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Pinning of a renewal on a quenched renewal
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Abstract

We introduce the pinning model on a quenched renewal, which is an instance of a
(strongly correlated) disordered pinning model. The potential takes value 1 at the
renewal times of a quenched realization of a renewal process o, and 0 elsewhere,
so nonzero potential values become sparse if the gaps in ¢ have infinite mean. The
“polymer” - of length on - is given by another renewal 7, whose law is modified by
the Boltzmann weight exp(8 Y.~ | 1, ¢,}). Our assumption is that 7 and ¢ have
gap distributions with power-law-decay exponents 1 + « and 1 + & respectively, with
a > 0,a > 0. There is a localization phase transition: above a critical value 3. the free
energy is positive, meaning that 7 is pinned on the quenched renewal o. We consider
the question of relevance of the disorder, that is to know when . differs from its

ann

annealed counterpart 2"". We show that 5. = 83"" whenever a +a > 1, and 8. = 0 if
and only if the renewal 7 N is recurrent. On the other hand, we show 5. > &"" when
a+ % a < 1. We give evidence that this should in fact be true whenever a + a < 1,
providing examples for all such «, & of distributions of 7, o for which 8. > 32"". We
additionally consider two natural variants of the model: one in which the polymer and
disorder are constrained to have equal numbers of renewals (cn = 7x), and one in
which the polymer length is 7y rather than on. In both cases we show the critical

point is the same as in the original model, at least when o > 0.
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1 Introduction

1.1 Motivations

A variety of polymer pinning models have been studied in theoretical and mathemati-
cal physics in the past decades, see [15, 19, 20] for reviews. We introduce in this paper
a new type of disordered pinning model that we call pinning on a quenched renewal.
Before giving its definition, we recall two well-studied related models that motivate the
introduction and the study of this new model.
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Pinning on an inhomogeneous defect line

The disordered pinning model was introduced by Poland and Scheraga [29] to model DNA
denaturation, and it has recently been the subject of extensive rigorous mathematical
studies, cf. [19, 20]. We recall its definition.

Let 7 = {70 = 0,71,...} be a discrete recurrent renewal process of law P, and
let w = (wn)nen be a sequence of IID random variables of law denoted PP, with finite
exponential moment M ()\) = E[e**] < +o0, for A > 0 small enough. Then, for 3 > 0 and
h € R, and a fixed realization of w (quenched disorder), the Gibbs measure is defined by

Bw
dPyh ) = ! eX n1(Bwn+h) Linery 1.1
P (1) g . (1.1)
N,h

where Zf,“; is the partition function, which normalizes P?\,"f7 to a probability measure.
This Gibbs measure corresponds to giving a (possibly negative) reward (w,, + h to the
occurrence of a renewal point at n. In this context it is natural to think of the polymer
configuration as the space-time trajectory of some Markov chain, with the polymer
interacting with a potential whenever it returns to some particular site, for example the
origin; then 7 represents the times of these returns.

This system is known to undergo a localization phase transition when h varies, and
much attention has been given to the question of disorder relevance, that is, whether the
quenched and annealed systems (with respective partition functions Z 16\[71 and EZ f,‘;’l)
have different critical behaviors. The so-called Harris criterion [24] is used to predict
disorder relevance, and its characterization in terms of the distribution of the renewal
time 7, has now been mathematically settled completely [1, 4, 6, 14, 16, 22, 27, 30],
the complete necessary and sufficient condition for critical point shift being given only
recently, in [6].

An interesting approach to this problem is based on a large deviation principle for
cutting words out of a sequence of letters [9], see [14]: quantities of the model, such as
critical points, are expressed as variational formulas involving (quenched and annealed)
rate functions 79"¢ and 72"". In [14], the authors consider a version of 7 truncated at a
level tr (whose law we denote P(t%)), and it is implicitly shown that a lower bound on
the critical point shift is, for all 5 > 0,

lim lim
tr—oo N—oo
L g : . 1
SEIElog B | exp (nz_:l [(Bun — 108 M(8)) Liner) + 5 108 M(28)Linerney] )|

(1.2)

where my, is the mean inter-arrival time of the truncated renewal, and ¢ is a quenched
trajectory of a renewal with the same (truncated) law PG5, thus oy ~ my,-N. Indeed,
Theorem 1.3 in [14] gives that the critical point shift is bounded from below by 19"¢(Qg) —
I*"™(Qg), which in view of Theorem 2.2 in [14] leads to (1.2).

Note that the first term of the summand on the right side of (1.2) gives the quenched
Hamiltonian from (1.1) calculated at the annealed critical point u = —log M (3). The
second term of the summand corresponds to a quenched system in which the disorder is
sparse (at least without the truncation), in the sense that it is 0 except at the sites of the
quenched renewal o, and these sites have a limiting density of 0 when ¢, has infinite
mean, that is

n{1,...,N
b lon L VY

Aim N =0 P,—as. (1.3)
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Since the quenched system is not pinned at the annealed critical point, the limit (1.2)
would be 0, meaning no pinning, without that second term. The question is then roughly
whether the additional presence of the very sparse disorder ¢ is enough to create pinning
(this oversimplifies slightly, as we are ignoring the limit 7" — o). It therefore suggests
the question, of independent interest, of whether such very sparse disorder creates
pinning for arbitrarily small 3, in the simplified context where the first term in the
summand is absent and there is no truncation. Our purpose here is to answer that
question positively: under an appropriate condition on the tail exponents of the return
times 7, and o4, there is pinning for arbitrarily small 3.

It should also be noted that the sum in (1.2) is up to o, not IV as in (1.1). To create
positive free energy, 7 must be able to hit an order-N number of sites o;, which is
impossible for a length-N polymer with extremely sparse disorder satisfying (1.3), see
[25].

Pinning on a Random Walk

The Random Walk Pinning Model considers a random walk X (whose law is denoted P x),
which is pinned to another independent (quenched) random walk Y with distribution Py
identical to P x, see [10]. For any 5 > 0, the Gibbs measure is given by

dPy 1

X) = B N1 L Xn=vn} | 1.4
Py (X) Z}\/,ﬁ e 1 (1.4)

This system undergoes a localization phase transition: above some critical value §,,
the random walk X sticks to the quenched trajectory of Y, Py-a.s. Here X and Y are
assumed irreducible and symmetric, with log P x (X5, = 0) [ —plogn: for example,
with p = d/2 in the case of symmetric simple random walks on Z<.

One can compare this model to its annealed counterpart, in which the partition
function is averaged over the possible trajectories of Y, Ey[Z}\//, 5], with corresponding
critical value 32™". Non-coincidence of quenched and annealed critical points implies
the existence of an intermediate phase for the long-time behavior of several systems
(such as coupled branching processes, parabolic Anderson model with a single catalyst,
directed polymer in random environment): we refer to [10, 11] for more details on the
relations between these models and the random walk pinning model.

The question of non-coincidence of critical points for pinning on a random walk
has only been partially answered: it is known that 3. > 83" if p > 2, see [10], and in
the special cases of d-dimensional simple random walks, 3. > g3"" if and only if d > 3
[7, 11, 12] (note that the case d > 5 was already dealt with the case p > 2). It is however
believed that one has 5. > 52" whenever p > 1, see Conjecture 1.8 in [10].

The model we introduce now is related to this one, in the sense that we replace the
random walks by renewals: we study a renewal 7, which interacts with an object of the
same nature, that is a quenched renewal o.

1.2 Pinning on a quenched renewal

We consider two recurrent renewal processes 7 and o, with (possibly different) laws
denoted respectively by P, and P,. We assume that there exist « > 0,a > 0, and slowly
varying functions ¢(-), ¢(-) (see [8] for a definition) such that forall n > 1

P,.(rn=n)=¢n)n T and P,(o; =n) = g(n)n 1+, (1.5)

Let
d; = min Supp 7y, ds = min Supp o1, (1.6)
EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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where Supp x denotes the support of the distribution of a random variable x. At times
we will add the assumption
dT S dU? (17)

which ensures that certain partition functions carrying the restriction oy = 7y cannot
be 0, for sufficiently large N.

Let us write |7|, for [N {1,...,n}|. We consider the question of the pinning of 7 by
the renewal o: the Hamiltonian, up to N o-renewals, is Hy »(7) := [T N 0|sy. For 5 >0
(the inverse temperature) and for a quenched trajectory of o, we introduce the Gibbs
transformation Pg; ; of P by

dPs 1

= Blmnolon 1 1.8
dP, ZX/,BG Nlonerys (1.8)

where 73, 5 = E.[exp(B|7 N o]oy)1{syer}] is the partition function. Note that the
resulting polymer is constrained, meaning 7 is required to have a renewal at the endpoint
oy of the polymer.

contacts

Figure 1. The renewal o is quenched (here, we have N = 13 o-renewals), and the renewal
7 collects a reward S for each contact with a o-renewal (here, |7 N a|gN =6).

Proposition 1.1. The quenched free energy, defined by

.1 - 1 o
F(B) = ngnooNIOgZN’B = ngnoo NEU log Z; 5 (1.9)
exists and is constant P,-a.s. F is non-negative, non-decreasing and convex. There exists
Bc = B.(P,) > 0 such that F(8) =0 if 8 < 5. and F(B) > 0if B > f..

Proof. We have

oN
ZK/—HM,B > E; [eXp(Bh N U|0N)1{UN+A1€T}1{UNET}:| = Zj‘\/',BZJ\l,ga

where 6 is the “shift operator applied to increments”:
(90’)1 =0i4+1 —O01.

Therefore the sequence (log zy, ﬂ)n@N is superadditive, and using Kingman’s subadditive
Theorem [26], one gets the P,-a.s. existence of the limit in (1.1), and moreover

1

.F(,B):.F(B,PU):Sup *Eologzgfﬁy (1.10)
nen IV ’

The non-negativity trivially follows from the fact that g > 0, and the convexity is classical

and comes from a straightforward computation. O

A standard computation gives that, when the derivative of 7 () exists,

0

—F

0B
where Pg; 3 also denotes the expectation with respect to the measure defined in (1.8).

Therefore; when F(8) > 0, a positive proportion of o-renewal points are visited by 7, and
(3. marks the transition between a delocalized and localized phase.

1
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Remark 1.2. We have chosen to work with the constrained version of the model, by
including 1(,,¢-} in the partition function. We stress that the free energy is the same as
for the corresponding “free” partition function,

Z385 = B, [# 0 lmer}] . (1.12)

Indeed, let K be such that P (7 = k) > O for all £ > K. Consider a trajectory 7 for which
the last renewal in [0,0x — K] is at some point oy — k. We can map 7 to a constrained
trajectory 7 by removing all renewals of 7 in (o — K, oy ) and adding a renewal at oy.
This is a 2%-to-1 map, and the Boltzmann weight of 7 is smaller than that of 7 by a factor
no smaller than e PKP (1 = k) > e PR ming<j<,\, P- (11 = j) > ca;,(“a) for some
constant ¢ > 0. Hence there exists C' > 0 such that for all large N,

Z%5 < 2355 < Clon) ™ 23 5. (1.13)

It is straightforward from (1.5) (and because we impose & > 0) that limy_oc N !logoy =
0 P,-a.s., which with (1.13) gives limy_. N~ !log Z3'5° = F(B), P,-a.s.

1.3 The annealed model

We will compare the quenched-renewal pinning model to its annealed counterpart,
with partition function E, 23, 5 = E; [emm""’z\r 1{yyer}|. The annealed free energy is
defined by

1
]_-ann(ﬂ) = J&EHOONIOgEUZXI’B' (]_14)

The existence of the annealed free energy is straightforward, using the superadditivity
oflog E; Z%; 5.

Note that this model does not treat 7 and o symmetrically. Closely related is what we
will call the homogeneous doubled pinning model, in which the length of the polymer is
fixed, rather than the number of renewals in o: the partition function and free energy
are

om TMHO om : 1 om
Z»}Ll,ﬂ = ET,U [eﬁl " ‘nl{nE‘rﬂa}]v ‘Fh (6) = nh—{go ﬁ IOg ZQ,B ’
and the corresponding critical point is denoted ﬁ?om. This model is exactly solvable,
see [19, Ch. 2], and in particular, its critical point is g2 = —log P+, ((T N o) < 00) =
log (1+ E,-[|T No|]7!), with the convention that = = 0.

Proposition 1.3. The annealed system is solvable, in the sense that for § > 0, F*"2(3)

is the solution F of
1

ef —1

Z e F"P, (0, €ET) =

n>1

(1.15)

if a solution exists, and 0 otherwise. There exists $2*® > 0 such that F***(8) = 0
if B < B2 and Fa(B) > 0 if B > B2, In fact, we have (™" = phom  gatisfying
P —1= (Y51 Por(o, € T))_l, and thus 32" = 0 if and only if T N o is recurrent.
Additionally, under (1.5) with & > 0, there exists a slowly varying function L(-) such
that
1 l—anl—anl

ann ( gy BB _gann\ ViR ok _
Forr(B) L(ﬂﬂgﬂﬂ) (B —pB2™) , with o : =1 € [~1,+o0).
(1.16)

In the case a* = 0, one interprets (1.16) as saying F (82" + u) vanishes faster than any
power of u.

EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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The proof of this proposition uses standard techniques, and is postponed to Ap-
pendix A.2. It relies on a rewriting of the partition function, together with an estimate on
the probability P, , (o, € 7) that we now present (its proof is also postponed to Appendix
A2).

Lemma 1.4. Under (1.5), with & > 0, there exists a slowly varying function ¢*(-) such
that, for o* from (1.16),
P, (0n € T) = @*(n)n~ 1+ (1.17)

From Jensen'’s inequality we have F(3) < F*"(f), so that . > 52". When 7 N o is
recurrent, f3"" = 0, and our main theorem will say that 5. = 0 as well. In the transient
case we have 2" > (0 and we can ask whether 5. = 32"" or not.

1.4 On the recurrence/transience of T No

The criterion for the recurrence of the renewal 7 N o is that

E,E.[[TNo|] = Z P,(n€o)P.(n€T)=+0c0. (1.18)
nelN

Under the assumption (1.5), the exact asymptotic behavior of P, (n € 7) is known. We
write a A b for min(a, b). Defining the truncated mean and tail

m(n) = ET(Tl /\n), T i=Po(m1 >n),

we have
r2n"lp(n) ifa=0,
asin(ra)  —(1—a) -1 ifQ 1
P, (ner)" 2 " el if0<a<l, (1.19)
m(n)~! ifa=1E;[rn] =+o0,
E,[n]™! ifE [r] < 4o00.

The first is from [28], the second is due to Doney [17, Thm. B], the third is due to
Erickson [18, Eq. (2.4)], and the fourth is the classical Renewal Theorem.

Applying (1.19) to 7N o in (1.18), we see that o+« > 1 implies that 7 N o is recurrent,
and also that o + a < 1 implies that 7 N ¢ is transient. The case a + a = 1 is marginal,
depending on the slowly varying functions ¢(-) and &(-): if also a,& > 0 then 7 N o is
recurrent if and only if

1
—_—— = +4o00. 1.20
2 Em (1:20

For the case a = 0, @ = 1, we have recurrence if and only if

> Rz tn

nelN

where 71(n) = E, (0, A n), which is slowly varying since & = 1.

Since E, - [[TNol] =35, Py r(0n € 7), for o from Lemma 1.4 we have that 7 N o is
recurrent if o < 0 and transient if o* > 0. In the case a* = 0, either can hold depending
on the slowly varying function ¢*.

2 Main results

2.1 Results and comments

Our main result says that in the case where 7 N ¢ is recurrent, or transient with
o + a = 1, the quenched and annealed critical points are equal (so both are 0 in the

EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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recurrent case). When a+a < 1, a sufficient condition for unequal critical points involves
the exponent a* appearing in Lemma 1.4.

Theorem 2.1. Assume (1.5).
Ifa>0anda+a>1 (i o <0), thenf.= 32" (2.1)

~ ~ . 1
Ifa>0,a+a<1(ie a*>0), and a* > 3 then B, > ™. (2.2)

In the case a > 0,a + a > 1, in addition to having equal critical points, the quenched
and annealed systems have the same critical behavior:

1 1 o
i 1087 8) . ifa>0a+a>1(iea*<0). (2.3)

Alae log(B — fBe)  |a¥]

Note that o* > 1/2 is equivalent to « + % a < 1. We suspect that this condition can be
removed in (2.2). In that direction, our next result gives examples of distributions for
7,0 with any prescribed asymptotic behavior with o + @ < 1 (i.e. any ¢, p and a, @ > 0
with a + a < 1) for which g, > 2"". It shows that, if the equality of critical points is
determined entirely by the exponents a, @ and the asymptotics of ¢, ¢, then for a,a > 0
(2.2) is true without the condition o* > 1/2.

Theorem 2.2. For any a,a > 0 with « + @ < 1 and any slowly varying functions
©(-), @(-), there exist distributions for r and o satisfying P(1; = n) "X ¢(n)n~(1+)

o0~

and PU(O‘]_ = ’I’L) nz (p(n)n—(l"r&)l with Bc > Bacinn.
We expect that, following the same scheme of proof, one can extend Theorem 2.2 to

the case & = 0, @ € (0,1). However, in the interest of brevity we do not prove it here,
since it would require separate estimates from [3].

Let us now make some comments about these results.

1. Since the renewal 7 N ¢ can be recurrent only if @ + « > 1, one has from (2.1) that
B. = 0 if and only if 52"* = 0, that is if and only if 7 N ¢ is recurrent. This is notable in
that |7 N o| = +00 P, r—a.s. is enough for 7 to be pinned on a quenched trajectory of o
for all 5 > 0, even though a typical o-trajectory is very sparse.

2. When o + @ = 1, 7 N o can be either recurrent or transient depending on (1.20)-
(1.21). Thus we have examples with transience where the critical points are positive and
equal.

3. If E,[01] < 400, we have a system of length approximately E,[o1]N. Here we
already know from [25] that the renewal 7 is pinned for all 5 > 0, since there is a positive
density of o-renewal points in the system.

4. We note in Remark 4.3 that if n — P(n € 7) is non-increasing, then some
calculations are simplified, and we can go slightly beyond the condition a* > 1/2, to
allow o* = 1/2 with limy_,. $(k)1~*/%@(k) = +o0. Here @(k) = ¢(k)~" if a € (0,1) and
p(k) = o(k)/P-(r1 > k)? if @« = 0. The monotonicity of n — P(n € 7) follows easily if
the renewal points j of 7 correspond to times 2j of return to 0 of a nearest-neighbor
Markov chain (birth-death process.) Indeed, one can then couple two trajectories (one
non-delayed, the other one delayed by 2k for some k£ > 1) the first time they meet, and
show that P(k+n € 7) <P(n ) forany n > 1.

5. The random walk pinning model (1.4) is quite analogous to our model, replacing
only 15 -1 by 1(x,-v,}. In our model, the decay exponent 1 + «* of the probability
P, . (o, € T) corresponds to the parameter p in [10] (the decay exponent of Px y (X,, =
Y,.).) Theorem 2.1 is in that sense stronger than its counterpart in the random walk
pinning model, since o* > 1/2 translates into p > 3/2, compared to p > 2 in [10].

EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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Moreover, Theorem 2.2 supports the conjecture that the quenched and annealed critical
points differ whenever p > 1, see Conjecture 1.8 in [10].

6. One may argue that, in view of the annealed critical exponent 1/a*, the con-
dition a* > 1/2 is somehow reminiscent of the Harris criterion for disorder rele-
vance/irrelevance. Applying this criterion without further precaution tells that disorder
should be irrelevant if 1/a* > 2 and relevant if 1/a* < 2. However, in the Harris criterion
formulation, disorder is irrelevant if it does not change the critical behavior provided
that the disorder strength is sufficiently small. Compared to the pinning model (where
Harris’ criterion has been confirmed, as mentioned in Introduction), the difference here
- as well as for the Random Walk Pinning Model - is that one cannot tune the stength of
the disorder: a quenched realization of ¢ is given, and there is no extra parameter to
play with to get an arbitrarily small disorder strength. This is for example what makes it
easier for us to prove a critical point shift in the case a* > 1/2, since according to Harris’
prediction, disorder should be relevant whatever the disorder strength is — which is here
though to be fixed, positive. The case a* € (0,1/2] is therefore more subtle, however
our Theorem 2.2 provides examples where 0 < o* < 1/2 but where a shift in the critical
points still occur (so to speak, disorder is strong enough to shift the critical point).

2.2 Variations of the main model: balanced and elastic polymers

Pinning, in the quenched or annealed model, means that 7 hits a positive fraction
of the sites in the quenched renewal o, up to some oy. The number of renewals in 7 is
unlimited. We can alternatively consider the balanced polymer with 7 constrained to
satisfy 77y = on.

A second alternative pinning notion asks whether a positive fraction of 7 renewals hit
sites of o, by considering a polymer of length 7 instead of oy . Physically this may be
viewed as an elastic polymer, since 7 has a fixed number N of monomers and needs to
stretch or contract to place them on renewals of o.

First variation: balanced polymer, 7y = oy

We first consider 7 constrained to have 7y = oy, since in that case, both pinning notions
are equivalent.
We introduce

ZAK[”B = ET[exp(ﬁh—mO—‘UN)]-{TN:aN}]a (2.4)
and ) .
F(B) = J\;E}noc N log Z3; 5 = A}gnoo NEU[log Z% 5 Po—as. (2.5)

The proof of Proposition 1.1 applies here, establishing the existence and non-randomness
of this limit.

For the balanced polymer we need the condition (1.7), for otherwise the partition
function is 0 with positive probability (whenever oy = Nd,, see (1.6)), and therefore
N~'E,[log Z§, 4] = —oc forall N € IN.

Further, suppose E,[01] < E;[r1]. Then o ~ E,[01]N a.s., so P,(7y = on) decays
exponentially in N. It is easy to see that therefore F () < 0 for small 3. In this sense
the constraint 7y = ox dominates the partition function, which is unphysical, so we
assume E,[01] > E.[r;], which ensures F(3) > 0 for all 8 > 0. There then exists a critical
point 3, := inf{8 : F(8) > 0} such that F(8) > 0if 8 > f, and F(8) = 0 if 8 < .. The
positivity of F (B) implies that 7 visits a positive proportion of o-renewal points, and
also that a positive proportion of 7-renewals sit on a o-renewal point. Clearly, one has
that Z3, 52 ZAI‘(,’ 3. SO that Bc > B.. The following proposition establishes equality, and is
proved in Section 6.
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Proposition 2.3. Assume (1.5) and (1.7). IfE,[01] > E.[n1], and in particular if E,[o1] =
400, then B. = f..
Hence, here again, Bc = 0 if and only if 7 N ¢ is recurrent.

Second variation: elastic polymer of length 7

In the elastic polymer, pinning essentially means that a positive fraction of r-renewals
fall on o-renewals. The partition function is

Z%: 5 = Er [exp(BlT Nolry)]. (2.6)

Standard subadditivity methods to establish existence of limy_,o, N~ !log Z %5 do not
work here, but we can consider the lim inf instead, since its positivity implies pinning in
the above sense. We therefore define

= | o
F(B) = l}wglof NEG log Z% 5, (2.7)

which is non-decreasing in 3, and the critical point 3. := inf{3 : F(3) > 0}. Compared to
the balanced polymer, here it is much less apparent a priori that we should have 3. > ..
It could be favorable for 7 to jump far beyond oy to reach an exceptionally favorable
stretch of o, before 7. The original model (1.8) does not permit this type of strategy,
so the question is whether this allows pinning in the elastic polymer with 5 < (.. The
answer is no, at least if « > 0, orif « = 0 and a > 1, as the following shows; the proof is
in Section 6. We do not know whether 5, = 3. when o = 0 and & < 1.

Propo§ition 2.4. Assume (1.5) with a > 0:
(1) BE S ﬁc ;
(ii) B. = B. in both cases a > 0 and o« = 0, & > 1.

In particular, 3. = 0 whenever 7 N ¢ is recurrent.

2.3 Organization of the rest of the paper
We now present a brief outline of the proofs, and how they are organized.

In Section 3, we prove the first part (2.1) of Theorem 2.1, to establish pinning of
the quenched system when g > 52°", with a + & > 1. We use a rare-stretch strategy to
get a lower bound on the partition function: the idea is to consider trajectories 7 which
visit exponentially rare stretches where the renewals of o have some (not-well-specified)
special structure which reduces the entropy cost for 7 to hit a large number of ¢ sites.
In Section 3.3, we classify trajectories of o according to the size of this entropy cost
reduction, then select a class which makes a large contribution to the annealed free
energy F*"(3) > 0 (we will fix 8 > 53""). We call trajectories in this class accepting, and
the localization strategy of Section 3.4 consists in visiting all accepting segments of o.
More detailed heuristics are presented in Section 3.1. We also prove (2.3) in Section 3.2,
thanks to a finite volume criterion.

In Section 4, we prove the second part (2.2) of Theorem 2.1. First, we rewrite the
partition function as that of another type of pinning model — see Section 4.1; this
reduces the problem to a system at the annealed critical point 52"" > 0. We then employ
a fractional moment method, combined with coarse-graining, similar to one developed
for the disordered pinning model [6, 16, 21, 22], and later used for the random walk
pinning model [7, 11, 12]. In Sections 4.2-4.3, we show how one can reduce to proving
a finite-size estimate of the fractional moment of the partition function. Then to show
that the fractional moment of the partition function is small, we describe a general
change of measure argument in Section 4.4. The change of measure is based on a set J
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of trajectories o, defined in Section 4.5, which has high probability, but becomes rare
under certain conditioning which, roughly speaking, makes the partition function 2%, 3
large. Identification of such an event is the key step; our choice of J only works in full
generality for o* > 1/2, necessitating that hypothesis.

In Section 5, we give another sufficient condition for differing critical points, see (5.2).
Then, we construct examples of 7, ¢ for which this condition holds, to prove Theorem 2.2.

In Section 6, we study the variants of the model introduced in Section 2.2, and prove
Propositions 2.3-2.3. We mainly use some particular localization strategies to obtain
lower bounds on the free energy of these two models.

The Appendix is devoted to the proof of technical lemmas on renewal processes.

2.4 Notations

Throughout the paper, ¢; are constants which depend only on the distributions of 7
and o, unless otherwise specified.
Recall the truncated means

m(n) =E;(m An), m(n)=E.(c1 An).

When «,a > 0 we denote by a,, the “typical size” of 7,, (in the sense that (7,,/a,)n>1 is
tight), b,, the typical size of o,,, A,, the typical size of max{r, 7 — 71,...,7 — Th—_1}, and
B,, the typical size of max{o1,02 — 01,...,0, — 0,_1}. More precisely, B, is defined (up
to asymptotic equivalence) by

Bl - de Bn Z daa Bg(ﬁ(Bn)_l ’ﬂ:’JOO n, (28)
(see (1.6)) and b,, by

by =B, if0 <a <1, b,m(b,) ' "X nifa=1andE,[o0;] = oo,
by, = Ey[o1]n if Ey[o1] < o0, (2.9)

and A,,a, are defined analogously for the distribution of ;. The following can be
found in [8]. These sequences are unique up to asymptotic equivalence, and in the
infinite-mean case with 0 < «, @ < 1, there exist slowly varying functions ) and {E whose
asymptotics are explicit in terms of a, @ and ¢, ¢, such that

an = P(n) nl/e , b, = J(n) nt/e. (2.10)

The sequences A, ! max{r,7—71,...,7n—7n_1} and B, max{o1,02—01,...,0,—0n_1}
converge in distribution, and the limits have strictly positive densities on (0, c0). When
the corresponding exponents «, & are in (0, 1), the ratios 7,,/a,, and o,,/b,, converge to
stable distributions, which have strictly positive densities on (0, cc). When the exponent
a,a € [1,00), the same ratios converge in probability to 1. This follows from the law of
large numbers when the mean is finite, and from Theorem 8.8.1 in [8] when o = 1.
Define
d; =min{n >1:P,(ke€7)>0 foralk>n}, (2.11)

and d,, similarly.

3 Rare-stretch strategy: proof of the first part of Theorem 2.1
3.1 Sketch of the proof

In the recurrent case, we may use super-additivity argument to obtain directly a
lower bound on the quenched free energy via a finite-volume criterion, as presented in
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Section 3.2. This gives us that 5. = 0 when a* < 0, together with a lower bound on the
order of the quenched phase transition. However, it is not helpful when o* = 0 and in
particular in the transient case, when we try to prove that 5. = 52"" > 0, and we need a
novel idea.

We use a rare-stretch localization strategy to show that, when o + a > 1, we have
F(B) > 0 for all 8 > 3", The idea is to identify “accepting” stretches of ¢ that we then
require 7 to visit; the contribution to the free energy from such trajectories 7 is shown
sufficient to make the free energy positive. Here, the definition of an accepting stretch
is made without describing these stretches explicitly, in the following sense: for fixed
large ¢, different configurations {01, ..., 0.} are conducive to large values of [T N o|,, to
different degrees, as measured by the probability P.- (\T Nol|,, > 6¢) for some appropriate
5. We divide (most of) the possible values of this probability into a finite number of
intervals, which divides configurations ¢ into corresponding classes; we select the class
responsible for the largest contribution to the annealed partition function, and call the
corresponding trajectories ¢ accepting. This is done in Section 3.3. We then get in
Section 3.4 a lower bound for the quenched partition function by considering trajectories
of length N > ¢ which visit all accepting stretches of o of length /.

3.2 Finite-volume criterion and proof of (2.3)

The finite-volume criterion comes directly from (1.10): if there exists some N = Ng
such that E,[log Z% 5] > 1, then we have that F(5) > Ngl > 0. We will use this simple
observation to obtain a lower bound on the free energy in the case a* < 0, showing both
B. = 0 and (2.3).

We write Z3, ; = P-(on € 7)E; [efITelon |0 € 7], so by Jensen’s inequality we get
that

E, log Z% 5 > BE, [ET [Ir A 0loy |on € T]] +E,logP, (on € 7). 3.1)

Let us now estimate the terms on the right. For the second term, we get thanks to
(1.19) that for large N (hence large oy), logP,(on € 7) > —2logoy. Then, we have
E,[logon] < 2a~!log N for N large enough, as established below in (3.28) - in fact the
factor 2 can be replaced by a constant arbitrarily close to 1.

It remains to get a lower bound on the first term. For this, it is enough to get a lower
bound on E, [P, (o} € 7|0, € 7)] for k < N/2. For b, from (2.9), using the fact that
P.(x € 1) is regularly varying (see (1.19)) we get that there exists a constant ¢; such
that for k£ < N/2 large enough

E, [PT<O'k € Tloy € 7')] =E, {PT(Uk €T)Pr(on — o) € 7)]

P.,—(O'N ET)

P.(by € )P, (by € T)

ZPU<0kak70N_UkZbN7UN§4bN)XCl P (dby € 1)

Since o, /b,, converges in distribution, the first probability is bounded below by a constant.
Hence E, [PT(ak € Tloy, € 7—)] exceeds a constant times P, (b; € 7) which is regularly
varying with exponent —(1 —a A 1l)/a A1l = —(1+ a*), thanks to (2.9)-(2.10) and (1.19).
There is therefore a slowly varying function ¢j(-) such that

E, [P, (o) € Tlon € 7)] > ¢i(k)k~(+*) forall k < N/2.

We finally obtain that for a* < 0, for some c,,

N/2
E, {ET HT Noleylon € T” > ZE” [PT(ak € Tlo, € T)} > cng’l‘(N)N_a* ,
k=1

EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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so by (3.1),
E, log Z% 5 > c2B}(N)N™ —2a 'log N. (3.2)

Fix ¢ € (0,1), and for 8 > 0 set N§ := ~(1+2)/12"l 5o that N§ — +oc as 3 | 0. In view of
(3.2) there exists some 5y = Sy(¢) such that for any 0 < 3 < Sy, we have E, log Zj(,gﬁ >1.

This shows that for every ¢ > 0 and every 8 < 5y = fo(e) we have

1 N
> L gateiet g
F(B) > : B >0

Since ¢ is arbitrary, this proves that when o* < 0 we have g, = 0 and

On the other hand, the upper bound F(8) < F22*(3) together with Proposition 1.3
gives, in the case a* < 0 (so that in particular 52"" = 0)
log F(p) log F2(5) 1

liminf —="—"2 > liminf ———~% = — |
o logp T plo log 8 ||

and this ends the proof of (2.3) when a* < 0.

For the case o = 0, it is more delicate since E, [E. [T No|,,|on € T]] grows only
as a slowly varying function, and may not be enough to compensate the logarithmic
term in (3.1). We develop another approach in the following Sections, to prove that
Be = B2 also when a* = 0. Once we have proven that 3. = 82", we get directly from
F(B) < F*™(B) and Proposition 1.3 that

lim inf w > lim inf M

= +OQ s
BlB.  logp Blpann log 8

thus proving (2.3) also when a* = 0.

3.3 Preliminaries: definition of accepting stretches

We first define the accepting property for ¢. Let I, and I be the rate functions, for
contact fractions J, for the renewals 7 and 7 N o, respectively:

1 1
I.(§) ;== — lim —logP.(|7], > dn), I(0):=— lim —logP, (|7 Naol|, >dn). (3.3)

n—o0o N n—oo N

It is straightforward that I,(§) = 6J,(6~!), where J, is the usual rate function for
ii.d. sums distributed as the gap between renewals in 7, and similarly for I(d). Let
Omax = sup{d € [0,1] : I(4) < oo} and 0 < § < Opax- Then

P, (|tNol, > dn) = e~ 1(@)n(1+o(1)) (3.4)

For technical reasons, we need the following lemma: it says that the rate function
1(6) is unchanged when also imposing o,, € 7, and that o,, grows only polynomially.

Lemma 3.1. Suppose & > 0. For all § < dax, forb,, from (2.9),

1
lim - log Py, (o—n € 7,00 <2, | [N 0]y > 5n) —0, (3.5)
n—oo N
so that
PU7T(|T Nol, >on, o, €T,0, < 2bn> — ¢~ 1) n(140(1)) (3.6)
EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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Proof. Let ¢ > 0 and let m be the least integer in [dn, c0). Since § < dnax, there exists
n > 0 with

1
lim 710gPU7T((TﬂU)m <@A=nn|lrnol, > (571)

n—oon,

1
> lim —log PU’T(|T Nola—nn > on | T Nol, > 671) > —¢. (3.7)
n

n— o0
Since b,, > n and o, /b, converges either to a stable limit or to 1, there exist ny > 1 and
6 > 0 as follows. For n large and én < j < (1 —n)n, m < k < j,
PU,T(UTL €T,0n < 2bn ‘ (Tﬁo—)m :j;ak :j)

> Pa (o—nfk < bnfk) k<r£11£{1b Pr(k € 7_)

>0 min P.(ke€7), (3.8)
k<2b,

which is bounded below by an inverse power of n, uniformly in such j. Therefore

1
lim — log Pm(an €700 <2y | (FNG)m < (1— n)n) —0,

n—o00 N

which with (3.7) proves (3.5), since ¢ is arbitrary. O

Since we take 3 > 33" = ghom the associated annealed and homogeneous double
pinning free energies are positive:

FER(B) = From(B) = §1>110>(ﬂ5 —1(3)) > 0. (3.9)
Let § < Omax Satisfy
B —1(8) > %fhom(ﬁ), (3.10)
and let N
falo) =P (It Noln >6n, on €7) Ly, <o}
Note that f,, is actually a function of the finite renewal sequence B := {0,071,...,0,}, SO

we may write it as f,,(B). We decompose the probability that appears in f,, according to
what portion of the cost I(§)n is borne by o versus by 7: we fix € > 0 and write
P(,J(\T Nolp > gn, on €ET,0, < an) =E,[fn(0)]

< Z P, (fn(a) c (ef(kjtl)el(g)n’efkel(g)n}) O i (14 I@)n (3.11)
0<k<1/e

Then by Lemma 3.1, there exists some n. large enough so that for n > n,,

e~ (1+)1(G)n < %PU’T(|T Nol, > gn,an eT,0n0 < 2bn) .

Hence choosing ko = ko(n) € [0,1/¢] to be the index of the largest term in the sum in
(3.11), we have

P, (fn(a) c (e—(k0+1)51(5)n7e—kosl(g)n]) e—k(,sl(g)n

11
214 1/e

> PU’T(|TQU‘n > gn,an er,0, < 2bn). (3.12)
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We let a := a(n) := kog, so a € [0, 1] represents, roughly speaking, the proportion of

the cost 1 (5~) borne by 7 in the most likely cost split, i.e. in the & = ky term. Lemma 3.1
says that if n > n. for some n. large enough, one has that
PU’T(|T Nol, > gn,an eT,0n0 < 2bn) > e~ (1+e/21@)n

Then, (3.12) gives that

)

(3.13)

- - 1 ¢ - - ~
—(a+e)I(6)n _—al(d)n al(d)n, —(14+€/2)I(5)n —(1—a+e)I(d)n
Pg(fn(a)e(eu)(),e (>])251+Ee”e(+/)”ze( +2)1(3)

where the last inequality holds provided that n is large enough (n > n.).
This leads us to define, for n > n. the event A, for o (or more precisely for
{0,01,...,0,}) of being accepting, by

oceA, if fulo) € (e_(a'*'a)l(g)”7 e_aj(g)"] . (3.14)
Then (3.13) gives the lower bound
P,(ceA,) > e~(=ata)I®n jr >ne.
Moreover we have for n > n.
E, [eﬁhm’“’"l{aneﬂ}l{aeA"} > Bon PT(|T Noly, > gn,an ET,0n < 2bn> 1oeany

> e(Bn—(at)IONn 1y (3.15)

3.4 Localization strategy

Let us fix 8 > B2 = B};“m, $ as in (3.10) and /¢ large (in particular ¢ > n., so that
(3.15) holds for n = £.) We divide ¢ into segments of ¢ jumps which we denote @1, Q2, ...,
that is, Q; = {0(i—1)e+1 — T(i—1)es---,0ie — 0—1)¢y. We say that Q; is an accepting
segment if Q; € A,. We now write A for A,, and a for a(¢). Let

pa = Py(Qi € A) > e 1m0t (3.16)

where the inequality is from (3.13). Informally, the strategy for 7 is then to visit all
accepting segments, with no other restrictions on other regions. On each such segment
one has an energetic gain of at least e(#"—(a+€)1(9))n thanks to (3.15).

We define M := 0, and iteratively M; := inf{j > M;_1; Q; € A}; then M; — M;_, are
independent geometric random variables of parameter p 4. Imposing visits to all the
accepting segments @)y, (that is imposing oas,¢, o(ar,+1)¢ € 7), One has

k
ZX/IM,B >E; (H exp (6|0’ﬂ7‘ﬁ (O‘(Aji1)270-Mif]’)1{0-Jwie€7—}1{0—(M11)ZGT}> . (3.17)

i=1
So, using (3.15), and with the convention that P.(0 € 7) = 1, we have

k
log Z51,05 > Z <log P-(o(—1ye — on,_y0 €T) + B0 — (a+ 5)](5)6). (3.18)

i=1

Letting k£ go to infinity, and using the Law of Large Numbers twice, we get

o 1 -
F(B) > hmlnfm log Z31, 0.5

k—o0 k
1 1 ~ ~
Z m <£EU logPT (U(]\/fl—l)é S T) + 55 - (CL + 6)[(6)) s (319)
EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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with E,[M] = 1/p4.

We are left with estimating E, log P, (o(a,—1)¢ € 7). For any o > 0 and non-random
times n, (1.19) ensures that, for any n > 0, one can find some n,, such that, for all n > n,,

logP,(ne7)>—-(1—-aAl+n)logn. (3.20)
Therefore if /, is chosen large enough, and ¢ > /,, one has
E,log P (o, —1)e €7) = —(1 —a A1+ 0)Eo[1{as, 513108 0 (a1, —1)e]- (3.21)

The following is proved below.

Lemma 3.2. Let n > 0 and suppose a > 0 in (1.5). Provided /¢ is sufficiently large we
have

147 1
Eo[1a>13 log o, —1ye) < =1 <log€+log QDA) .

Combining (3.21) with Lemma 3.2, one gets for ¢ > /,, and provided that ¢, is large
so that 7 log¢ <,

1
ZEU logP, (O’(Ml_l)[ € ’7') >—(1—aAnl+mn)

1+n<

1.1
L (e P ) 3.22
aai\g o8, (3.22)

4
From (3.19) and (3.22), and assuming that 7 is sufficiently small (depending on ¢), we
get

=1 (14¢)-log— —¢ (3.23)

¢ " pa
Now, the crucial point is that « + @ > 1, so that (1 —a A 1)/a A1l <1, and one has

F(B) =2 pa (55—(a+s)1(5)_m 1.1 )

F(B) =z pa <ﬁg— (a+e)I(d) — (1 +g)%10gi _E>

> pa (85— (a+)1() — (1 + o)1 —a+e)1(5) — <)
> pa <;fh°m(ﬂ) —(3—a+e)el(0) — s) , (3.24)

where we used (3.16) in the second inequality, and (3.10) in the third one. If we
choose ¢ small enough, we therefore have that 7(3) > 1paF"™(8) > 0, as soon as
B > pgann = phom This completes the proof of (2.2) Theorem 2.1. O

Proof of Lemma 3.2. Let us first bound E, log 0,, for deterministic large n. Consider first
a € (0,1). Letn € (0,1/4). From [17], whenever k/b, — 00, Py(0, = k) ~ nP, (01 = k).
Hence using (1.5), uniformly int > 1+ 1, as n — oo,

P,(on > %) = (14 0(1))nPy (01 > nt/®) < p'=tH7, (3.25)

Therefore there exists some n,, such that if n > n,,

(,%gl—i-n-l-/ P, <logan>ilogn> dt
logn 147 o
o 1
< 1+n+n1+"/ e7tlosn gt < 144+ — (3.26)
147 logn

so that, provided that n is large enough,

1+2
E,logo, < +~ " log n. (3.27)
a
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For & > 1, we can multiply the probabilities P, (o1 = n) by the increasing function
cn” for appropriate ¢,y > 0, and thereby obtain a distribution with tail exponent in
(1 — n,1) which stochastically dominates the distribution of ;. This shows that

+ 2n

E,logo, < log n.

Thus for all @ > 0 and 5 € (0,1/4), for n large,

144
E,logo, < — 1 logn. (3.28)
anl

Now let n4 = K/p4, with K (large) to be specified. First, provided that /¢ is large
enough,

1+ 4
Eo (10 >13 1 an <204} 108 00, —1)¢] < Eg[log o ,e] < &/\117

log(2n4¢), (3.29)

where we used (3.28) in the last inequality. Second, fixing m > 3, we have for any
je ((m — 1)nA,mnA]

Eo[1(an>1310g 01y | M1 =j] = E, [logogi_1ye | Q1 € A,...,Qj-1 ¢ A
<E;[log0mnae | Q1 ¢ A, ...,Qmn, & A

m

§ [log (JmAg — O'(T_l)n_Ag) | Q; ¢ AVie ((7’ - l)nA,TnA}

=1

mEg (IOgO'nAg | Q; ¢ AVi < n.A)

E,[logoy,

[L‘nf\é] . (3.30)
(1 —pa)™

Hence, using (3.28), one has that if ¢ is large enough,

1+4n log(naf)
E, [1{M1€((m—1)nA,mnA]} IOg U(M1—1)£:| <P, (Ml > (m - 1)’!’L_A) m ani (1 —pA)"““

m—2)n 1+4
<m(l—pa)m™? Aﬁlnlog(”xtf)

1
< 2me (MK _—_ 0). 3.31
< 2me =1 og(nal) ( )

Combining (3.29), and (3.31), we obtain, provided that K is large enough (depending on
)

144n

Eo[Liansnylogoon, 1] € == 7 og(2n.4¢) +mZ:32me‘(m 2>KQA 7 log(nal)

1+ 59

< 1

S = og(2n.al)
1 1

< 116 <log€+log ) (3.32)
anl DA

where the last inequality is valid provided that ¢ is large. O

4 Coarse-graining and change of measure: proof of the second
part of Theorem 2.1

In this section and the following ones, we deal with the case a + a < 1. In particular,
onehas 0 <a <1, 0<a<1anda* > 0. Moreover, the renewal 7 N ¢ is transient, so
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E, -[|TNo]] < +oo, and the annealed critical point is 82" = —log (1—E, ;[|[TNo|]7!) > 0.
The proof is decomposed into several parts: first, we use an alternative representation
of the partition function in order to obtain a new model which naturally incorporates the
quantities E; ,[1{,,¢-}]. This model has an annealed critical point u3"" = 0; we apply a
fractional moment/coarse-graining/change of measure argument to show the quenched
critical point is strictly positive. The core of the proof is Section 4.4 where our choice of
change of measure for ¢ (on a block of L renewals) is specified. The change has a simple
form, given by a density n1,, + 1,¢ for some small 1 and event .J;, which reduces the
measure of J;. The difficulty is in selecting J;, to have small probabilty, but also so that
on Jj the size of the partition function is substantially reduced, in the sense of Lemma
4.1. In other words, we need to identify a small set J;, of configurations ¢ which make
the main contribution to the annealed partition function.

4.1 Alternative representation of the partition function

We use a standard alternative representation of the partition function, used for
example in the Random Walk Pinning Model, see [10] and [7, 11, 12], and in other
various context: it is the so-called polynomial chaos expansion, which is the cornerstone
of [13].

We write e = 1 + z (called Mayer expansion), and expand (14 z)Z =1 Uonert: we get

N

f$r 5 [fine
m k=1

=1 1<iy<-<im=N

N

Z z" Z H ET[l{Uik*Uik_lGT}]7

m=1 1<i1<-<ipm=N k=1
(4.1)

where iy := 0. We want to interpret the expansion (4.1) as the partition function of a new
pinning model, with a renewal v representing the new polymer. To that end, let us define

1
]ET,U[l{JnGT}]v (4-2)

K* L
() E.,[rNo|

sothat ) _ K*(n) = 1, and we denote by v a renewal process with law P, and inter-
arrival distribution P, (v; = n) = K*(n). In particular, v is recurrent. Lemma 1.4 (proven
in Appendix A.2) gives the asymptotic behavior of K*(n):

n—o00 (P* (n) 77/_(1—“!*) l—-a—a

witha* = —— > 0. (4.3)

K*(n) E., |7 Nol] &

We define 22" := ¢ — 1, so that 22 = E, ,[|[7No|]~'. Then we write z = 22""¢*: thanks
to (4.2), we have

N m
AR Z e Z H K™ (i, — ig—1)w(0,igp—1, %)

m=1 1< <im=N k=1
—E, [esnONIy (), o, [0,N})1{N@}}, (4.4)
with E
w(o,a,b) = r[Lov-o.cr)] , E,|w(o,a,b)] =1, (4.5)
E‘na[]—{o’bfoaG'r}]
and B[] X |
W(y, o, [a7 b]) — T k,‘:l/ke[a?b] {Ul’k GT} Eo- [W(l/’ o, [a/, b])] — 1 (4.6)

ETﬁﬂ[Hk:ykE[a,b] 1{‘7"k ET}} 7

Thus Z %« does correspond to a pinning model: an excursion (vi, Viy1] of v is weighted
by e*w(o, v;, v;11). Note that, since E, [w(o, a,b)] = 1, the annealed partition function,

Eova\-/',u = EV [eu\yﬁ(O,N]\ 1{N€u}] 5
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is the partition function of a homogeneous pinning model, with an underlying recurrent
renewal v: the annealed critical point is therefore u3"" = 0.

4.2 Fractional moment method

We are left with studying the new representation of the partition function, ZKW, and
in particular, we want to show that its (quenched) critical point is positive. For that
purpose, it is enough to show that there exists some v > 0 and some ¢ > 0 such that

lim inf B, [(Z“;QU)C} < +o0. (4.7)
ne ’
Indeed, using Jensen’s inequality, one has that
F(B) = li L B log 25 5 — lim ——E, 1 (Z% )¢ <1li inf - log B (Z% )¢
= i yBolog 2R s = fim o log(ZR,)° < lninf o log Bo | (Z5,)¢
(4.8)
so that (4.7) implies F(3) = 0.

4.3 The coarse-graining procedure

Let us fix the coarse-graining length L = 1/u, and decompose the system into blocks
of size L: B; :=={(i—1)L+1,...,iL},i > 1. Considering a system of length nL, for n € IN,
we decompose the partition function according to which blocks are visited by v, and
where each visit begins and ends:

m

Vng = Z Z e Z vaf-likvfik]vu
=1

I={1<i1 <-<im=n} di; <fi, dipy, <fiy=nLk
diy fiy €Biy dip, €Biyyy

X K*(dlk - fik—l)w(0-7 fikfl?dik% (4.9)
where fy = ip = 0 and
=B, [V (0,0, [0, )1 ey la € ¥
<eE, [W(v,0,[a,b) e ylla € v] = er;bLo-

Then, we denote by Z7 the partition function with v = 0, and where v is restricted to
visit only blocks B; fori € Z: if T ={1 < i3 < -+ < i, = n — 1},

m

Zre= Y > HZ@ik)fik]7OK*(dik—fikfl)w(a,fikfl,dik). (4.10)
diy <fiy dipy, <fiy,=nL k=1
diy s fiq €Biy dip, €Biyy,

For ( < 1 we have
(Z5r) < Y eH(zp)S, (4.11)

and we are left with estimating E, [(Z7)¢].
We choose ¢ given by (1 + a*/2)( = 1+ a*/4. We will show in the next two sections
that for every § > 0, there exists Ly such that for any L > L,

1|
E,[(21)¢] < 0P ] (i — ig—q)~F/9). (4.12)
k=1

EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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With (4.11), this shows that

7] X
70 ¢ esd
E, [(Zp)< ) 11 T (4.13)
Zc{1,....,n},neT k=1 -

We choose 4 so that K (n) = e¢én~(1+"/4) sums to 1, making it the inter-arrival probabil-
ity of a recurrent renewal process 7. We then have E, [(Z], ,,)¢| < P:(n € 7) <1, which
yields (4.7) and concludes the proof of the second part of Theorem 2.1. O

4.4 Change of measure argument

To estimate Z7 and prove (4.12), we use a change of measure, but only on the blocks
B;, for i € Z. The idea is to choose an event .J;, depending on {0, 01,...,0.} which has
a small probability under P,, but large probability under the modified measure, see
Lemma 4.1.

With the event J;, to be specified, we define, for some (small) n > 0,

9(0) ==nls, + 1y,  gz:=[]9(os), (4.14)
i€T
where o5, = {0,011 — 0iL,...,0G+1)L — 0ir} is the translation of o by ;..

Using Holder’s inequality, we have
E,[(Z7)] =E, [QEC(QIZI)C} <E, [(91)_</(1_O]1_CE0 l9227)° . (4.15)

The first term on the right in (4.15) is easily computed: assuming we choose J;, with
P,(J1) < n¢/(1=9), we have

1—¢ [71(1—¢)
E. {(gI)C/(IC)} =E, [(g(g))C/(lo}
= (7 /0=OP, (J1) + P, ()
<27, (4.16)

H1(1=¢)

We are left to estimate E, [g7Z7]. For this it is useful to control E, [g(o)Zv[”a b]] for
0 < a < b < L. From the definition of g,

E;[9(0) 2, 1)) < 1Eo 2, ) + Eo [Lsg Z7, 3] (4.17)

Then, provided that we can show E, [1¢ vafl’b]] <nP,(b—a € v) whenever b —a > cL,
we conclude
Eol9(0) 20y < 20+ 1p-acery))Pu(b—a € v). (4.18)

The following lemma fills in the missing pieces of the preceding, so we can conclude that
(4.16) and (4.18) hold in the case a* > 1/2. The proof is in section 4.5.

Lemma 4.1. Suppose (1.5) holds, with @ > 0 and o + & < 1. If o* > 1/2, then for any
fixed n > 0 and € > 0, there exist events J;, determined by {0,01,...,01}, and Ly > 0,
such that, if L > L,

P,(J) < n¥/079 (4.19)

and moreover, for0 < a < b< L withb—a > ¢cL,
E,[1/¢ Z[‘;,b],o] <nP,(b—acv). (4.20)

Additionally, for all L, E, [1,, Z7, ) o] <P.,(b—a €v).

EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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Together, (4.19) and (4.20) say that .J;, is a small set of configurations o which make
the main contribution to the annealed partition function. As we will see, changing the
measure as in (4.14) for a given choice of the set Z of blocks in (4.9) shrinks the analog of
Jr, for each block in 7, and thereby reduces the size of the partition function contribution
due to Z, by reducing the “reward” for visiting each block, to the point that pinning does
not occur in the quenched system.

To bound E, [gIZI] we need the following extension of Lemma 4.1, which concerns a
single block, to cover all blocks. The proof is in section 4.5.

Lemma 4.2. Suppose (1.5) holds, witha >0 anda+a < 1. Ifa* > 1/2and ( < 1,7 >0,
€ > 0 are fixed, then there exist an event J;, depending on {0,01,...,0}, and Ly > 0,
such that if L > Ly then P,(J;) < 7¢/(1=9, and forevery T = {1 <i; < --- < i, = n}
one has

E, [QIZI] < Y D> T E i~ fis )@y, —ay <ery)Po(fi—di, € v).

diy <fi;  diy, <fi,,=nL k=1
d1‘17fi1 EBil dimeBim

(4.21)
For fixed § > 0, we claim that, by taking ¢, small enough in Lemma 4.2, if L is large
enough,

IZ| 5

E, |9z 27| < . 4.22

l9721] < kl;[l (i — ip_q) /2 (4.22)

This, together with (4.15) and (4.16), enables us to conclude that (4.12) holds, with ¢
replaced by §' = 26, since ((1 + a*/2) =1 + a* /4.

Proof of (4.22). Forevery Z = {1 < i; < i3y < -+- < i, = n} we have by Lemma 4.2

E,[9r2:| <E,

1g, H(277 + 1{FikDik<gL})] , (4.23)
k=1

where we set
E7 = {1/ i v B # 0} :I}, D; :=min{r N B;}, F;:=max{rnNB;}.

We next show that given § > 0, for €, n sufficiently small, for any givenZand 1 < k < m

sup  E, [(2?7 + 15, Dy, <cL}))L{nBi=0 Vir_, <i<ip,vnB,, £0} | Fir_y = fik_l}
fik—lesik—l

< 8(ig —ip_1)" /D (4.24)
where we used the convention that iy = 0, fo = 0 and B;, = {0}. Then, we easily get
(4.22) by iteration.

First, we see that for every f;, , € B;,_,, we have

E, {1{%1&:(2) ViK1 <i<ix, vNBi, £0} | Fi\_, = fik,l] =P, (fi,_,+v1 € Bi, | v1 > ix_1L—fi,_,).
(4.25)

If 4 — ix—1 = 1, we bound this by 1. If i) —ir_1 > 2, writing for simplicity j; :=

ir —1x_1 — 1 > 1, the right side of (4.25) is at most

. . L
sup P, (v1 € (m+jipl,m+ (jr + DL |11 >m) < 5——— sup  P,(1r1 =)
0<m<L P,(v1 > L) j,L<as<(je+2)L
< e L™ (L) L o (L) (L) T < g TP (4.26)
EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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where we used the existence of a constant c3 such that, for all ¢ > 1 and L large,
¢*(aL)/¢*(L) < c3a® /%, In the end, we have

277EV [I{TOB,;:Q) Vik71<i<ik,‘rr‘|3¢k#@} ’Fik—l = fik-l g C4n(ik — ik71>_(1+a*/2) . (427)

It remains to bound the rest of (4.24). We decompose the expectation according
to whether the interval [D;,, F;,] is far from the upper end of the block 5;,, that is,
D;, € ((ix — 1)L, (i, — v)L] or not, where  := g(@ AD/(+a™) 5 ¢

Note that if D;, < (i, — )L and F;, — D;, <eL then i,L — F;, > 1vL. We therefore

have

E, {1{Dike((ikfl)L,(ikffy)L]}l{Fik7Dik<5L}1{TﬁBi:(Z) Vik_1<i<ik,TﬁBik7$(Z)} | Finy = fines

< sup Py(vy € [m+ jul,m+ (j +1—~)L]|v1 >m) x ZP (L eV)P,(1n > iqL).
0<m<L
Then, using (4.26) if i, — ix_1 > 2, or bounding the probability by 1 if ix, —ix_1 = 1, we
bound this from above for large L by

ali — ip_q) (1272 5("7 ) ZP (e v) < ese® My™ (i —igp_y) "I /2 | (4.28)
For the last inequality, we used (1.19) to get that P, (¢ € v) < ¢g min{1, p*(¢£)~'¢* ~1} for
all /> 1.

We now deal with the term when D;, € ((ix, — v)L, i L]. We have

E, [I{Dike((ik—'y)L(ik-&-l)L]}l{TﬂBi:(Z) Vg1 <i<iy, TNBi, £0} | Fi\_, = fi,H}

< sup P,,(Vl em+Ur+1—y)L,m+ (jp +1)L] |11 > m) . (4.29)
0<m<L

We can now repeat the argument of (4.24). If i), — i1 = 1, we get

vL
sup P,(v1 € ((m+(1—y)Lom+L]|vy >m) < —— su P,y =x) <cpy.
Ong%L ( 1 ( ( 7) ]| 1 ) P(l/1 > L) (1*’)’)L£IS2L ( 1 ) 7Y

(4.30)
If i), — ir_1 > 2, we end up similarly with the bound cgy(ij, — i_1)~ 1+ /2).
Combining the bounds (4.28) and (4.30), one gets that

E, |:1{Fik—D7‘,k<sL}1{‘rﬂBi:® Vo1 <i<ix, TNBi, #0} | E,._, = fik_l} < coy(ip — ik71)_(1+a*/2) ,
(4.31)

where we used the fact that e "My~ = 4.
Combining (4.27) and (4.31), we obtain (4.24) with § = ¢4 + c97y, completing the
proof of (4.22) and thus of (4.12). O

4.5 Proof of Lemma 4.1: choice of the change of measure,

We rewrite the partition function in (4.20) as follows:

1 70
mEU [1¢ Z[a,b],O] =E,E,[1;c W(o,v,[a, b))|a,be v
-E EO—T|:1J£ Hkukeab] {‘7%67} (l,bGV:|
ET U[Hk} I/ke[a b] {O'Vk ET}]
= EV[PU,T(JL | AL(v)) |[vo=a;bev;vn(b L] = @},
(4.32)
EJP 23 (2018), paper 6. http://www.imstat.org/ejp/
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where, for any renewal trajectory v, we defined the event
Ap(v) ={(o,7) : 0y, € 7 for all k such that v}, € [0, L]} . (4.33)
Observe that if we find a set G of (good) trajectories of v satisfying
Pl,(g|1/0:a; bev;vn(b L] :(D> >1—-n/2
whenever L > Lgand b — a > <L, then
By [16-Por (75 | AL@)) |10 =asbews v (b,1] = 0] < /2

To get (4.20), it is therefore enough to show that provided L is large and b — a > L, we
have that forall v € G
P, (Ji | AL(v)) < n/2. (4.34)

We now construct the event J;, and the set G (see (4.67) and (4.58)), and show
(4.19)-(4.20). Write L = . k;, and decompose [0, L] into 77, subblocks of length k;. We
take

kr, =1 ifE,[1n] < oo, kr,vL — oo to be specified, if E, [v1] = co. (4.35)

Define
SL’J' = max {Ji - 0'7;,1}. (436)
(G—Dkr<i<jkr
It is standard that Sz, 1 /By, has a nontrivial limiting distribution if k;, — oo (see Section
2.4), and since 0 < a < 1 we also have b,, = B,,. Define

YL

Ve =|{j<w:80;>rBi | = Zl{sL,j>rL Bi, b
=

where rp, b2 o slowly, to be specified. Here our use of block size k;, > 1 when
E,[v1] = oo is purely a technical device to deal with the fact we only know n — P(n € 1)
is approximately monotone, not exactly; the spirit of our argument is captured in the
kr, = 1 case. See Remark 4.3 for further comments.

The heuristic is that large gaps o; — 0;—; lower the probability of Az (v), since they
make 7 less likely to “find” the locations o,, ; equivalently, Ay (v) reduces the occurrence
of large gaps, and in particular reduces the probability that S ; is a large multiple
of its typical size Bj,. More precisely, our goal is to show that the conditioning by
Ar(v) (for v € G with appropriate G) induces a reduction in E,[Y] of a size y;, which
is much larger than /Var(Yy) and /Var(Y|AL(v)); then, one can take J, of the form
{YL — E,[Y1] < —y./2}, and obtain P,(J.) — 0, and P, - (J|AL(v)) — 1 as L — oo.

Step 1. We first estimate E[Y;] and Var(Y7), without the conditioning on Ar(v).
Suppose first that kz, — oo. Since P, (o1 > n) "< Lo(n)n~?, one easily has that, for
fixed r >0, as L — oo,

kr
P[,—(SLJ > T‘BkL) =1- (1 —Pg(Jl > T‘BkL)> ~1—exp (—kLPU(O'l > ’I”BkL))

1 - _ 1 -
~1—exp (—aT_ak‘LQD(BkL)Bk_La) ~1—exp (—ar_o‘) . (4.37)

where we used (2.9) for the last equivalence. Therefore when rp, b0 oo slowly enough
we have

1 -
P,(Sp1 > riBr,) "R kiPo(o1 > rp B, ) “R =" (4.38)
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and hence
L—oo 1 —a
E[YL} = ’YLP(SL,l >y BkL) ~  =YLT
@ (4.39)

L—oo 1 &

Var(YL) = ’)/LP(SLJ > ry BkL)(]- — P(SL’l >y BkL)) ~ E’YLT'ZQ .

In the alternative case k;, = 1, we have By, = d, (see (1.6), (2.8)) so whenever
r7, — 00 We have

L—oo 1 —&~
PG'(SL,l >Tr BkL) = Po-(al > dg'rL) z ﬁrl’ ()O(TL);
so similarly to (4.39),
o o 1 _5-
E[Y7) L2 Var(Y7) L2 @TLO‘QD(TL)L. (4.40)

Step 2. We now study the influence of the conditioning by A (v) on the events
{oi—0i—1 > 1By, } and {S1 ; > rr, By, }. As we have noted, heuristically one expects the
probabilities to decrease, and this is readily shown to be true if P.(n € 7) is decreasing
in n, but in general such monotonicity only holds asymptotically. So instead we show
that, for L large enough,

P, (Sp;>r.Bi, | AL(v),{Sce, 0 # j}) < (1 +2eL)Po(SL; > rLBr, ). (4.41)

where ¢;, — 0 is defined below, see (4.47).

To prove this, we first show thatforn > j >1and¢ >0, P, (0, € 7| 0; —0j_1 >
rr Bi, , 0j—1 = t) is not much more than P, (0, € 7 | ;1 = t). To this end, we
can form a coupling (p,p’) such that p has the distribution P,(0; € -), p’ has the
distribution P, (01 € - | 01 > r1 By, ), and p < p'. Then, thanks to the exangeability of
the (0; — 0i—1)i>1, we have foranyn > j > 1and ¢ >0,

Pgﬂ-(O'n T | 0; —0j—1>TL BkL70'j—1 = t) = Pg77—7p/(t —|—,0/ +0on—j € T), (4.42)

and
Py (op€T|0jm1=t)=Por,(t+p+0on_; €T). (4.43)

To bound (4.42) relative to (4.43), we proceed as follows. Let R > 1 and observe that
PU,T’p(t +p+opjeT|t+0o,-; < R)

>P,(R<p<2R) P, ,(t+p+onje€T7|R<p<2R,t+0,_; <R)
>P < 2 i P 4.44
>P,(R<p<2R)x g +(mer), ( )

which depends only on R. On the other hand, since p’ > ry, By, ,

Po’,T,p/(t + ,0/ + On—j cT ‘ t+ On—j S R) S max PT(m € T)

m2>rr By

< Pgmp(t +p+on €T |t+0,; < R), (4.45)

where by (4.44) the last inequality holds for any fixed sufficiently large R, provided that
L is large enough.
Now from (1.19), since o < 1, if R and L are large enough, we have that

P.(mer)>P.(neTr) foral R<m< irp By, andn >rp By,
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which yields
PU,T.,p (t+p+0n—j S ’ t+o,—; > R,t+p+0n_j < %TL BkL>
> Py (49 +ong €T |t+on>Rt+pton; <briBy). (446)

To control the contribution when t + p + o,,—; > %r 1 Bi,, we define the quantity

P,(uer)
= —_——1l:u>v> .
€ SUP{PT(UGT) u_v_k}, (4.47)

which satisfies limy_, €, = 0. Then, writing €z, fore,, By, /2, W€ have
(14+€)Psrp (t +ptonj;ET ’ t+on_j >Rt+p+on_;> %TL BkL)
> Py (147 Fons €7 [t on ;> Ritpton, > brBy,). (448)
Combining (4.45), (4.46) and (4.48), we obtain
Porp(t+p +0n—j €7)<(1+¢) Porp(t+p+o,—j€7)
By (4.43) and (4.42) this is the same as

PU_’T(O'H €| 0j—0j_1>1L By, ,05-1= t)
Po,T(Un €T Oj—1 = t)

<1+%g,

which is equivalent to

P,.(c;—0j_1>r. B Oon €ET,0_1 =1 ~
a,‘r(] j—1 LkL|n yVg5—1 )§1+EL,

PU,T((TJ‘ —0j-1 > By, | oj_1= t)
or by independence,

PU’T(UJ' —0j-1> TLBkL | On €T,05-1 = t)

<1l+4e¢€g. (4.49)
PO—)T(O'J‘—O’]‘,1 >TLBI<:L) L

Since t and n are arbitrary, this shows that for arbitrary v, conditionally on Ay (v), the
variables (1{s, o, ,>r, By, y)i<r are (jointly) stochastically dominated by a Bernoulli se-
quence of parameter (1+¢.)P, (01 > r1 By, ). In fact, by exchangeability this domination
holds for any given o, — oy_1 conditionally on any information about the other variables
O; —0;—-1.

We need to quantify what this conclusion says about the variables S, ;. The following
is easily established: there exists d; > 0 such that for all p € (0,1),e € (0,1) and k£ > 1
with kp < dg, we have

1—(1—(1+ep)F
1—(1-p)*

Taking p = P,(01 > rp Bk, ),k = ki so that pk < dy provided r;, is large (see (4.38)),
taking € = €;, and using the stochastic domination, we obtain that for L large, for all v,
(4.41) holds.

<14 2e.

Step 3. We next want to show that for certain v and j we can make a much stronger
statement than (4.41). Specifically, with L fixed, we say an interval 7 is visited (in v) if
INv# ¢, and (for 3 < j < v — 2) we say the sub-block Q; = ((j — 1)kz, jki] is capped
(inv) if Q; o U Q;_1 and 9,41 U Q; - are both visited.
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We now prove that, if j is such that Q; is capped in v, we have
PUJ’ (SLJ' > TLBkL | AL(Z/)) < 2(TL)7(170‘)/2 Paﬂ— (SLJ' > TLBkL) . (4.50)

Suppose that Q; is capped in v, and that s is an index such that (v,_1,v,] N Q; # 0:
we write s < Q;. Note that the events

H,;=qo0: max (0 —0i-1) > 7L By,
1€ (Vs—1,V51NQ;

are conditionally independent given A (v), and (by exchangeability) satisfy

P, . (H&j | AL(V)) =P, . <1n<1;{1§é(0i —0i-1) > 1L By, | o € 7') , (4.51)

where k := vy —v,_1 < 5k, (since Q; is capped), and ¢ := |(vs_1,vs] N Q;| < k.

Furthermore, since « € [0,1), by (1.19) we have P(m € 7) = @(m)m~1~* for some
slowly varying @(-). Therefore

P,,|loreT ‘ max (0; —0;—1) >7 B, | < max P.(mer)
’ 1<i<# m>ry, Bk’L

<co(rp Br, )" Y G(r By,) . (4.52)

On the other hand, since 0 < a < 1, 0,/B, has a non-degenerate limiting distribu-
tion with positive density on (0,00) (see Section 2.4). Using again that P(m € 7) =
@(m)m‘(l‘“), we therefore find that there exist a constant c¢1; such that, for any k£ < 5k,

P, (04 €7) > Py(oy € [d-By,2d,B;])  min P (mer)>cuB ' o(By,).

d, <m<2d, By,
(4.53)

With (4.52) this shows there exists some c;5 such that for large L, provided r;, — oo
slowly enough,

PU).,— (O’k S T‘ maXlSng(Ui — 0’1‘,1) > T BkL)

_ —(1—a) —(1-a)/2
< Vi < 4.54
P, (onc7) < (c12VvVep(re))rp, <7 ; (4.54)

or equivalently, using (4.51),

P, | max(o; —0s-1) >rp By, | o € 7')
PO’,T (HSJ | AL(V)) _ <1§i§£< ‘ ' 1) - ’ < (TL)—(I—O()/2.

PO'T 113 7 B
) ( u) P, <max (O'i - Ui—l) > T kL)
1<i<t

(4.55)
Since the {H, ; : s < Q;} are independent for fixed j (even when conditioned on Ay (v)),
with U5<Qj Hs,j = {SL)J‘ > TLBI@L} and PU’.,— (SL’J‘ > Ty BkL) — 0 as L — oo, we have
from (4.55) that for large L

Pa’,T (SL,j >TrL BkL | AL(V)) S Z Po‘,T (Hs,j | AL(V))

S'<Qj
S (7’11)7(170£)/2 Z PU,T(HS,]')
5<Q;
<2(rp)"=/2P, _(SL; >rL Bi,) . (4.56)

Step 4. We now control the number of capped blocks Q;. Let

C(v)={j <~vr:Qjiscappedinv}, m*(n):=E,[r1 An],
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and define what is heuristically a lower bound for the typical size of |C(v)]| (see (4.59)
and its proof):

v ¥ (k) (L)™' if0<a* <1,
Dp = {yrm*(kp)m* (L)~ ifa* =1, B, [v1] = o0, (4.57)
Lo*(kp)kp™ if E,[11] < +o0.

We now restrict our choice of vy, k1, as follows (with further restriction to come):

(i) if E,[v1] < 400, we choose kr, = 1,~v;, = L, and get Dy, = Lp*(1) ;

(ii) if E,[v1] = 400 we choose 1 <« k;, < L such that v, = L/k;, is slowly varying,
and as L. — oo we have v, — oo slowly enough so ¢*(k;) ~ ¢*(L) if a* < 1 or
m*(kr) ~ m*(L) if a* = 1, which is possible since for a* = 1, m*(n) is slowly
varying. We obtain Dy ~ yg* > 1.

We then fix ¥ > 0 and define the set G of good trajectories by
G={v:|C(v)| > kDr}. (4.58)

We wish to choose k = (1, ¢) sufficiently small so that, provided that L is large enough
and b — a > L, one has

P,(Glvo=a;bev;vn(bL]=0)>1-n/2. (4.59)

For a fixed ¢, for large L we have D); > €Dy, for all M > €L, so it suffices to prove this
for e = 1, that is, to consider only a = 0,b = L. We now consider two cases.

» Case of a* < 1 or E,[11] < +o0. In that case, it is standard that there exists a
constant c;3(n) such that, defining ny := ¢;3 min(¢*(L)~'L®", L), we have for L large
enough

P,(lvn[0,L/2]] <ng) <n. (4.60)

Observe that each gap (vs_1,vs] of v of length v — vy € [2kp, 3kr) contains a capped
sub-block. We therefore simply need to count the number of such gaps: denote

n
V, = Z Ly, —vo_i€l2ks 3k}

s=1

There exists a constant ¢14 = c¢14(7) such that, provided that nP, (v, € [2k1,3ky)) is large
enough, one has
P, (V, <cuunP, (v € [2kr,3kL))) <n. (4.61)

Using that P, (14 € [2ky,3ky)) is of order @*(kL)kza* we get that Dy, < cl_;nLPy(z/l S
[2kr,, 3kr)) for some ¢15(n), and we obtain

P,(0°|Lev) < Pl,(]{s <wA[0, L] : v —vey € 2k, 3k1)}] < HDL‘L € u)
< Pl,(|z/ﬁ [0,L/2]] < np|L € u) +Py(|m [0, L/2)| > np; Ve, < kDL € y)

K
< c1en + c16Py (VnL < cTnLPV(Vl € [2k'L73kL))>
n

< 2c167 -

In the third inequality, we used Lemma A.1 (Lemma A.2 in [22], that we recall in the
Appendix since we use it several times) to remove the conditioning at the expense of the
constant cig. In the last inequality, we used (4.61), taking ~ sufficiently small.
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* Case of a* = 1, E, [11] = +co. First, we claim that with our choice of k;, we have

P, (Q; is capped) Lopey, Indeed, summing over possible locations of a last visit to Q;
gives that for 1 < j <~vpandi < (j — 1)k,

kr—1
PV(QJ» is visited | i € u) > ZO P,(jkr —m—i € v)P,(v1 > m)
> 1 *
> 2122 P,(l e v)m*(kyr)

_m*(k)
m*(L)

~1 as L — oo, (4.62)

where we used Z’:f;ol P(v1 > m) = m*(kr) in the second inequality, and (1.19) in the
last line. Note that the lower bound in (4.62) is uniform in the specified i, 5. Therefore,
applying (4.62) three times, we obtain uniformly in j < v

L—oo

P, (Q, is capped) > P, (Q;_1,Q;, Q41 are visited) "= 1. (4.63)

Recall Dy, ~ vz, and denote Wy, := [{j < 71/2; Q, is not capped}|, so that E,[W;] =
o(v1), by (4.63). Taking x = 1/4, thanks to Markov’s inequality we then have for large L

P,(G°|Lev) <P, (Wr >ty |Lev) <Py (WL >47.) >0 asL — oo, (4.64)

where in the second inequality, we used Lemma A.1 to remove the conditioning at the
expense of the constant cyg.

Step 5. We now have the ingredients to control how the conditioning by Ay, (v) shifts
EU[YL] = ’yLPg(SL’l > TLBkL); when v € G.
We wish to choose vr,, k1, so that, for L sufficiently large,

1 1
vyrerp < gKJDL < §|C(1/)| forallv € G. (4.65)

The second inequality is just the definition of G. When o* > 1, v, and Dy, are of the
same order, so the first inequality follows from £;, — 0. So consider the case o* < 1,
where Dy, ~ ,nyx* by (ii) after (4.57). Here the first inequality in (4.65) follows if we have

1—a™

063 < Ezl. Since e, \, 0 and L/ky, is slowly varying, we have By, > Lsoe;, <¢j soa

sufficient condition is ’yi_a* < 521. But our only restriction so far is from (ii) after (4.57),

that v, — oo slowly enough, so we may choose ~y, to satisfy this sufficient condition also.
Thanks to (4.41), (4.55) and (4.65), we have for v € G and large L

E,-[YL | AL(v)]

= ZPU,T(SLJ > bch ‘ AL(I/))

j=1
<2[CW)| (r) " "/2P(Sp1 > 1L Bi,) + (v — [C())(1 + 26L)Po(SL1 > 1L Bi,)
< {VL —lc@w)|+2(C@)| (r) "2 + 29,8, |P(Sp1 > rLBy,)
< [ve — 38DL] Po(Sp1 > miBy,). (4.66)

Step 6. We now define

Jpi=qo0: Z s, jori By, 3 < [’YL - ifiDL] P,(Sp1>rrbp,)
J<vL

- {YL _E[v] < —ZDLP(,(SL,l > B,%)} . (4.67)
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Let us compare P(J;) and P(J§|AL(v)) for v € G. Since a* > 1/2, v, D;? is of order
L=(2"=DAL 0, so we can choose 7, to satisfy v, D;?r¢ — 0, which is compatible
with our previous requirement on r, involving (4.54). Using (4.39) and Chebyshev’s
inequality we then get that

167z nooo 16@

P(Jp) <
( L) - KJ2D%PU(SL’1 > rr bkL) K2

D *r¢ =0 as L — oo. (4.68)

On the other hand, by (4.41), conditionally on A(v) with v € G, the variables lis, j>re by}
1 < 5 < ~g, are (jointly) stochastically dominated by a collection of independent
Bernoulli variables with parameter (1 + 2¢)P,(Sr,1 > rr By, ). Hence, Var(Yz|AL(v)) <
2v,P,(SL1 > r By, ) and as in (4.68) we obtain

K o0
P, (JS | AL(v)) < P(YL — Eo Vil AL ()] > TDLPo(Spa > 1 bkL)) L2ec g (4.69)

We have thus proved (4.19) and (4.34), and hence also (4.20). O

Remark 4.3. If n — P(n € 7) is non-increasing, then we have that ¢;, = 0 for all k£, and
we can replace (4.41) with

Por (Sp; >reBi, | AL(wv), {SLe. 0 # j}) <Po(SL; > rL Br,).

The term vp€¢;, does not appear in the computation in (4.66), and we can drop the
condition (4.65). We can therefore choose v, = L,k; = 1 in all cases, not just when
E,[11] < 0.

Then for a* < 1, we have Dy, of order L *(L)~!, and the condition 77, D;? — 0 in
Step 6 becomes

L2a*71<p*(L)72 > 1.

We therefore need o* > 1/2, or o* = 1/2 and ¢*(L) Lzpe, going slightly beyond the
condition a* > 1/2. In Appendix A.2, we show that *(n) ~ c¢@(b,)~1=*)/%py(b,), with
wo(k) = (k)= if a € (0,1), and @(k) = @(k)/P.(11 > k)? if @ = 0, cf. (1.19). We have
that lim,, . ©*(n) = 0 if and only if limy, ., G(k) /%y (k) = +o0.

Proof of Lemma 4.2. The proof of Lemma 4.1 is for a single interval [0, L], and we now
adapt it to the whole system: we take the same definition for J;. Then, recalling g7 from
(4.14), we have similarly to (4.32)

m

E, {QZZI} = Z Z HK*(dlk _fik—l)P(fik _dik GV)
diy <fiy diyy < fiy, =nL k=1
diy, fiq €Biy iy €Biy

X B, [E,.. ( ;ﬁ(n F1os, er3)) | AW)) €yt izien]s 470)

where, setting v, = v N B;,
= {V V1<k<m, min(ygik) = dik,max(ulgik) = fi;ve, =0 ifi ¢ I}.

(dig fip)i<k<m

Now, for any 1 < k < m such that f;, —d;, <eLorvs, ¢§, webound 1, cj:} by
i
1. We get the bound

N+ 10w, ez SNH1(5, —dy <ery T 15, —di, >er) v, g0}t 1os, erg}livs, egy- (4.71)
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By expanding the product over k € {1,...,m}, we obtain

E, {Ea,r( ﬁ(n + 1{Usik GJE}) | A(”)) ‘g(dikyfik)lskSm}

k=1
| Ky
< > U Lifi,—di, <er}
Ki,K»2,K3,K4 disjoint keKs>

Ui, Kj={1,....m}

Eu{ 1T 1{fikfdik>sL}1{uBikezg}Em( I1 Lios, ergylvs, €0} ‘ A(V)) ‘&dik,fik)lgkgm]
keEKs keK,

(4.72)

The argument in Step 6 of the proof of Lemma 4.1, using domination of the variables
(15, ;>r. By, ) in some B;, by independent Bernoullis, remains valid if we also condition
on any information about the other B;, i # i;. This means we can ignore the dependencies
between different i, € Z, and if L is sufficiently large we get that, since v, € g for all
ke Ky

E{ I Yton, essrlive, cor | AW)| < (m/2)17], (4.73)
keKy

where the bound comes from (4.69).
Then, by independence of the vz, N [di,, fi,] conditionally on &4
that

i Jig ) 1<k<m’ we get

EV|: H 1{fik7dik >5L}1{V81k ¢G} ‘g(dik,fikhgkgm}
kEKs
= H l{fik—dik>5L}PV(V ¢ g | vo=0; fi, — diyy €EvivN (ka - dik’L} = @) < (77/2)‘1(3‘ )
keKs
(4.74)

where we used (4.59) in the last inequality.
Therefore, plugging (4.73)-(4.74) in (4.72), we get that

E, |:Ea,'r< ﬁ(” + 1{05% EJE}) ‘ A(V)) ‘g(dikafik)lgkﬁmr}

m

< > il 2) ¥l 2) sl TT 14p,, —a <eny = [T @0+ 145, —a, <cry) -
Ki,K»2,K3,K, disjoint keKs k=1

Ut Kj={1,...m}

5 Proof of Theorem 2.2: examples with unequal critical points

In this Section, our goal is to exhibit an example of renewal processes 7, ¢ in which
the critical points are unequal. As suggested by comment 6 below Theorem 2.2, in
order to do so, one must somehow increase the strength of disorder: this is the idea
of our example, where we construct a distribution of 7 and ¢ so that P,(o; € 7) is
typically much smaller than E,P.(0; € 7) - in other words, in the representation (5.1),
the weigths w(o, a, b) (which have mean 1) will be typically very small but with a large
variance. Our technique is based on a fractional moment estimate, similar in spirit to that
of [31] (which estimates critical point shifts in presence of strong disorder), compare in
particular (5.1) below with [31, Eq. (2.15)-(2.16)].
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We use the representation (4.4) which yields that for ¢ € (0, 1),

eUCm Z H K* (lk - ikfl)CEO' I:'lU(O', ikfla Zk)c}

=

Q

ZNQ(
g
A

IA
[]=

m=1 1< <im=N k=1
N m ¢

_ ulm Ulk Tk—1 € T) }
= e

m=1 1< gz:mkal_[l g, T |0ﬂT|]
< ZNZ “CZ (0 € ] (5.1)
it m[ldﬁTH ' '

Hence if -

j=1 Eor[loN THC

then for sufficiently small v > 0 we have (4.7), which establishes inequality of critical
points since u2"" = 0.
Fix a, @&, , ¢ as in the theorem, and for ¢ € (0,1/2) and even N (large enough) define

€ ifn=1,
0 if2< N < N/2,
KNﬁg(n) = 2w

X ifN/2<n <N -1,
n~ (4N p(n) ifn > N,

where py . is chosen so that }°, -, K .(n) = 1. Define I? (n) and p, PR . similarly with

a, @, N in place of a, p.N, and suppose 7,0 have dlstrlbutlons Ky, K ~ . respectively.
Note that py,py . are in (1/2,1) provided N is sufficiently large. We use superscripts

N, N ,€ to designate these parameters in the corresponding probability measures and
expectations, for example P):;"¢(.) and E}[-]. We always take N > N.

It suffices to show that (5.2) holds, for some N, N ,€,(: we prove below that the main
contribution to the numerator and denominator of (5.2) comes from jumps of size 1. For
the denominator in 7, we observe that

Eé\{;ﬁ’g [lonT|] > Pé\{;ﬁ’s(ﬁ =01=1)= e?. (5.3)

For the numerator in (5.2), we write

oo _ +oo +oo
ZE;V’E [PY<(0; € 7)] :ZZPNE mGT)CPNE( ; =m)
j=1 j=1m=1

“+o0

=Y PYe(mer)PY(meo).

m=1

For m < N/2 we have Pff’a(mg 7) = ™ (and similarly for ¢ for m < N/2), so it follows
that if ¢ is small enough (and N large)

o N/2—1 N/2—-1
SENE[PYe(ojer)]< Y HOmp N my Z PYE(m e 7)SPY S (m € o)
j=1 m=1 m=N/2 m=N/2
o ~
< 2e1HC 4 Z PJTV’E(m IS T)CP{,V’E(m €0). (5.4)
m=N/2
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We now would like to show that if /V is large, the last sum is smaller than the term 2e1+¢,

We make two claims. First, there exists c¢;7 such that provided N is large,
N
PNe(merT) < %for allm > — . (5.5)

Second, there exists c18(¢) and slowly varying o, {/;0, Y, {/; such that for all sufficiently
large N, N,

PY=(m € ) < cism™"uig(m) for all m > N0 (N) (5.6)

and
PYf(meco) < crgm~ " go(m) forall m > NV y(N) (5.7)

Note that by (1.19) the inequalities in (5.6) and (5.7) hold for sufficiently large m, so the
aspect to be proved is that the given ranges of m are sufficient in the case of distributions
KNE,KN We henceforth take N > 2N/ (1= (N) and ¢ € (a/(1 — a),1). Applying
(5.5) and (5.7) to part of the sum on the right in (5.4) then yields that for some slowly
varying 1, provided N is large,

- ¢
C —(1—-a) T
Z PYe(me ) PYe(meo) < ]\% Z crgm ™1 ahg(m)
N/2<m<NY/ A=)y (N) mINY/(E=e)yh(N)
< epgN 6T/ A=)y (N) < €2 (5.8)

Then taking N large and applying (5.6) and (5.7) to the rest of that same sum yields that
for some slowly varying s,

Y PY(men)PY(meo) <N VOO (N) <2 (5.9)
m>N1/(1=a)y(N)

Provided ¢ is small, (5.3), (5.4), (5.8) and (5.9) yield

Z ENE [PY<(0; € 7)°] - 2e11¢ 4 2¢2

EX N ons)e — (22)¢ <h (510)

proving (5.2) and completing the proof of Theorem 2.2.
We now prove (5.5). Fix m > N/2 and let

F,, =max7N[0,m— N], Gp =min7TN(m— N,m],

with G,,, = co when the corresponding intersection is empty, and F;,, undefined, G,,, =0
when m < N. From the definition of K . we have for N/2 <k < N

k—N/2
. -2 3 4
PYe(mer|Gp=m—k)=¢c"+ jEZO (j—l—l)aj% SSN/Z-FN < N (5.11)
and for 0 < k < N/2
PY(mer|G,=m—k)=¢" (5.12)

Now (5.5) follows from (5.11) when N/2 < m < N, so we consider m > N. It is enough
to show that forallm > N and N <j <m,

PY<(mer|F :mfj)gc

17
—. 5.13
N (5.13)
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For any N < j < m, we have that

N—-1
PV (mer|Fn=m—j)=> PN (mer|Gpn=m-kPY(CGpn=m—k|Fym=m-j)
k=0
N/2-1 4
< k;) PPN (G = m — K[ F =m =) + (5.14)

where we used (5.12) for the terms k < N/2, and (5.11) for the terms N/2 < k < N.
We now show that there is a constant ¢;g such that uniformly for &k < N/2,j > N,

PYe(Gp=m—k|F,=m—j) <cs/N. (5.15)

The probability on the left is equal to P.(7, = j — k)/P.(m1 > j — N). Therefore for each
j > 3N/2, the probabilities P, (G,, = m — k|F,,, = m — j),k < N/2 are all of the same
order so are bounded by cy9/N for some cyp.

For the other j values, that is, N < j < 3N/2, the probabilities P.(G,, = m — k |
F,=m-—j),j— N < k <j— N/2, are all equal so have common value at most 2/N.
For k < j — N the probabilities P.(G,, = m — k|F,,, = m — j) are uniformly smaller than
this common value provided N is large, because n*(”a)gp(n) < 2pne/N foralln > N.
Therefore the bound of 2/N applies for all k£ < j — N/2, which includes all k < N/2.

This proves (5.15), which with (5.14) proves (5.13) and thus (5.5).

It remains to prove (5.6); (5.7) is equivalent. Let § € (0, 1) to be specified, and define

om
Aj:Tj—Tj,h Mn:rjngafl(Aja Em:logm’
and 8(1
B = %’ no(m) = max{n : a, < m(logm)"},
(6%

where a,, is asin (2.9). If 7,, = m for some n > ng(m), it means that 7 is “very compressed”
in the sense that 7, < a,,. It is easily checked that there exist slowly varying 3,14 such
that

ng(m) ~ m*ps(m) asm — oo (5.16)
and
__n
(logan)? -
It follows from (5.16) that we can choose the slowly varying function ¢ such that for
large N,

n>ky:=NYY0=y(N) = 2nN < (5.17)

no (N1/<1—a>¢(N)) > ky . (5.18)

We choose m > N'/(1=2)y,(N). Note that ¢, > N provided that N is large.
We first handle the “very compressed” case, that is n > ng(m): using Lemma A.3,
provided N is large,

PY4(7,, = m for some n > ng(m)) < PY=(1, 0y <m)

2a
< PN (i) < 0™} < oxp (—eag(logm)?) < m~ (17 | (5.19
<P (i < gatop) o (Cemlogm?) <120 019

Next, we consider the “not very compressed” case, with a large gap, that is, n < ng(m)
and M, > {,,. Let m > NY(=9)¢(N);1 < n < no(m) and 1 < j < m; note £, > N
provided N is large. For vectors (t1,...,t,) € Z", consider the mapping which adds j to
the first coordinate ¢; satsifying ¢; > ¢,,, when one exists. This map is one-to-one, and
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provided m is large, it decreases the corresponding probability PN¢(A; = t4,..., A, =
t,) by at most a factor of (6§/logm)?(1*®)_ It follows that

2(1+a)
P7]—V’€(Tn =m +j7 Mn > ém) > ( > P.,].V’e(Tn = m,Mn > fm) . (520)
logm
Summing over 1 < j7 < m we obtain
1 1 2(14«)
P (1 = m, My > b)) < — ( Og(;”) PY(ry € [m, 2m)) . (5.21)
m
We let .
= ZAilAizN )
i=1

so 7, — 7,7 < nN. By (5.18) we have ky < ng(m). Provided N (and hence m) is large,
when ky < n < ng(m) using (5.17) we get 2nN < a,/(loga,)? < m. Hence 2nN < m
also for n < ky. Therefore, for all n < ng(m),

PN (7, € [m,2m)) < PN< (T,J[ > %) <P, (?n > %) < egnm”%p(m),

where we let 7 be a renewal process with distribution P, (7, = k) = k= (1+%) p(k) for all
k > 1 and then used Lemma A.2. Summing over n we obtain using (5.21) that for some

slowly varying s,

no(m) logm 2(14a)
Z PJTV’E(Tn =m, M, > {,) < ca5 < 5 ) no(m)melfo‘go(m)
n=1
< mf(lfa)ws(m) ) (5.22)

Finally we consider the case with no large gap: m > Nl/(l_a)l/J(N) and M,, < {,,. Let
A, i > 1, be iid with distribution P,(A; € - | Ay < {,,), and let 7" = " | A", Then

PYNe(r, =m, M, < lp) = (1 =P (11 > £))"P (1" =m) . (5.23)

n

Let
1l -«

12
For n > n1(m) we bound the first factor on the right side of (5.23). As N (and hence m)
grows we have

n(m) = Ml ()

1 1-—
ny(m)P. (Tl > Em) ~ %mﬁ,_nl = 120;; log m, (5.24)
so provided § is small, (5.23) yields
S PN (ra=m M, <ly) < > (1=PN(r > 4,)"
n=n1(m) n=n1(m)

< ———— — PYe (1 > 4y,
S P n > o) exp (—n1 (m)P2* (1 )

<m~ - (5.25)

For n < ny(m) we bound the second factor on the right side of (5.23). We have

P (" > m for some n < ny(m)) < PNE(r1t ) > m)
S efm/[mE‘]rV}E [eq—ltr/[m]nl(m) . (5.26)
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It is easy to see that, in addition to (5.18), we can choose the slowly varying v so that
(1—a)N < L2, ) whenever N is large and m > N1/(1=a)yy(N). Using that e* < 142z
for x € [0,1], we get that EN< [e™1'/m] <14 20, "EN[7{"], and we have

~

m

EN,E tr <N
T [7_1 ] — N PT Tfr < grn Z] SD

Jj=N

3
< 2 poa <
SN+ 0 () < 1

Q

so that

o 6 6
N[ 1 /tm] < —a < — T« .
ET [6 ] — ]‘ + 1 _ aem Qo(gm) — exp (1 _ agm Lp(gm)>

Therefore by the definition of ny (m),

ni(m)

efm/mef_V,s [eT{r/em} e~/ — gy =1/8 < pp=(1=a) (5.27)

Combining (5.19), (5.22), (5.25), and (5.26)-(5.27), we obtain for m > N'/(1=®)y(N),
PYe(mer) <m0 (3 +15(m)),

proving (5.6).

6 Variations of the model: proofs of Proposition 2.3 and Proposi-
tion 2.4

We start with the proof of Proposition 2.4, since we adapt it for the proof of Proposi-
tion 2.3, in which we need to control additionally |7],,

6.1 Proof of Proposition 2.4(i)

We fix 3 > 3, and find a lower bound on Z% ; = E.[exp(S|7 N o|,y)] by restricting 7
to follow a particular strategy.

As in Section 3, we divide the system into blocks B; := {0, O(i—1)L41—O(i—1)Ly - -+ » OiL —
U(i—l)L}: with L to be specified. For by from (2.9), there exists vy > 0 such that
P,(on > voby) < 1/4 for N large. Define the event of being good by

1 1
G = {(01,...,0'L) : ZlogZZﬁ > 5]-'([3) and oy < vobL}. (6.1)
Since 8 > f., there exists L such that, for L > L

3
P, (Llogzw> ]-‘(6)) = (6.2)
so that

P,(GL) > (6.3)

NJM—I

We now set Z = Z(0) = {i : B; € G1} = {i1,42,...}, the set of indices of the good
blocks, and set i = 0. There can be at most vyb;, T-renewals per block, so restricting
trajectories to visit only blocks with index in Z, we get that for all m € IN

m

m'UObL B = H P = 'Lk 1)L kflL)e}—(lB)L/27 (64)
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with the convention that P.(7; = 0) means 1. Then, letting m — oo, we get

1
f(ﬁ)L + —E logP. (11 = 03,-1)r)] Po—a.s. (6.5)

hmmf log Z% 5 > ——
8onp vobr, 2 vobr,

Let us estimate the last term. Thanks to (1.5), we have that

log P, (11 = 03, —1yr) > —(2+ @)1y, >y logog, —1yr,
provided L is large. Then, Lemma 3.2 applies: for L large, since P,(G1) > 1/2 we have

that ) ) A
log L +1 < log L.
1(°g +OgPU(GL))_&/\1 o8

Eo[l{i1>1} IOg U(ilfl)L)] < o

Hence for some L, for L > L,

4
(%]—"(ﬁ)L _ y log L) , (6.6)

hmlnfﬁlogZN5> 1

N—o0 vobr,

and provided that L is large enough, we have that F(3) > 0 for any 8 > 3., meaning
Be > Be.

6.2 Proof of Proposition 2.4(ii)

Observe that the annealed systems for the original and elastic polymers have the
same critical point, by Remark 1.2. Therefore 82"" < B.. When a = 0,a > 1, it then
follows from Theorem 2.1 that 3. < ., so equality holds.

Hence it remains to prove (. < . assuming a > 0, by showing that pinning in the
elastic polymer (length-7y system) implies pinning in the original polymer (length-oy
system.)

In the recurrent case, 5. = 0 so there is nothing to prove. So we assume transience,
which here implies o, @ € (0,1). Let vy = 2**N/* and 79 nj = {71,...,7n}. Define

Xn,j=Xnj(o) =E; ( plono sl Losem, N]}) ’
and recall

Z][(/.ﬂ = ET [exp(ﬁ\’r N O—|TN):|

= Xn;(0)P- <T[0,N] N{0j41,0542,...} =0 | 05 € T[O,N])- (6.7)

Let F(f) = liminfy_, + log Z§ 4 (which is a tail random variable of {o; — 0;_1,i > 1},
so is nonrandom, up to a null set) and assume that 7 (3) > 0. We define the truncated
sums

UT(U) ZXNJ (T[O,N] N{0j+1,0j42,...} = ¢ ! oj € T[O,N])a

Z35 = Z Xy, (o (6.8)

Then it is not hard to show that P,-a.s., for large N,

ZN;% ZO’T(UN 1) < eﬁNP (TN > 0'1)N—1) < 1

3

SO
= o 1 0, T(vny—1) S 1 o, T(vn—1)
F(B) = l%gfﬁl()ng\’ﬁ N < lﬂlgofNIOgZN,B,oN . (6.9)

Below, we show the following
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Lemma 6.1. For every 3 > 3., there exists some N large enough, so that

1 - 1 -
liminf —log Z; 50" = 5 NF(B).
It is essential here that the truncation in the partition function be at mwvy, not at the
much larger value v,, 5, as we want the allowed length of trajectories to grow essentially
only linearly in m. But we need to know that with this length restriction, the log of the
partition function is still of order mN.
With this lemma in hand, we easily have that

m(vn+1)

o, T(mun) BleNT|o o,free
ZnNgo S E- [e o] J} S MUNZiyy -
1

<.
Il

Then thanks to Remark 1.2 (and because % log(muvy) — 0), we have

o,free

m=—o0 MUN mun,3

. 1 o, T (mvun) N =
>1 f log Z > N>
= ma ¥ muy 08 ZmN,go = 120N F(B),

which gives that F(3) > 0 for any 3 > ., that is 8. < .. This concludes the proof of
Proposition 2.4(i).

Proof of Lemma 6.1. Let U = (U;);>1 be an i.i.d. sequence of variables independent of
o, and let (G,,),>1 be the o-field generated by {01, U1, ..., 0,,U,}. We will define below
a stopping time 77 = T3 (o, U) for the filtration (G,),>1 satisfying 71 < vy, and denote
QNJ'(O') :=Pp(Th = j | o). The stopping time property means that QN,J'(O') depends only
onoiy,...,o0j.

Write o) for the shifted sequence (o), — 0j,Ug), k > j. We then define iteratively the
stopping times (J;);>1 by

Ji — Jl(U(Ji—l))_

For any fixed j; < -+ < j,, with |j; — ji—1] < vy (representing possible values of the
J;), we can decompose a product of X variables as follows:

m m
[TXvsms 9= 3 B[l [T1g, ).
=1

0=lp<ly<-+-<lp =1
[li—L£;—1|<N Vi<m

Hence, summing over all such j; < --- < j,,, we get the bound

m
- (Giz1) o, T(mun) m o, T(mun)
E : HXN»Jz‘*Ji—l(O— ) < ZerN,ﬁ’,O < N ZmN,,B,O '
0=jo<j1<:<jm<mun i=1 0=Lo<ly1<---<Lp
li—gi—1|<vn [;—£;—1|<N Vi<m

which can be rewritten

70 —-m T A ji - XN, ji —Ji— (J(jiil))
Z’rr;]j\;fg,”gjv) >N Z HQN~,J'1‘,—]'1‘—1(U(]171))€XP (Zlog L )

AR AN Pos e i=1 QN:jz‘*jiq (U(ji71))
[ji—Ji—1|<vn
- Xy g—g. o (c(i-1)
:N_MEJ{GXP(ZI% St ) H (6.10)
i=1 QN,Ji—Ji_ (O'(Ji—l))
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Here in a mild abuse of notation we write E ;|- | o] for the expectation over U, and we
will write E, ; for the expectation over (o, U). Since J; is a stopping time, the summands
on the right side of (6.10) are i.i.d. functions of (¢, U). By (6.10) and Jensen’s inequality,
we have

(6.11)

) i XN.gi—giy (ei1)
o, T(mv N N, Ji—Ji—
IOmeNEﬁ,ON) 2 —mlog +ZEJ[log QN.J—J 1(U(J"'—l)) ‘ }
i=1 i Ji—1

Since Xy j,(0) > P, (1 = 0,) and J; < vy, we have for some ¢;

X
log = N,J; (o)

>logP (11 =0y,) > —cz6log oy, (6.12)
QN,Jl o

and hence, writing x_ for the negative part of x and using (3.27),

Eo’J

)

X
log M < e3eEqllog oy, ] < ezrvn < 0. (6.13)
Qn,1, (0

It then follows from (6.10) that

1.7 X
timinf - log 27570 > B, 5 [10g 22()

m—00 M mN,6,0

} —logN, P,;—as. (6.14)
N,Jl g

We will show that there is a choice of N, J;, and Q ~,J, (0) satisfying

M} F(B)N, log N < TIQJ—'(B)N. (6.15)

E; ;s [log QN,Ji )

The lemma will then follow from (6.14) and (6.15).
Fix K to be specified and define

Ry = Ry (o) := min {v : ZX,’;ES) = ZXNJ‘(O') > KeN]?(*B)/z} AUnN.
j=1

From (6.9), we then have
P,(Ry =vy) =P, (Z;’V’Eng‘” < KeNf(f’)/?) —0as N — oo. (6.16)
We define the marking probabilities

QN =Qn,j(o):==1—exp (—XN,j E_Nﬁ(m/z) :
which only depends on o4, ...,0;, and

20— Qua) x Quy if1<j < Ry(o),
Qn,i(0) = S TIM (1 - Q) if j = Ry,
0 ifj > RN,
so that 32", Qn.;(0) = 1. Then set

j=
J1 = mln{j >1: Uj < QN,j} AN Ry.
We may view this as follows: for each j < Ry we mark ¢; with probability Qy ;,

independently, and we mark or, with probability 1; o, is the first o; to be marked. As a
result we have P ;(J; = j | 0) = Qn (o), and J; < vy. Note that this weights J; toward
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values j for which X ; is large, which, heuristically, occurs when o; follows a favorable
stretch of the disorder o.
We now consider (6.15), and write

Ry—1

X A XN A X
EJ[log N1 ’0‘} = Z Qn,jlog = N.j + QN Ry log L EL (6.17)
N,Jy j=1 N,Jy N,Rn

For the sum in (6.17), using 1 — e~* < x we get Xy ; > eNFP)/2Qy ; > NFB)2Q
for all j < Ry, and therefore

Ry—1

Z QN,j log gN’j 2 PJ(Jl < RN | 0‘) ]:—(B)N
j=1

N =

N,Jl
For the last term in (6.17), from (6.12) we have
log Xy ry > log P(11 = 0Rry) > —c36log oy,

and therefore

XN Ry

Qn.ry log = > —c36 QN Ry 10800y -

N,Ry
Combining these bounds and averaging over o, we get from (6.17) that

X 1 _
EmJ[log L} > 5Pou(J1 < Ry) F(BN = s Bo s [Ps(s = Ry | 0)log o, ] - (6.18)
N,Jl

For the first term on the right side of (6.18), when Ry (o) < vy we have from the
definition of Ry that

RN _ RN
P;(Ji<Ry|o)=1-]](1-Qnx) =1—exp (—e*W)N/?ZXNJ) >1-e%. (6.19)
k=1 j=1

We therefore get using (6.16) that

P, s(Ji < Ry)>P,(Ry <vn)(1—e5)> 2, (6.20)

Wl N

provided that K and then N are chosen large enough.
For the last term in (6.18), we have from (6.19) and (6.13) that

Eg“][l{RN@N}PJ(Jl =Ry |o)log UUN} < e BE,llogo,,] < csse Kloguy.  (6.21)

In addition, it is routine that there exists a constant c3g such that

2
E, l(log“"> 1 < g forallm > 2.

Hence using (6.16) and the Cauchy-Schwarz inequality

E, [I{Rqu;N} log UUN] < (long)PU(RN = UN)l/QEU

2
log 7y
( log vy > ]
=o(logvy) as N — oco. (6.22)
Combining (6.21) and (6.22) we get that if we take K and then N is large enough,

1 -
C36E0-7J [P](Jl = RN | U) log UvN] S 26366386_K log UN § gf(ﬂ)N (623)
Plugging (6.20) and (6.23) into (6.18), we finally get (6.15). O
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6.3 Proof of Proposition 2.3
As noted in Section 2.2, we only need prove that Bc < B, so let us fix 8 > (., and
show that F(3) > 0. We write Z]"\',J;(H) for E,[e/I"M?lox 1], for an event H. (Note this
partition function may involve trajectories not tied down, that is, with oy ¢ 7.) A first
observation is that for fixed ¢ > 1,
50 o,f : _
0g ZR 44,8 2 Z3(Tn < oN) ddmér]lclgnoqu P, (ry = k). (6.24)
By (1.7), if we fix ¢ large enough and then take NV large, the minimum here is achieved

by k > on/2, so by (A.3), it is at least %QPT(’H = ON4q) 2> a;,(f;a). Using (3.27) we
therefore get for large NV

E, log ZA]‘{Hq)B > E, log Z?\,”fB(TN <on)—(2+ @)E,[log on1m]

~2(2+4q)

> B, log Z3% (v < o) log N . (6.25)

Since ZX,’”;(TN <on)> AJ‘{,ﬁ, (6.25) proves that
~ lim —log 2% , = lim —E, log 2% (ry < P
F(B) = NE)HOON 084N g = Ngnoo N e og Nﬁ(TN <on) o —a.s.,

and we therefore work with ij;é(TN < oy) instead of Zj‘\,’ 5

We continue notations from Section 6.1: we take vy such that P, (o, > vob,) < 1/4,
use G, from (6.1), take L > Ly large so that (6.3) holds, and consider the set of good
blocks Z = {i: B; € G1}. The idea of the proof is similar to that of Proposition 2.4, but
in addition, we need to control the size of 77, on good blocks.

Case 1: E,[01] = +o0. Here b, = ¢(n)n'/%, see (2.10). We need the following
technical lemma, whose proof is postponed to Section 6.4.

Lemma 6.2. Assume (1.5) and (1.7) with & # 0. If E[oy] = +oo, then, uniformly for
x>1/10,

1
lim ~Eq (15,541} 0P (1, < 040)] =0.

n—o00 N

We consider m blocks of length L, so N = mL, and define the events
Ey:={o:|ZN[1,Im]> jm}, Ey:={0:0mr — 0rmrss > d-mL},

satisfying P,(F1) — 1 as m — oo, by (6.3). Using that 1ongL’£’B(TmL < omL) >
log P (Tinr < omr), we get

EO’ [log Z:{{/’g('r'rnL S O'mL)] Z EO’ |:1E10E2 log ngljf;ﬁ (TmL S U’mL)] +Eo [10g PT (TmL S U'mL)] .
(6.26)
According to Lemma 6.2, and because of (1.7), we have

. 1
Jim o Eollog Py (Tinr, < 0mr)] =0,

so we consider the first term on the right in (6.26).

On the event E; N Es, as in the proof of Proposition 2.4 we restrict to 7 visiting only
good blocks B;, including visits to the endpoints o(;_1)r, 0. Since (by definition of G1)
on each good block B; there are at most vgb;, 7-renewals, up to 7,, such 7 visit at least
L, == |m/(vobr)] good blocks. We also choose L large so that ¢,,, < %m: on the event Fy,
it ensures that i,,, < 7m/8.
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We denote ky < mL the index such that 7, = 0; oLt since Ty — Tk, < Tmr, We have
on Fi, restricting to 7 visiting the first ¢,, good blocks,

IOgZK/Q”fB (TN S O'N)

o 1
> ZIOg PT(Tl = O(ip,—1)L — O-ik—lL) +lm 5]:(6)11 + log PT(TmL < OmL — Oisz)'
k=1

On the event £y N Ey we have oy,1, — 04, 1 > 0mL — O7mmrys = d-mL, so we then get

E, [15,nE, log ZJJV’,J;;(TN <on)]
¢

> E, [1Og PT(T]. = O0(ip,—1)L — Uik—lL)]
k=1

3

1
+ iém}—(ﬂ)LPa(El N EQ) + E, []—Ez log PT(TmL < OmL — JigmLﬂ

1
>l (4]:<5)L +E, IOgPT(Tl = a(il—l)L)) +E, [1{omL/82d7mL} IOgPT(TmL < O'mL/S):| >
(6.27)

where we used that for L large enough, P,(E; N Ey) > 1/2. Therefore dividing by mL
and letting m — oo gives

1
F(B)L + ——Ey[log P (11 = 03, —1)1)], (6.28)

LF(B) >
UobL

4U0bL
where we used Lemma 6.2 to get that
. 1
Jm REU |:1{amL/82dTmL} log P (71 < O-mL/S)} = 0.

Then we finish as in the proof of Proposition 2.4: there exists some L( such that, for
L > Ly, one has as in (6.6)

) 1 /1 A2+ a)
LF(B) > o (iLf(ﬁ) — o log L), (6.29)

and then taking L sufficiently large shows F (B) > 0.

Case 2. We now deal with the case when pu, := E;[01] < 400 and E.[r1] < E,[01].
Here b,, = p,n, see (2.9). Let us fix m € IN large, and consider a system consisting in m
blocks of length L. Decomposing according to whether the first block is good or not we
have, recalling G, from (6.1),

E,(log Z7:1 4(tme < 0m1)] = Bo [1,c613 ons—o1>d,mey 108 Zot 5(Tmi < 0mi)]
+ Eo[log P (7inp < omr)]- (6.30)

Recalling the indicator 1, ¢} in the definition of Z7 s if 7, = o, for some kg, then
the relation 7,1, — 7, < 7,1, guarantees that

Z::{ic’g(TmL S UmL) Z ZZHB X PT(TmL S OmL — UL)- (631)

Provided m exceeds some my we have d,m/(m — 1) < E[r;] < p,, and therefore for
sufficiently large L we have P, (0(,,,—1)r > d,mL) > 1/2. Since B, is independent of all
other blocks and P,(Gr) > 1/2, it then follows from (6.31) that for o € Gy,

E. [1(5,cc11 {om1—or>dmr 108 Z,‘,’;fﬁ(rmL < omi)]

1 1
> gf(ﬂ)L + iEo[l{U(m_l)LZdTmL} IOg PT(TmL < a(m—l)L)] . (6.32)
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It remains only to control Eg[l{g(mfl)deTmL} log P (Timr < 0(m—1)r)]. To that end we
have the following lemma which we prove in Section 6.4.

Lemma 6.3. IfE[r;] < E[01] < +00, then, for any ¢ > 0, for sufficiently large m we have

. 1

Lh—I>rolo ZEU[I{U(m,,l)LZdTmL} lOg PT(TmL < U(mfl)L)] > —€,

1 (6.33)

and lim —E,[logP (T < omp)] > —¢.
L—oo L

We choose € = 4—10]-'(@, and fix m; > mg such that one can apply Lemma 6.3. Then,

we take L large enough such that %Eg[l{g(mlil)ﬁd,mlL} log P (T, < O(my—1)1)] >

— 5 F(B) and also +E,[log P (7, < 0m,1)] > —35F(B). Combining this with (6.30)
and (6.32), we obtain for sufficiently large L

L ra)L. (6.34)

EJ[IOg Z,%{L”@(TmlL < UmlL)] > TG

To conclude the proof of Proposition 2.3, we use that (log Zj‘\h ﬁ) NeN is an ergodic

super-additive sequence, so that F(8) > supycy +E,[log ZAj‘\,’ﬁ]. In view of (6.25), we
therefore have that, if L is large enough, for ¢ as specified after (6.24),

. 1 3(2 + a) log(m1 L)
>~ E,[log 2% (T < omin)] — e . 6.35
]:(ﬁ)_mlL_’_q [Og m1L,[‘3(T 1L >0 1L)] a m1L+q ( )
Then we can use (6.34) to obtain, by taking L large enough,
F(B) > _ if(ﬂ)L > 1 F(B)>0 (6.36)
“miL+q 20 — 30my ' '

6.4 Proof of Lemmas 6.2-6.3

Proof of Lemma 6.2. We have the following crude bound: there exists a constant c49 > 0
such that, for every k > d,n,

n X k
P (r < k) 2 Pr( max {ri = i1} < h/n) = (1=Pr(r > k) = emowPr =i,
o (6.37)
where the last inequality follows from the fact that P (7; > %) is bounded away from 1,
forall k > d.n.

Since E,[01] = +00, we may choose a sequence «,, with «,,/n — +00, and uniformly
inz>1/10, Py(0mn < an) "=7 0. We get

1
0> ﬁEa [1{amnzd7n} log PT(TTL < Umn)}

IV

1 1
—P,(0pn > an)logP (1, < ap) + —Py(0pn < ap)logP (1 =d)"
n n

> —cy P(m1 > an/n) + Py(opn < ayp) log P, (1 =d,), (6.38)

where we used (6.37) in the second inequality. Letting n — oo, we see that the limit is 0
thanks to our choice of a,. O

Proof of Lemma 6.3. From the standard large deviation principle for i.i.d. sums, we can
define the rate function

_ 1
() = J-(ur —t) = lim ——logP, (1, < prn —tn), (6.39)

n—oo N

with X := u, — 7, and J; is defined after (3.3). We define gy analogously.
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It is standard that, since E[X] = 0, we have J, (t) = o(t) as t “\, 0. Therefore for fixed
e > 0, for large m we have J,(2u,/m) < ¢/m. We also have, using that z, < i, that for
any m > 2
P, (0(m-1yr < (m—2)Lp;) -0 as L — oco.

Hence, observing that (m — 2)u, > d,m provided that m has been fixed large enough,
we can get
E, [1{J(m,1)L >d,mL} log PT(TmL < U(m—l)L)]
>logP, (TmL <(m-— 2)LMT) + P, (a(m_l)L <(m-— 2)L,u7) x mLlogP, (1 =d,).
Hence we obtain, using (6.39)

20,
)

Y

1 _
lim inf ZE”[I{U(m—l)Lz"”L} lOg P.,-(TmL S U(m—l)L)] 2 —m J.,-( —£, (640)

n—oo

which gives the first line in (6.33).
Similarly, decomposing according to whether o,,;, < (m — 2)Lu, or not, we have the
lower bound

Ea [10g PT(TmL S UmL)]
>logP, (TmL < (m-— 2)Lu7) + P, (JmL <(m-— Q)LMT) x mLlogP (1 =d;),

which in turn also gives that liminf,, %Eg log P (Timr < omr)] > —¢. O

A Technical results on renewal processes

A.1 Some estimates on renewal processes

First of all, we state a result that we use throughout the paper, which is Lemma A.2
in [22] (that was slightly generalized in [2] to cover the case a = 0).

Lemma A.1l. Assume that P(r; = k) = o(k)k~ (17 for some a > 0 and some slowly
varying function ¢(-). Then, there exists a constant Cy > 0 such that, for all sufficiently
large n, for any non-negative function f,(7) depending only on 7 N {0, ...,n}, we have

E[fn(7) | 2n € 7] < CoE[fn(7)] -

In the rest of this section, we consider a renewal 7 satisfying (1.5) with « € (0, 1).
Similar results exist for & = 0 (see [3]) and for a > 1 (see Appendix A in [5]), but we do
not need them here.

As noted in Section 2.4, for a,, as in (2.10), 7,,/a,, converges to an a-stable distribution
with some density h, which is bounded and satisfies

h(z) ~ Crz~ ) asz — 0o, h(x) < Coz™(F®) forallz > 0. (A.1)

Further, by the local limit theorem for such convergence, see [23, §50], and the fact that
ay ~ ky(ay), for any given 0 < § < K < oo we have as k — oo

1
P (1, =m) ~ —h <m> < Coagm™ ) < 20 km ™0 p(m)

ag ag (A.2)
uniformly over m € [fay, Kag].
Moreover, Doney [17, Thm. A] gives that, uniformly in m > a,
P (r,=m)=1+01)kP. (11 =m) ask — . (A.3)

Together with (A.2) and Lemma A.3 below, which deals with the case m <« aj, we thereby
obtain the following uniform bound.
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Lemma A.2. Assume « € (0,1). There exists a constant c42 > 0 such that, for k large
enough and all m > k,
P.(tx =m) <cpkP,.(r1 =m),

and
P (1 >m) <cuokPr(11 >m).
For the lower tail we have the following.

Lemma A.3. Assume « € (0,1). There exist a constant cu3 such that, for all e < 1/2 and
n>1
P, (1, <e€a,) <exp (—043 efgﬁ) . (A.4)

In particular, for any v € (0,1), foralln > 1,
P, (1, <n /%) <exp (—044 nﬁ) :
Note that this lemma implies that the density h also satisfies
h(z) <exp ( — Cu5 x_ﬁ) , (A.5)

for some constant c45 > 0 and sufficiently small x.

Proof of Lemma A.3. Let A(t) =log E,[e!™], so that for all ¢ > 0,
P (1, <ea,) <expleant + A(—t)n). (A.6)

By (1.5) and standard properties of the Laplace transform, there is a constant ¢, such
that
A(—t) ~ —cat® @ (1) ast\,0. (A.7)

t
We have A(—t) < —d,t for all t € (0,+00), and A(—t) ~ —d,t as t — +o0, for d, from
(1.6). In the rest of the proof, we assume ea,, > d.n, since otherwise the probability is 0.

We can approximately optimize (A.6) by taking ¢ = ¢,, = ¢,,(¢) given by

A(—t,)  —2ean,

(A.8)

7% n

Such a solution exists since t !A(—t) - —occast — 0, t 'A(—t) — —d, as t — oo, and
2ean /n > 2d.. We therefore end up with

P, (1, < e€ay,) < exp(—eanty), (A.9)

so we need a lower bound on a,t,.

Let c45 be given by cZ51A(—C45) = —2d;; then t,, € (0, cy5], since €a,, > d,n. Letting cq
large enough so that ¢(x) > 0 for all © > c46/c45, we then have that ¢(cy6/t,) > 0. Let
A= (1-«/4)/(1 - «). By (2.9), since a,, — oo and ea,, > d,n, there exists ny such that
for n > no,

l-a dT dT A
dea, “p(an) > >2d, and ———F—2>|— , (A.10)
n 2an a@(an) an

which together show that e*a,, > d,. Therefore there exists c47 such that

A
plean) > carei®,
¢(an)
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which with (A.7), (A.8), and the first inequality in (A.10) shows that for some cyg,

11—
()% 0( an) > careal p(an) > 2 > oy (S8 o).

We emphasize that the constants ¢; and no do not depend on . It follows that ¢*a,, >
Ca9/tn, or equivalently eant, > cie~*~1), which with (A.9) completes the proof for
n > ng.

We finish by observing that for ¢ = max, <y, an, for all n < ng and € < 1/2 we have

P.(tn <ea,) <P.(m1 <gq) <1,

and P, (7, < ea,) = 0if € < 1/q. Therefore after reducing c,3 if necessary, (A.4) also
holds for n < ng. O

Let us finally prove some analogue of Lemma A.3 in the case o = 1 with E[ry] = +o0,
that will be needed below. Recall in that case the definition (2.9) of a,,, and that 7, /a,, — 1
in probability.

Lemma A.4. Assume that o« = 1 and that m(z) = E,[r; A 2] = +o00. For every § > 0,
there exists a constant cs > 0 such that, for any e € (0,1/2) andn > 1

P, (Tn < ea") < exp ( — 65671/6) .

Of course, this result is not optimal when ¢ is not close to 0, but it is sufficient for our
purpose.

Proof. We use the same notations as for the proof of Lemma A.3. The difference here
is that, as t | 0, A(—t) ~ —tm(1/t), where we recall that m(z) = E,[r A z] diverges as
a slowly varying function as z — oo. Hence, we still have that t 'A(—t) - —ooast | 0,
and as in (A.8) we may define t,, = ¢, (€) as the solution of

A=t )t = —2ea, /n. (A.11)

Then we estimate ¢,: using that a,, ~ nm(a,), and that A(—t) ~ —tu(1/t), we get that
there is a constant c5g such that for any n > 1,

’ﬁl(l/tn) S C50€m(an) .

Using Potter’s bound, we get that for any ¢’ > 0 there is a constant css such that for
any n > 1 m(a,) < ¢ (tnan)® m(1/t,). In the end, we obtain that there is a constant ¢
(independent of €) such that for alln > 1

’ ~
05005/(tnan)5 >l i.e. tna, > Cs€

-1/8"
Therefore, we obtain as in (A.9)
P (1, <eap) <exp ( — eantn) < exp ( - ’55/6171/6,) ,
which ends the proof of Lemma A.4, by taking § = ¢'/(1 — ¢'). O

A.2 Proof of Lemma 1.4 and of Proposition 1.3
Proof of Lemma 1.4. From (1.19), we have that

P (ke )nﬁoo (k’)k’_(l_a/\l) ith ( ) % ifoz:07 (A.12)
T T ~ o ) wl o\T) = "1111_71'1 — : ’

4 asin(ma) ()=l ifa e (0,1).
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Let us start with the case a@ € (0,1). We fix 0 < § < K < oo and ¢ > 0, and (recalling
the definition (2.9) of b,,) we split P, . (o, € 7) into three sums:

o0

P, (on€7) =) Pylon=kP.(keT)
k=n
< ) Py(on € (eUTV0b,, e0b,)) ‘max  P.(ker)
0<;j<log(0by,) RE(em T Bbn 760,
+ Y Polon=kP.(keT) + Py(o, > Kby) Jmax Pk €7).
0b, <k<Kb, -

(A.13)

Let us first focus on the second sum, which gives the main contribution (and is also a
lower bound). Using (A.2) and (A.12), it is asymptotic to

o 1 k k —(1—anl)
ot (5) (o)

0b,, <k<Kby,

K
" o (bn) by (17D / o h(e) de. (A14)
0

If K is sufficiently large (depending on ), then thanks to (A.12), the third sum on the
right in (A.13) is bounded by

es1 (Kby) =" D g (b,,) < 8 172N (by,).

If § is sufficiently small (depending on §), then ¢(e? /0) > (e7 /6)~2/2(1=%), and thanks
to Lemma A.3 and (A.12), the first sum on the right in (A.13) can be bounded by

eI\ sy ob,,\ ~(17oND 0b,
C52 Z €Xp (—053,(9) ( )> x <6j> %o ( eJ ) < 5b;(1_w1)<ﬂ0(bn)~
0<j<log(0by)
(A.15)

By (A.1), the integral in (A.14) remains bounded as K — oo, and it also remains
bounded as # — 0 thanks to (A.5). Because § is arbitrary and the second sum (A.14) is
also a lower bound for P, - (o, € 7), it follows that

“+oo
P, (0, 1) "™ (/ Ay 1 () da:) x by A= D o (b,,). (A.16)
0

We therefore conclude, thanks to (2.8), that
P, (o, €7)= go*(n)n*(lJra*),
for o* = (1—aAl—a)/a and for some slowly varying ¢*, given asymptotically via (A.16):

n—oo

©"(n) " e5a F(by) T Gy (b)) with C54=/ a” (e Dh(z) de. (A17)
0

It remains to treat the case @ > 1. In that case, 7, /b, converges in probability to 1.
We fix § > 0 and € > 0, and split the probability into

P, - (Un € 7') =P, (O'n < (1 —-¢€)by,0, € ’7')

+Po (0, € (1 =)y, (L +6)by),00 €T) + Py r(0n > (14 )bp, 0, €7).
(A.18)
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The second term, which is the leading term, is bounded from below by

P, (0n/bn € (1—¢,14¢)) inf P,(keT)>(1-0)po(by)b; =" | (A.19)
ke ((1=2)bn,(14+)bn

provided that n is large enough, and that € had been fixed small enough. To obtain this,
we used (A.12), and also that o,,/b,, converges to 1 in probability. Analogously, this is
also bounded from above by (1 + 8)go (b, )by * Y.

The last term in (A.18) is bounded from above by

P, (00 > (1+¢)b,) sup Pr(k € 7) = o(1)go(bn)b, 17", (A.20)
k>bn
where we used (A.12), together with the fact that o,,/b,, converges in probability to 1.
It remains to bound the first term in (A.18). If E,[01] < 400, then it is easy: there
exists some ¢, > 0 such that

P, (0, < (1 —e)b,) < e %" = o(py(b, )b, 1=y (A.21)

Indeed, one simply uses that for any A\ > 0 P, (0, < (1 —¢)b,) < er1=e)nE[eA1]n,
and choose A = \. small enough so that E,[e=*71] < 1 — (1 — ¢/2)\E,[01] (using that
1 — E,[e"*1] ~ AE,[0y] as A | 0). We then get that, since b, = nE,[01], P,(0, <
(1—g)bn) < eXp(—%E)\EEU[Ul]TL).

When E,[01] = o0, it is more subtle. We fix § > 0 and bound the first term in (A.18)
by

> Py(on € (e7YT0b,, eI 0b,)) max  Po(ker)
0<j<log(6bn) ke(e=(+10b,,,e=70by,]

+ Py (0 € (0by, (1 — £)by)) Jnax P.(ker).

The first term is treated as in (A.15), using Lemma A.4 in place of Lemma A.3, and
is bounded by 5<p0(bn)b;(1_a“) provided that 6 had been fixed small enough. For the
second term, we use (A.12) to get that it is bounded by a constant times Pg(an <
(1= £)b, )0~ =2 D0 (b, )by, =M, with P, (0, < (1 — €)by,) "=5° 0.

In the end, and because § is arbitrary, we proved that when a > 1

P, . (O‘n € 7') e wo(bn)b;(l_o‘m), i.e. Py, (O‘n € T) = ap*(n)n_(1+(’*),

witha*=(1-aAl—-aAl)/aAl, and (recalling the definition (2.9) of b,,)

" () "X o (ba)m(by) "N m

Proof of Proposition 1.3. We assume that 5 > 0. We use a Mayer expansion as in (4.1),
N

writing e? = 1 + (¢# — 1), and expanding (1 + ¢® — 1)Xn=11oner, to obtain

N m
EO’Z?V,,B = Z (66 — 1)’m Z EU,T |: H 1{0’,;,C G‘r}:| .
m=1 1<iy < <im=N k=1

Then we may set Kj3(n) = (e —1)e PP, (0, € T), where F is a solution to (1.15) if
it exists, and set F = 0 otherwise. Hence (K};(n)),>1 is a sub-probability on IN, and a
probability if F > 0. We therefore get that

N m
EUZKI,[} — BFN Z Z H KE(Zk _ ik—l) _ eFNP*(N c l/*),
m=11<i; <---<ip=N k=1
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where " is a renewal process with inter-arrival distribution (Kj(n)),>1. Then because
of Lemma 1.4, we get that: either (i) F > 0 and then P*(NV € v*) converges to the
constant E*[11] ™!, or (ii) F = 0 but ) ., K3(n) = 1 in which case o* > 0 and P*(N € v*)
is regularly varying with exponent 1 — a* A 1 (see (1.19) with ¢, o replaced by ¢*, a*),
or (iii) F = 0 and }_, -, Kj(n) < 1, in which case v* is transient (with o* > 0), and
P*(N € v*) is asymptotically a constant multiple of K};(n), see for example [19, App.
A.5]. This shows that in any case limy_ o N~ log P*(N € v*) = 0, and hence F() =F.

From (1.15), it is standard to obtain the critical point 32" = log (1 + E, -[|r N o|]™})
and the behavior of () close to criticality, since the behavior of P, , (o, € 7) is known
from Lemma 1.4. Let us recall briefly how this is done for the sake of completeness.

In the recurrent case, i.e. when ) ., P, (0, € 7) = +oco (and necessarily a* €
[—1,0]), we use Theorem 8.7.3 in [8] to get that > ., e P, (0, € 7) is asymptotically

equivalent, as F | 0, to an explicit constant times Z:L/:Fl P, (0, €7)~ L*(1/F) (1/F)~
for some slowly varying function L*(-). Because of (1.15), we therefore get that, as 5 | 0,
L*(1/F(B)) F(B)l*| ~ p~1, and we obtain the critical behavior (1.16).

In the transient case, (1.15) can be multiplied by e?:" —1 = E, . [l[rNno|]7 >0 (so

that K. (n) = (e#™ —1)P, . (0, € 7) is a probability, equal to K*(n) of (4.2)) to get

A 1

—Fn * _
Ze K(n)fieﬁ_l .

n>1

This is the definition of the free energy of a standard homogeneous pinning model with
inter-arrival distribution K*(n), and pinning parameter log((e®:" —1) /(e —1))~c(3—B2"")
as | pi*", for some constant ¢, see [19, Ch. 2, Equation (2.2)]. It is standard (as
described in the previous paragraph) to obtain the critical behavior (1.16) from this
using Lemma 1.4. O
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