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Abstract

We show that under a low complexity condition on the gradient of a Hamiltonian, Gibbs
distributions on the Boolean hypercube are approximate mixtures of product measures
whose probability vectors are critical points of an associated mean-field functional.
This extends a previous work by the first author. As an application, we demonstrate
how this framework helps characterize both Ising models satisfying a mean-field
condition and the conditional distributions which arise in the emerging theory of
nonlinear large deviations, both in the dense case and in the polynomially-sparse case.
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1 Introduction

Let n > 0 and let f : {−1, 1}n → R be a function. A probability measure ν on {−1, 1}n

is called a Gibbs distribution with Hamiltonian f if for X ∼ ν,

Pr [X = x] = exp (f (x)) /Z,

where Z is a normalizing constant. We denote such a distribution by Xf
n . Gibbs distribu-

tions are central to statistical physics, and appear in applications in computer science,
statistics, and economics. However, many important Hamiltonians are far from being
analytically tractable.

One method to tackle the difficulties entrenched in such Hamiltonians is via mean-
field approximations. This method goes back to Curie and Weiss and has long been
widely used by physicists. More recently, such approximations were established in rigor,
see for example [1].

For the case of Gibbs distributions on the Boolean hypercube, [4] showed that if
the image of the gradient of the Hamiltonian f has small enough Gaussian-width and

*Weizmann Institute of Science, Israel. E-mail: ronen.eldan@weizmann.ac.il
†Weizmann Institute of Science, Israel. E-mail: renan.gross@weizmann.ac.il

http://www.imstat.org/ejp/
https://doi.org/10.1214/18-EJP159
http://arXiv.org/abs/1708.05859
mailto:ronen.eldan@weizmann.ac.il
mailto:renan.gross@weizmann.ac.il


Decomposition of mean-field Gibbs distributions into product measures

Lipschitz constants, then the partition function can be approximated by applying the
mean-field variant of the Gibbs variational principle. Further, under the same conditions,
Xf
n can be approximated by a mixture of product measures. This improves an earlier

result by Chatterjee and Dembo [2] who consider a slightly different notion of complexity.
In this paper, we extend the framework introduced in [4] by showing that if the

discrete gradient ∇f also has a small enough Lipschitz constant, then the product mea-
sures described above are close to critical points of an associated variational functional
which corresponds to the so-called mean-field equations. This gives a more precise
characterization of the mixture.

An interesting feature of our framework is that it allows us to effectively bypass the
need to obtain an accurate approximation of the normalizing constant in the route to
understanding the Gibbs distribution. Even though the approximations to the normalizing
constant obtained by the framework are far from sharp (they miss by a factor of eo(n) as
seen in the examples in [4]), our results still manage to give information about the set
where most of the mass resides.

The following is an overview of our results.

• In Theorem 3.1, we show that if the Hamiltonian f has low complexity and satisfies
a Lipschitz condition, the corresponding Gibbs distribution behaves like a mixture
of densities of vectors whose entries are i.i.d Bernoulli random variables, and
whose expectations X satisfy

‖X − tanh (∇f (X))‖1 = o (n) ,

where the tanh is applied entrywise.

• As an example of using this bound, we demonstrate in Corollaries 3.4 and 3.5
that Ising models satisfying a mean-field assumption can be decomposed into
product measures.

• Theorem 3.6 concerns compositions: If a function h : R → R has small enough
derivatives, then the function h ◦ f also satisfies Theorem 3.1.

• As an example of this composition, we demonstrate in Theorem 3.8 that the
conditional distribution Pr [Y = y | f (Y ) ≥ tn] arising in large deviation theory can
be approximated by a smoothed-cutoff distribution that can be decomposed into
product measures, each satisfying an equation which arises from the Lagrange
multiplier problem associated with the rate function.

In the sequel work [5], we apply Theorem 3.1 to exponential random graphs, improving
a previously known characterization.

2 Background and notation

We denote the Boolean hypercube by Cn = {−1, 1}n and the continuous hypercube
by Cn = [0, 1]

n. The uniform measure on Cn is denoted by µ. The space of all product
measures on Cn is denoted PMn. For a vector x ∈ Rn, we denote its one-norm by

‖x‖1 =

n∑
i=1

|xi| .

2.1 Two motivating examples of Hamiltonians

2.1.1 The Ising model

An Ising model on n sites can be described as follows: Let x ∈ Cn represent n interacting
sites that can be in one of two states. Let A ∈ Rn×n be a real symmetric matrix with 0
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on the diagonal representing the intensity of interaction between the sites, so that the
interaction between site i and site j is Aij . Let µ ∈ Rn be a vector representing magnetic
field strengths, so that site i feels a magnetic field µi. The Hamiltonian for the system is
then defined as

f (x) = 〈x,Ax〉+ 〈µ, x〉 .

If TrA2 = o (n), we say that the model satisfies the mean-field assumption [1]. We also
assume that both µmax and maxi∈[n]

∑
j∈[n] |Aij | are O (1), which amounts to the force

acting on a single site being bounded.

2.1.2 Nonlinear large deviations

Let f : Cn → R be a Hamiltonian. For 0 ≤ p ≤ 1, define µp to be the measure on Cn where
every entry is an i.i.d Bernoulli random variable with success probability p. Let t ∈ R be
a real number. The two central questions in the field of large deviation theory are:

1. For Y ∼ µp, what is the probability Pr [f (Y ) ≥ tn]?

2. For Y ∼ µp, what is the conditional distribution Pr [Y = y | f (Y ) ≥ tn]?

One line of approach to answering these questions is to approximate Pr [f (Y ) ≥ tn]

and Pr [Y = y | f (Y ) ≥ tn] by using Gibbs distributions. For example, observe that the
conditional distribution Pr [Y = y | f (y) ≥ tn] may be obtained from a Gibbs distribution
with a “cutoff Hamiltonian” f̃ , defined by

f̃ (y) =

{∏n
i=1 log

(
1
2 (1− yi + 2pyi)

)
f (y) ≥ tn

−∞ f (y) < tn.
(2.1)

All y with f (y) ≥ tn are thus weighted according to µp, and all y with f (y) < tn have
probability 0. Unfortunately, f̃ is not smooth enough in order to be applicable for the
existing large deviation frameworks. However, it is possible to get approximations of
X f̃
n by using Hamiltonians which approximate f̃ . Such a “smooth-cutoff” Hamiltonian

should give a large mass to “good” vectors y such that f (y) ≥ tn and a small mass to
“bad” vectors y such that f (y) < tn. Both [4] and [2] follow this approach in order to
tackle item (1).

2.2 Boolean functions

Definition 2.1 (Discrete gradient, Lipschitz constant). Let f : Cn → R be a real function
on the Boolean hypercube. The derivative of f at coordinate i is defined as

∂if (y) =
1

2
(f (y1, . . . , yi−1, 1, y+1, . . . yn)− f (y1, . . . , yi−1,−1, y+1, . . . yn)) .

With this we define both the the discrete gradient:

∇f (y) = (∂1f (y) , . . . , ∂nf (y)) ,

and the Lipschitz constant of f :

Lip (f) = max
i∈[n],y∈{−1,1}n

|∂if (y)| .

Every Boolean function f : Cn → R has a unique Fourier decomposition into monomi-
als [7]:

f (x) =
∑
S⊆[n]

f̂ (S)
∏
i∈S

xi.
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This defines an extension of f from the discrete hypercube Cn into the continuous
hypercube Cn = [−1, 1]

n by computing the value of the polynomial
∑
S⊆[n] f̂ (S)

∏
i∈S xi

for x ∈ Cn. It can be shown that this is the same extension as the harmonic extension
defined in [4, Section 3.1.1]. By Fact 14 in [4], the extension of ∂if agrees with the i-th
partial derivative (in the real-differentiable sense) of the extension of f . Throughout this
text, we will always assume that f , and therefore ∇f as well, are extended to Cn.

Definition 2.2 (Gaussian width, gradient complexity). The Gaussian-width of a set
K ⊆ Rn is defined as

GW (K) = E

[
sup
x∈K
〈x,Γ〉

]
where Γ ∼ N (0, Id) is a standard Gaussian vector in Rn. For a function f : Cn → R, the
gradient complexity of f is defined as

D (f) = GW ({∇f (y) : y ∈ Cn} ∪ {0}) .

For a measure ν on Cn, by slight abuse of notation, we define its complexity as

D (ν) = D
(

log
dν

dµ

)
.

2.3 Mixture models

Definition 2.3 (ρ-mixtures). For z ∈ [−1, 1]
n, denote by X (z) the unique random vector

in Cn whose coordinates are independent and whose expectation is EX (z) = z. Let ρ be
a measure on [−1, 1]

n. We define the random vector X (ρ) by

Pr [X (ρ) = x] =

∫
Pr [X (z) = x] dρ (z) . (2.2)

Definition 2.4 (Approximate mixture decomposition). Let δ > 0 and let ρ be a measure
on [−1, 1]

n. A random variable X is called a (ρ, δ)-mixture if there exists a coupling
between X (ρ) and X such that

E ‖X (ρ)−X‖1 ≤ δn.

A result of [4] roughly states that low complexity Gibbs distributions are (ρ, δ)-
mixtures for δ = o (1) and where ρ is such that most of the entropy comes from the
individual X (z) rather than from the mixture.

Definition 2.5 (Wasserstein distance). For two distributions ν1 and ν2, the Wasserstein
mass-transportation distance, denoted W1, is defined as

W1 (ν1, ν2) = inf
(X,Y ) s.t
X∼ν1,Y∼ν2

1

2
E ‖X − Y ‖1 ,

where the infimum is taken over all joint distributions whose marginals have the laws ν1

and ν2 respectively.

Definition 2.6 (Tilt of a distribution). For a vector θ ∈ Rn, the tilt τθν of the distribution
ν is a distribution defined by

d (τθν)

dν
(y) =

e〈θ,y〉∫
Cn e

〈θ,z〉dν
.

With the notion of ρ-mixture and tilt, we define what it means for a random variable
to break up into small tilts:
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Definition 2.7 (Tilt decomposition). Let δ, ε > 0 and let ρ be a measure on [−1, 1]
n. A

random variable X with distribution ν is called a (ρ, δ, ε)-tilt-mixture if there exists a
probability measure m on Rn supported on B (0, ε

√
n) ∩

[
− 1

4 ,
1
4

]n
such that:

1. For every ϕ : Cn → R, ∫
Cn
ϕdν =

∫
Rn

(∫
Cn
ϕd (τθν)

)
dm (θ) .

2. For all but a δ-portion of the measure m, the tilt τθν is δn-close to a product measure
in Wasserstein distance:

m ({θ ∈ Rn : ∃ξ ∈ PMn s.tW1 (τθν, ξ) ≤ δn}) > 1− δ.

3. The measure ρ is the push-forward of the measurem under the map θ 7→ EX∼τθν [X].

Fact 2.8. Every (ρ, δ, ε)-tilt-mixture is also a (ρ, 4δ)-mixture.

Proof. Define Θ = {θ ∈ Rn : ∃ξ ∈ PMn s.tW1 (τθν, ξ) ≤ δn}, and denote the distribution
of X and of X (ρ) by ν and σ respectively. Using item 1 in the definition of a tilt-mixture,
we have

W1 (ν, σ) ≤
∫
Rn
W1 (ξθ, τθν) dm (θ)

≤
∫

Θ

W1 (ξθ, τθν) dm (θ) +m ([−1/4, 1/4]
n \Θ)n.

By item 2 in the definition of a tilt-mixture, there exists a coupling between X and X (ρ)

such that each term on the right hand side is bounded by δn. This gives a 4δ bound on
the expectation E ‖X −X (ρ)‖1.

A tilt-mixture decomposition provides more information than generalρ-mixtures: It
tells us something about the structure of the elements of the mixture, with the parameter
ε in Definition 2.7 bounding the support of the tilts to a ball of radius ε

√
n. Some of our

results will rely on the existence of tilt decompositions with small ε.

3 Results

Our main technical contribution is a characterization of the measure ρ described
above: With high probability with respect to ρ, the vector z in equation (2.2) is nearly a
critical point of a certain functional associated with f .

Theorem 3.1 (Main Structural Theorem). Let n > 0, let f : Cn → R be a function and
denote

D = D (f) (3.1)

L1 = max {1,Lip (f)} (3.2)

L2 = max

{
1, max
x 6=y∈Cn

‖∇f (x)−∇f (y)‖1
‖x− y‖1

}
. (3.3)

Denote by Xf the set

Xf =
{
X ∈ Cn : ‖X − tanh (∇f (X))‖1 ≤ 5000L1L

3/4
2 D1/4n3/4

}
, (3.4)
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where ∇f (X) is calculated by harmonically extending ∇f to Cn, and with the tanh

applied entrywise to the entries of ∇f (X). Then Xf
n is a

(
ρ, 3D1/4

n1/4 , L
3/4
2

D1/4

n1/4

)
-tilt-mixture

such that

ρ (Xf ) ≥ 1− 3D1/4

n1/4
. (3.5)

In particular, if D = o (n), then Xf
n is a (ρ, o (1))-mixture with ρ (Xf ) = 1− o (1).

In other words, almost all the mass of the mixture resides on random vectors X which
almost satisfy the fixed point equation

X = tanh (∇f (X)) . (3.6)

Remark 3.2. One can check that the solutions of the fixed point equation are exactly
the critical points of the functional f (X) + H (X) where H (X) =

∑
i<,j Xij logXij +

(1−Xij) log (1−Xij) is the entropy of X. This is a variant of the functional that arises
in the variational problem in [3].

Remark 3.3. The following is an example application of Theorem 3.1 to Ising models, to
be compared with the main result of [1].

Corollary 3.4 (Ising models). Let f be an Ising model Hamiltonian as described in
Section 2.1.1, with interaction matrix A ∈ Rn×n and a magnetic moment vector µ ∈ Rn.
Denote

Xf =
{
X ∈ Cn : ‖X − tanh (AX + µ)‖1 ≤ 5000L1L

3/4
2 D1/4n3/4

}
,

where

D =
√
nTrA2 +

√
nµmax

L1 = max

1, µmax + max
i∈[n]

∑
j∈[n]

|Aij |


L2 = max

1,max
i∈[n]

∑
j∈[n]

|Aij |

 .

Then Xf
n is a

(
ρ, 3D1/4

n1/4 , L
3/4
2

D1/4

n1/4

)
-tilt-mixture such that

ρ (Xf ) ≥ 1− 3D1/4

n1/4
.

In particular, if L1 = O (1) and Tr
(
A2
)

= o (n) (the “mean-field assumption”), then Xf is
(ρ, o (1))-mixture with ρ (Xf ) = 1− o (1).

The simplest example of an Ising model is the Curie-Weiss ferromagnet, for which we
can use our framework as a toy example and rederive well-known properties about its
distribution.

Corollary 3.5. Let β > 0 and let f : Cn → R be the Curie-Weiss Hamiltonian, f (x) =
β
n

∑
i 6=j xixj . Denote

Xf =

{
X ∈ Cn :

∥∥∥∥X − tanh

(
βJ

n
X

)∥∥∥∥
1

≤ 5001 (1 + β)
2
n7/8

}
,

where J is the n × n all-1 matrix. Then Xf
n is a

(
ρ, 3n−1/8, 3n−1/8

)
-tilt-mixture, and

ρ (Xf ) ≥ 1− 3n−1/8. Further, if β < 1, then every X ∈ Xf satisfies

‖X‖1 ≤ 5001
(1 + β)

2

1− β
n7/8.
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For a more detailed application of Theorem 3.1 for the case of exponential random
graphs, see [5].

The following theorem finds sufficient conditions under which composing f with a
real-valued function produces a Hamiltonian with aρ-mixture approximation:

Theorem 3.6 (Composition Theorem). Let h : R→ R be a twice differentiable function
satisfying

|h′ (x)| < B1 ∀x ∈ R
|h′′ (x)| < B2 ∀x ∈ R.

Let f : Cn → R be a function with parameters D, L1, and L2 as described in Theorem
3.1. Denote by D̃, L̃1, L̃2 and L̃3 the real numbers

D̃ = B1D +B2L
2
1n

L̃1 = max {1, B1L1}
L̃2 = max

{
1, B1L2 + 3B2L

2
1n
}

L̃3 = 2B2L
2
1n

3/2

and denote by X̃h◦f the set

X̃h◦f =
{
X ∈ Cn : ‖X − tanh (h′ (f (X))∇f (X))‖1 ≤ 5000L̃1L̃

3/4
2 D̃1/4n3/4 + L̃3

}
, (3.7)

where ∇f (X) is calculated by harmonically extending ∇f to Cn, and with the tanh

applied entrywise to the entries of ∇f (X). Then Xh◦f
n is a

(
ρ, 3D̃1/4

n1/4 , L̃
3/4
2

D̃1/4

n1/4

)
-tilt-

mixture such that

ρ (Xh◦f ) ≥ 1− 3D̃1/4

n1/4
.

Remark 3.7. Theorem 3.6 bounds the norm ‖X − tanh (h′ (f (X))∇f (X))‖1 rather than
‖X − tanh (∇ (h ◦ f) (X))‖1 (which is the analogue of the quantity arising in the main
Theorem 3.1). This is a matter of practicality: For many known Hamiltonians f it is easy to
compute∇f and its extension to Cn, but it is not straightforward to compute∇ (h ◦ f) (X)

and its extension to Cn for arbitrary h. In these cases, calculating h′ (f (X))∇f (X) is
a much simpler task. Further, as will be shown in Lemma 5.1, the two quantities
h′ (f (X))∇f (X) and ∇ (h ◦ f) (X) are close to each other.

As an example application of Theorem 3.6, we show that the conditional distribution
Pr [Y = y | f (y) ≥ tn] described in item (2) in Section 2.1.2 can be approximated by a
“smoothed-out” distribution, which gives equal mass to vectors y satisfying f (y) ≥ nt

and no mass to vectors y satisfying f (y) < (t− δ)n. This “smoothed-out” distribution is
obtained from a “smoothed-cutoff” approximation to the f̃ described in Section 2.1.2.
Our framework can be applied to this “smoothed-cutoff” function, yielding an equation
corresponding to the Lagrange multiplier problem associated with the rate function.

Theorem 3.8 (Large deviations). Let t > 0. Let f : Cn → R be a Hamiltonian with
parameters D, L1 and L2 as described in Theorem 3.1, and assume that there exists
z ∈ Cn such that f (z) ≥ tn. Let δ > 0. There exists a monotone function h : R→ R, such
that for ϕ = h ◦ f , we have that ϕ (y) = 0 if f (y) < (t− 2δ)n, ϕ (y) = 1 if f (y) ≥ tn and
such that the following holds. Denote by σ the measure defined by

dσ =
ϕdµ∫
Cn ϕdµ

,
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and let Xϕ be a random variable whose law is σ. Denote

Xg =
{
X ∈ Cn : ∃λ ∈ R s.t. ‖X − tanh (λ∇f (X))‖1 ≤ 5000L̃1L̃

3/4
2 D̃1/4n3/4 + L̃3

and f (X) ∈ [(t− 6δ)n, tn]}

where

D̃ =
2

δ
D +

2

δ2
L2

1

L̃1 = max

{
1,

2

δ
L1

}
L̃2 = max

{
1,

2

δ
L2

2 + 3
2

δ2
L2

1

}
L̃3 = 2

2

δ2
L2

1n
1/2.

Then Xϕ is a
(
ρ, 80 D̃

1/4

n1/4 + 8 · 2−n
)

-mixture such that

ρ (Xg) ≥ 1− 165L1D̃
1/4

n1/42δ

(
1− L1

2δ
√
n
− 2−n

)−1

. (3.8)

Note that the expression X − tanh (λ∇f (X)) in the definition of the set Xg is closely
related to the rate function: Consider the variational problem

minimizeH (Y )

subject to Ef (Y ) ≥ tn

where Y is a random vector in Cn whose entries are independent. By monotonicity, the
minimum is attained on the boundary of the constraint. Denoting EY = y and using the
method of Lagrange multipliers, we obtain the equations

∇yH (Y ) = λ∇f (y) (3.9)

f (y) = tn.

Applying the fact that ∇yH (Y ) = tanh−1 (y) on equation (3.9) gives exactly the equation
X − tanh (λ∇f (X)) = 0.

Example 3.9 (Large deviations for triangle counts). Let N > 0 be an integer representing
the number of vertices of a graph, and let n =

(
N
2

)
be the number of possible edges in

the graph. We treat each vector v ∈ Cn as a simple graph, with ve = 1 if and only if
the edge e appears in the graph. This in turns gives an adjacency matrix (xij)

N
i,j=1 with

xij = 1 if and only if v{ij} = 1. In this setting, let f be a triangle-counting function,

f (x) =
β

N

∑
i 6=j 6=k

xijxjkxki

for some real β. It is shown in [4] that D (f) is O
(
n3/4

)
and in [5] that L1 and L2 are

bounded by 200 |β|. Thus we can apply Theorem 3.8 to f , concluding that for a fixed
t > 0 there exists some δ = o (1) and a smoothed cutoff function h with h (x) = 1 for
x > tn and h (x) = 0 for x < (t− δ)n and such that the random graph G whose density is
proportional to h ◦ f is a (ρ, o (1))-mixture such that ρ (Xg) = 1− o (1), where

Xg =
{
X ∈ Cn : ∃λ ∈ R s.t.

∥∥X − tanh
(
λX2

)∥∥
1
≤ εn

and f (X) ∈ [(t− 6δ)n, tn]}

EJP 23 (2018), paper 35.
Page 8/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP159
http://www.imstat.org/ejp/


Decomposition of mean-field Gibbs distributions into product measures

for some ε = o (1). Here X ∈ Cn is treated as an n× n symmetric matrix with zeros on
the diagonal, and we understand the expression X2 as the usual matrix multiplication,
with zeros on the diagonal as well. We conjecture that all of the points of the set Xg are
close to the solutions obtained by Lubetzky and Zhao in [6].

Our results extend to triangle counts on sparse graphs as well. In this case, expected
value of f is of order np3, which decays to 0 as p → 0. We should therefore take both
t to be proportional to p3 and δ to be o

(
p3
)
. Since the bound on the vectors in Xg in

Theorem 3.8 is polynomial in δ, we can consider large deviations for graphs whose edge
probabilities are proportional to p ∼ n−c for some constant c (for example, if we wish ε
to be of order p, we can take p ∼ n−1/160).

The rest of this paper is organized as follows. Theorem 3.1 is proved in Section 4,
while Theorem 3.6 is proved in Section 5. Corollaries 3.4 and 3.5 are proved in Section
6.1 and 3.8 is proved in Section 6.2.

4 Proof of main theorem

4.1 Notation and review

We use the notation from [4], and rely on the proofs therein. Here is a brief review of
the required terms and bounds.

For a probability measure ν on Cn, we define fν = log (dν/dµ), so that the Gibbs
distribution with Hamiltonian fν is exactly ν. For every distribution ν on the hypercube
(exponential or otherwise), we define

H (ν) =

∫
Cn

tanh (∇fν (y))
⊗2
dν −

(∫
Cn

tanh (∇fν (y)) dν

)⊗2

,

which should be thought of as the covariance matrix of the random variable ∇fν (X)

with X ∼ ν. We will use the following three results from [4].

Proposition 4.1 (Proposition 17 in [4]). Let ν̃ be a probability distribution on Cn. Then
there exists a product measure ξ = ξ (ν̃) such that

W1 (ν̃, ξ) ≤
√
nTr (H (ν̃)). (4.1)

Moreover, one may take ξ to be the unique product measure whose center of mass lies
at
∫
Cn tanh (∇fν̃ (y)) dν̃ (y) where the tanh is applied entrywise.

Proposition 4.2 (Proposition 18 together with Lemma 16 in [4]). Define D = D (fν). Let

ε ∈
(

0, 1/4
√

log (4n/D)
)

. Let ν be a probability measure on Cn and define f = log dν
dµ .

Then there exists a measure m on B (0, ε
√
n) ∩ [−1/4, 1/4]

n, such that ν admits the
decomposition ∫

Cn
ϕdν =

∫
B(0,ε

√
n)

(∫
Cn
ϕdτθ (ν)

)
dm (θ) (4.2)

for every test function ϕ : Cn → R, and which satisfies

m

(
θ : Tr (H (τθν)) ≤ 256

n1/3D2/3

ε2/3

)
≥ 1− 3D1/3

n1/3ε1/3
. (4.3)

Lemma 4.3 (Lemma 24 in [4]). Let θ ∈ Rn and let ν, ν̃ be probability measures on Cn.
Define

A =

∫
Cn

tanh (∇fν (y))
⊗2
dν̃ −

(∫
Cn

tanh (∇fν (y)) dν̃

)⊗2

and

B =

∫
Cn

tanh (∇fτθν (y))
⊗2
dν̃ −

(∫
Cn

tanh (∇fτθν (y)) dν̃

)⊗2

.
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Decomposition of mean-field Gibbs distributions into product measures

Then
e−4‖θ‖∞TrB ≤ TrA ≤ e4‖θ‖∞TrB.

We can now describe the general plan of our proof. Fix ε > 0, and let m be the
measure obtained from Proposition 4.2. Denote by Θ the set

Θ =

{
θ ∈ Rn : Tr (H (τθν)) ≤ 256

n1/3D2/3

ε2/3

}
. (4.4)

For every θ ∈ Rn, denote by ξθ the unique product measure with the same marginals as
τθν, and by A (θ) the vector

A (θ) = EX∼τθν [X] .

Denote by ρ the push-forward of the measure m under the map θ 7→ A (θ) and define

X = {A (θ) ; θ ∈ Θ} .

In order to prove Theorem 3.1, all we have to do is that show that for each θ ∈ Θ, the
corresponding A (θ) is close in the one-norm to tanh (∇f (A (θ))); this will show equation
(3.5). In other words, we need the following proposition:

Proposition 4.4. Let θ ∈ Θ and let Y ∼ ξθ. Then for every ε > 0,

‖tanh (∇f (EY ))− EY ‖1 ≤ 41L1

(
112L2

n2/3D1/3

ε1/3
+ εn

)
.

Relying on the above, we can prove of Theorem 3.1.

Proof of Theorem 3.1. Define the measure ρ and the set X as above. Set ε =
D1/4L

3/4
2

n1/4 .
Items (1)–(3) in Definition 2.7 follow immediately from Proposition 4.1 and 4.2 by choice
of ε, δ and ρ. By Proposition 4.4 for all θ ∈ Θ, we have

‖tanh (∇f (EY ))− EY ‖1 ≤ 41L1

(
113L

3/4
2 D1/4n3/4

)
≤ 5000L1L

3/4
2 D1/4n3/4.

This implies that X ⊆ Xf , and together with Proposition 4.2 and by choice of ε, this

shows that ρ (Xf ) ≥ 1− 3D1/4

n1/4 , satisfying equation (3.5).

The rest of this section is devoted to proving Proposition 4.4.

4.2 Approximate fixed point

Let θ ∈ Θ be a tilt and let ξθ be the product measure whose center of mass lies at∫
Cn tanh (∇fτθν (y)) dτθν (y). Throughout the proof we will assume X ∼ τθν and Y ∼ ξθ.

A direct calculation shows that under this notation, EY = E tanh (∇f (X) + θ):

EY =

∫
Cn

tanh (∇fτθν (y)) dτθν (y)

=

∫
Cn

tanh

(
∇
(

log

(
dτθν

dν

)
+ log

(
dν

dµ

))
(y)

)
dτθν (y)

=

∫
Cn

tanh (θ +∇fν (y)) dτθν (y)

= E tanh (∇f (X) + θ) .
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Decomposition of mean-field Gibbs distributions into product measures

This gives

‖EY − E tanh (∇f (X))‖1 ≤ ‖E tanh (∇f (X))− E tanh (∇f (X) + θ)‖1
≤ ‖θ‖1(

‖θ‖2 ≤ ε
√
n
)
≤ εn. (4.5)

where in the second inequality we use the fact that

|tanh (x)− tanh (y)| ≤ |x− y| . (4.6)

Proposition 4.5. Let Y ∼ ξθ. Then

E ‖tanh (∇f (Y ))− EY ‖1 ≤ 64L2
n2/3D1/3

ε1/3
+ εn.

Proof. ForX ∼ τθν, consider the random variable Z = ‖tanh (∇f(X))−E tanh (∇f(X))‖22.
A short calculation shows that the expectation of Z is roughly TrH (τθν):

EZ = E ‖tanh (∇f (X))− E tanh (∇f (X))‖22

=

n∑
i=1

E
[
tanh (∇f (X))

2
i

]
−

n∑
i=1

(E tanh (∇f (X))i)
2

≤ 3

(
n∑
i=1

E
[
tanh (∇f (X) + θ)

2
i

]
−

n∑
i=1

(E tanh (∇f (X) + θ)i)
2

)
= 3Tr (H (τθν))

where the inequality is by Lemma 4.3 with ν and ν̃ = τθν and the fact that ‖θ‖∞ ≤ 1/4.
Thus by equation (4.3),

E ‖tanh (∇f (X))− E tanh (∇f (X))‖22 ≤ 3 · 256
n1/3D2/3

ε2/3
,

and together with the Cauchy-Schwarz inequality, we have that

E ‖tanh (∇f (X))− E tanh (∇f (X))‖1 ≤
√
nE ‖tanh (∇f (X))− E tanh (∇f (X))‖2

≤ 32
n2/3D1/3

ε1/3
. (4.7)

By Proposition 4.1, there exists a coupling between τθν and ξθ such that

E ‖X − Y ‖1 ≤ 2
√
nTrH (τθν)

(by equation (4.3)) ≤ 32
n2/3D1/3

ε1/3
.

Thus, since by equations (3.3) and (4.6),

E ‖tanh (∇f (X))− tanh (∇f (Y ))‖1 ≤ E ‖∇f (X)−∇f (Y )‖1
≤ L2E ‖X − Y ‖1

≤ 32L2
n2/3D1/3

ε1/3
. (4.8)

Combining equations (4.7), (4.5) and (4.8) together with the triangle inequality finally
gives

E ‖tanh (∇f (Y ))− EY ‖1 ≤ 32 (1 + L2)
n2/3D1/3

ε1/3
+ εn

≤ 64L2
n2/3D1/3

ε1/3
+ εn

as needed.
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Lemma 4.6. Let Z be an almost-surely bounded random variable, |Z| ≤ L with L ≥ 1.
Then

|tanh (EZ)− E tanh (Z)| ≤ 20L · E |tanh (Z)− E tanh (Z)| .

The proof is postponed to the appendix.

Claim 4.7. Let ξ be a product measure on Cn, let Y ∼ ξ, and let f : Cn → R be a function
on the hypercube. Then

Ef (Y ) = f (EY ) (4.9)

and
E∇f (Y ) = ∇f (EY ) . (4.10)

Proof. The extension of f to Cn is defined by the Fourier decomposition

f (y) =
∑
S⊆[n]

f̂ (S)
∏
i∈S

yi.

Thus, since ξ is a product measure,

Ef (Y ) = E
∑
S⊆[n]

f̂ (S)
∏
i∈S

Yi =
∑
S⊆[n]

f̂ (S)
∏
i∈S

EYi = f (EY ) .

Equation 4.10 is then obtained by applying equation 4.9 to every component of ∇f .

Proof Proposition 4.4. By the triangle inequality,

‖tanh (∇f (EY ))− EY ‖1
≤ ‖tanh (∇f (EY ))− E tanh (∇f (Y ))‖1 + ‖E tanh (∇f (Y ))− EY ‖1

(by Claim 4.7 ) = ‖tanh (E∇f (Y ))− E tanh (∇f (Y ))‖1 + ‖E tanh (∇f (Y ))− EY ‖1
(by convexity) ≤ ‖tanh (E∇f (Y ))− E tanh (∇f (Y ))‖1 + E ‖tanh (∇f (Y ))− EY ‖1 .

(4.11)

Proposition 4.5 gives a bound on the second term in the right hand side.
For the first term, note that by equation (3.2), for every index j ∈ [n],∣∣∣∇f (Y )j

∣∣∣ ≤ L1.

We can therefore invoke Lemma 4.6 on every index, giving that

‖tanh (E∇f (Y ))− E tanh (∇f (Y ))‖1 =

n∑
j=1

∣∣∣tanh (E∇f (Y ))j − E tanh (∇f (Y ))j

∣∣∣
(by Lemma 4.6) ≤ 20L1

n∑
j=1

E

∣∣∣tanh (∇f (Y ))j − E tanh
(
∇f (Y )j

)∣∣∣
= 20L1E ‖tanh (∇f (Y ))− E tanh (∇f (Y ))‖1 .

(4.12)

For this last term, we again use the triangle inequality and equation (4.5), giving

E ‖tanh (∇f (Y ))− E tanh (∇f (Y ))‖1 ≤ E ‖tanh (∇f (Y ))− E tanh (∇f (X))‖1 +

+ E ‖E tanh (∇f (X))− E tanh (∇f (Y ))‖1
≤ εn+ E ‖tanh (∇f (Y ))− EY ‖1 +

+ E ‖tanh (∇f (X))− tanh (∇f (Y ))‖1
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which, by Proposition 4.5 and equation (4.8), gives

E ‖tanh (∇f (Y ))− E tanh (∇f (Y ))‖1 ≤ εn+ 64L2
n2/3D1/3

ε1/3
+ εn

+ 32L2
n2/3D1/3

ε1/3

≤ 96L2
n2/3D1/3

ε1/3
+ 2εn.

Putting this into equation (4.12), we have

‖tanh (E∇f (Y ))− E tanh (∇f (Y ))‖1 ≤ 40L1

(
48L2

n2/3D1/3

ε1/3
+ εn

)
.

And finally, plugging in the bounds into equation (4.11), we get

‖tanh (∇f (EY ))− EY ‖1 ≤ 40L1

(
48L2

n2/3D1/3

ε1/3
+ εn

)
+ 64L2

n2/3D1/3

ε1/3
+ εn

≤ 41L1

(
112L2

n2/3D1/3

ε1/3
+ εn

)
.

5 Proof of composition theorem

We will use two lemmas concerning the relation between f and h ◦ f . The first is a
discrete chain rule which will be central to our calculations:

Lemma 5.1 (Chain rule for discrete gradient). Let f : Cn → R with Lip (f) = L and let
h : R→ R with |h′′ (x)| < B. Then

1. For ever y ∈ Cn,
‖∇ (h ◦ f) (y)− h′ (f (y))∇f (y)‖1 ≤ BL

2n (5.1)

and
‖∇ (h ◦ f) (y)− h′ (f (y))∇f (y)‖2 ≤ BL

2
√
n. (5.2)

2. For every x ∈ Cn,

‖∇ (h ◦ f) (x)− h′ (f (x))∇f (x)‖1 ≤ 2BL2n3/2. (5.3)

The second lemma concerns the parameters of the function h ◦ f :

Lemma 5.2 (Composition parameters). Let h : R→ R be a twice differentiable function
satisfying

|h′ (x)| ≤ B1

|h′′ (x)| ≤ B2

for all x ∈ R. Let f : Cn → R be a function with parameters D, L1, L2 as described in
Theorem 3.1. Then

D (h ◦ f) ≤ B1D +B2L
2
1n (5.4)

Lip (h ◦ f) ≤ B1L1 (5.5)

max
x6=y∈Cn

‖∇ (h ◦ f) (x)−∇ (h ◦ f) (y)‖1
‖x− y‖1

≤ B1L2 + 3B2L
2
1n. (5.6)
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The proofs of both lemmas are postponed to the appendix.

Proof of Theorem 3.6. Denote by Xh◦f the set

Xh◦f =
{
X ∈ [−1, 1]

n
: ‖X − tanh (∇ (h ◦ f) (X))‖1 ≤ 5000L̃1L̃

3/4
2 D̃1/4n3/4

}
.

Note that for every X ∈ Xh◦f ,

‖X − tanh (h′ (X)∇f (X))‖1 ≤ ‖X − tanh (∇ (h ◦ f) (X))‖1
+ ‖tanh (∇ (h ◦ f) (X))− tanh (h′ (X)∇f (X))‖1

(by equation (5.3)) ≤ 5000L̃1L̃
3/4
2 D̃1/4n3/4 + 2B2L

2
1n

3/2

and so X̃h◦f ⊆ Xh◦f . Applying Theorem 3.1 for the function h ◦ f with the bounds given
by Lemma 5.2 gives the required results.

Remark 5.3. The bound for compositions h ◦ f with domain Cn, given in (5.3), is worse
by a factor of

√
n than that of compositions with domain Cn, given in (5.1). This disparity

is in fact tight. For example, consider the function

h (x) =


3
4x

3 − 1
4x

5 |x| < 1
1
2x

2 x ≥ 1

− 1
2x

2 x ≤ −1

applied to the “counting” function

f (x) =

n∑
i=1

xi.

The function h has a bounded second derivative and satisfies h′ (0) = 0. For x = 0, we
have f (x) = 0 and so h′ (f (x))∇f (x) = 0 as well. However, a calculation shows that
‖∇ (h ◦ f) (x)‖1 ∼ n3/2, and so ‖∇ (h ◦ f) (x)− h′ (f (x))∇f (x)‖1 ∼ n3/2 as well.

6 Example applications

6.1 The Ising model

Proof of Corollary 3.4. A short calculation shows that ∇f (x) = Ax + µ. The corollary
will follow immediately from Theorem 3.1 once we have obtained the parameters D, L1

and L2 for f . The calculations for D (f) and Lip (f) are also found in [4, Section 1.3] but
we repeat them here for completeness.

Denote µmax = maxi∈[n] |µi|. We then have

1. The Gaussian-width is bounded by:

D (f) = E sup
x∈Cn

〈Ax+ µ,Γ〉

≤ E sup
x∈Cn

〈Ax,Γ〉+ E |〈µ,Γ〉|

≤
√
nE sup

x∈B(0,1)

〈Ax,Γ〉+ ‖µ‖2

=
√
nE ‖AΓ‖2 + ‖µ‖2

≤
√
nE ‖AΓ‖22 + ‖µ‖2

≤
√
nTrA2 +

√
nµmax.
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2. The Lipschitz constant is bounded by

Lip (f) ≤ µmax + max
i∈[n],x∈Cn

〈Ax, ei〉

≤ µmax + max
i∈[n]

∑
j∈[n]

|Aij | .

3. Regarding the Lipschitz constant of the gradient, note that ‖∇f (x)−∇f (y)‖1 =

‖A (x− y)‖1. Suppose that x and y differ only in the i-th coordinate. Then A (|x− y|)
is just 2 times the i-th column of A. By the triangle inequality, we then have

‖∇f (x)−∇f (y)‖1
‖x− y‖1

≤ max
i∈[n]

∑
j∈[n]

|Aij | .

Proof of Corollary 3.5. The interactions described in Corollary 3.5 can be represented
by an interaction matrix A = β1

n , where 1 is the n× n matrix whose off-diagonal entries
are 1 and whose diagonal is 0, and β is interpreted as the inverse temperature. Note
that for every x, y ∈ Cn,

‖∇f (x)−∇f (y)‖1 = ‖A (x− y)‖1 ≤ β ‖x− y‖1 , (6.1)

so that L2 ≤ 1 + β. A simple calculation also shows that D ≤ β
√
n and L1 ≤ 1 + β.

Denoting

X =

{
X ∈ Cn :

∥∥∥∥X − tanh

(
β1

n
X

)∥∥∥∥
1

≤ 5000 (1 + β)
2
n7/8

}
,

by Corollary 3.4 we have that Xf
n is a

(
ρ, 3n−1/8, 3n−1/8

)
-tilt-mixture with ρ (X ) ≥ 1 −

3n−1/8. Denote by J = 1+ Id the n× n matrix whose every entry is 1. Then every X ∈ X
also satisfies∥∥∥∥X − tanh

(
βJ

n
X

)∥∥∥∥
1

=

∥∥∥∥X − tanh

(
βJ

n
X

)
− tanh

(
β1

n
X

)
+ tanh

(
β1

n
X

)∥∥∥∥
1

≤ 5000 (1 + β)
2
n7/8 +

∥∥∥∥tanh

(
β1

n
X

)
− tanh

(
β (1 + Id)

n
X

)∥∥∥∥
1

≤ 5000 (1 + β)
2

(1 + β)n7/8 +

∥∥∥∥βId

n
X

∥∥∥∥
1

≤ 5001 (1 + β)
2
n7/8.

Thus X ⊆ Xf and the first part of Corollary 3.5 is proved. The fixed point equation

X = tanh
(
βJ
n X

)
is easier to work with, since all of its exact solutions are constant:

Indeed, every entry Xi of a solution satisfies Xi = tanh
(∑n

j=1
β
nXj

)
; every solution X is

then of the form X = (x, x, . . . , x), and the exact fixed point vector equation reduces to
the scalar equation

x = tanh (βx) .

The value x0 = 0 is always a solution, corresponding to the case where the typical
configuration is completely disordered.

For β ≤ 1, this is also the only solution. In this case, for every X ∈ Xf ,

‖X‖1 =

∥∥∥∥X − tanh

(
βJ

n
X

)
+ tanh

(
βJ

n
X

)∥∥∥∥
1

≤ 5001 (1 + β)
2
n7/8 +

∥∥∥∥tanh

(
βJ

n
X

)∥∥∥∥
1

≤ 5001 (1 + β)
2
n7/8 + β ‖X‖1 .
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Rearranging, we get that every X ∈ Xf is close to 0:

‖X‖1 ≤ 5001
(1 + β)

2

1− β
n7/8.

This represents the fact that for high temperatures, the system is always disordered.
For β > 1, there are two other solutions, x1 = −x2. These satisfy |x1| , |x2| → 1 as

β → ∞, and correspond to the symmetry-broken phase where all spins tend to point
in the same direction. Showing that every X ∈ Xf is close to either (x1, x1, . . . , x1) or
(x2, x2, . . . , x2) can then be done by a standard counting argument, which we choose to
omit.

Adding a constant magnetic field µ = (µ0, µ0 . . . , µ0) forces a non-zero constant
solution for every β > 0, while shifting the values of x1 and x2.

6.2 Large deviations

In order to prove Theorem 3.8, we follow the approach mentioned in Section 2.1.2,
and try to approximate function f̃ in equation (2.1) by a well-behaved Hamiltonian g.

Let t ∈ R and δ > 0. Let h : R→ R and ψ : R→ R be defined as

h (x) =


2x+ 1 x ≤ −1

−x2 −1 ≤ x ≤ 0

0 x ≥ 0.

and

ψ (x) = n · h
((x

n
− t
)
/δ
)
.

Note that |h′ (x)| ≤ 2 and |h′′ (x)| ≤ 2 for all x ∈ R. Thus

|ψ′ (x)| =
∣∣∣∣n · h′ ((xn − t) /δ) · 1

nδ

∣∣∣∣
≤ 2

δ

and

|ψ′′ (x)| =
∣∣∣∣n · h′′ ((xn − t) /δ) · 1

n2δ2

∣∣∣∣
≤ 2

nδ2
.

Let g : Cn → R be defined as

g (y) = ψ (f (y)) .

Denote by ν the measure defined by Xg
n. The function g is an approximation for f̃ , in the

sense that almost of all the mass of ν is supported on vectors on which f attains a large
value.

Proposition 6.1. Let δ′ = log 4+1
2 δ and define

B = {y ∈ Cn : f (y) ≤ (t− δ′)n} .

If there exists a z ∈ Cn such that f (z) ≥ tn, then

ν (B) ≤ 2−n.
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Proof. Let y ∈ B. By definition of g,

g (y) = n · h
((

f (y)

n
− t
)
/δ

)
(h is increasing) ≤ n · h

((
(t− δ′)n

n
− t
)
/δ

)
= n · h (−δ′/δ)

(since δ′ > δ) = n

(
1− 2

δ′

δ

)
= − (log 4)n.

Let z ∈ Cn be such that f (z) ≥ tn. Then under ν the probability for obtaining z is
proportional to eg(z) = e0 = 1. On the other hand, for every y ∈ B, the probability for
obtaining y is proportional to a value smaller than e− log 4·n = 4−n = 2−2n. Since there
are no more than 2n possible vectors in Cn, we thus obtain

ν (B) ≤ ν (B)

ν (z)
≤ 2n2−2n = 2−n.

Proposition 6.1 allows us to approximate ν with a distribution that does not give any
mass at all to vectors y ∈ Cn with f (y) < (t− δ′)n. Define the function ϕ : Cn → R by

ϕ (y) =


0 f (y) < (t− δ′)n
eg(y) (t− δ′)n ≤ f (y) < tn

1 f (y) ≥ tn,

and observe that ϕ (y) agrees with eg(y) for all y such that f (y) ≥ (t− δ′)n. Denote by σ
the measure defined by dσ = ϕdµ∫

Cn
ϕdµ

and by Xϕ a random variable whose law is σ.

Proposition 6.2. Assume that there exists a z ∈ Cn such that f (z) ≥ tn. Then there
exists a coupling between Xg

n and Xϕ such that

E ‖Xg
n −Xϕ‖1 ≤ 2n · 2−n.

We postpone the proof to the appendix.

Proof of Theorem 3.8. Applying Theorem 3.6 to g, there exists a ρ-mixture and a coupling
between X (ρ) and Xg

n such that

ρ (Xg) ≥ 1− 80D̃1/4

n1/4
(6.2)

and

E ‖X (ρ)−Xg
n‖1 ≤ 80n3/4D̃1/4.

Therefore by Proposition 6.2 there exists a coupling between X (ρ) and Xϕ such that

E ‖X (ρ)−Xϕ‖1 ≤ 80n3/4D̃1/4 + 2n · 2−n.

This shows that Xϕ is a
(
ρ, 80 D̃

1/4

n1/4 + 8 · 2−n
)

-mixture. To obtain equation (3.8), denote

Yg = {X ∈ Xg : f (X) < (t− 3δ′)n}, and let X ∈ Yg. Denote by ξX the product measure
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Decomposition of mean-field Gibbs distributions into product measures

on Cn such that if YX ∼ ξX then EYX = X. We then have

Pr [f (YX) ≥ (t− 2δ′)n] ≤ Pr [f (YX) ≥ f (EYX) + δ′n]

≤ Pr [|f (YX)− f (EYX)| ≥ δ′n]

(by Markov’s inequality) ≤ E |f (YX)− f (EYX)|
δ′n

(by Proposition A.1 ) ≤ L1

δ′
√
n
. (6.3)

Denote by AX the event

AX = {f (YX) < (t− 2δ′)n} ∩ {f (Xg
n) > (t− δ′)n} .

Equation (6.3) and Proposition 6.1 together imply that

Pr [AX ] ≥ 1− L1

δ′
√
n
− 2−n.

Under AX we have that

δ′n ≤ f (Xg
n)− f (YX) ≤ L1 ‖YX −Xg

n‖1 ,

yielding

‖YX −Xg
n‖1 ≥

δ′n

L1
. (6.4)

Since E ‖X (ρ)−Xg
n‖1 is small, this inequality sets a constraint on the measure of Yg.

Letting Z be a random variables with law ρ, coupled with X (ρ) so that X (ρ) | Z ∼ YZ ,
one has

E ‖X (ρ)−Xg
n‖1 =

∫
Cn
E [‖YZ −Xg

n‖1 | Z] dρ (Z)

≥
∫
Yg
E [‖YZ −Xg

n‖1 | Z] dρ (Z)

≥
∫
Yg
E [‖YZ −Xg

n‖1 | Z ∧ AZ ] Pr [AZ ] dρ (Z)

(by equation (6.4)) ≥
(

1− L1

δ′
√
n
− 2−n

)∫
Yg

δ′n

L1
dρ (Z)

=

(
1− L1

δ′
√
n
− 2−n

)
ρ (Yg)

δ′n

2L1
.

We thus obtain

ρ (Yg) ≤
80L1D̃

1/4

n1/4δ′

(
1− L1

δ′
√
n
− 2−n

)−1

.

Together with equation (6.2), this gives

ρ (Xg\Yg) ≥ 1− 161L1D̃
1/4

n1/4δ′

(
1− L1

δ′
√
n
− 2−n

)−1

as needed.

Remark 6.3. A particular type of Hamiltonian that has been of considerable interest in
the field of large deviations that of subgraph-counting functions. It was recently shown
in [5] that for these types of Hamiltonians, ∇f (X) is close to a stochastic block matrix.

Since h′
((

f(X)
n − t

)
/δ
)

is a scalar, this implies that every X ∈ Xg is also close to a

stochastic block matrix.
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Remark 6.4. Theorem 3.8 corresponds to the unconditioned distribution µp with p = 1/2.
To deal with the case p 6= 1/2, define g (y) as

g (y) = ψ (f (y)) +
∏

log

(
1

2
(1− yi + 2pyi)

)
.

Analogues of Propositions 6.1 and 6.2 can then be proved following the same line.

A Appendix

Proof of Lemma 4.6. Denote Y = tanhZ, and denote the bound of Y by α = tanhL ≥
tanh (1). Under this notation, we wish to show that∣∣tanh

(
E tanh−1 Y

)
− EY

∣∣ ≤ 20 tanh−1 (α) · E |Y − EY | . (A.1)

We will prove this inequality by considering it as a variational problem on the distribution
µ of Y . Specifically, we will show that for every a ∈ [−α, α], every distribution µ of Y
satisfies ∣∣tanh

(
E tanh−1 Y

)
− a
∣∣ ≤ 20 tanh−1 (α) · E |Y − a| . (A.2)

Setting a = EY then gives the desired result.
Suppose that E |Y − a| is fixed. Then the left hand side of (A.2) is maximized by the

Y that gives tanh
(
E tanh−1 Y

)
an extremal value, conditioned on b := E |Y − a| being

constant. Since tanh is monotone, this is equivalent to finding the extremal value of the
integral ∫

tanh−1 (x) dµ (x) (A.3)

while maintaining the constraint

b = E |Y − a| . (A.4)

The constraint (A.4) is of the form
∫
f (x) dµ = b, where f (x) = |x− a|. By Theorems 2.1

and 3.2 and Proposition 3.1 in [8], the extremal distributions which solve a system of
n constraints of the form

∫
fi (x) dµ = ci are linear combinations of no more than n+ 1

singletons, i.e delta distributions. We can therefore write the extremal µ as

µ = pδ (x) + (1− p) δ (y) (A.5)

for some two real numbers −α ≤ x, y ≤ α and p ∈ [0, 1]. Now, using the triangle
inequality, we have that∣∣tanh

(
E tanh−1 Y

)
− a
∣∣ ≤ ∣∣tanh

(
E tanh−1 Y

)
− EY

∣∣+ E |Y − a| ,

so it is in fact enough to show that∣∣tanh
(
E tanh−1 Y

)
− EY

∣∣ ≤ 19 tanh−1 (α) · E |Y − a| ,

and since E |Y − EY | ≤ 2E |Y − a| for every a, it actually suffices to show that∣∣tanh
(
E tanh−1 Y

)
− EY

∣∣ ≤ 9 tanh−1 (α) · E |Y − EY | . (A.6)

Plugging the decomposition (A.5) into (A.6), we need to prove that for every such x and
y, ∣∣tanh

(
p tanh−1 (x) + (1− p) tanh−1 (y)

)
− (px+ (1− p) y)

∣∣
2p (1− p) |x− y| tanh−1 (α)

≤ 9.
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Assume without loss of generality that x > 0 and x > |y|. We will now show that inequality
is correct for 0 < p ≤ 1

2 . We omit the similar proof for 1
2 ≤ p < 1. For these values of p, it

suffices to show that∣∣tanh
(
p tanh−1 (x) + (1− p) tanh−1 (y)

)
− (px+ (1− p) y)

∣∣
p tanh−1 (α) (x− y)

≤ 9· (A.7)

For every fixed value of y, we treat the expression on the left hand side as a function of
p for p ∈ (0, 1). This expression may attain its supremum either at p→ 0+, p = 1

2 , or at
values of p such that the derivative of the left hand side with respect to p is 0. We’ll now
consider each of these three cases.

Taking the derivative

Comparing the derivative to 0, one obtains the relation

tanh
(
p tanh−1 (x) + (1− p) tanh−1 (y)

)
− (px+ (1− p) y) =(

tanh−1 (x)− tanh−1 (y)

cosh2
(
p tanh−1 (x) + (1− p) tanh−1 (y)

) − (x− y)

)
p.

Plugging this back into (A.7) and using the triangle inequality, it is enough to show that

tanh−1(x)−tanh−1(y)

cosh2(p tanh−1(x)+(1−p) tanh−1(y))
+ (x− y)

tanh−1 (α) (x− y)
≤ 9. (A.8)

Since tanh−1 (α) ≥ 1, the expression (x−y)
tanh−1(α)(x−y)

is bounded by 1, so it remains to show
that

tanh−1 (x)− tanh−1 (y)

tanh−1 (α) cosh2
(
p tanh−1 (x) + (1− p) tanh−1 (y)

)
(x− y)

≤ 8. (A.9)

If y < 0 and x ≥ 1
2 , then x− y > 1/2 and we trivially have

tanh−1 (x)− tanh−1 (y)

tanh−1 (α)

1

cosh2
(
p tanh−1 (x) + (1− p) tanh−1 (y)

)
(x− y)

≤ 2
1
2

= 4.

If y < 0 and x < 1
2 then

tanh−1 (x)− tanh−1 (y) ≤ 1

1− x2
(x− y) ≤ 4

3
(x− y)

and so

tanh−1 (x)− tanh−1 (y)

tanh−1 (α) cosh2
(
p tanh−1 (x) + (1− p) tanh−1 (y)

)
(x− y)

≤ 2

tanh−1 (α)
< 8.

For y ≥ 0, the maximal w.r.t p value of the left hand side of (A.9) is attained when
the argument of cosh2 is minimal, i.e at p = 0. Using the fact that cosh

(
tanh−1 (y)

)
=

1/
√

1− y2 > 1/
√

2 (1− y) and that tanh−1 (x) = 1
2 log 1+x

1−x , it suffices to show that(
log 1+x

1−x
1−y
1+y

)
(1− y)

tanh−1 (α) (x− y)
≤ 8. (A.10)

We consider two cases. Suppose that 1−y
1−x ≥ 2. For any z ≥ 2, it holds that log 2z ≤ 2 log z,

and since x, y < 1, it is enough to show that

2

(
log 1−y

1−x

)
(1− y)

tanh−1 (α) (x− y)
≤ 8. (A.11)
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Denote 1 − x = e−a and 1 − y = e−b, with a > b > 0; under this notation, the left hand
side becomes 2 (a−b)

tanh−1(α)(1−e−(a−b))
. Note that tanh−1 (α) = 1

2 log 1+α
1−α ≥

1
2 log 1

1−x = 1
2a.

If e−(a−b) < 1
2 , then 2 (a−b)

tanh−1(α)(1−e−(a−b))
≤ 2 (a−b)

1
2a(

1
2 )
≤ 8. Otherwise, if e−(a−b) ≥ 1

2 , then

a− b < 3
4 . By Taylor’s theorem, the 1− e−(a−b) in the denominator can be bounded from

below by 1
2 (a− b), bounding the expression by 8

tanh−1(α)
≤ 8.

Now suppose that 1−y
1−x < 2. Since log z ≤ z − 1 for all z, we may then write the left

hand side of (A.10) as(
log 1+x

1+y + log 1−y
1−x

)
(1− y)

tanh−1 (α) (x− y)
≤ 1

tanh−1 (α)

((
1 + x

1 + y
− 1

)
+

(
1− y
1− x

− 1

))
1− y
x− y

≤ 1

tanh−1 (α)

(
1− y
1 + y

+
1− y
1− x

)
≤ 3

tanh−1 (α)
< 8.

The case p = 0

Using L’Hôpital’s rule, the value of the left hand side of (A.7) attained as p→ 0+ is∣∣∣∣ tanh−1(x)−tanh−1(y)

cosh2(tanh−1(y))
− (x− y)

∣∣∣∣
tanh−1 (α) (x− y)

.

For y ≥ 0, this is the same expression obtained by setting p = 0 in (A.8). The case y < 0

is handled similarly as above.

The case p = 1/2

In this case we must show that∣∣tanh
(

1
2 tanh−1 (x) + 1

2 tanh−1 (y)
)
−
(

1
2x+ 1

2y
)∣∣

tanh−1 (α) (x− y)
≤ 9

2
·

This bound can be shown by differentiating with respect to y to the find the maximum of
the left hand side.

Proposition A.1. Let f : Cn → R, let ξ be a product measure over Cn, and let Y ∼ ξ.
Then

E |f (Y )− f (EY )| ≤
√
nLip (f) .

Proof. Let Mi = E [f (Y ) | Y1, . . . , Yi]. Then the variance of f can be bounded by

Var [f (Y )] =

n∑
i=1

E (Mi −Mi−1)
2 ≤ Lip2 (f)

n∑
i=1

Var [Yi] ≤ nLip2 (f) .

By Jensen’s inequality,

E |f (Y )− f (EY )| = E

√
(f (Y )− f (EY ))

2 ≤
√
E (f (Y )− f (EY ))

2
=
√

Var [f (Y )].

Proof of the chain rule Lemma 5.1. For y ∈ Cn in the discrete hypercube, denote by
Si (y) the vector which is equal to y everywhere, except for the i-th entry, so that

(Si (y))j =

{
yj i 6= j

−yj i = j.
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Using this notation, we have that

|∂i (h ◦ f) (y)− h′ (f (y)) ∂if (y)| =
∣∣∣∣−yih (f (Si (y)))− h (f (y))

2
− h′ (f (y)) ∂if (y)

∣∣∣∣ .
(A.12)

Using Taylor’s theorem for h around f (y) with the Lagrange remainder, there exists a
z ∈ [f (y) , f (Si (y))] such that

h (f (Si (y)))− h (f (y)) = (f (Si (y))− f (y))h′ (f (y)) +
1

2
(f (Si (y))− f (y))

2
h′′ (z) .

Putting this into equation (A.12), we get

|∂ih (f (y))− h′ (f (y)) ∂if (y)| =

=

∣∣∣∣−1

2
yi

(
(f (Si (y))− f (y))h′ (f (y)) +

1

2
(f (Si (y))− f (y))

2
h′′ (z)

)
−

−h′ (f (y)) ∂if (y)|

=
∣∣∣∂if (y)h′ (f (y))− yi

4
(f (Si (y))− f (y))

2
h′′ (z)− h′ (f (y)) ∂if (y)

∣∣∣
=
∣∣∣yi

4
(f (Si (y))− f (y))

2
h′′ (z)

∣∣∣
= |∂if (y)|2 |h′′ (z)|
≤ BL2.

Equations (5.1) and (5.2) then follow immediately.
For equation (5.3), let x ∈ Cn and let ξ be the product measure on Cn such that for

Y ∼ ξ, EY = x. Applying equation (4.10) on ∇f and ∇ (h ◦ f), we have

‖h′ (f (EY ))∇f (EY )− E∇ (h ◦ f) (Y )‖1 = ‖h′ (f (EY ))E∇f (Y )− E∇ (h ◦ f) (Y )‖1
≤ ‖E [h′ (f (EY ))∇f (Y )− h′ (f (Y ))∇f (Y )]‖1

+ ‖E [h′ (f (Y ))∇f (Y )−∇ (h ◦ f) (Y )]‖1 .

By equation (5.1), the second term on the right hand side is bounded by BL2n. AS for
the first term,

‖E [(h′ (f (EY ))− h′ (f (Y )))∇f (Y )]‖1 ≤ BE ‖|f (EY )− f (Y )| ∇f (Y )‖1
≤ BE |f (EY )− f (Y )|nL

(by Proposition A.1) ≤ BL2n3/2.

Thus ‖h′ (f (EY ))∇f (EY )−∇ (h ◦ f) (EY )‖1 ≤ 2BL2n3/2.

Proof of Lemma 5.2. For a vector y ∈ Cn and an index i = 1, . . . , n, denote by y+
i the vec-

tor y+
i = (y1, y2, . . . , yi−1, 1, yi+1, . . . , yn), and by y−i the vector y−i = (y1, y2, . . . , yi−1,−1,

yi+1, . . . , yn).

• The gradient complexity: Denote

Af = {∇f (y) : y ∈ Cn} , Ah = {∇ (h ◦ f) (y) : y ∈ Cn} .

By equation (5.2), we have that for every vector v ∈ Rn,

sup
u∈Ah

〈u, v〉 ≤ max

(
0, B1 sup

u∈Af
〈u, v〉

)
+
√
nB2L

2
1 ‖v‖2 .

Since the expected norm of a Gaussian random vector Γ satisfies E ‖Γ‖2 ≤
√
n, we

get that
D (h ◦ f) = E sup

u∈Ah
〈u,Γ〉 ≤ B1D (f) +B2L

2
1n.
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• The Lipschitz constant: for every y ∈ Cn and every i = 1, . . . , n,

|∂i (h ◦ f) (y)| =

∣∣∣∣∣h
(
f
(
y+
i

))
− h

(
f
(
y−i
))

2

∣∣∣∣∣
≤ B1

∣∣∣∣∣f
(
y+
i

)
− f

(
y−i
)

2

∣∣∣∣∣ ≤ B1L1.

Thus Lip (h ◦ f) ≤ B1L1.

• The Lipschitz constant of the gradient: Let x 6= y ∈ Cn. By Lemma 5.1:

‖∇ (h ◦ f) (x)−∇ (h ◦ f) (y)‖1
= ‖∇ (h ◦ f) (x)− h′ (f (x))∇f (x) + h′ (f (x))∇f (x)

−∇ (h ◦ f) (y)− h′ (f (y))∇f (y) + h′ (f (y))∇f (y)‖1
≤ 2nB2L

2
1 + ‖h′ (f (x))∇f (x)− h′ (f (y))∇f (y)‖1 .

The last term on the right hand side can be bounded by

‖h′ (f (x))∇f (x)− h′ (f (y))∇f (y)‖
≤ ‖h′ (f (x))∇f (x)− h′ (f (x))∇f (y)‖1

+ ‖h′ (f (x))∇f (y)− h′ (f (y))∇f (y)‖1
≤ B1 ‖∇f (x)−∇f (y)‖1 +B2 |f (x)− f (y)| ‖∇f (y)‖1
≤ B1L2 ‖x− y‖1 +B2L1 ‖x− y‖1 L1n.

Putting the terms together, we get

‖∇ (h ◦ f) (x)−∇ (h ◦ f) (y)‖1
‖x− y‖1

≤ B1L2 + 3B2L
2
1n.

Proof of Proposition 6.2. We will show that the total variation distance between Xg
n and

Xϕ satisfies
TV (ν, σ) ≤ 2 · 2−n;

the proof of the proposition then follows immediately. Denote by Zg and Zϕ the normaliz-
ing constants of ν and σ, respectively. Then

Zg = Zϕ +
∑

y s.t f(y)≤(t−δ′)n

eg(y),

and by the proof of Proposition 6.1, this implies that

ε := |Zg − Zϕ| ≤ 2−n.

The total variation distance is then given by

TV (ν, σ) =
1

2

∑
y∈Cn

∣∣∣∣eg(y)

Zg
− ϕ (y)

Zϕ

∣∣∣∣
=

1

2

∑
f(y)<(t−δ′)n

∣∣∣∣eg(y)

Zg
− ϕ (y)

Zϕ

∣∣∣∣+
1

2

∑
f(y)≥(t−δ′)n

∣∣∣∣eg(y)

Zg
− ϕ (y)

Zϕ

∣∣∣∣ .
By definition of ϕ and by Proposition 6.1, the first term on the right hand side is bounded
by

1

2

∑
f(y)<(t−δ′)n

∣∣∣∣eg(y)

Zg
− ϕ (y)

Zϕ

∣∣∣∣ =
1

2

∑
f(y)<(t−δ′)n

eg(y)

Zg
≤ 1

2
· 2−n
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The second term is bounded by

1

2

∑
f(y)≥(t−δ′)n

∣∣∣∣eg(y)

Zg
− ϕ (y)

Zϕ

∣∣∣∣ =
1

2

∑
ϕ (y)

∣∣∣∣ 1

Zϕ + ε
− 1

Zϕ

∣∣∣∣
=

1

2

∑ ϕ (y)

Zϕ

∣∣∣∣∣∣ 1(
1 + ε

Zϕ

) − 1

∣∣∣∣∣∣
≤ 1

2

∑ ϕ (y)

Zϕ

∣∣∣∣ εZϕ +
1

2

ε2

Z2
ϕ

∣∣∣∣
≤ 1

2

∑ ϕ (y)

Zϕ

∣∣∣∣ 2ε

Zϕ

∣∣∣∣ ≤ 2−n.
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