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Abstract

The involution walk is the random walk on Sn generated by involutions with a binomi-
ally distributed with parameter 1− p number of 2-cycles. This is a parallelization of
the transposition walk. The involution walk is shown in this paper to mix for 1

2
≤ p ≤ 1

fixed, n sufficiently large in between log1/p(n) steps and log2/(1+p)(n) steps. The paper
introduces a new technique for finding eigenvalues of random walks on the symmetric
group generated by many conjugacy classes using the character polynomial for the
characters of the representations of the symmetric group. Monotonicity relations
used in the bound also give after sufficient time the likelihood order, the asymptotic
order from most likely to least likely permutation. The walk was introduced to study a
conjecture about a random walk on the unitary group from the information theory of
black holes.
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1 Introduction

This paper examines how a natural notion of “parallelization” affects the rate of
convergence to stationary for a random walk on the symmetric group. The base walk
that this paper parallelizes is the p-lazy random transposition walk. It has as generators
the identity with probability p and a uniformly random transposition with probability 1−p.
This is equivalent to putting n cards on the table and with probability 1 − p swapping
a random pair. The transposition walk for p = 1

n takes order 1
2n log(n) ± cn steps to

converge to its uniform stationary distribution [4]. Suppose the walk is parallelized by
simultaneously transposing s disjoint pairs at the same time. This is like taking s steps of
the non-lazy transposition walk, except it guarantees 2s distinct cards are moved. This
problem can be explored in several ways. For n even, the maximum number of disjoint
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transpositions is n/2. If these are chosen via a random matching, a randomly chosen
fixed point free involution results. The walk generated by all fixed point free involutions
was analyzed by Lulov [9], who showed that it mixes in 3 steps. In this paper, each
transposition in a fixed point free involution is discarded with some probability. This is a
parallelized p-lazy transposition walk. For any constant p ≥ 1

2 , the results here show that
this walk has mixing time Θ(log(n)).

More specifically, this paper studies the random walk on Sn, for n even, generated
by first choosing uniformly at random a fixed point free involution, also known as a
perfect matching, then discarding or keeping each 2-cycle it contains independently with
probability p, 1− p respectively. This means the probability an involution with s 2-cycles
is selected is

(
n/2
s

)
pn/2−s(1− p)s. By considering general p, this gives a family of walks

with pn as the expected number of fixed points of a generator. Taking p = 1− 2/n gives
an “expected transposition walk” where on average, a transposition will be selected,
or as p→ 0, an expected fixed-point free involution walk. The author conjectures that
mixing occurs with cutoff at log1/p(n) ± c

log(1/p) steps for any p bounded away from 0.
This mixing time would interpolate from an expected transposition walk to an expected s
2-cycle walk for any s < n/2 with comparable mixing times to their non-random cousins,
in particular the transposition walk mixing with cutoff at 1

2n log(n)± cn steps [4]. This
paper, for p ≥ 1/2 fixed, for n sufficiently large, establishes for mixing a lower bound of
log1/p(n) in Theorem 2.2 and an upper bound of log2/(1+p)(n) in Theorem 2.1. These are
separated by just over a factor of 2.

This upper bound is found through a combination of two methods. Both use the
expression of the eigenvalues of the walk in terms of the characters of the symmetric
group. The character polynomial gives the characters of Sn as a polynomial in the cycle
decomposition of a permutation. The eigenvalues of this walk, as seen in equation (3.1),
are a linear combination of characters evaluated at the n/2 + 1 conjugacy classes of
involutions. Since all these involutions have only 1- and 2-cycles, understanding the
character polynomial in these cycles will give a strong bound on the large eigenvalues
of the walk. A recursive formula for the eigenvalues given in Proposition 4.1 is used
to construct a series of monotonicity relations that will be used to bound the small
eigenvalues of the walk. This recursion is constructed via the Murnaghan-Nakayama
rule. These monotonicity conditions require that p ≥ 1

2 . The monotonicity relations build
up Theorem 4.5, which is used to control the small eigenvalues of the walk.

A secondary result of these monotonicity conditions, and so also restricted to p ≥ 1
2 ,

is a total order for the most likely to least likely element after sufficient time is identified
in Corollary 2.4. At each step of a Markov chain, there is a partial ordering from the most
likely to the least likely state. A linear extension to a total order is called a likelihood
order. With mild conditions, after sufficient time, this converges to a fixed likelihood
order. For the involution walk with p ≥ 1

2 , the limiting likelihood order is the cycle
lexicographic order as defined in Definition 2.3. This means after sufficient time the
identity will be the most likely element and an n-cycle the least likely element of the walk.
This is the same likelihood order as p-lazy transposition walk for p ≥ 1

2 [1]. Likelihood
orders are motivated by the total variation distance and separation distance metrics of
studying Markov chain convergence.

The most common quantification of the convergence to uniform of a random walk
on a group G is total variation distance. Let P ∗t(g) denote the probability of being at
g at time t for a random walk on G. Let A ⊂ G denote a subset A of G, U(g) = 1

|G| the

uniform distribution, and U(A), P ∗t(A) the total probability of elements of A under each
distribution. Then, ∣∣∣∣P ∗t(·)− U ∣∣∣∣

TV
= max

A⊂G

∣∣P ∗t(A)− U(A)
∣∣ (1.1)
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One maximal set is A = {g ∈ G|P ∗t(g) > 1
|G|}. Identifying where 1

|G| sits inside the
likelihood order splits the group elements into this set A and its complement. The
principal technique for finding likelihood orders will also give what this set is after
sufficient time. Even a partial identification of this maximal set is of use in constructing
lower bounds on mixing, in other words, for showing the total variation distance is
not yet small. Separation distance measures how much less likely than uniform the
least likely element is. Identifying the least likely element means this can be computed
directly. Separation distance can be measured indirectly through strong stopping time
arguments.

The first work on likelihood orders was done by Diaconis and Graham, see Chapter 3C
Exercise 10 of [2], motivated by a statistical problem posed by Tom Ferguson. Likelihood
orders were also later studied by Diaconis and Isaacs [3]. They found that the random
walk on a cycle or hypercube showed a strong monotonicity condition consistent with
the total order given by distance as counted by the generators from the start. Since
their likelihood orders hold at all times, simple induction suffices. For more examples of
inductive proofs of likelihood orders see Chapter 1 of [1].

The limiting likelihood order is a statement of eigenvalue monotonicity. One element
is eventually more likely than another if, in the difference of their probabilities expressed
in terms of the eigenvalues using the discrete Fourier inversion formula, the term with
largest eigenvalue with non-zero coefficient is positive. Diaconis and Shahshahani [4]
in their seminal paper on mixing for the random transposition walk used a formula of
Frobenius to establish a monotonicity property for the eigenvalues of the walk. The
eigenvalues are labeled by partitions of n, and they observed that a classical partial
order on partitions called majorization order is consistent with a monotonic decline in
the eigenvalues. Diaconis and Graham showed that no total monotonic order can hold
at all times for the transposition walk on the symmetric group. The likelihood order
fluctuates within even a small number of steps (for n ≥ 6, the first change occurs after
four steps). Lulov, in his thesis [9], connected the ordering on eigenvalues to what he
termed an “asymptotic monotonicity property”, here called a likelihood order, of the
elements of the walk after sufficient time. He showed the transposition walk restricted
to even steps after sufficient time followed a cycle lexicographic order.

As p→ 0 and n is held constant, due to a parity problem, the walk can no longer mix
in O(log(n)) steps let alone the smaller O(log1/p(n)) steps. The fixed point free involution
walk at even steps is confined to An inside of Sn. While for any p > 0, the involution walk
will mix to all of Sn, as p→ 0, the probability of selecting a fixed point free involution at
each step of the walk will grow to 1. Since it becomes more and more unlikely as p→ 0

anything other than a fixed point free involution is chosen, at even steps, the involution
walk will be more and more prone to be stuck on even elements inside of Sn and take
longer and longer to approach uniformity over all elements. This is shown in Proposition
6.3.

A random permutation can be made from at most n transpositions chosen systemati-
cally. This systematic scan consists of transposing in order the number in each position
with itself or a later position uniformly at random. If instead the transpositions are
chosen uniformly at random, as in the transposition walk, a random permutation takes
1
2n log(n)− cn transpositions to build [4]. The largest impediment is a coupon collector
problem of never choosing a transposition containing a large fraction of numbers by
1
2n log(n)− cn steps. These never moved numbers are fixed points of the permutation,
resulting in insufficiently random permutations. On the other hand, generating the
random even permutation from a walk generated by fixed point free involutions, takes 3

steps of the walk or 3
2n transpositions [9]. In the involution walk by letting p vary, one

can study this transition from the minimum of Θ(n) transpositions to Θ(n log(n)) to build
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a random permutation. The analysis here holds for fixed p ≥ 1
2 and n sufficiently large.

In all such cases it takes Θ(n log(n)) transpositions to build a random permutation.
While studying the information theory of black holes, physicists became interested in

a random walk on the unitary group. Information in the black hole is expressed in qubits,
each an element of C2. Take as basis vectors e1 = (1, 0), e0 = (0, 1). The walk is on n

qubits, a 2n-dimensional space with a basis indexed by n-bit binary strings. At each step
the walk takes a random U(4) operator and applies it to two random qubits, acting on the
binary strings indexing the basis. All 2n−2 basis vectors with the same 2-bit combination
for those two qubits are effected the same way under the walk. This means each U(4)

operator acts 2n−2 times, giving rapid mixing for such a high dimensional space. This
walk is known to “scramble” in n log(n) steps [11]. Recent work of Hayden and Preskill
[6] and Sekino and Susskind [11] has developed interest in a version of this walk where
n/2 commuting steps of the random walk are taken at once. A different U(4) operator
is chosen to each act on the different 2-cycles of a perfect matching of the qubits. This
faster walk is conjectured to mix in O(log(n)) steps. The involution walk was designed
as a toy model to study the effects of commuting random shuffling on the components of
a perfect matching.

Section 2 states the main results of the paper with relevant definitions. Section 3
describes the upper bound lemma from discrete Fourier analysis and the eigenvalues of
the walk. Section 4 finds monotonic decay of the eigenvalues needed for the bounds and
the likelihood order of the walk. Section 5 finds an upper bound for the mixing time of
the binomially distributed involution random walk. Section 6 finds the the lower bound
of log 1

p
(n). Section 7 calculates the separation distance for the involution walk assuming

the conjecture that the likelihood order holds at all times.

2 Presentation of the main results

A random walk on the symmetric group is described by a probability distribution P
on Sn giving the probabilities of each of the generators of the walks. At each time, a new
group element is selected and appended on the left of the current state of the walk. At
time zero, the walk is taken to be at the identity element. The distribution of the walk
at after one step is given by P . For t ≥ 2, the distribution of the tth step of the walk is
given by the tth convolution power of P :

P ∗t(g) =
∑
g∈Sn

P (gh−1)P t−1(h)

This is an example of a Markov chain with corresponding transition matrix K(h, g) =

P (gh−1).
Total variation distance, defined in equation (1.1), is a common metric used to

describe close a Markov chain is to its limiting stationary distribution, in this case the
uniform distribution. The corresponding mixing time is the first time the total variation
distance is at most ε (see e.g. [7]):

tmix(ε) = min t : ||P ∗t − U ||TV ≤ ε.

A family of Markov chains indexed by n is said to mix with cutoff if for all ε, with
0 < ε < 1,

lim
n→∞

tmix(ε)

tmix(1− ε)
= 1.

If instead the limit is any constant, the chain is said to exhibit pre-cutoff (see e.g. [7]), as
shown in this paper for the involution walk.
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The following upper and lower bound theorems show that for any 0 < ε < 1, there
exists a choice of c independent of n when n is sufficiently large so that the total variation
distance after t = log 2

1+p
(n)+ c

log( 2
1+p )

steps is at most ε, and before t = log 1
p
(n−1)− c

log( 1
p )

steps the total variation distance is at least 1 − ε. Since these two times differ by a
constant, this shows the walk mixes with precutoff

This upper bound will be proven in section 5 using estimates on the eigenvalues
established in that section and monotonicity relations on the eigenvalues developed in
section 4.

Theorem 2.1. For t = log 2
1+p

(n) + c
log( 2

1+p )
, n such that 10 log(n+2)√

(n+2)/2−1
≤ log

(
2

1+p

)
and

n− 1 >
√
n/2(1 + log(n)), then

||P ∗t − U ||TV ≤ e−c/2

This lower bound is proven in section 6 through calculating the first and second
moments of a test function under the distribution P ∗t and U .

Theorem 2.2. For t = log 1
p
(n− 1)− c

log( 1
p )

with c ≤ 1
2

(
log(n)− log log(n) + log

(
2 1−p

p

))
,

||P ∗t − U ||TV ≥ 1− 1

1 +A2e2c − 2
4+Aec

where A =
(

1−
(

1
p − 1

)
1

n−1

)t
. Note that for p ≥ 1

2 , 1− log(n)
n ≤ A ≤ 1.

The likelihood order for the tth step of a random walk is a total or partial order
from most to least likely elements of the walk. For walks like the involution walk where
every element of a conjugacy class is equally likely to be a generator, each element of
a conjugacy class is equally likely at every step of the walk. Its sufficient to describe
a total or partial order on conjugacy classes. From the monotonicity relations used to
prove Theorem 4.5, it follows that the likelihood order for the involution walk is the cycle
lexicographic order.

Definition 2.3. Let α = (1a1 , 2a2 , ..., nan) where α as ai i-cycles, β = (1b1 , 2b2 , ..., nbn) be
two conjugacy classes of Sn. Define the cycle lexicographic order to be α >CL β when
for mink(ak 6= bk) = i, ai > bi.

Corollary 2.4. The likelihood order for the involution walk for p ≥ 1
2 and for t sufficiently

large is the cycle lexicographical order.

3 Background

The upper-bound lemma of Diaconis-Shahshahani [4] (see also Lemma 1 of [2]) stated
in Proposition 3.2 gives a bound on that the total variation distance between the walk on
a group and its uniform stationary distribution using its eigenvalues expressed in terms
of the groups representations. The version below is specialized to conjugacy class walks
on the symmetric group, in which every element of a conjugacy class is equally likely;
for a conjugacy class walk, the corresponding distribution P on its generators is called a
class function.

Partitions of n index the non-trivial irreducible representations of the symmetric
group as well as the eigenvalues of the walk. The representation for the partition λ

is a homomorphism from Sn to a dλ-dimensional vector space. The dimension, dλ is
easily computable using the hook length formula (see e.g. Corollary 7.21.6 of [12] where
fλ = dλ).
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Proposition 3.1. [Hook length formula] For a partition λ = [λ1, ..., λr] with transpose λ′,
let hi,j = λi − i+ λ′j − j + 1. Then,

dλ =
n!∏
i,j hi,j

The character is the trace of the irreducible representation evaluated at an element
g ∈ Sn, tr(λ(g)) = χλ(g). It is constant on conjugacy classes, and so for a conjugacy class
κ, χλ(κ) is well defined.

Proposition 3.2. [Upper bound lemma] For a distribution P , a class function, that
generates an aperiodic, irreducible walk on Sn,

∣∣∣∣P ∗t(σ)− U
∣∣∣∣2
TV
≤ 1

4

∑
λ6=1

d2λψ
2t
λ

The sum below is over conjugacy classes κ of size |κ| with P (κ) the probability of one
element of the conjugacy class,

ψλ =
∑
κ

|κ|P (κ)
χλ(κ)

dλ

For this walk, the formula for the eigenvalue ψλ is the sum over conjugacy classes of
the probability of it being a generator times its character ratio:

ψλ =

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
χλ(1n−2s, 2s)

dλ
(3.1)

Bounds for these eigenvalues will be established through a combination of mono-
tonicity relations on the eigenvalues and upper bounds on a handful of the eigenvalues
using the character polynomial.

One formula for the character for the representation indexed by λ evaluated at a
conjugacy class α, χλ(α) is given by the Murnaghan-Nakayama rule (see e.g. I.7 Ex 5
of [10]). This rule expresses the character in terms of all the ways to decompose the
partition λ into borderstrips (also known as rimhooks) of sizes α1, ..., αr in any fixed order.
A borderstrip is a skew-partition, or the difference of two partitions, containing no two
by two boxes. A decomposition can be written as a sequence of partitions P = (ρ0, ..., ρr)

where ρ0 = λ, ρr = ∅ and the difference between sequential partitions, ρi/ρi+1 each
with αi+1 boxes, is a borderstrip. We say the height of a borderstrip is one less than the
vertical height of that partition, and the height of P , ht(P ), is the sum of the heights of
the border strips in the decomposition. Since the walk is generated by only one and two
cycles, only borderstrips of size 1 and 2 will be necessary. There is only one borderstrip
of size one - corresponding to the partition [1] or a single box in a Young diagram. The
two borderstrips of size two are [2], with Young diagram two horizonal boxes, and [1, 1],
with Young diagram two verticle boxes. These three borderstrips have heights zero, zero,
and one, respectively.

Proposition 3.3. [Murnaghan-Nakayama rule]

χλ(α) =
∑

P=(ρ0,...,ρr)

(−1)htP
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4 Monotonicity of eigenvalues

The upper bound on the mixing time of the involution walk will from combining the
upper bound lemma in Proposition 3.2 with a sequence of estimates on the eigenvalues
indexed by the two part partitions, [n − i, i] for 1 ≤ i ≤ n

2 developed in section 5.
This section develops a sequence of monotonicity relations on the eigenvalues of the
involution walk, showing that an upper bound can be found using only the eigenvalues
for the two part partitions to bound the other eigenvalues. This is necessary to control
the small eigenvalues of the walk (those indexed by a partition whose first row λ1 < n/2),
where the bounds in section 5 found using the character polynomial degrade. Instead, as
shown in Theorem 4.5 the eigenvalue for the partition [n/2, n/2] dominates any partition
λ with λ1 < n/2.

The eigenvalues of this walk show intriguing connections to the eigenvalues of the
transposition walk. For example, for the transposition walk from Lemma 10 of [4], the
eigenvalues decrease according to majorization order, the order on partitions where λ is
smaller than ρ if the blocks of λ can be moved up and to the right to get ρ. Below, this
pattern is shown for the eigenvalues of the involution walk when the eigenvalue pairs
are restricted to any λ and ρ = [n− i, i] when p ≥ 1

2 . To establish the necessary result for
ρ = [n/2, n/2], the proof of Theorem 4.5 will recursively remove borderstrips from the
partition, and thus rely on the earlier results of Lemmas 4.3,4.4. These show, respectively,
that the eigenvalues for the two part partitions decrease and blocks are moved down and
to the left, and among all partitions with n− i ≥ n/2 blocks in the first row the two part
partition has the largest eigenvalue. These monotonicity relations also give Corollary
2.4, that the likelihood order after sufficient time is the cycle lexicographical order, the
same order as for the transposition walk.

This section is based upon the following recursive construction of the eigenvalues.
It can be viewed as a probabilistic Murnaghan-Nakayama rule. In the Murnaghan-
Nakayama rule (Proposition 3.3), the sizes of the borderstips are the sizes of the cycles
in the conjugacy class. The decomposition can be done with any ordering of the cycles.
Since the cycle decomposition of the generators of this walk is probabilistic, the ordering
of the cycles can be as well. The following formula comes from decompositions in
which the first borderstrips in the decomposition are two 1-cycles with probability p or a
two-cycle with probability 1− p. Examining all the configurations of borderstrips that
can be removed and their heights amounts to:

Proposition 4.1. For ψλ defined in (3.1),

ψλ =
∑

ρ:λ/ρ=[2]

ψρ
dρ
dλ

+ (2p− 1)
∑

ρ:λ/ρ=[1,1]

ψρ
dρ
dλ

+ 2p
∑

ρ:λ/ρ=[1]∪[1]

ψρ
dρ
dλ

Proof. Recall, the involutions are generated by starting with a perfect matching and
removing transpositions with probability p. In a generator the first transposition from
the starting perfect matching remains with probability 1− p or becomes two fixed points
with probability p. The single border strip of size one is [1] while the borderstrips of size
two are [2] and [1, 1], with height 0 and 1 respectively. By the Murnaghan-Nakayama rule
stated in Proposition 3.3,
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ψλ =

n/2∑
s=0

χλ(1n−2s, 2s)

dλ
pn/2−s(1− p)s

(
n/2

s

)

=

n/2∑
s=0

(1− p)
∑

ρ:λ/ρ=[2] or[1,1]

(−1)sg(λ/ρ)
χρ(1

n−2s, 2s−1)

dρ

dρ
dλ
p
n−2
2 −(s−1)(1− p)s−1

( n−2
2

s− 1

)

+ p
∑

λ⊂γ⊂ρ,|λ/γ|=1,|γ/ρ|=1

χρ(1
n−2s−2, 2s)

dρ

dρ
dλ
p
n−2
2 −s(1− p)s

(n−2
2

s

)

=
∑

ρ:λ/ρ=[2]

ψρ
dρ
dλ

+ (2p− 1)
∑

ρ:λ/ρ=[1,1]

ψρ
dρ
dλ

+ 2p
∑

ρ:λ/ρ=[1]∪[1]

ψρ
dρ
dλ

All the monotonicity results in this section assume p ≥ 1
2 . The ratio of dimensions dρ

dλ

are positive and if p ≥ 1
2 , it leaves only the eigenvalues in the expression that could either

be positive or negative. To show monotonicity relations on the eigenvalues through the
recursion, it will be shown that the sum of these three terms is larger for one partition
than another. The monotonicity does not follow term by term, only collectively. The
following observation will be useful in the arguments of Lemmas 4.3,4.4 and Theorem
4.5 that follow.

Proposition 4.2. The sum of the coefficients in the expansion of ψ in Proposition 4.1
decreases according to majorization order.

Proof.

ψλ =
∑

ρ:λ/ρ=[2]

ψρ
dρ
dλ

+ (2p− 1)
∑

ρ:λ/ρ=[1,1]

ψρ
dρ
dλ

+ 2p
∑

ρ:λ/ρ=[1]∪[1]

ψρ
dρ
dλ

Examining this without the ψρ terms,∑
ρ:λ/ρ=[2]

dρ
dλ

+ (2p− 1)
∑

ρ:λ/ρ=[1,1]

dρ
dλ

+ 2p
∑

ρ:λ/ρ=[1]∪[1]

dρ
dλ

=p
∑

γ:|λ/γ|=1,|γ/ρ|=1

dρ
dλ

+ (1− p)
∑

ρ:λ/ρ=[2] or[1,1]

(−1)sg(λ/ρ)
dρ
dλ

=p+ (1− p)χλ(τ)

dλ

Where the equality is by the Murnaghan-Nakayama rule (Proposition 3.3). Moreover,
a classical result of Frobenius [4], shows χλ(τ)

dλ
decreases along majorization order. For a

formula for the character ratio at the transposition χλ(τ)
dλ

sometimes denoted rλ(τ) see
Lemma 10 of [4].

Since removing borderstrips from a two part partition leaves behind a two part
partition, a combination of induction and Proposition 4.1, will give a monotonicity result
for the two part partitions in isolation. The lemma will compare directly some parts of
the decomposition given in Proposition 4.1 and then apply Proposition 4.2 to finish.

Lemma 4.3. For p ≥ 1
2 , ψ[n−i,i] for i ≤ n/2 decreases as i increases.

Proof. Using the formula from Proposition 4.1

ψλ =
∑

ρ:λ/ρ=[2]

ψρ
dρ
dλ

+ (2p− 1)
∑

ρ:λ/ρ=[1,1]

ψρ
dρ
dλ

+ 2p
∑

ρ:λ/ρ=[1]∪[1]

ψρ
dρ
dλ
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by induction on n, we will show that ψ[n−i,i] ≥ ψ[n−i−1,i+1]. The base case of n = 2 has

ψ[2] = 1 ≥ ψ[1,1] = 2p− 1, since ψ[1,1] = p
χ[1,1](1

2)

d[1,1]
+ (1− p)χ[1,1](2)

d[1,1]
= p− (1− p) = 2p− 1.

Fix n and assume the lemma holds for partitions of n−2. For i ≤ n
2 −1 the eigenvalue

decomposes using the hook length formula for dλ in Proposition 3.1 to:

ψ[n−i,i] =
(n− i+ 1)2

(n)2

(
1− 2

n− 2i+ 1

)
ψ[n−i−2,i] +

(i)2
(n)2

(
1 +

2

n− 2i+ 1

)
ψ[n−i,i−2]

+ p
2i(n− i+ 1)

(n)2
ψ[n−i−1,i−1]

The sizes of these three eigenvalues for the involution walk on Sn−2 and their coeffi-
cients will be compared to those appearing for the partition [n− i− 1, i+ 1].

Case 1: For i ≤ n/2 − 2, for the eigenvalue for the partition [n − i − 1, i + 1] this
becomes,

ψ[n−i−1,i+1] =
(n− i+ 2)2

(n)2

(
1− 2

n− 2i− 1

)
ψ[n−i−3,i+1]

+
(i+ 1)2

(n)2

(
1 +

2

n− 2i− 2

)
ψ[n−i−1,i−1]

+ p
2(i+ 1)(n− i)

(n)2
ψ[n−i−2,i]

Two of the eigenvalues of n− 2 that appear in [n− i, i] are larger by induction than
those in [n− i− 1, i+ 1]. The exception being [n− i− 2, i] in the decomposition of [n− i, i]
has a longer second row than [n− i− 1, i− 1] in the decomposition of [n− i− 1, i+ 1],
which means by induction that it is a larger eigenvalue. This means it is enough to
check the coefficients of [n− i, i− 2] and [n− i− 1, i− 1] from [n− i, i] are larger than
the coefficient of [n − i − 1, i − 1] from [n − i − 1, i + 1], and that the sum of all three
coefficients in the [n− i, i] expression are larger than those in the [n− i− 1, i− 1]. The
latter holds by Proposition 4.2. For the former this amounts to:

i(i+ 1) +
2i(i+ 1)

n− 2i− 1
≤ i(i− 1) +

2i(i− 1)

n− 2i+ 1
+ 2p(n− i+ 1)i

Which simplifies to p(n− i+ 1) ≥ i
(n−2i+1)(n−2i−1) + 1 + 1

n−2i−1 + 1
n−2i+1

The left side is decreasing with i, while all terms on the right increase with i, so it is
enough to consider i = n/2− 2 and p = 1

2 , in which case it is true that,

1

2

(n
2

+ 3
)
≥

n
2 − 2

15
+ 1 +

1

3
+

1

5

Case 2: This leaves i = n/2− 1 and i+ 1 = n/2, where,

ψ[n/2+1,n/2−1] =
5

12

(n− 2)(n− 4)

(n)2
ψ[n/2+1,n/2−3] +

1

2
p

(n− 2)(n+ 4)

(n)2
ψ[n/2,n/2−2]

+
1

12
ψ[n/2−1,n/2−1]

ψ[n/2,n/2] = ψ[n/2,n/2−2]
3

4

(
1− 1

n− 1

)
+ ψ[n/2−1,n/2−1](2p− 1)

1

4

(
1 +

3

n− 1

)
In the terms above, the [n/2 + 1, n/2− 3] and [n/2, n/2− 2] in ψ[n/2+1,n/2−1] overcomes
the analogous term [n/2, n/2− 2] in ψ[n/2,n/2] for p ≥ 1

2 since,

5

12

(n− 2)(n− 4)

(n)2
+

1

4

(n− 2)(n+ 4)

(n)2
≥ 3

4
(1− 1

n− 1
)
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This shows the the sum of the coefficients of the first two terms in the decomposition
of [n/2 + 1, n/2− 1] is larger than the sum of the first coefficient in the decomposition of
[n/2, n/2]. This was done with the two terms with longer first rows than the one term,
[n/2, n/2−2]. It remains to show that the sum of all three coefficients in [n/2 + 1, n/2−1]

is greater than the sum of both coefficients in [n/2, n/2]. This once again follows by
Proposition 4.2.

Next, we will extend the monotonicity relations to be able to compare two partitions
where one is a two part partition and the other has the same first row. The recurrence
from Proposition 4.1, will decompose into two part partitions, and the monotonicity
relations on these plus the inductive assumptions will allow us to reduce proving Lemma
4.4 to a sequence of inequalities about the coefficients of the decomposition.

Lemma 4.4. For all λ with λ1 = n− i, p ≥ 1
2 ,

ψλ ≤ ψ[n−i,i]

Proof. The proof will follow by induction on n. The base case for n = 2 is trivial as [2]

and [1, 1] are the only partitions with their first rows. Suppose it holds for all i for n− 2.
If i < n

2 , no vertical removals per the Murnaghan-Nakayama rule in Proposition 3.3 are
possible from the first row and,

ψ[n−i,i] =
d[n−i−2,i]

d[n−i,i]
ψ[n−i−2,i] +

d[n−i,i−2]

d[n−i,i]
ψ[n−i,i−2] + 2p

d[n−i−1,i−1]

d[n−i,i]
ψ[n−i−1,i−1]

There are three cases of lengths of first row this can generate: n − i,n − i − 1 and
n− i− 2. Call the coefficients in the decomposition of [n− i, i] of these terms an−i,an−i−1
and an−i−2. Let λ = [n− i, ...] be another partition. Let bn−i be the sum of coefficients
of any partition of the form [n − i, ...] in its decomposition, similarly define bn−i−1 and
bn−i−2. By Lemma 4.3, the corresponding eigenvalues for the a sequence increase as
the first row increases. It suffices to prove this lemma to show that

an−i ≥ bn−i, an−i+an−i−1 ≥ bn−i+bn−i−1, an−i+an−i−1+an−i−2 ≥ bn−i+bn−i−1+bn−i−2,

(4.1)
using the following argument. Letting ψ̃n−i stand for the largest eigenvalue appearing
for the b sequence with first row length n− i, it is enough to show that

an−iψn−i,i+an−i−1ψn−i−1,i+1+an−i−2ψn−i−2,i+2 > bn−iψ̃n−i+bn−i−1ψ̃n−i−1+bn−i−2ψ̃n−i−2.

(4.2)
Using an−i ≥ bn−i and ψn−i,i ≥ ψ̃n−i, the first terms compare favorably with (an−i −
bn−i)ψn−i,i left over. Using Lemma 4.3, the leftover is at least (an−i − bn−i)ψn−i−1,i−1.
Then using the second formula in (4.1) an−i − bn−i + an−i−1 ≥ bn−i−1, and by induction
ψn−i−1,i+1 ≥ ψ̃n−i−1, the first two terms of equation (4.2) are larger than the second two.
Finally, using the left over weight again via ψn−i,i ≥ ψn−i−1,i+1 ≥ ψn−i−2,i+2 by Lemma
4.3, an−i + an−i−1 + an−i−2− bn−i− bn−i−1 ≥ bn−i−2 from (4.1), and ψn−i−2,i−2 ≥ ψ̃n−i−2
by induction, we arrive at equation (4.2).

This last equation in (4.1) holds by Proposition 4.2. The strategy to show the other
is to first show that an−i ≥ bn−i; in other words that a removal all from below the first
row is more likely for [n − i, i] than for λ. The last inequality is shown indirectly, by
finding that an−i−2 ≤ bn−i−2; the probability of a 2 cycle removal from the first row,
which gives the shortest first row, is more likely than the same removal in [n− i, i]. Then
an−i + an−i−1 ≥ bn−i + bn−i−1 + bn−i−2 − an−i−2 ≥ bn−i + bn−i−1.

Consider removing two blocks from below the first row. This effects at most two hook
lengths from the first row. The smallest such hook lengths it is possible to effect occur in
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[n− i, i], causing the largest increase to the ratio of old versus new contributions of the
first row. Let h′1,j denote the new hook lengths of the first row. Let ρ be a partition of
i− 2 obtained by removing the first row of λ and two additional squares. Then,

dn−i,ρ
dn−i,λ/λ1

=

(n−2)λ1∏
h′1,j

dρ

(n)λ1∏
h1,j

dλ/λ1

=
(i)2
(n)2

∏
h1,j∏
h′1,j

dρ
dλ/λ1

When p = 1, the sum over all such ρ of dρ
dλ/λ1

is 1. For [n − i, i] this is always 1. As

observed, [n− i, i] also maximizes
∏
h1,j∏
h′1,j

. This gives that the coefficient of [n− i, i− 2] is

larger than the sum of coefficients for all two block removals below the first row of λ.
For both λ and [n− i, i] there is exactly one way to remove 2 blocks from the first row.

It must be shown that
d[n−i−2,λ/λ1]

dλ
≥ d[n−i−2,i]

d[n−i,i]
.

d[n−i−2,λ/λ1]

dλ
=

2
∏n−i−2
j=1

h1,j

h1,j−2

(n)2
=

∏n−i−2
j=1

(
1− 2

h1,j

)−1
(n)2

(4.3)

Consider
∏n−i−2
j=1

(
1− 2

h1,j

)
. Where h1,j = n − i − 2 − j + λ′j , with

∑
λ′j = n − 2 and

λj decreasing. This gives an optimization problem with bounded region and linear
constraints. The maximal solution without the bounded region is to have all h1,j be equal.
Given the constraints, the optimal solution is to take the h1,j as close to equal as possible
giving [n− i, i]. This product is maximized at [n− i, i], which in turn minimizes the ratio in
4.3. Therefore, the coefficient of [n− i− 2, i] is smaller than that of a two block removal
from the first row of any other λ with λ1 = n− i.

When i = n
2 ,

ψ[n/2,n/2] = ψ[n/2,n/2−2]
d[n/2,n/2−2]

d[n/2,n/2]
+ (2p− 1)ψ[n/2−1,n/2−1]

d[n/2−1,n/2−1]

d[n/2,n/2]

The argument for [n/2, n/2] is simpler than the above cases as the above formula only
has two terms. The argument consists of showing coefficient associated with removing
[2] from below the first row is larger for [n/2, n/2] than for λ, and using Proposition 4.2
to say the sum of coefficients for [n/2, n/2] is larger than for λ to handle the rest. The
argument above for [n− i, i] for the first part of removing two blocks below the first row

holds to show
d[n/2,n/2−2]

d[n/2,n/2]
is larger than the probability λ does the same. The probability

[n/2, n/2] decomposes to at least [n/2−1, n/2−1] is larger than for any other λ = [n/2, ...]

by Proposition 4.2.

We finish the monotonicity relations with the bound on the small eigenvalues in terms
of the eigenvalue for the partition [n/2, n/2]. This will be crucial in showing the upper
bound on the mixing time. Once again the proof strategy will be to use induction and
the recursive Proposition 4.1. The eigenvalues appearing will be controlled using the
earlier monotonicity relations in Lemmas 4.3 and 4.4, while the sums of coefficients are
compared as a fast application of Proposition 4.2.

Theorem 4.5. For p ≥ 1
2 and λ such that λ′1 ≤ λ1 < n

2 , ψλ ≤ ψ[n/2,n/2]

Proof. This theorem will again be proven by induction using Proposition 4.1. The base
occurs first non-trivially for n = 8 as the smallest n for which there is a partition λ with
λ′1 ≤ λ1 < n

2 , with a single partition λ = [3, 3, 2]. The monotonicity relation ψ[3,3,2] ≤ ψ[4,4]

holds as for each s, 0 ≤ χ[3,3,2](2
s)

d[3,3,2]
≤ χ[4,4](2

s)

d[4,4]
. This can be seen in the character table of

S8 [8].
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Then assume by induction ψρ ≤ ψ[(n−2)/2,(n−2)/2] holds any ρ a partition of n − 2

with ρ′1 ≤ ρ1 <
n−4
2 . For any ρ a partition of n − 2 with ρ1 = n−2

2 , the same inequality
ψρ ≤ ψ[(n−2)/2,(n−2)/2] holds from Lemma 4.4. For λ with λ′1 ≤ λ1 < n

2 ,

ψλ =
∑

ρ:λ/ρ=[2]

ψρ
dρ
dλ

+ (2p− 1)
∑

ρ:λ/ρ=[1,1]

ψρ
dρ
dλ

+ 2p
∑

ρ:λ/ρ=[1]∪[1]

ψρ
dρ
dλ

(4.4)

The ρ’s that appear in the expression have ρ1 ≤ λ1 ≤ n−2
2 , so ψρ ≤ ψ[(n−2)/2,(n−2)/2].

While using the recurrence on ψ[n/2,n/2] expands into eigenvalues at least as large as
ψ[(n−2)/2,(n−2)/2] via Lemma 4.3 again:

ψ[n/2,n/2] = ψ[n/2,n/2−2]
d[n/2,n/2−2]

d[n/2,n/2]
+ ψ[n/2−1,n/2−1](2p− 1)

d[n/2−1,n/2−1]

d[n/2,n/2]
(4.5)

We finish by showing sum of coefficients of equation (4.5) is larger than in equation
(4.4). Using Proposition 4.2 [n/2, n/2] has the maximal value of the sum of coefficients in
the formula from Proposition 4.1 over all λ with λ1, λ′1 ≤ n/2 with the value 3

4 (1− 1
n ) +

1
4 (2p− 1)(1 + 3

n−1 ).

And, since
d[n/2,n/2−2]

d[n/2,n/2]
+ (2p − 1)

d[n/2−1,n/2−1]

d[n/2,n/2]
= 3

4 (1 − 1
n−1 ) + (2p − 1) 1

4 (1 + 3
n−1 ) and

ψ[n/2,n/2−2] ≥ ψ[n/2−1,n/2−1] by Lemma 4.3. Therefore, ψλ ≤ ψ[n/2,n/2].

These monotonicity relations on the eigenvalues, which will be used to form an upper
bound on the mixing time of the walk, also show a quite granular structure inside of the
mixing. After many steps, the walk will approach being uniform on all permutations, but
some permutations will always be more likely than others. The likelihood order for the
walk is a total order that describes the relative likelihood of the permutations. Since this
is a conjugacy class walk, elements of the same conjugacy class always have the same
probability, so it suffices to define the likelihood order on the conjugacy classes. For the
p ≥ 1

2 the transposition walk and involution walk, the likelihood order after sufficient
time is the cycle lexicographic order on permutations defined in Definition 2.3.

Proof of Corollary 2.4. The difference in likelihood of two permutations α and β can be
studied through the discrete Fourier transform (see e.g. Proposition 5 of [2]). For the
involution walk at two permutations α and β,

P ∗t(α)− P ∗t(β) =
1

n!

∑
λ

(χλ(α)− χλ(β)) dλ(ψλ)t

The trivial representation has eigenvalue and coefficient one in the discrete Fourier
decomposition for both α and β and so vanishes. Other partitions for which χλ(α) = χλ(β)

will also not contribute to this quantity. After sufficient time, the terms for the partitions
with largest eigenvalue in magnitude with χλ(α) 6= χλ(β) will be exponentially larger
than any other terms and hense will will determine the sign of P ∗t(α)− P ∗t(β). In lazy
walks the largest eigenvalue in magnitude almost always occurs for a single partition.

From [1], a partition is called an i-cycle detector if λ2 + λ′1 − 2 ≥ i and λ1 + λ′2 − 2 ≥ i.
If λ is not an i-cycle detector and the smallest cycle differing in the cycle decomposition
of α and β is an i-cycle, then χλ(α)− χλ(β) = 0 [1]. Therefore, one must only examine
the i-cycle detecting partitions for each value of i from 1 to n/2 in order to find the
eventual likelihood order. By Lemma 4.3, Lemma 4.4, and Theorem 4.5, the partition
[n − i, i] has the largest magnitude of eigenvalue of all i-cycle detecting partitions.
More over, when α and β first differ at an i-cycle, χ[n−i,i](α) − χ[n−i,i](β) = ai − bi 6= 0

[1]. In this case, the term for [n − i, i] in the discrete Fourier transform, (χ[n−i,i](α) −
χ[n−i,i](β))dλψ

t
[n−i,i], determines the sign of P ∗t(α)−P ∗t(β) for sufficiently large t. Since
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χ[n−i,i](α)− χ[n−i,i](β) = ai − bi in this case and ψ[n−i,i] > 0, the permutation with more
i-cycles is more likely after sufficient time. This is the cycle lexicographic order from
Definition 2.3.

5 Upper bound on mixing

This section will be working towards bounds on ψλ to use in the upper bound lemma
from Proposition 3.2, ∣∣∣∣∣∣∣∣K∗t(σ)− 1

n!

∣∣∣∣∣∣∣∣2
TV

≤ 1

4

∑
λ6=1

d2λψ
2t
λ .

We will use the character polynomial to find an upper bound for the two part partitions.
This culminates in equation (5.4). From there Propositions 5.1 through 5.3 combinatori-
ally simplify this. At Proposition 5.4 the strategy will turn towards estimating the size of
these eigenvalues. Proposition 5.5 uses Proposition 5.4 to give a bound on the medium
and small eigenvalues. A significantly better bound for the large eigenvalues is given in
Proposition 5.6, using the statement of Proposition 5.3. An extra last case of the sign
eigenvalue is found in Proposition 5.7. Theorem 2.1 is then a sequence of bounding the
sum of the dimensions and eigenvalues of the irreduscibles for each of these four cases.

Recall from equation (3.1),

ψλ =

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
χλ(1n−2s, 2s)

dλ
.

Instead of bounding χλ(1n−2s, 2s) for each s individually, the character polynomial
will give an expression for the character as a polynomial in n− 2s and s. The character
polynomial (see e.g. [10] I.7 Ex 14), qρ(x1, ..., xk) for the partition ρ of k is the unique
polynomial in variables x1, ..., xk so that

χ[n−k,ρ1,...,ρr](1
x1 , ..., kxk , ..., nxn) = qρ(x1, ..., xk)

for any conjugacy class (1x1 , ..., nxn) of Sn. Garsia and Goupil [5] give a formula for
the character polynomial akin to the Murnaghan-Nakayama rule (Proposition 3.3) run
backwards from its traditional order, peeling off border strips of the largest cycles first.

qρ(x1, ..., xi, 0, ..., 0) =
∑
j

(
xi
j

) ∑
P=(ρ0,...,ρj)

(−1)ht(P )qρj (x1, ..., xi−1, 0, ..., 0). (5.1)

Where P ranges over all possible ways of removing border strips of size i from ρ so
that a Young diagram remains at each step, as in the Murnaghan-Nakayama rule. The
formula says, choose j i-cycles of the xi i-cycles and attempt to peel them off from below
the first row of λ, and take the remaining xi − j i-cycles from the first row of λ. Recurse
on the remaining shape with the next largest cycle size. In the Murnaghan-Nakayama
rule, the first row does not receive this special treatment. Letting i = 2 in equation (5.1)
gives the character polynomial for an involution as:

qρ(n− 2s, s, 0, ...0) =
∑
j

(
s

j

) ∑
P=(ρ0,...,ρj)

(−1)ht(P )qρj (n− 2s, 0, ..., 0). (5.2)

Where the last term can be expanded as

qρj (n− 2s) = dn−2s−|ρj |,ρj =

(
n− 2s

|ρj |

)
dρj

ρj1∏
k=1

n− 2s− |ρj | − k + 1

n− 2s− |ρj | − k + (ρj)′k + 1

EJP 23 (2018), paper 26.
Page 13/28

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP140
http://www.imstat.org/ejp/


A random walk on the symmetric group generated by random involutions

Then an upper bound on qρj that is more computationally tractable comes from

ignoring the sign associated with the insertions, rounding n−2s−|ρj |−k−i+1
n−2s−|ρj |−k−i+(ρj)′i+1 to 1, and

upper bounding the ways of inserting one and two cycles by the dimension of ρ giving:

qρ(n− 2s, s) ≤
∑
j

(
s

j

) ∑
P=(ρ0,...,ρj)

(
n− 2s

|ρ| − 2j

)
dρj ≤

∑
j

(
s

j

)(
n− 2s

|ρ| − 2j

)
dρ.

We now plug this bound into equation (3.1) for ψλ. The second step will follow from
setting j = j2, j1 = s− j:

ψλ ≤
n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)∑
j

(
s

j

)(
n− 2s

n− λ1 − 2j

)
dλ/λ1

dλ
(5.3)

=
dλ/λ1

dλ
pn/2

∑
j1,j2

(
1− p
p

)j1+j2 ( n/2

j1, j2

)(
n− 2j1 − 2j2
n− λ1 − 2j2

)
(5.4)

This says to approximate ψ take the expectation over the binomial distribution over all
ways to choose j1 and j2 of the n/2 2-cycles to insert into the first row and the remaining
partition and to split the remaining unused numbers into either the first row or the
remaining partition. The dλ/λ1

factor takes into account that there may be may ways to
arrange things in the lower part of the partition. When λ1 ≥ n/2, the maximum value of
dλ/λ1
dλ

occurs at the partition [n− i, i].
Proposition 5.1. For 1 ≤ i ≤ n

2 ,

max
λ:λ1=n−i

dλ/λ1

dλ
=

d[i]

d[n−i,i]
=

(
n

i

)−1
n− i+ 1

n− 2i+ 1

Proof. Using the hook length formula in Proposition 3.1,

dλ/λ1

dλ
=

∏λ1

k=1 λ1 − k + λ′k
(n)λ1

=

(
n

λ1

) λ1∏
k=1

λ1 − k + λ′k
λ1 − k + 1

The λ′k are decreasing, and the product is maximized if these are taken to be as even as
possible. So for 1 ≤ k ≤ i, λ′k = 1, for k > i, λ′k = 0. This is the partition [n− i, i].

The bound used above on the character polynomial, principally that∑
P={ρ0,...,ρj}(−1)P ≤ dρ, was sufficiently strong for the partitions with first row at least

n/2, but not for those with smaller first row. However, by Theorem 4.5, the eigenvalues
for λ with λ1 < n/2 are bounded by the eigenvalue for [n/2, n/2].

The next step is to handle the sum (5.4). Instead of counting how the the two cycles
(1, 2), ..., (n− 1, n) and unchosen cycles used as fixed points are arranged separately, an
easier approach exists. Consider instead, splitting the numbers 1, 2, ..., n into two parts.
When 2i− 1 and 2i are in the same part, this could have happened using them as a single
two cycle, or separately as fixed points, for a total weight under the binomial distribution
of 1−p

p + 1 = 1
p . And when 2i − 1 and 2i are not in the same part, this could only have

happened from 1-cycle insertion but two different ways, for a weight of 2.

Proposition 5.2.

∑
j1,j2

(
1− p
p

)j1+j2 ( n/2

j1, j2

)(
n− 2j1 − 2j2

n− λ1 − 2j1 − 2j2

)
=
∑
j

2j
1

pn/2−j

(
n/2

j, n−i−j2 , i−j2

)
Note that j must be such that i− j,n− i− j are both even. So,
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Proposition 5.3. For λ1 ≥ n
2 let i = n− λ1, for λ1 ≤ n

2 let i = n
2

ψλ ≤
(
n

i

)−1
n− i+ 1

n− 2i+ 1

∑
j≤i,i−jeven

(2p)j
(

n/2

j, n−i−j2 , i−j2

)
Now to approximate the sum, one can use that it is less than i/2 times its largest

term, except for i small where the largest term is the last and the other terms will be
exponentially smaller. Note that nothing is assumed about p in this bound.

Proposition 5.4. When

α =

√
1 +

1− p2
p2

4(n− i)(i)
n2

∑
j

(2p)j
(

n/2

j, n−i−j2 , i−j2

)
≤
(
n/2

i/2

)(
1− n− i

n

2

1 + α

)− i
2
(

1− i

n

2

1 + α

)−n−i2

i

2

(
1i=n/2

1√
2πi

+ 1i 6=n/2

√
n− 2i+ 1

n− i+ 1

)
Proof. One version of Stirling’s formula is that

√
2n
(n
e

)n/e
≤ n! ≤

√
ne
(n
e

)n/e
(5.5)

Applying the lower bound to j!n−i−j2 ! i−j2 ! gives:

j!
n− i− j

2
!
i− j

2
! ≥

(
j

e

)j (
n− i− j

2e

)n−i−j
2e

(
i− j
2e

) i−j
2
√

(2)3j
n− i− j

2

i− j
2

Separate this into two pieces

jj
(
n− i− j

2

)n−i−j
2
(
i− j

2

) i−j
2

and

e−n/2
√

(2)3j
n− i− j

2

i− j
2

(5.6)

Consider the maximal j for the first piece with the (2p)j added.

d

dj

(
(2p)−jjj

(
n− i− j

2

)n−i−j
2
(
i− j

2

) i−j
2

)

=
d

dj
e−j log(2p)+j log(j)+

n−i−j
2 log(n−i−j2 )+ i−j

2 log ( i−j2 )

=

(
− log(2p) + log(j) + 1− 1

2
log

(
n− i− j

2

)
− 1

2
− 1

2
log

(
i− j

2

)
− 1

2

)
e−j log(2p)+j log(j)+

n−i−j
2 log(n−i−j2 )+ i−j

2 log ( i−j2 )

=
1

2
log

(
4j2

4p2(n− i− j)(i− j)

)
e−j log(2p)+j log(j)+

n−i−j
2 log(n−i−j2 )+ i−j

2 log ( i−j2 )

Solving for the value of j, j′, that gives 4j2

4p2(n−i−j)(i−j) = 1 gives:

j′ =

√
1 + 1−p2

p2
4(n−i)(i)

n2 − 1

2

p2

1− p2
n =

i(n− i)
n

2

1 + α
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Plugging this back into the expression (2p)−jjj
(
n−i−j

2

)n−i−j
2
(
i−j
2

) i−j
2 gives:

e
−j′ log(2p)+j′ log(j′)+ i−j′

2 log
(
j′−i

2

)
+n−i−j′

2 log
(
n−i−j′

2

)

=e
j′
2 log

(
4j′2

(2p)2(j′−i)(n−i−j′)

)
+ i

2 log
(
i−j′

2

)
+n−i

2 log
(
n−i−j′

2

)

Where j′ was chosen exactly to make the expression 4j2

(2p)2(j−i)(n−i−j) = 1. Further

i− j′ = i
(

1− n−i
n

2
1+α

)
and n− i− j′ = (n− i)

(
1− i

n
2

1+α

)
, so

i

2
log

(
i− j′

2

)
=
i

2
log

(
i

2

)
− i

2
log

(
1− n− i

n

2

1 + α

)
n− i

2
log

(
n− i− j′

2

)
=
n− i

2
log

(
n− i

2

)
− n− i

2
log

(
1− i

n

2

1 + α

)
So this gives after another application of Stirling’s formula, this time the upper bound

from (5.5), a i
2 !n−i2 ! e

n/2

e2

√
i(n− i) plus an additional

(
1− n−i

n
2

1+α

) i
2
(

1− i
n

2
1+α

)n−i
2

.

Attaching this back to the long neglected (5.6) gives:

j!

(
n− i− j

2

)
!

(
i− j

2

)
! (5.7)

≥
(
i

2

)
!

(
n− i

2

)
!
23/2

e2

√
(n− i− j)(i− j)j

(n− i)i

(
1− n− i

n

2

1 + α

) i
2
(

1− i

n

2

1 + α

)n−i
2

(5.8)

The expression
√

(n−i−j)(i−j)j
(n−i)i is minimized over cases where it is non-zero when

j = i− 1 where it is still at least n−2i+1
n−i+1 . The expression is 0 when one of j or i− j was

0. This problem occurs because in these cases, the use of Stirling’s approximation that
gave a 0 term was not needed. The bound will be adjusted to be non-zero and hold in all
cases.

When j = 0, leaving out the j! term during the application of Stirling’s formula drops

a
√

2j so the square root of the fraction becomes
√

(n−i−0)(i−0)
2(n−i)i =

√
1
2 . Suppose instead

j = i = n − i = n/2, then two applications of Stirling’s should be dropped. This drops

a
√

22 but gains in back in the lack of cancellation of the denominators in
√

1
(i/2)(n−i)/2 .

This gives the new fraction of
√

j
i(n−i) = 2

n . Lastly, if j = i 6= n − i, one less use of

Stirling’s means a 2 is dropped but regained from the denominator of
√

1
(i/2) and the

fraction is at worst
√

n−2i
(n−i) . The largest of these values when i 6= n− i is

√
n−2i
(n−i) . When

n− i = i, the largest is
√

2
n .

The expression actually of interest is (2p)j
( n/2

j, i−j2 ,n−i−j2

)
. This proof gave lower bounds

on its reciprocal without the (n/2)!. This in turn gives an upper bound on the original

expression. Taking the reciprocal of (5.8), correcting
√

(n−i−j)(i−j)j
(n−i)i as in the above

paragraph to
√

n−2i
n−i , and adding a i+1

2 the number of terms in the sum, gives for i 6= n/2,

∑
j

(2p)j
(

n/2

j, n−i−j2 , i−j2

)

≤
(
n/2

i/2

)
i+ 1

2

e2

23/2

√
n− i
n− 2i

(
1− n− i

n

2

1 + α

)− i
2
(

1− i

n

2

1 + α

)−n−i2
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The other case is i = n/2. Taking the reciprocal of (5.8), correcting
√

(n−i−j)(i−j)j
(n−i)i to√

2
n , and adding a i+1

2 the number of terms in the sum, gives for i = n/2:

∑
j

(2p)j
(

n/2

j, n−i−j2 , i−j2

)

≤
(
n/2

i/2

)
i+ 1

2

√
n/2

e2

23/2

(
1− n− i

n

2

1 + α

)− i
2
(

1− i

n

2

1 + α

)−n−i2

This gives for λ with λ1 = n− i > n/2:

ψλ ≤

(
n/2
i/2

)(
n
i

) ( n− i+ 1

n− 2i+ 1

√
n− i
n− 2i

i+ 1

2

e2

23/2

)(
1− n− i

n

2

1 + α

)− i+1
2
(

1− i

n

2

1 + α

)−n−i2

And for λ1 ≤ n/2,

ψλ ≤

(
n/2
n/4

)(
n
n/2

) ((n/2 + 1)2/2
√
n/2

e2

23/2

)(
1− 1

2

2

1 + α

)−n2
The next proposition brings things together into one expression:

Proposition 5.5. For λ with λ1 = n− i, i < n/2:

ψλ ≤ e
−i log( 2

1+p )+log

(
e2(i+1)

25/2
( n−i
n−2i )

3/2
)

For λ1 ≤ n
2 ,

ψλ ≤ e−
n
2 log 2

1+p+log(
n3/2(n+2)e2

8 )

Proof. The bound on ψ[n/2,n/2] simplifies considerably. In particular, α = 1
p , giving,

ψ[n/2,n/2] ≤ e
−n/2 log

(
1+ 1−p2

p2

(
1

1+α2

)2
)
+log

(
n3/2(n+2)e2

8

)

≤ e
−n/2 log( 2

1+p )+log

(
n3/2(n+2)e2

8

)

For i < n
2 , α ≤ 1

p

ψλ ≤e
− i

2 log
(
1+
(

1−p2

p2

)
( 2(n−i)

n )
2
( 1

1+α )
2
)
−n−i2 log

(
1+
(

1−p2

p2

)
( 2i
n )

2
( 1

1+α )
2
)
+log

(
e2(i+1)

25/2
n−i+1
n−2i+1

√
n−i
n−2i

)

First, α ≤ 1
p . Secondly, log

(
1 + 1−p

1+p
2(n−i)
n

)
+ n−i

i log
(

1 + 1−p
1+p

2i
n

)
can be seen to be

decreasing with i (by differentiation with respect to i). Therefore it can be bounded from

below by 2 log
(

2
1+p

)
. So,

ψλ ≤e
− i

2

(
log
(
1+( 1−p

1+p )( 2(n−i)
n )

2
)
−n−ii log

(
1+( 1−p

1+p )( 2i
n )

2
)2
)
+log

(
e2(i+1)

25/2
( n−i
n−2i )

3/2
)

≤e
−i log( 2

1+p )+log

(
e2(i+1)

25/2
( n−i
n−2i )

3/2
)

We can do substantially better for the largest eigenvalues, those partitions with long
first row.
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Proposition 5.6. For i ≤ p
√
n− 2i+ 2,

∑
j≤i,i−jeven

(2p)j
(

n/2

j, n−i−j2 , i−j2

)
≤ 1

1− i(i−1)
2p2(n−2i+2)

(2p)i
(
n/2

i

)

Proof. This follows from the j = i term being larger than the j = i− 2 term by a factor of
2 under the condition on i, and the terms with j smaller continue to fall off even faster.

(2p)j
( n/2

j, i−j2 ,n−i−j2

)
(2p)j−2

( n/2

j−2,n−i−j+2
2 , i−j+2

2

) = p2
(i− j + 2)(n− i− j + 2)

j(j − 1)

When i = j ≤ p
√
n− 2i+ 2, this is at least 2p2(n−2i+2)

i(i−2) ≥ 2. As j decreases, the numer-
ator increases and the denominator decreases, so the terms are falling off exponentially
faster.

The same eigenvalue bound will be used for the partition λ and its transpose λ′ when
λ 6= [1n], [n]. The trivial eigenvalue corresponding to [n] does not show up in the upper
bound lemma. We need to compute the eigenvalue for [1n] as a special case.

Proposition 5.7.

ψ1n = (2p− 1)n/2

Proof. By the Murnaghan-Nakayama rule in Proposition 3.3, χ1n(1n−2s, 2s) = (−1)s since
all the 2-cycles insert vertically and these are exactly insertions covering an even number
of rows.

ψ1n =

n/2∑
s=0

pn/2−s(1−p)s
(
n/2

s

)
χ1n(1n−2s, 2s)

d1n
=

n/2∑
s=0

(
n/2

s

)
pn/2−s(1−p)s(−1)s = (2p−1)n/2

And with these bounds on the eigenvalues ψλ, applying the upper bound lemma from
Proposition 3.2 to show Theorem 2.1 is at hand.

Proof of Theorem 2.1. For λ1 ≥ λ′1, the bound on ψλ is valid for ψλ′ since |χλ| = |χλ′ | and
sign was ignored in the bounds for all but λ = [1n]. So this leaves the cases for λ 6= [n],
[1n], λ1 > n/2 or λ′1 > n/2, and λ′1 ≤ λ1 ≤ n/2 or λ1 ≤ λ′1 ≤ n/2. These are treated in
turn.

∑
λ6=1

d2λ (ψλ)
2t ≤ ψ2t

1n + 2

n/2−1∑
i=1

ψ2t
[n−i,i]

( ∑
λ:λ1=n−i

d2λ

)
+ 2

(
ψ[n/2,n/2]

)2t ∑
λ:λ′1≤λ1≤n2

d2λ

Using bounds on dimensions of irreducible representations developed in Lemma 3
and Corollary 2 of Diaconis and Shahshahani [4]:

∑
λ:λ1=n−i d

2
λ ≤

(
n
i

)2
i! ≤ ei log(n) 1

i! ,∑
λ:λ1≤n/2 d

2
λ ≤

∑
λ d

2
λ = n!. The case of i < n/2 further breaks into the case of

i ≤ p
√

(n+ 2)/2− 1 and i ≥ p
√

(n+ 2)/2. This reduces things to:

ψ2t
1n + 2

n/2−1∑
i=1

(n)2i
i!

ψ2t
[n−i,i] + n!

(
ψ[n/2,n/2]

)2t
(5.9)
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Case 1: [1n]

(2p− 1)
2

log(n)+c

log( 2
1+p ) = e

log(2p−1) log(n)+c

log( 2
1+p )

= e
−2(log(n)+c)

log( 1
2p−1 )

log( 2
1+p )

≤ e−2 log(n)e−2c (5.10)

=
1

n2
e−2c

The inequality (5.10) follows since 2
1+p ≤

1
2p−1 for 1

2 ≤ p < 1.

In Proposition 6.2, it is found that ψ[n−1,1] = p − (1 − p) 1
n−1 ≤

2
1+p . This means the

term in (5.9) for i = 1 is at most,

(n− 1)2
(
p− (1− p) 1

n− 1

)2
log(n)+c

log( 2
1+p )

= (n− 1)2e
−2(log(n)+c)

log(p−(1−p) 1
n−1

)

log( 1+p
2 )

≤ e−2c

Case 2: i ≤ p
√

(n+ 2)/2− 1

For i ≤ p
√

(n+ 2)/2− 1 ≤ p
√

(n− 2i+ 2)/2, assume that n is sufficiently large that

2

n− 2i+ 1
≤ p2

(
log

(
2

1 + p

))2

This assumption on n, p is weaker than the assumption made in the next two cases.

Note that
log( 1

p )
log( 2

1+p )
≥ 2.

e2i log(n)
1

i!
ψ2t
[n−i,i] ≤

e2i log(n)

i!

 (2p)i 1

1− i(i−1)

p2(n−2i+2)

(
n/2
i

)
(
n
i

)
n−2i+1
n−i+1


2t

(5.11)

=
e2i log(n)

i!

 (2p)i(n/2)i
(n)i

n− i+ 1

n− 2i+ 1

1

1− i(i−1)
p2(n−2i+2)

2t

≤e
2i log(n)

i!

pin− 2i+ 2

n− 2i+ 1

1

1− i(i−1)
p2(n−2i+2)

2
log(n)+c

log( 2
1+p )

(5.12)

=
e2i log(n)

i!
e
−2i(log(n)+c)

log( 1
p )

log( 2
1+p )

n− 2i+ 2

n− 2i+ 1

1

1− i(i−1)
p2(n−2i+2)

2
log(n)+c

log( 2
1+p )

≤e
−2ic

i!
e−2i(log(n)+c)e

(
1

n−2i+1+
2i(i−1)

p2(n−2i+2)

)
2

log(n)+c

log( 2
1+p ) (5.13)

≤e
−2ic

i!
e−2i(log(n)+c)e

(
2i2

p2(n−2i+1)

)
2

log(n)+c

log( 2
1+p ) (5.14)

≤e
−2ic

i!
e−2i(log(n)+c)e2i(log(n)+c) (5.15)

=
e−2ic

i!
(5.16)

(5.17)
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The first inequality (5.11) follows by Proposition 5.6. In (5.12),

(n/2)i
(n)i

n− i+ 1

n− 2i+ 1
=

(n/2) · · · (n/2− i+ 1)(n− i+ 1)

n(n− 1) · · · (n− i+ 1)(n− 2i+ 1)
≤ 2−i

n− 2i+ 2

n− 2i+ 1

The next inequality (5.13) consists of three parts. The first is that
log( 1

p )
log( 2

1+p )
≥ 2. Next,

n−2i+2
n−2i+1 = elog(1+

1
n−2i+1 ) ≤ e

1
n−2i+1 . The third uses that i2 ≤ p2/2(n− 2i+ 2), the condition

on i, to conclude 1

1− i(i−1)

p2(n−2i+2)

= 1 + i(i−1)
p2(n−2i+1)

1

1− i(i−1)

p2(n−2i+2)

≤ 1 + 2i(i−1)
p2(n−2i+1) ≤ e

2i(i−1)

p2(n−2i+1) .

The inequality in (5.14) consists of 2i ≤ p2 and n − 2i + 1 ≤ n − 2i + 2. Finally, to get

(5.15), it suffices to show 2i

p2(n−2i+1) log( 2
1+p )

≤ 1. Since i ≤ p
√

n−2i+2
2 , this simplifies to

√
2√

n−2i+1
≤ log

(
2

1+p

)
. This was the assumption on n, p made at the beginning of this

case.
Case 3: i ≥

√
(n+ 2)/2

For i ≥ p
√

(n+ 2)/2, assume n sufficiently large that 10 log(n)√
(n+2)/2−1

≤ log
(

2
1+p

)
e2i log(n)

1

i!
ψ2t
[n−i,i] ≤

e2i log(n)

i!
e
2

log(n)+c

log( 2
1+p

)

(
−i log( 2

1+p )+log
(
i+1
2 ( n−i

n−2i )
3/2 e2

23/2

))
(5.18)

=
e−2ci

i!
e
2(log(n)+c)

 log

(
i+1
2 (1+ i

2 )
3/2 e2

23/2

)
log( 2

1+p )



≤e
−2ci

i!
e2(log(n)+c) log(

5
2 ( i+2

2 )+1) i
10 log(n) (5.19)

≤e
−2ci

i!
ei log(

i
e )+ci (5.20)

≤e−ic (5.21)

The bound on ψ[n−i,i] from Proposition 5.5 gives (5.18). The assumption about n and

p gives that 1

log( 2
1+p )

≤ i
10 log(n) , (5.19) follows. At this step, log

(
i+1
2

(
1 + i

2

)3
2
)
≤

5
2 log

(
i+2
2

)
was also used. To arrive at (5.20) take the following steps. Multiplied out the

expression in (5.20) becomes 1
2 i log( i+2

2 ) + 1
2 ic log( i+2

2 )/ log(n) + 1
5 i + 1

5ci/ log(n). Then
1
2 i log( i+2

2 ) ≤ i log(i/e) + i and i+ 1
2 ic+ 1

5 i+ 2
5 ic ≤ ic. Finally, taking that i! ≥ (i/e)i gives

(5.21).
Case 4: λ1 ≤ n/2

As was found above, the bound on ψ[n/2,n/2] simplifies considerably. Assume n

sufficiently large that 10 log(n+2)√
(n+2)/2−1

≤ log
(

2
1+p

)
and that n− 1 ≥

√
n/2 + log(n)

√
n/2.

n!ψ2t
[n/2,n/2] ≤n!

(
e−n/2 log 2

1+p+log(
n3/2(n+2)e2

8 )

)2
log(n)+c

log( 2
1+p

)

(5.22)

≤en log(n)e
−n(log(n)+c)

 (log( 2
1+p

)− 2
n

log(
n3/2(n+2)e2

8
))

log( 2
1+p

)


(5.23)

≤e−nc+(log(n)+c)(5 log(n+2))/ log( 2
1+p ) (5.24)

≤e−c(n−
√
n/2)+log(n)

√
n/2 (5.25)

≤e−c (5.26)

From the bound on ψ[n/2,n/2] in Proposition 5.5, (5.22) follows. The next inequality
follows from taking n! ≤ en log(n). That e2 ≤ 8 gives (5.24). Using the assumption that
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10 log(n+2)√
(n+2)/2−1

≤ log
(

2
1+p

)
and multiplying out the terms gives (5.25). Finally, with the

assumption on n, (5.26) follows.
When the above requirements are met, by the upper bound formula,

||P ∗t − U ||2TV

≤1

4

 1

n2
e−2c + e−2c +

p
√

(n+2)/2−1∑
i=2

e−2ic

i!

+

n/2−1∑
i=p
√

(n+2)/2−1

e−ic + e−c


≤1

4

(
1

n2
e−2c +

e−c

1 + e−c
+ e−c

)
≤e−c

6 Lower bound on mixing

The representation slowest to vanish for this walk is [n− 1, 1], so its character gives a
random variable where P ∗t(·) and π(·) differ significantly. Using a lower bound formula
similar to Chebychev’s inequality after calculating the first and second moments of this
character will give a lower bound on the mixing time of log 1

p
(n) plus smaller order terms.

Proposition 6.1 (Proposition 7.9 of [7]). For γ, ν two probability distributions on Ω, and
f a real valued function on Ω, if

|Eγ(f)− Eν(f)| ≥ rσ

where σ2 = [V arγ(f) + V arν(f)]/2, then

||γ − ν||TV ≥ 1− 4

4 + r2

In this case, ν = U is the stationary distribution of the walk, uniform over all
permutations. As seen on page 44 of [2],

EU
(
χ[n−1,1]

)
= 0, V arU (χn−1,1) = 1

These follow for any non-trivial characters by basic tenets of representation theory. For
the first, by orthogonality of characters,

∑
g∈G χλ(g) = 0. For the second,

∑
g∈G χλg

2 =

|G|.
Proposition 6.2.

EP∗tχ[n] = 1

EP∗t
(
χ[n−1,1]

)
= (n− 1)

(
p− (1− p) 1

n− 1

)t

EP∗tχ[n−2,2] =
n(n− 3)

2

(
p2 − (1− p)2

n− 3

)t

EP∗tχ[n−2,1,1] =
(n− 1)(n− 2)

2

(
p2 − 1− p2

n− 1
− 2

(n− 1)(n− 2)

)t
Proof. For an irreducible representation λ, since P is a class function, by Schur’s Lemma,
the Fourier transform of P is a constant ψλ times the identity matrix.

P̂ (λ) = ψλIdλ
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Moreover, P̂ ∗t(λ) =
(
P̂ (λ)

)t
. This leads to the following formula for the expected value

of a character over the walk:

EP∗t(χλ) =
∑

P ∗t(g) tr(λ(g)) = tr(
∑

P ∗t(g)λ(g)) = tr P̂ ∗t(λ) = dλψ
t
λ

The method of choice to compute the expectation for χ[n−1,1] will be to directly
compute ψλ. Recall from equation (3.1),

ψλ =

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
χλ(1n−2s, 2s)

dλ

Further, the character polynomials of the representations below can be computed
exactly using equation (5.2) to give that:

χ[n](1
n−2s, 2s) = 1, χ[n−1,1](1

n−2s, 2s) = n− 2s− 1

χ[n−2,2](1
n−2s, 2s) =

(
n− 2s

2

)
− (n− 2s) + s

χ[n−2,1,1](1
n−2s, 2s) =

(
n− 2s

2

)
− (n− 2s)− s

Then, using that
∑n/2
s=0 p

n/2−s(1− p)s
(
n/2
s

)
(s)k = (1− p)k(n2 )k,

ψ[n] =

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
1 = 1

ψ[n−1,1] =

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
χ[n−1,1](1

n−2s, 2s)

d[n−1,1]

=

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
n− 2s− 1

n− 1

= 1− 2

n− 1

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
s

= 1− 2

n− 1
(1− p)n

2

= p− (1− p) 1

n− 1

ψ[n−2,2] =

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
χ[n−2,2](1

n−2s, 2s)

d[n−2,2]

=

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)(n−2s
2

)
− (n− 2s) + s
n(n−3)

2

=

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
n(n− 3) + 4(s)2 − 4(n− 3)s

n(n− 3)

= 1 +
4

n(n− 3)
(1− p)2

(n
2

)
2
− 4(n− 3)

n(n− 3)
(1− p)n

2

= p2 − 1

n− 3
(1− p)2
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ψ[n−2,1,1] =

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
χ[n−2,1,1](1

n−2s, 2s)

d[n−2,1,1]

=

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)(n−2s
2

)
− (n− 2s)− s+ 1
(n−1)(n−2)

2

=

n/2∑
s=0

pn/2−s(1− p)s
(
n/2

s

)
(n− 1)(n− 2) + 4(s)2 − 4(n− 2)s

(n− 1)(n− 2)

= 1 +
4

(n− 1)(n− 2)
(1− p)2

(n
2

)(n− 2

2

)
− 4(n− 2)

(n− 1)(n− 2)
(1− p)n

2

= p2 − 1− p2

n− 1

This gives:

σ2 =
1

2

(
1 + 1 + (n− 1)

(
p− (1− p) 1

n− 1

)t
+
n(n− 3)

2

(
p2 − 1

n− 3
(1− p)2

)t
(6.1)

+
(n− 1)(n− 2)

2

(
p2 − 1− p2

n− 1
− 2

(n− 1)(n− 2)

)t
− (n− 1)2

(
p− (1− p) 1

n− 1

)2t )
(6.2)

Now that we have the first and second moments we need, we can find a lower bound
on the mixing time.

Proof of Theorem 2.2. From Proposition 6.1 ||P ∗t − U ||TV ≥ 1− 4
4+r2 for

r ≤
(n− 1)

(
p− (1− p) 1

n−1

)t
σ

Let A =
(

1−
(

1
p − 1

)
1

n−1

)t
,

(n− 1)

(
p− (1− p) 1

n− 1

)t
= (n− 1)pt

(
1−

(
1

p
− 1

)
1

n− 1

)t
= ec

(
1−

(
1

p
− 1

)
1

n− 1

)t
= ecA

Let B =

(
1−

(
1−p
p

)2
1

n−3

)t
. By observation or the monotonicity conditions from

Lemma 4.4, ψ[n−2,2] ≥ ψn−2,12 . Replacing ψ[n−2,12] by ψ[n−2,2] makes σ larger.

σ2 ≤ 1 +
1

2
AeC +

1

2

(
n(n− 3)2 +

(n− 1)(n− 2)

2

)(
p2 − 1

n− 3
(1− p)2

)t
− 1

2
A2e2c

(6.3)

= 1 +
1

2
AeC +

1

2
(n2 − 3n+ 1)p2t

(
1−

(
1− p
p

)2
1

n− 3

)t
− 1

2
A2e2c

= 1 +
1

2
AeC +

B

2

(
1− n

(n− 1)2

)
e2c − A2

2
e2c

(6.4)

EJP 23 (2018), paper 26.
Page 23/28

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP140
http://www.imstat.org/ejp/


A random walk on the symmetric group generated by random involutions

The inequality (6.3) comes from using the above value of (n − 1)ψt[n−1,1] = Aec and

replacing ψ[n−2,12] by ψ[n−2,2]. To make the bound work, the terms with e2c need to have
coefficient that is o(1).

B −A2 =

(
1−

(
1− p
p

)2
1

n− 3

)t
−
(

1− 1− p
p

1

n− 1

)2t

≤

((
1−

(
1− p
p

)2
1

n− 3

)
−
(

1− 1− p
p

1

n− 1

)2
)
t

(
1−

(
1− p
p

)2
1

n− 3

)t−1
(6.5)

=

(
1− p
p

)(
2

n− 1
− 1

n− 3
−
(

1− p
p

)
1

(n− 1)2

)
t

(
1−

(
1− p
p

)2
1

n− 3

)t−1
≤
(

1− p
p

)
t

n− 1
(6.6)

The inequality (6.5) follows using that at − b2t = (a − b2)
(
at−1 + at−2b+ ...+ bt−1

)
≤

(a− b2)t
(
max a, b2

)t−1
. For all p, 2

n−1 −
1

n−3 −
(

1−p
p

)
1

(n−1)2 ≤
1

n−1 , so (6.6) follows.

This gives

σ2 ≤ 1 +
1

2
AeC +

1

2
e2c

log(n− 1)

n− 1

1− p
p

.

For c ≤ 1
2

(
log(n)− log log(n) + log

(
2 1−p

p

))
this least term is at most 1. So for these

values of c, the following value of r2 is less than the needed bound:

r2 =
A2e2c

2 + 1
2Ae

c
= 2A2e2c − 8

4 +Aec

This gives a lower bound of 1− 4
4+r2 = 1− 1

1+A2e2c− 2
4+Aec

For t ≤ log(n), p ≥ 1
n , using that 1− xt ≤ (1− x)t when xt ≤ 1,

1− 1− p
p

1

log(1/p)

log(n)

n
≤ A ≤ 1.

In the case p ≥ 1
2 A ≥ 1− log(n)

n barely effects these bounds.

For p ≥ 1
2 this gives a lower bound for mixing of log(n)−c

log(1/p) which is off by just over

a factor of two from the upper bound of log(n)+c
log(2/(1+p)) . When p is small, less than 1

n−
√
n

,

ψ[n−1,1] = p− 1−p
n−1 is no longer the largest eigenvalue in magnitude as

lim
n→∞

|ψ[1n]| = lim
n→∞

(
1− 2

n

)n/2
=

1

e

This cross over happens around 1
p = W (en) ≈ n− log(n) + o(1) where W is the product

log function, also known as the Lambert W -function, as:

log((1− 2p)n/2 = n/2 log(1− 2p) ≈ pn

log

(
p− 1− p

n− 1

)
= log(p) + log

(
1− 1− p

pn

)
≈ log(p)− 1− p

pn
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For p ≈ 1
n that last term contributes at most a constant, leaving the equation pn ≈

log(p) with solution p = W (en).
As discussed in the introduction, the conjectured mixing time for the walk of log1/p(n)

is only a conjecture for p bounded away from 0. As p → 0, in the involution walk
it becomes vanishingly unlikely that anything other than a perfect matching will be
selected. This means the walk acts like the random walk generated by perfect matchings
which at even steps is confined to the alternating group, but rapidly mixes on that set.
This means it will take longer and longer to get a random parity in the involution walk,
which is a prerequisite to be mixed. On the other hand, log1/p(n)→ 0 if n is held constant
and p→ 0, which is not compatible with the behavior of the walk.

Since the issue here is parity rather than fixed points, the following bound follows
from looking at the behavior of the random variable χ[1n] rather than χ[n−1,1] in the first
lower bound. Moreover, since this random variable takes on only two values, a lower
bound on total variation can be found directly by evaluating on the set of permutations
where χ[1n] is 1, the even permutations.

Proposition 6.3. For the involution walk with t even, ||P ∗t − U ||TV ≥ 1
2 (1 − 2p)tn/2.

When t ≤ 1
n2p with p ≤ 1

4 , total variation distance at least 1
2 −

1
n .

Proof. Using the same facts about representations used to find the expected value of
χ[n−1,1] above,

EP∗t(χ[1n]) = (2p− 1)tn/2

We also know χ[1n] is 1 on the even permutations An ⊂ Sn and −1 on the odd
permutations. This means

EP∗t(χ[1n]) = P ∗t(An)− (1− P ∗t(An) = (2p− 1)tn/2

The total variation distance by definition is ||P ∗t − U ||TV = supA⊂Sn |P
∗t(A)− U(A)|.

Since we know the probability of the alternating group, this gives a lower bound on the
total variation distance as | 12 ((2p− 1)tn/2 + 1)− 1

2 | =
1
2 (1− 2p)tn/2.

If t and n are held constant, this gives as p→ 0, the total variation distance is at least
1
2 . For t constant, and p decreasing faster than n so that pn2 → 0, the total variation
distance will still be almost 1

2 as when p ≤ 1
4 and t ≤ 1

n2p :

1

2
(1− 2p)tn/2 ≥ e−2(2p)(tn/2) (6.7)

=
1

2
e−2ptn

≥ 1

2
(1− 2ptn) (6.8)

≥ 1

2
− 1

n

(6.9)

Where 6.7 follows from 1− x ≥ e−2x for x ≤ 1
2 and 6.8 from e−x ≥ 1− x for all x.

7 Conjectured separation distance bound

The separation distance for a random walk on the symmetric group is defined as
sep(t) = maxg(1− n!P ∗t(g)). This is always taken at the least likely element.

When the likelihood order in Corollary 2.4 holds an n-cycle is the least likely element
of the involution walk. The Murnaghan-Nakayama rule based recursive formula for the
eigenvalues of the walk from Proposition 4.1 will lead to an explicit formula for P ∗t(n).
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Assuming that the n-cycle is the least likely element at all times, this gives an explicit
computation of the separation distance.

Conjecture 7.1. For p ≥ 1
2 the likelihood order for involution walk is at all times the

cycle lexicographic order.

The discrete Fourier transform gives a formula for the probability of the n-cycle in
terms of only the hook partitions, [n− i, 1i]. We will now develop bounds specific to this
case. Recall the formula for the eigenvalues of the walk from Proposition 4.1:

ψλ =
∑

ρ:λ/ρ=[2]

ψρ
dρ
dλ

+ (2p− 1)
∑

ρ:λ/ρ=[1,1]

ψρ
dρ
dλ

+ 2p
∑

ρ:λ/ρ=[1]∪[1]

ψρ
dρ
dλ

When λ = [n − i, 1i] there is only one way to remove each of these shapes. In this
case, it is possible to recurse all the way to the base cases of ψ[2] = 1 and ψ[12] = 2p− 1

(as seen in Proposition 5.7). Note that this formula does not depend on p ≥ 1
2 .

Proposition 7.2.

ψ[n−i,1i] =
∑
j

( n/2−1
j, i−j2 ,n−i−j−2

2

)(
n−1
i

) (2p)j(2p− 1)(i−j)/2 +

( n/2−1
j, i−j−1

2 ,n−i−j−1
2

)(
n−1
i

) (2p)j(2p− 1)(i−j)/2+1

Proof. If the recursion is allowed to continue down to the base cases of [2] and [12], then
the ratios of dimensions cancel leaving simply 1

d[n−i,1i]
= 1

(n−1
i )

. It is left to count how

many ways there are to arrive at each base case. To get to [2], a total of n− i− 2 blocks
must be removed from the first row, and i blocks must be removed from the first column.
There are n/2− 1 recursive steps. Let j be the number of removals of the form [1] ∪ [1].
This forces i−j

2 removals of [12] from the first column and n−i−j−2
2 removals from the

first row (excepting the base case). This gives
( n/2−1
j, i−j2 ,n−i−j−2

2

)
ways to arrive at the base

case. The j [1] ∪ [1] removals each come with coefficient 2p, and the i−j
2 [12] removals

each have coefficient 2p− 1. The base case of [2] gives the term:

∑
j

( n/2−1
j, i−j2 ,n−i−j−2

2

)(
n−1
i

) (2p)j(2p− 1)(i−j)/2

If instead the base case is [12], a total of n− i− 1 blocks must be removed from the
first row, as well as i− 1 from the first column. By an analagous argument, this gives:

∑
j

( n/2−1
j, i−j−1

2 ,n−i−j−1
2

)(
n−1
i

) (2p)j(2p− 1)(i−j)/2+1

This gives a formula very similar to the right hand side of Proposition 5.2. Indeed,
the character polynomial from equation (5.2) gives an exact expression for ψ[n−i,1i] that
is very similar to the left hand side of that equality.

Proposition 7.3.

ψ[n−i,1i] =
1(
n−1
i

) ∑
k,l

(
n/2

k, l

)
(−1)lpn/2−l−k(1− p)k+l

(
n− 2k − 2l − 1

i− 2l

)
Proof. From formula (5.2)

χ[n−i,1i](1
n−2s, 2s) = q[1i](n−2s, s, 0, ...0) =

∑
j

(
s

j

) ∑
P=([1i]=ρ0,...,ρj)

(−1)ht(P )qρj (n−2s, 0, ..., 0)
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The only way to remove 2-cycles from [1i] is vertically.

q[1i−2j ](n− 2s) = d[n−i−2(s−j),1i−j =

(
n− 2s− 1

i− 2j

)
.

Therefore,

χ[n−i,1i](1
n−2s, 2s) =

∑
j

(
s

j

)
(−1)j

(
n− 2s− 1

i− 2j

)
Using this in the formula for ψ from (3.1) then substituting j = l, s− j = k gives:

ψ[n−i,1i] =

n/2∑
s=0

(
n/2

s

)
(1− p)spn/2−s

χ[n−i,1i](1
n−2s, 2s)

d[n−i,1i]
(7.1)

=

n/2∑
s=0

(
n/2

k, l

)
(1− p)k+lpn/2−k−l

(
n− 2k − 2l

i− 2l

)
(7.2)

In the event that p = 1
2 , any vertical removal has a 0 coefficient. When the first

column is longer than the first row, it is not possible to remove the entire first row
without using vertical removals, since [1] ∪ [1] removals take equally from the first row
and column. Therefore ψ[n−i,i] = 0 for i ≥ n

2 . When the first row is longer than the first
column, the eigenvalue reduces to a single term. This gives the sum in Proposition 7.2
for i ≤ n−1

2 as:

ψ[n−i,1i] =

(
n/2−1
i

)(
n−1
i

) = 2−i
(n− 2 bi/2c) · · · (n− 2i+ 4)(n− 2i+ 2)

(n− 1)(n− 3) · · · (n− 2 bi/2c+ 1)

Conjecture 7.4. For p = 1
2 ,

sep(t) =

(n−1)/2∑
i=1

(−1)i+1

(
n− i
i

)((n/2−1
i

)(
n−1
i

) )t
For t ≥ log2(n− 1) the terms in this alternating sum are decreasing in magnitude, so

sep(log2(n) + c) ≤ 2−c
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