

√√
t+ `y,t,n(k)− fn(k)√

t+ an(t) + y

gn(k)

(n− k − r)
√
n− k

b−(n−k)

× e
3 logn

2n (n−k)e
log

(√
t+n√
t

)
2n (n−k)e−

2an(t)
n fn(k), (A.19)

where {L̃↓s(x) : (s, x) ∈ [0, ∞)× T̃ vk≤n−k} is a local time of a Brownian motion on T̃ vk≤n−k
and τ̃↓(p) := inf{s ≥ 0 : L̃↓s(vk) > p}.
(ii) There exist r0 ∈ N and c2 > 0 such that for all t > 0, r0 ≤ r ≤ n/4, y ∈ [0, 2

√
n], and

v ∈ Tn,
P̃ρ
(
Anv,r(t)

)
≤ c2rb−ne−2

√
log by.
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Proof. Recall the probability measure PT0→0 defined in the proof of Lemma A.5. By
Lemma 2.3 and (2.6), the left of (A.19) is bounded from above by√ √

q
√
t+ an(t) + y

PB0

[
Bs <

√
t−√q+`y,t,n(k+s)−fn(k+s), ∀s ∈ [0, n−k−r],

Bn−k ∈ [
√
t−√q + an(t) + y,

√
t−√q + an(t) + y + 1)

]
. (A.20)

Since the process
{
Bs − s

n−k ·Bn−k : 0 ≤ s ≤ n− k
}

is independent of Bn−k and has the

same law as that of a Brownian bridge with variance 1/2 from 0 to 0 on [0, n− k], the
probability in (A.20) is bounded from above by

Pn−k0→0

[
Xs <

√
t−√q + `y,t,n(k + s)− s

n− k
(
√
t−√q + an(t) + y), ∀s ≤ n− k − r

]
× PB0

[
Bn−k ∈ [

√
t−√q + an(t) + y,

√
t−√q + an(t) + y + 1)

]
. (A.21)

We estimate two probabilities in (A.21). By the assumption of q, we have

PB0

(
Bn−k ∈ [

√
t−√q + an(t) + y,

√
t−√q + an(t) + y + 1)

)
≤ c1√

n− k
b−(n−k)e

3 logn
2n (n−k)e

log

(√
t+n√
t

)
2n (n−k)e−

2an(t)
n fn(k). (A.22)

To estimate the other probability, we use [3, Lemma 3.4]: for any x1, x2 ∈ [0,∞),
r1, r2 ∈ [0,∞), and T > r1 + r2,

PT0→0

(
Xs ≤

(
1− s

T

)
x1 +

s

T
x2, r1 ≤ s ≤ T − r2

)
≤ 2

T − r1 − r2

{(
1− r1

T

)
x1 +

r1

T
x2 +

√
r1

}{r2

T
x1 +

(
1− r2

T

)
x2 +

√
r2

}
. (A.23)

By (A.23), we have

Pn−k0→0

(
Xs <

√
t−√q + `y,t,n(k + s)− s

n− k
(
√
t−√q + an(t) + y), ∀s ≤ n− k − r

)
≤ c2

r1/2+ε

n− k − r
gn(k). (A.24)

Thus, by (A.20)–(A.24), we have (A.19). By repeating a similar argument, we can also
prove (ii). We omit the detail.

Proof of Proposition A.3. Fix a sufficiently large positive constant r. We set Z :=∑
v∈Tn 1Anv,r(t). For each k ∈ {0, · · · , n − 1}, set Sk :=

∑
v,u∈Tn,
|v∧u|=k

P̃ρ
[
Anv,r(t) ∩Anu,r(t)

]
.

We have

Ẽρ[Z
2] = Ẽρ[Z] +

r−1∑
k=0

Sk +

n−r−1∑
k=r

Sk +

n−1∑
k=n−r

Sk. (A.25)

For each 0 ≤ k ≤ n− 1, set

Iy,t,n(k) := [(
√
t+ `y,t,n(k)− gn(k))2, (

√
t+ `y,t,n(k)− fn(k))2].

For each q ∈ Iy,t,n(k) and v ∈ Tn, let Pvk(q) be the probability in (A.19). In the estimate of∑n−r−1
k=r Sk, we use the following: by Lemma 2.1, for any r ≤ k ≤ n− r − 1 and v, u ∈ Tn

with |v ∧ u| = k, P̃ρ
[
Anv,r(t) ∩Anu,r(t)

]
is bounded from above by

P̃ρ[A
n
u,r(t)] · sup

q∈Iy,t,n(k)

Pvk(q). (A.26)
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By (A.26) and Lemma A.6, dividing the sum
∑n−r−1
k=r Sk into

∑bn/2c
k=r Sk+

∑bn−n/ lognc
bn/2c+1 Sk+∑n−r−1

k=bn−n/ lognc+1 Sk, we have
∑n−r−1
k=r Sk ≤ c1e

−2
√

log b y. Similarly, by Lemma 2.1, for

any 0 ≤ k ≤ r − 1 and v, u ∈ Tn with |v ∧ u| = k, P̃ρ
[
Anv,r(t) ∩Anu,r(t)

]
is bounded from

above by P̃ρ[Anu,r(t)] · supq∈Iy,t,n(r) Pvr (q). By this and Lemma A.6,
∑r−1
k=0 Sk ≤ c2e−2

√
log b y.

For any n− r ≤ k ≤ n− 1 and v, u ∈ Tn with |v ∧ u| = k, we bound P̃ρ
[
Anv,r(t) ∩Anu,r(t)

]
just by P̃ρ

[
Anu,r(t)

]
. Then, by Lemma A.6(ii), we have

∑n−1
k=n−r Sk ≤ c3e−2

√
log b y.

By these estimates, Lemma A.5, and an argument similar to the proof of Proposition
3.1(ii), we obtain the desired result (A.13).

A.4 Tail of maximum of BRW

In the proof of Proposition 5.1, we use tail estimates of the maximum of the BRW on
T . Let (hv)v∈T be a BRW on T defined in Section 1.

Lemma A.7. (i) There exist c1, c2 ∈ (0, ∞) such that for all y > 0 and n ∈ N,

P

(
max
v∈Tn

hv >
√

log b n− 3

4
√

log b
log n+ y

)
≤ c1(1 + y)e−2

√
log b ye−c2

y2

n .

(ii) There exist c3 > 0 and n0 ∈ N such that for all n ≥ n0 and y ∈ [1,
√
n],

P

(
max
v∈Tn

hv >
√

log b n− 3

4
√

log b
log n+ y

)
≥ c3ye−2

√
log b y.

Lemma A.7(ii) is a special version of Lemma 2.7 of [22]. One can easily modify the
proof of Lemma 3.8 in [21] (this is basically a tail estimate of the maximum of a BRW on
a 4-ary tree) to prove Lemma A.7(i). We omit the details.
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