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Abstract

We study the spectral expansion of the semigroup of a general stable process killed on
the first exit from the positive half-line. Starting with the Wiener-Hopf factorization we
obtain the q-resolvent density for the killed process, from which we derive the spectral
expansion of the semigroup via the inverse Laplace transform. The eigenfunctions and
co-eigenfunctions are given rather explicitly in terms of the double sine function and
they give rise to a pair of integral transforms which generalize the classical Fourier
sine transform. Our results provide the first explicit example of a spectral expansion
of the semigroup of a non-symmetric Lévy process killed on the first exit from the
positive half-line.
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1 Introduction

Consider the Brownian motion process W = {Wt}t≥0 started from W0 = x > 0 and
let T0 be the first time when W hits zero. It is well-known (see [3, Appendix 1.3]) that
the distribution of T0 can be computed as

Px(T0 > t) =
2

π

∫ ∞
0

e−tλ
2

sin(λx)λ−1dλ, (1.1)

and that the transition probability density of the process W killed at T0 has spectral
representation

pt(x, y) =
2

π

∫ ∞
0

e−tλ
2

sin(λx) sin(λy)dλ. (1.2)

To give a functional-analytic point of view, let us introduce the semigroup of the killed
process as the family of operators {Pt}t≥0 defined by

Ptu(x) = Ex[u(Wt)1{T0>t}], (1.3)
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Spectral analysis of stable processes on the positive half-line

and let us define the Fourier sine transform as

Πu(λ) =
√

2/π

∫ ∞
0

u(x) sin(λx)dx, u ∈ L1(R+). (1.4)

It is well-known that Π can be extended to an isometry in L2(R+) and then formula (1.1)
gives us a spectral representation of the semigroup in L2(R+):

Pt = Πe−tλ
2

Π. (1.5)

The function sin(λx) plays an important role in the above expressions. It is the eigenfunc-
tion of the one-dimensional Laplace operator ∆ (which is simply the second derivative
operator, ∆u = u′′), with a Dirichlet boundary condition at zero. Note that ∆ is the
infinitesimal generator of the scaled Brownian motion Xt =

√
2Wt.

Brownian motion is a very special process, because it enjoys many useful properties:
it is a diffusion process, it is a Lévy process (a process with stationary and independent
increments), it is also a self-similar process. The list of other Markov processes with an
explicit spectral representation of the semigroup is quite short. We mention here the
well-known case of one-dimensional diffusion processes [20], branching processes [21],
a family of symmetric Lévy processes obtained as a time change of Brownian motion
[18] and the recent work of Patie and Savov on non-selfadjoint Markov semigroups [22].

Our goal in this paper is to generalize the results (1.1), (1.2) and (1.5) to strictly
stable Lévy processes (which we call simply stable processes) killed on the first exit
from (0,∞). This class consists of Lévy processes which satisfy the scaling (or, self-
similarity) property: for any c > 0 the process {cXt}t≥0 (started from X0 = 0) has the
same distribution as {Xcαt}t≥0. Such processes exist when the stability parameter α
belongs to the interval (0, 2]. When α = 2 we recover the scaled Brownian motion
and for α < 2 we obtain a two-parameter family of processes with jumps that we will
discuss in detail in the next section. The scaling property of stable processes is the main
reason why they are so popular among researchers and why they appear so frequently
in various applications originating in Physics, Chemistry and Biology. Stable processes
(or Lévy flights, as they are also known in these fields) occur in modelling such diverse
phenomena as fluctuations and transport in plasma, turbulent diffusions, seismic series
and earthquakes, signal processing and financial time series (see review article [9] for a
comprehensive list of applications).

1.1 Stable processes

A Lévy process is usually defined through the characteristic exponent Ψ(z) :=

− lnE0[exp(izX1)]. The characteristic exponent of a stable process is given by

Ψ(z) = |z|αeπiα(1/2−ρ)sign(z), z ∈ R. (1.6)

Here the parameters (α, ρ) belong to the following set of admissible parameters

A := {α ∈ (0, 1], ρ ∈ (0, 1)} ∪ {α ∈ (1, 2], 1− 1/α < ρ < 1/α}. (1.7)

The parameter α is the same one that appeared in the scaling property discussed above,
and it can be shown that ρ = P0(X1 > 0), which explains why ρ is called the positivity
parameter. Everywhere in this paper we denote ρ̂ = 1− ρ, and, more generally we will
use the “hat” notation to refer to any objects obtained from the dual process X̂ = −X.

Our set of admissible parameters excludes processes with one-sided jumps: subordi-
nators or negative subordinators (α ∈ (0, 1) and ρ ∈ {1, 0}) and the spectrally-negative
and spectrally-positive processes (α ∈ (1, 2) and αρ = 1 or α(1 − ρ) = 1, respectively).
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Spectral analysis of stable processes on the positive half-line

The first two cases are not interesting, as the processes have monotone paths and the
expression for the semigroup of the process on the positive half-line is rather simple, and
the case of spectrally-positive/negative processes is covered separately in Section 3.1.

Let us consider some special cases of stable processes. When α = 2 we necessarily
have ρ = 1/2 and the process X in this case is simply the scaled Brownian motion
Xt =

√
2Wt. When α = 1 we can rewrite the characteristic exponent in the form Ψ(z) =

sin(πρ)|z|+ i cos(πρ)z, so that the process X can be written as Xt = sin(πρ)Zt − cos(πρ)t,

where Zt is the Cauchy process. A stable process with ρ = 1/2 is symmetric (has
the same distribution as X̂) and can be obtained as a subordinated Brownian motion.
More precisely, let St be an α/2-stable subordinator defined by the Laplace transform
E[exp(−zSt)] = exp(−tzα/2) and independent of the Brownian motion W , then the
process {Xt}t≥0 has the same distribution as {

√
2WSt}t≥0.

In the general case (except when α ∈ {1, 2}) a stable process is a pure-jump Lévy
process characterized by the density of the Lévy measure ν(x), given by

ν(x) = c|x|−1−α1{x>0} + ĉ|x|−1−α1{x<0},

where we have denoted c = Γ(1 + α) sin(παρ)/π and ĉ = Γ(1 + α) sin(πα(1− ρ))/π. The
Lévy measure describes the distribution and the intensity of the jumps of the process,
and it is connected to the characteristic exponent via the Lévy Khintchine formula

Ψ(z) = −
∫
R

(eizx − 1− izh(x))ν(x)dx,

where h(x) is the cutoff function, which is needed to ensure the convergence of the
integral. Using the cutoff function h(x) ≡ 0 when α < 1 and h(x) ≡ x when α > 1 one
can check that the above integral representation for Ψ(z) can be evaluated in closed
form as given in (1.6). This construction also works when α = 1 and ρ = 1/2 (in this case
we can take the cutoff function h(x) ≡ sin(x)).

A stable process X is also a Markov process, and its dynamics can be described by
the infinitesimal generator L. This operator is defined for a suitable set of functions u as
follows

Lu(x) = lim
t→0+

1

t

(
Ex[u(Xt)]− u(x)

)
.

As we have mentioned above, when α = 2 the infinitesimal generator is simply the one-
dimensional Laplace operator, Lu = u′′. In the symmetric case (that is, when ρ = 1/2) the
infinitesimal generator is the fractional Laplace operator L = −(−∆)α/2. In the general
case, it is a (non-local) integro-differential operator having the following form:

Lu(x) =

∫
R

(u(x+ y)− u(x)− u′(x)h(y))ν(y)dy, if α 6= 1,

Lu(x) = − cos(πρ)u′(x) +
1

π
sin(πρ)

∫
R

(u(x+ y)− u(x)− u′(x) sin(y))y−2dy, if α = 1.

If we denote by F the Fourier transform operator

Ff(z) =

∫
R

eizxf(x)dx,

then the infinitesimal generator can be represented in a particularly simple form L =

−F−1Ψ(−z)F (see Proposition 9 in [2]). In other words, the infinitesimal generator L is
a pseudo-differential operator [28] and the characteristic exponent Ψ is the symbol of
this operator.
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Spectral analysis of stable processes on the positive half-line

1.2 Main results

Consider a stable process X started from X0 = x > 0 and denote by T0 the first exit
time from (0,∞). Let {Pt}t≥0 be the transition semigroup of the process X killed at
time T0: these operators are defined by (1.3), but with Xt instead of Wt. Then Pt are
sub-Markov operators, and they are contraction operators on L2(R+). The transition
probability density pt(x, y) is defined as the integral kernel of the operator Pt:

Px(Xt ∈ dy, T0 > t) = pt(x, y)dy. (1.8)

It is known that the transition density exists when X is a stable process (this follows
from Theorem 3 and Example 4 in [5]).

From the analytical point of view, killing the process on the first exit from the positive
half-line is equivalent to imposing a Dirichlet boundary condition on the negative half-line.
Thus, in order to find the eigenfunctions of the infinitesimal generator we need to solve
the equation Lf(x) = λf(x) for x > 0 with the “boundary condition” f(x) = 0 for x ≤ 0.
The problem of computing v(t, x) = Ptu(x) (for a suitable u) is equivalent to solving the
following parabolic partial integro-differential equation ∂tv(t, x) = Lxv(t, x) subject to (i)
the “boundary condition” v(t, x) = 0 for x ≤ 0 and (ii) the initial condition v(0, x) = u(x).
Finally, the transition probability density pt(x, y) is simply the fundamental solution to
this partial integro-differential equation.

In order to present our results, we need to introduce a certain special function
S2(z) = S2(z;α), called the double sine function [13, 14]. This function can be defined
via two functional equations

S2(z + 1) =
S2(z)

2 sin(πz/α)
, S2(z + α) =

S2(z)

2 sin(πz)
, (1.9)

and the normalizing condition S2((1+α)/2) = 1. We collect several equivalent definitions
and various properties of the double sine function in Appendix A, here we only mention
the following two facts which will be used most frequently in this paper:

(i) The function S2(z) is a real meromorphic function having poles at points z ∈
{mα+ n : m,n ∈ N};

(ii) For every b, c ∈ R have the following asymptotic result

|S2(b+ iα ln(eicy)/(2π))S2(b− iα ln(eicy)/(2π))|

=

{
y1/2+α/2−b(1 + o(1)), as y → +∞,
y−1/2−α/2+b(1 + o(1)), as y → 0+.

(1.10)

Moreover, the above asymptotic result holds uniformly in b and c on compact
subsets of R.

Now we introduce two functions G and F , which will play an important role in this
paper. For (α, ρ) ∈ A and x ≥ 0 we define

G(x) :=

∫ ∞
0

e−zxzαρ/2−1/2|S2(1 + α+ αρ̂/2 + iα ln(z)/(2π))|2dz (1.11)

and

F (x) := ex cos(πρ) sin(x sin(πρ) + πρ(1− αρ̂)/2) +

√
α

4π
S2(−αρ̂)G(x). (1.12)

When it will be needed to stress the dependence on the parameters α and ρ, we will
write F (x;α, ρ) for F (x) and G(x;α, ρ) for G(x). We define F̂ and Ĝ in a similar way,
exchanging the roles of ρ and ρ̂ (so that F̂ (x) = F (x;α, ρ̂)).
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Spectral analysis of stable processes on the positive half-line

Note that the integral in (1.11) converges for x = 0 (and thus for all x > 0): this is
easy to establish using (1.10). Another important observation is that the function G is
completely monotone, that is (−1)nG(n)(x) ≥ 0 for all n ∈ Z+ and x > 0. Finally, we note
that the function F is bounded on (0,∞) if ρ ≥ 1/2, and it grows exponentially if ρ < 1/2

(with a similar result for F̂ and ρ̂).
The following theorem is our first main result in this paper: here we generalize

formulas (1.1) and (1.2) which hold in the Brownian motion case.

Theorem 1.1. Let X be a stable process defined by parameters (α, ρ) ∈ A.

(i) If α > 1 or ρ ≥ 1/2 then for all x > 0

Px(T0 > t) =

√
α

π
S2(αρ̂)

∫ ∞
0

e−tλ
α

F (λx)λ−1dλ. (1.13)

(ii) If α > 1 or ρ = 1/2 then for all t, x, y > 0 we have

pt(x, y) =
2

π

∫ ∞
0

e−tλ
α

F (λx)F̂ (λy)dλ. (1.14)

In the symmetric case Theorem 1.1 was established in [18] (see Example 6.1), and in
the non-symmetric case the eigenfunctions F (x) were computed in [17] (in both papers
the function G(x) was given in an equivalent integral form).

Our next goal is to study the transition semigroup Pt and to establish an analogue
of identity (1.5). In the case of non-symmetric stable processes the situation is bound
to be more complicated than in the symmetric case, since one of the functions F , F̂ is
exponentially increasing. In order to properly define the operators which diagonalize
the transition semigroup, we first need to introduce a suitable space of test functions.

Definition 1.2. Set ζ := π
2 min(1, 1/α). Let us denote by Hα the set of functions u(x)

satisfying the following conditions

(i) u(x) is analytic in the sector | arg(x)| < ζ and it takes real values on (0,∞);

(ii) For every ε ∈ (0, ζ) there exists δ = δ(ε) > 0 such that |u(x)| = O(|x|−δ|x|) as
|x| → ∞ and |u(x)| = O(1) as |x| → 0 (uniformly in the sector | arg(x)| < ζ − ε).

We need the above conditions to extend the Fourier–Laplace transform of u to a
well-behaved analytic function in the sector | arg(x)| < π

2 + ζ. This is done in Lemma 2.14.
The setsHα are non-empty: for example, u(x) = (1+x)−x ∈ H1 and v(x) = exp(−xα) ∈

Hβ for β ≥ α > 1 (but not for β < α or α ≤ 1). It is clear that Hα ≡ H1 for α ≤ 1 and
Hα ⊂ Hβ for 1 ≤ α < β ≤ 2. The following properties follow easily from the definition: if
u and v belong to Hα then the same is true for functions

(i) u(x)v(x);

(ii) au(x) + bv(x) for all a, b ∈ R;

(iii) u(ax+ b) for all a > 0,b ≥ 0;

(iv) xae−bx
α

u(x) for all a ≥ 0, b ≥ 0.

We also record here the following important property:

(v) The restrictions u|R+ of u ∈ Hα are dense in L2(R+).

The above property is easy to prove. Indeed, assuming that there exists v ∈ L2(R+)

which is orthogonal to all u ∈ Hα, we obtain
∫∞
0
v(x)(1 + x)−axdx = 0 for all a > 0.

Substituting ey for (1 + x)x and writing w(y) = v(x) dy
dx , we see that

∫∞
1
w(y)e−aydy = 0.

Therefore, w(y) = 0 for almost all y > 1, and so v(x) = 0 for almost all x > 0.

EJP 23 (2018), paper 10.
Page 5/29

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP134
http://www.imstat.org/ejp/
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Next, we define the following integral operators, which generalize Fourier sine
transform (1.4):

Πu(λ) =
√

2/π

∫ ∞
0

F (λx)u(x)dx, Π̂u(λ) =
√

2/π

∫ ∞
0

F̂ (λx)u(x)dx, (1.15)

where u ∈ Hα and λ > 0. Since the functions F (λx) and F̂ (λx) grow at most exponentially
fast as x→ +∞, it is clear that the integrals in (1.15) converge absolutely, due to the fast
decay of functions u ∈ Hα. We denote by P̂t the transition semigroup of the dual process
X̂, killed on the first exit from (0,∞). According to Hunt’s switching identity (see [2,
Theorem 5]), the density of the kernel of the dual semigroup is given by p̂t(x, y) = pt(y, x),
thus P̂t is simply the adjoint operator of Pt, when Pt and P̂t are considered as operators
acting on L2(R+).

The next theorem is our second main result.

Theorem 1.3. Assume that (α, ρ) ∈ A and ρ ≥ 1/2.

(i) Π can be extended to a bounded self-adjoint operator Π : L2(R+) 7→ L2(R+) and
Π̂ : Hα 7→ L2(R+) is a symmetric operator such that Π̂Hα is dense in L2(R+). For
all u ∈ Hα we have

ΠΠ̂u = u. (1.16)

(ii) For u ∈ Hα and t > 0 we have

Ptu = Πe−tλ
α

Π̂u, (1.17)

and
ΠP̂tΠ̂u = e−tλ

α

u. (1.18)

Note that in the symmetric case ρ = 1/2 we have Π = Π̂, and then formula (1.16)
implies that Π is an isometry on L2(R+). This result was established in greater generality
in [18].

Corollary 1.4. Assume that (α, ρ) ∈ A, ρ ≥ 1/2 and λ > 0.

(i) The functions uλ(x) := F (λx) are the eigenfunctions of the semigroup Pt, that is
Ptuλ = e−tλ

α

uλ.

(ii) The functions F̂ (λx) are the eigenfunctions of the dual semigroup P̂t, in the sense
that for all v ∈ Hα we have P̂tΠ̂v = Π̂e−tλ

α

v.

In part (i) of the above theorem, uλ is a bounded function, so that it is a true
eigenfunction of the operator Pt acting on the L∞(R+) space. If ρ > 1/2, then it is easy
to see that uλ(x) = O(x−1−α) as x → ∞ (by (1.10), (1.11) and Karamata’s theorem),
and so uλ is in fact in L2(R+). However, when ρ = 1/2, uλ(x) oscillates between ±1 as
x→∞, and so it is not in L2(R+).

On the other hand, unless ρ = 1/2, the word eigenfunction is used in a rather vague
sense in part (ii) of the theorem. The function ûλ(x) = F̂ (λx) oscillates as x→∞ with
magnitude that grows exponentially fast, and so there is no obvious way in which P̂tûλ
can be defined.

We remark that since Pt and P̂t are Markovian, they are contractions on L∞(R+). By
duality, they are also contractions on L1(R+), and interpolating between L1(R+) and
L∞(R+) one easily finds that in fact Pt and P̂t are contractions on Lp(R+) for p ∈ [1,∞].
We also remark that the semigroups {Pt}t≥0, {P̂t}t≥0 are strongly continuous on Lp(R+)

if p ∈ [1,∞): this can be proved by comparing Pt or P̂t with transition operators of the
non-killed process, for which the corresponding result is standard.

Our third main result gives Laplace and Mellin transforms of the eigenfunctions.
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Theorem 1.5. Assume that (α, ρ) ∈ A.

(i) For z > max(0, cos(πρ))∫ ∞
0

e−zxF (x)dx =

√
α

2
S2(αρ) z−αρ̂/2−1/2|S2(1 + α/2 + αρ̂/2 + iα ln(z)/(2π))|2.

(1.19)
The corresponding result for F̂ (x) can be obtained from the above formula by
replacing ρ 7→ ρ̂.

(ii) If ρ ≥ 1/2 then for Re(z) ∈ (−αρ̂, 0)∫ ∞
0

xz−1F (x)dx =
Γ(z)S2(z)

2S2(αρ̂+ z)
. (1.20)

The two formulas (1.19) and (1.20) can lead to many useful explicit results about
the eigenfunctions. For example, when α is irrational, one could use the methods of
[11, 12, 16] and obtain complete asymptotic expansions of F (x) as x→ 0+ or x→ +∞,
as well as convergent power series representations. We leave this investigation for future
work, and in this paper we only include the discussion of Doney classes in Section 3:
as we will see, in this case all expressions involving the double-sine function reduce to
simple finite products.

The paper is organized as follows. In Section 2.1 we review some results from the
fluctuation theory of Lévy processes that will be required later on, and we also outline
the plan for proving our main results. In Section 2.2 we study the Wiener-Hopf factors
of stable processes and establish some preliminary results. In Sections 2.3, 2.4 and 2.5
we prove Theorems 1.5, 1.1 and 1.3, respectively. In Section 3 we simplify all of our
formulas in the case when the process belongs to one of Doney classes, while the special
case of spectrally one-sided processes is treated in Section 3.1. Finally, in Section 4 we
present some concluding remarks.

2 Proofs of Theorems 1.1, 1.3 and 1.5

2.1 The plan for proving our main results

Our proofs are based on the Wiener-Hopf factorization, which is a key result in the
fluctuation theory of Lévy processes [2, 19]. We present this result here for the sake of
completeness. We start with a Lévy process X (a one-dimensional process with stationary
and independent increments) and we denote by

Xt = sup{Xs : 0 ≤ s ≤ t}, Xt = inf{Xs : 0 ≤ s ≤ t}

the running supremum/infimum processes. We will denote by e(q) an exponential random
variable with expected value 1/q, and assume that e(q) is independent of the process X.
The following result is contained in Theorem 6.15(i) and identity (6.28) in [19]:

Theorem 2.1 (The Wiener-Hopf factorization). Let X be a Lévy process started from
zero. Then for q > 0

(i) the random variable Xe(q) is independent of Xe(q) −Xe(q);

(ii) the random variables Xe(q) −Xe(q) and Xe(q) have the same distribution.

Let us explain how we will use the above Wiener-Hopf factorization result in order
to obtain information about the transition probability density of the process killed on
the first exit from (0,∞). Assume that X0 = 0 and denote by fX(x) and fX(x) the
probability density functions of Xe(1) and −Xe(1), respectively (we will prove later that
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these densities exist and express them in terms of the double sine function S2). Due
to the scaling property of stable processes, the random variable Xe(q) has density
q1/αfX(xq1/α), with a similar result for Xe(q). Let us denote by Hq(x, y, z) the joint
density of (Xe(q), Xe(q)) for the process started at X0 = x:

Px(Xe(q) ∈ dy,Xe(q) ∈ dz) = Hq(x, y, z)dydz, where z < min(x, y).

According to the Theorem 2.1, the pair (Xe(q), Xe(q)) has the same distribution as (x+

Sq − Iq, x − Iq), where Sq and Iq are independent random variables having the same
distribution as Xe(q) − x and x −Xe(q), respectively. Therefore the function Hq(x, y, z)

can be written as follows

Hq(x, y, z) = q2/αfX((y − z)q1/α)fX((x− z)q1/α). (2.1)

The above identity is well-known in the theory of fluctuations of Lévy processes. For
example, see the proof of Theorem 18 in [8]

Let us denote by ht(x, y, z) the joint density of (Xt, Xt) for the process started from
X0 = x, that is

Px(Xt ∈ dy,Xt ∈ dz) = ht(x, y, z)dydz, where 0 < z < min(x, y).

This function is related to the transition probability density and the semigroup of the
killed process via the following identities

pt(x, y) =

∫ min(x,y)

0

ht(x, y, z)dz, Ptu(x) =

∫ x

0

[∫ ∞
z

ht(x, y, z)u(y)dy

]
dz, (2.2)

where we have assumed that u is bounded on (0,∞). At the same time, by conditioning on
the random variable e(q) (which has exponential distribution with the density qe−qt1{t>0})
we see that ∫ ∞

0

qe−qtht(x, y, z)dt = Hq(x, y, z), (2.3)

and therefore the function q 7→ q−1Hq(x, y, z) is the Laplace transform of t 7→ ht(x, y, z).
Our plan for proving Theorem 1.1(ii) and 1.3(ii) is to invert the Laplace transform in
(2.3) and to obtain

ht(x, y, z) =
1

2πi

∫
iR
q2/α−1fX((y − z)q1/α)fX((x− z)q1/α)eqtdq, (2.4)

with fX(x) and fX(x) expressed in terms of the double sine function, and then deform
the contour of integration, so that the vertical line iR is transformed into Hankel’s
contour (beginning at −∞, going around 0 in counter-clockwise direction and ending at
−∞, see Lemma 2.6 below). As we will see, a lot of effort is required for justifying this
transformation of the contour of integration.

Remark 2.2. The function Hq(x, y, z) is closely related to resolvent operators, defined
as

Rqu(x) =

∫ ∞
0

e−qtPtu(x)dt = q−1Ex[u(Xe(q))1{Xe(q)>0}].

It is clear from (2.2) that Rq is an integral operator with the kernel

rq(x, y) = q−1
∫ min(x,y)

0

Hq(x, y, z)dz.
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Spectral analysis of stable processes on the positive half-line

2.2 Some preliminary results

In the next theorem we identify the Wiener-Hopf factors for a stable process X, which
are defined as the Laplace transform of positive random variables Xe(1) and −Xe(1):

φ(z) = E[e−zXe(1) ], φ̂(z) = E[ezXe(1) ], Re(z) ≥ 0. (2.5)

Theorem 2.3. Assume that (α, ρ) ∈ A. For Re(z) ≥ 0

φ(z) =z−αρ/2S2(1/2 + α/2 + αρ/2 + iα ln(z)/(2π)) (2.6)

× S2(1/2 + α/2 + αρ/2− iα ln(z)/(2π)),

and φ̂(z) can be obtained from the above formula by replacing ρ 7→ ρ̂.

The above result was established in [16] in the case when α 6= 1 (see Theorem 4 in
[16] and formula (A.2) below). Here we present a much simpler proof which also covers
the case α = 1.

Proof of Theorem 2.3. The proof is based on the Wiener-Hopf factorization result, The-
orem 2.1. Writing Xe(1) = Xe(1) + (Xe(1) − Xe(1)) and using properties (i) and (ii) we
obtain the following factorization

1

1 + Ψ(z)
= E[eizXe(1) ] = E[eizXe(1) ]× E[eizXe(1) ] = φ(−iz)× φ̂(iz), z ∈ R. (2.7)

This is a classical Riemann-Hilbert problem: we need to find a function φ(−iz) analytic
in the upper half-plane Im(z) > 0 and continuous in the closed upper half-plane and
another function φ̂(iz) having the same properties but in the lower half-plane Im(z) < 0

which meet at the boundary Im(z) = 0 as prescribed by (2.7).
Let us define by f(z) the function in the right-hand side of (2.6), and by f̂(z) the same

function, but with ρ replaced by ρ̂. First we will verify that the functions f and f̂ satisfy
(2.7). Assume that z > 0 and let us denote w = α ln(z)/(2πi). Then

f(−iz)f̂(iz) = z−αρ/2eπiαρ/4S2(1/2 + α/4 + αρ/2 + w)S2(1/2 + 3α/4 + αρ/2− w)

× z−α(1−ρ)/2e−πiα(1−ρ)/4S2(1/2 + 5α/4− αρ/2 + w)S2(1/2 + 3α/4− αρ/2− w)

= z−α/2eπiα(ρ−1/2)/2S2(1/2 + 3α/4 + αρ/2− w)S2(1/2 + 5α/4− αρ/2 + w),

where we have used identity (A.7) in the form

S2(1/2 + α/4 + αρ/2 + w)S2(1/2 + 3α/4− αρ/2− w) = 1.

Next, according to the second functional equation in (1.9) we have

S2(1/2 + 5α/4− αρ/2 + w) =
S2(1/2 + α/4− αρ/2 + w)

2 sin(π(1/2 + α/4− αρ/2 + w))
.

Using the above result and identity (A.7) in the form

S2(1/2 + α/4− αρ/2 + w)S2(1/2 + 3α/4 + αρ/2− w) = 1

we obtain

f(−iz)f̂(iz) =
z−α/2eπiα(ρ−1/2)/2

2 sin(π(1/2 + α/4− αρ/2 + w))

=
z−α/2eπiα(ρ−1/2)/2

zα/2eπiα(1/2−ρ)/2 + z−α/2eπiα(ρ−1/2)/2 =
1

1 + zαeπiα(1/2−ρ) =
1

1 + Ψ(z)
.
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Spectral analysis of stable processes on the positive half-line

Thus we have verified that that the functions f and f̂ satisfy (2.7) for z > 0, and the
proof for z < 0 follows by taking the complex conjugate in the above equation.

To prove that our candidate solutions f and f̂ are in fact the Wiener-Hopf factors, we
need to apply a certain uniqueness argument. Using the fact that S2(z) is analytic and
zero-free in the strip 0 < Re(α) < 1 + α we check that the functions f and f̂ are analytic
and zero-free in the half-plane Re(z) ≥ 0. The asymptotic result (1.10) easily gives us
z−1 ln(f(z))→ 0 as z →∞ uniformly in the half-plane Re(z) ≥ 0 (with a similar result for
f̂ ). To finish the proof we only need to apply the uniqueness result given in [15, Theorem
1(f)] and conclude that φ ≡ f .

Proposition 2.4. Assume that (α, ρ) ∈ A. The distribution of the random variable Xe(1)

is a mixture of exponentials and its density is given by

fX(x) =

∫ ∞
0

e−xuµ(u)du, x > 0 (2.8)

where

µ(u) :=
1

π
sin(παρ)uαρ̂/2|S2(1/2 + α+ αρ/2 + iα ln(u)/(2π))|2. (2.9)

The function fX(x) (the density of −Xe(1)) can be obtained from above equations by
replacing ρ 7→ ρ̂.

Proof. According to [25, Theorem 2], the random variable Xe(1) is a mixture of exponen-
tials, therefore we can write its density in the form (2.8) with some positive measure
µ(du). Applying Fubini’s Theorem we see that

φ(z) =

∫ ∞
0

e−zxfX(x)dx =

∫ ∞
0

µ(du)

u+ z
,

thus the Wiener-Hopf factor φ(z) given by (2.6) is the Stieltjes transform of the measure
µ(du). Using the well-known result on the inversion of Stieltjes transform we conclude
that the measure µ(du) has a density µ(u) which can be found via

µ(u) = − 1

π
Im[φ(eπiu)]. (2.10)

From formula (2.6) we find (as before, denoting w = iα ln(u)/(2π))

φ(eπiu) = u−αρ/2e−πiαρ/2S2(1/2 + α+ αρ/2 + w)S2(1/2 + αρ/2− w).

Applying the second functional equation in (1.9) we check that

S2(1/2 + αρ/2− w) = S2(1/2 + α+ αρ/2− w)2 sin(π(1/2 + αρ/2− w))

= S2(1/2 + α+ αρ/2− w)
(
eπiαρ/2u−α/2 + e−πiαρ/2uα/2

)
.

Combining the above two formulas we finally obtain

φ(eπiu) = u−αρ/2|S2(1/2 + α+ αρ/2 + iα ln(u)/(2π))|2
(
u−α/2 + e−πiαρuα/2

)
,

and now the desired result (2.9) follows easily from (2.10) and the above equation.

Let us denote by R the Riemann surface of the logarithm function. In what follows
we will often consider functions defined on R or on sectors in R. In particular, we have
ln(eicz) = ic + ln(z) for all c ∈ R and z ∈ R. Next, we state two simple lemmas, which
will be used often in this paper. Both of these results are well-known and can be easily
established by Cauchy Residue Theorem.
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Spectral analysis of stable processes on the positive half-line

Lemma 2.5 (Rotating the contour of integration). Assume that the function f(z), z ∈ R,
is analytic in the sector −ε < arg(z) < b+ ε for some b > 0 and ε > 0, except for a finite
number of poles at points z = zi lying in the sector 0 < arg(z) < b. Assume also that for
some δ > 0 we have f(z) = O(|z|−1+δ) as |z| → 0+ and f(z) = O(|z|−1−δ) as |z| → +∞,
uniformly in the sector 0 ≤ arg(z) ≤ b. Then∫ ∞

0

f(z)dz = eib

∫ ∞
0

f(eibz)dz + 2πi
∑
i

Res(f(z) : z = zi).

Lemma 2.6 (Hankel’s contour of integration). Assume that the function f(z), z ∈ R
satisfies f(z) = f(z̄) and is analytic in the domain π/2 − ε < | arg(z)| < π + ε for some
ε > 0, except for a finite number of poles at z = zi in the sector π/2 < arg(z) < π and
the corresponding poles z = z̄i in the sector −π < arg(z) < −π/2. Assume also that for
some δ > 0 we have f(z) = O(|z|−1+δ) as |z| → 0+ and f(z) = O(|z|−1−δ) as |z| → +∞,
uniformly in the sector π/2 ≤ arg(z) ≤ π. Then

1

2πi

∫
iR
f(z)dz = − 1

π

∫ ∞
0

Im[f(eπiz)]dz + 2Re
[∑

i

Res(f(z) : z = zi)
]
.

The following elementary result will be useful in deriving various estimates.

Lemma 2.7. Let f1(x) := min(xa, xb) and f2(x) := min(xc, xd), where we assume that
a ≥ b, c ≥ d, a+ c+ 1 > 0 and b+ d+ 1 < 0. Define ξ := min(a+ 1,−d) and η := max(b+

1,−c). Then ξ ≥ η and there exists C = C(a, b, c, d) > 0 such that
∫∞
0
f1(x)f2(x/λ)dx ≤

C min(λξ, λη) for all λ > 0.

The proof of the above result is very simple – one only needs to evaluate the integral∫∞
0
f1(x)f2(x/λ)dx, distinguishing the two cases λ > 1 and λ < 1. We leave all the details

to the reader.

2.3 Proof of Theorem 1.5

Proof of Theorem 1.5(i). We denote

f(z) :=

√
α

2
S2(αρ) z−αρ̂/2−1/2S2(1 + α/2 + αρ̂/2 + iα ln(z)/(2π)) (2.11)

× S2(1 + α/2 + αρ̂/2− iα ln(z)/(2π)).

We consider f(z) as a function on the Riemann surface R. Part (i) of Theorem 1.5 states
that ∫ ∞

0

e−zxF (x)dx = f(z)

for z > max(0, cos(πρ)). We will establish an equivalent statement

F (x) =
1

2πi

∫
c+iR

f(z)ezxdz, (2.12)

where c > max(0, cos(πρ)).
Let us denote η = 2πmin(1, 1/α) + ρπ (it is easy to check that η > π for all (α, ρ) ∈ A).

Given the fact that the double sine function S2(z) has poles at points {m+nα : m,n ≥ 1}
and the pole at 1 + α is simple (see Appendix A) we see that the function f(z) is analytic
in the sector | arg(z)| < η, except for two simple poles at points z± = exp(±πiρ). Let us
compute the residues at these poles. From the first functional equation in (1.9) we find
that

S2(1 + α/2 + αρ̂/2− iα ln(z)/(2π)) =
S2(α/2 + αρ̂/2− iα ln(z)/(2π))

2 sin(π(1/2 + ρ̂/2− i ln(z)/(2π))
.
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Spectral analysis of stable processes on the positive half-line

We also check that

d

dz
2 sin(π(1/2 + ρ̂/2− i ln(z)/(2π))

∣∣∣
z=z+

=
i

z+
.

Combining the above two formulas with (2.11) we obtain

Res(f : z = z+) = −i

√
α

2
S2(αρ) exp(−πiρ(1 + αρ̂)/2 + πiρ)S2(α)S2(1 + αρ̂)

= − i

2
exp(πiρ(1− αρ̂)/2),

where we have also used formulas (A.6) and (A.7).
Note that

|f(z)| ≤ C(α, ρ)×min(1, |z|−αρ̂−1), (2.13)

as |z| → ∞ or |z| → 0 uniformly in the sector | arg z| < η (this upper bound follows from
(1.10) and (2.11)). In particular, the integral in (2.12) converges, and we can shift the
contour of integration in (2.12) so that c+ iR 7→ iR and then pass to Hankel’s contour of
integration (see Lemma 2.6) and obtain

1

2πi

∫
c+iR

f(z)ezxdx = 2Re

[
− i

2
exp(eπiρx+ πiρ(1− αρ̂)/2))

]
− 1

π

∫ ∞
0

e−zxIm[f(zeπi)]dz

= ecos(πρ)x sin(x sin(πρ) + πρ(1− αρ̂)/2)− 1

π

∫ ∞
0

e−zxIm[f(zeπi)]dz. (2.14)

Using the definition of f(z) in (2.11) we check that

f(zeπi) =

√
α

2
S2(αρ)e−πi(1+αρ̂)/2z−αρ̂/2−1/2

× S2(1 + α+ αρ̂/2− iα ln(z)/(2π))S2(1 + αρ̂/2 + iα ln(z)/(2π)).

From the second functional equation in (1.9) it follows that

S2(1 + αρ̂/2 + iα ln(z)/(2π)) = i
[
eπiαρ̂/2z−α/2 − e−πiαρ̂/2zα/2

]
× S2(1 + α+ αρ̂/2 + iα ln(z)/(2π)).

The above two equations give us

Im[f(zeπi)] =

√
α

2
sin(παρ̂)S2(αρ)zαρ/2−1/2|S2(1 + α+ αρ/2 + iα ln(z)/(2π))|2.

Applying the second functional equation in (1.9) we check that

√
α

2
sin(παρ̂)S2(αρ) = −

√
α

4
S2(−αρ̂).

Combining the above two results with (2.14) we obtain formula (2.12).

Lemma 2.8. Assume that (α, ρ) ∈ A. Then F (x) = O(xαρ̂) as x→ 0+.

Proof. Let us consider the function G(x) defined by (1.11). Using (1.10) we check that
the integrand in (1.11) satisfies

z(αρ−1)/2|S2(1 +α+αρ̂/2 + iα ln(z)/(2π))|2 =

{
zα(1 + o(1)), as z → 0+,

z−αρ−1(1 + o(1)), as z → +∞.
(2.15)
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This result combined with (1.11) implies that G(0+) < +∞ and G′(0+) = −∞. We
conclude that the function F (x) is monotone in some interval (0, ε). Using (1.10) we
check that the function f(z) (the Laplace transform of F (x) given by (1.19)) satisfies
f(z) = Cz−αρ̂−1(1 + o(1)) as z → +∞, for some constant C = C(α, ρ) > 0. Applying
Karamata’s Tauberian theorem followed by the Monotone Density Theorem we conclude
that F (x) = Cxαρ̂(1 + o(1)) as x→ 0+.

Proof of Theorem 1.5(ii). Let us again denote by f(z) the Laplace transform of F (x),
given by (1.19). From formulas (1.10) and (1.19) we check that the upper bound (2.13)
is true for all z ∈ (0,∞). At the same time, when ρ ≥ 1/2 the function F (x) is bounded
and according to Lemma 2.8 it satisfies F (x) = O(xαρ̂) as x → 0+. Therefore we can
apply Fubini’s Theorem and conclude that∫ ∞

0

f(z)z−sdz = Γ(1− s)
∫ ∞
0

xs−1F (x)dx,

where both integrals converge absolutely for Re(s) ∈ (−αρ̂, 0). The integral identity
(A.11) implies ∫ ∞

0

z−sf(z)dz =
π

S2(1− s)S2(αρ̂+ s)
, −αρ̂ < Re(s) < 1. (2.16)

Formula (1.20) follows from the above two equations by using (A.7), the second functional
equation in (1.9) and applying the reflection formula for the gamma function.

2.4 Proof of Theorem 1.1

In the next lemma we collect some properties of the function

µ(u) =
1

π
sin(παρ)uαρ̂/2|S2(1/2 + α+ αρ/2 + iα ln(u)/(2π))|2,

which has first appeared in Proposition 2.4.

Lemma 2.9. Assume that (α, ρ) ∈ A.

(i) The function µ(u) is analytic in the sector | arg(u)| < π(1/α+ ρ̂), u ∈ R, except for
two simple poles at points u± = exp(±πi(1/α− ρ)). The residues at these poles are
given by

Res(µ(u) : u = u±) =
S2(αρ)

2π
√
α
e∓πi(αρρ̂/2+3ρ/2−1/α). (2.17)

(ii) Denote C := sin(παρ)/π. Then

|µ(u)| =

{
|u|α(C + o(1)), as |u| → 0+,

|u|−αρ(C + o(1)), as |u| → +∞,
(2.18)

uniformly in the sector | arg(u)| < π(1/α+ ρ̂).

Proof. Let us rewrite the expression in (2.9) in the form

µ(u) = Cuαρ̂/2S2(1/2+α+αρ/2+ iα ln(u)/(2π))S2(1/2+α+αρ/2− iα ln(u)/(2π)). (2.19)

The double sine function S2(z) is a meromorphic function which has poles at points
{m+ αn : m,n ≥ 1}, and the pole at z = 1 + α is simple (see Appendix A). This implies
that the function µ(u) is analytic in the sector | arg(u)| < η := π/α− πρ+ 2πmin(1, 1/α),
except for the two simple poles at u = u±. It is easy to see that η ≥ π/α + πρ̂. Let us
compute the residue at u = u−. In this case the function S2(1/2+α+αρ/2− iα ln(u)/(2π))
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is analytic in the neighborhood of u = u− and the pole comes from the other factor
S2(1/2 + α+ αρ/2 + iα ln(u)/(2π)), which we transform with the help of (1.9) as follows

S2(1/2 + α+ αρ/2 + iα ln(u)/(2π)) =
S2(1/2 + αρ/2 + iα ln(u)/(2π))

2 sin(π(1/2 + αρ/2 + iα ln(u)/(2π))
.

Note that
d

du
[2 sin(π(1/2 + αρ/2 + iα ln(u)/(2π))]

∣∣∣
u=u−

=
α

iu−
,

thus

Res(µ(u) : u = u−) =
sin(παρ)

π
× iu−

α
× (u−)αρ̂/2S2(1/2 + α+ αρ/2− iα ln(u−)/(2π))

× S2(1/2 + αρ/2 + iα ln(u−)/(2π))

=
sin(παρ)

πα
eπi/2−πi(1/α−ρ)(1+αρ̂/2)S2(α+ αρ)S2(1)

=
S2(αρ)

2π
√
α
eπi(αρρ̂/2+3ρ/2−1/α),

where in the last step we have used the functional equation (1.9) and formula (A.6).
Thus we have proved (2.17) for u = u−, and the result for u = u+ follows by taking the
complex conjugate.

The result in item (ii) follows at once from (1.10) and (2.19).

Lemma 2.10. Assume that (α, ρ) ∈ A.

(i) The function fX(x) can be extended to an analytic function in the sector | arg(x)| <
π(1/α+ ρ̂), x ∈ R.

(ii) There exists a constant C = C(α, ρ) such that for all x ∈ R in the sector | arg(x)| <
π(1/α+ ρ̂) we have

|fX(x)| <

{
C min(|x|αρ−1, |x|−α−1), if | arg(x)| < π(1/α− ρ),

C min(|x|αρ−1, |x|−α−1) + Ce−ξ|x|, if | arg(x)| ≥ π(1/α− ρ),
(2.20)

where we have denoted ξ := cos(| arg(x)| − π(1/α− ρ)).

(iii) For x > 0

eπi/αfX(eπi/αx) =
2√
α
S2(1 + αρ)

(
F̂ (x) + eπiρF̂ ′(x)

)
. (2.21)

The corresponding results for fX(x) can be obtained by changing ρ 7→ ρ̂ and F̂ 7→ F .

Proof. Let us first prove part (i). We start with the equation (2.8), which defines fX(x)

as an analytic function in the right half-plane Re(x) > 0. Assume that x lies in the first
quadrant, that is arg(x) ∈ (0, π/2). Choose any β ∈ (0, π/2) such that β 6= π(1/α − ρ).
Applying Lemmas 2.5 and 2.9, we rotate the contour of integration in (2.8) by angle β
in the clockwise direction, so that R+ 7→ e−iβR+. Taking into account the pole of µ(u)

at u = u− (which will lie in the sector −β < arg(u) < 0 if β > π(1/α− ρ)) we obtain the
following identity

fX(x) = e−iβ

∫ ∞
0

e−e
−iβzxµ(e−iβz)dz − 2πi× Res(µ(u) : u = u−)e−(u−)x1{β>π(1/α−ρ)}.

(2.22)
Note that the integral in (2.22) converges if Re(e−iβx) > 0, thus we have obtained
an analytic continuation of f(x) into the half-plane arg(x) ∈ (β − π/2, β + π/2). If
β + π/2 < π(1/α + ρ̂), we can repeat the above procedure: choose x in the sector
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arg(x) ∈ (β, β + π/2) and rotate the contour of integration by an angle β clockwise.
Eventually we will cover the whole sector arg(x) ∈ (−π/2, 1/α+ ρ̂). Finally, we extend
fX(x) into the sector arg(x) ∈ (−1/α− ρ̂, π/2) by the symmetry principle (the conjugate
of fX(x) is fX(x̄)). This ends the proof of part (i).

Let us now prove part (ii). Everywhere in this proof we will denote by Ai some positive
constants which can depend only on (α, ρ). We choose any β ∈ (0, π(1/α− ρ− 1/8)) (if
this interval is empty we take β = 0). We set x = eiβy in (2.22) and rewrite that equation
in the form

fX(eiβy) = e−iβ

∫ ∞
0

e−zyµ(e−iβz)dz. (2.23)

Note that β < π(1/α−ρ), so the second term in (2.22) vanishes. Formula (2.23) is valid in
the half-plane Re(y) > 0. The function µ(u) is analytic in the sector | arg(u)| < π(1/α− ρ),
which includes the sector | arg(u)| ≤ π(1/α − ρ − 1/8). Given the behavior of µ(u) as
u→ 0+ or u→ +∞ given in (2.18), we see that there must exist a constant A1 such that

|µ(u)| < A1 min(|u|α, |u|−αρ), (2.24)

for all u in the sector | arg(u)| ≤ π(1/α− ρ− 1/8). Note that Re(y) > |y|/2 in the sector
| arg(y)| < π/4, thus for all y in the sector | arg(y)| < π/4 we have

|fX(eπiβy)| < A1

∫ ∞
0

e−z×|y|/2 min(zα, z−αρ)dz. (2.25)

We leave it as an exercise to check that the above estimate implies that there exists a
constant A2 such that

|fX(eπiβy)| < A2 min(|y|αρ−1, |y|−α−1),

for | arg(y)| < π/4. Since the sector | arg(x)| < π(1/α− ρ+ 1/8) can be covered by finitely
many sectors of angle π/2, we have proved that there exists some constant A3 such that
for all x in the sector | arg(x)| < π(1/α− ρ+ 1/8) we have

|fX(x)| < A3 min(|x|αρ−1, |x|−α−1).

Next, we take any β ∈ (π(1/α−ρ+1/8), π(1/α−ρ+1)) and repeat the same procedure.
We set x = eiβy in (2.22) and rewrite that equation in the form

fX(eiβy) = e−iβ

∫ ∞
0

e−zyµ(e−iβz)dz − 2πi× Res(µ(u) : u = u−)e−(u−)e
iβy. (2.26)

The integral term is estimated as above, and the exponential term is estimated as

|e−(u−)e
iβy| = exp(−Re(e−πi(1/α−ρ)+iβ+i arg(y))|y|) = exp(− cos(β − π(1/α− ρ))|y|).

This ends the proof of item (ii).
The ideas for the above proof of item (ii) are illustrated in Figure 1. The contour of

integration in (2.22) is over the red line e−πiβR+. With this contour of integration, the
integral representation (2.22) is valid in the half-plane AOE, and we obtain asymptotic
estimates of fX(x) in the sector BOD. The asymptotic estimates can be made uniform, as
long as the contour of integration e−πiβR+ does not pass too close to the pole of µ(u) as
u = u−.

Let us now prove part (iii). Setting β = 1/α in the equation (2.26) and using formula
(2.17) we obtain

eπi/αfX(eπi/αx) = −i
S2(αρ)√

α
exp(−xeπiρ + πiαρρ̂/2 + 3πiρ/2) +

∫ ∞
0

e−zxµ(e−πi/αz)dz.

(2.27)
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Figure 1: Illustration to the proof of Lemma 2.10.

Next, using (2.9) we compute

µ(e−πi/αz) =
1

π
sin(παρ)zαρ̂/2e−πiρ̂/2

× S2(α+ αρ/2− iα ln(z)/(2π))S2(1 + α+ αρ/2 + iα ln(z)/(2π)).

The functional equation (1.9) gives us the identity

S2(α+ αρ/2− iα ln(z)/(2π))

= 2 sin(π(1 + ρ/2− i ln(z)/(2π)))S2(1 + α+ αρ/2− iα ln(z)/(2π))

= i
(
eπiρ/2z1/2 − e−πiρ/2z−1/2

)
S2(1 + α+ αρ/2− iα ln(z)/(2π))

and simplifying the result we obtain

µ(e−πi/αz) =
1

π
sin(παρ)zαρ̂/2−1/2(eπiρz − 1)|S2(1 + α+ αρ/2 + iα ln(z)/(2πi))|2.

Combining the above result with (2.27) and (1.11) we get

eπi/αfX(eπi/αx) = −i
S2(αρ)√

α
exp(−xeπiρ + πiαρρ̂/2 + 3πiρ/2)

− 1

π
sin(παρ)(Ĝ(x) + eπiρĜ′(x))

=
2√
α
S2(1 + αρ)×

[
− i sin(πρ) exp(−xeπiρ + πiαρρ̂/2 + 3πiρ/2)

−
√
α sin(παρ)

2πS2(1 + αρ)
(Ĝ(x) + eπiρĜ′(x))

]
.

Using formulas (1.9) and (A.7) we check that

−
√
α sin(παρ)

2πS2(1 + αρ)
=

√
α

4π
S2(−αρ),

and we leave it as an exercise to verify that

−i sin(πρ) exp(−xeπiρ + πiαρρ̂/2 + 3πiρ/2) = K̂(x) + eπiρK̂ ′(x),
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where
K̂(x) := e−x cos(πρ) sin(x sin(πρ) + πρ̂(1− αρ)/2).

The above four formulas combined with the definition of F̂ (x) (see formula (1.12)) imply
the desired identity (2.21).

Remark 2.11. The proof of part (i) of Lemma 2.10 shows that fX(x) can in fact be
extended to an analytic function on the whole of R, though this result will not be used
anywhere in this paper. Also, note that (2.21) implies the following results,

2√
α
S2(1 + αρ)F̂ (x) = eπi(1/α−ρ)

∫ x

0

exp(e−πiρ(y − x))fX(eπi/αy)dy

= − 1

sin(πρ)
Im
(
eπi/α−πiρfX(eπi/αx)

)
,

which establish a direct link between the spectral theory of stable processes on the
half-line and the Wiener-Hopf factorization theory.

Let us consider what happens to the asymptotic behavior of the function fX(x) (as
|x| → +∞) as we increase | arg(x)|. Lemma 2.10(ii) tells us that there is a transition from
power-type decay |q|−α−1 to exponential growth exp(−ξ|q|) which occurs at the critical
level | arg(x)| = σ := π(1/α− ρ+ 1/2). For values of | arg(x)| < σ we have ξ > 0, thus we
have a power-type decay; precisely at the critical level | arg(x)| = σ we have ξ = 0 which
results in a bounded oscillatory behavior; finally, when | arg(x)| exceeds the critical level
σ we have ξ ∈ (−1, 0) and fX(x) exponentially increases and oscillates. It is easy to
check that for all (α, ρ) ∈ A we have σ > π/(2α). Using this result we rewrite the upper
bound in Lemma 2.10(ii) in the following less informative (but more useful) form:

Corollary 2.12. There exist constants C = C(α, ρ) > 0 and θ = θ(α, ρ) > 0 such that for
all q in the sector | arg(q)| < π/2 + θ we have

|fX(q1/α)| ≤ C min(|q|ρ−1/α, |q|−1−1/α), (2.28)

and for all q in the sector π/2 + θ < | arg(q)| ≤ π we have

|fX(q1/α)| ≤


C min(|q|ρ−1/α, |q|−1−1/α), if ρ < 1/2,

C(|q|ρ−1/α + 1), if ρ = 1/2,

C(|q|ρ−1/α + exp(|q|1/α)) if ρ > 1/2.

(2.29)

The corresponding results for fX(x) can be obtained by changing ρ 7→ ρ̂.

The next corollary will play a crucial role in the proof of Theorem 1.1(ii) and Theorem
1.3(ii).

Corollary 2.13. Assume that (α, ρ) ∈ A. Then for all x, y > 0 we have∫ min(x,y)

0

Im
[
e2πi/αfX((x− z)eπi/α)fX((y − z)eπi/α)

]
dz =

2

α
F (x)F̂ (y). (2.30)

Proof. First of all, we use formulas (1.9) and (A.7) to check that

S2(1 + αρ)S2(1 + αρ̂) =
1

2 sin(πρ)
.

Next, we use the identity (2.21) and compute

Im
[
e2πi/αfX((x− z)eπi/α)fX((y − z)eπi/α)

]
=

2

α sin(πρ)
Im
[
(F (x− z) + eπiρ̂F ′(x− z))(F̂ (y − v) + eπiρF̂ ′(y − z))

]
=

2

α

[
F (x− z)F̂ ′(y − z) + F ′(x− z)F̂ (y − z)

]
= − 2

α

d

dz

[
F (x− z)F̂ (y − x)

]
.
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To finish the proof one needs to integrate the above expression in z ∈ (0,min(x, y)) and
use the fact that F (0+) = F̂ (0+) = 0 (see Lemma 2.8).

Proof of Theorem 1.1, part (i). Let us denote by mt(y) the probability density of the
random variable −Xt when X0 = 0 (the existence of this density is known - see [5,
7, 16], though it also follows easily from the absolute convergence of the integral in
formula (2.31) below). As we have discussed in Section 2.1, the scaling property of
stable processes implies that the probability density function of −Xe(q) is given by

q1/α−1fX(yq1/α). Conditioning on the exponential random variable e(q) we arrive at the
Laplace transform identity∫ ∞

0

e−qtmt(y)dt = q1/α−1fX(yq1/α).

We write down mt(y) as the inverse Laplace transform and then pass to Hankel’s contour
(via Lemma 2.6 and Corollary 2.12; here we need α > 1 or ρ̂ ≤ 1/2):

mt(y) =
1

2πi

∫
iR
q1/α−1fX(yq1/α)eqtdq =

1

π

∫ ∞
0

e−qtq1/α−1Im
[
eπi/αfX(yq1/αeπi/α)

]
dq.

(2.31)
Next we compute

Px(T0 > t) = P0(−Xt < x) =

∫ x

0

mt(y)dy

=
1

π

∫ ∞
0

e−qtq1/α−1
{∫ x

0

Im
[
eπi/αfX(yq1/αeπi/α)

]
dy

}
dq,

where the application of Fubini’s Theorem is justified due to Corollary 2.12. The integral
in curly brackets can be evaluated using formula (2.21):∫ x

0

Im
[
eπi/αfX(yq1/αeπi/α)

]
dy =

2√
α
S2(1 + αρ̂) sin(πρ)

∫ x

0

F ′(yq1/α)dy

=
S2(αρ̂)√

α
q−1/αF (xq1/α),

where we have used the fact that F (0+) = 0 (Lemma 2.8) and identity (1.9). Formula
(1.13) follows by combining the above two identities and changing the variable of
integration q = λα.

Proof of Theorem 1.1, part (ii). We recall our notation from Section 2.1: the function
ht(x, y, z) denotes the joint probability density of random variables (Xt, Xt) for a stable
process X started from X0 = x. We start with equation (2.4), which we reproduce here
for convenience:

ht(x, y, z) =
1

2πi

∫
iR
q2/α−1fX((y − z)q1/α)fX((x− z)q1/α)eqtdq. (2.32)

According to Corollary 2.12, for fixed 0 < z < min(x, y) the integrand is bounded from
above by C min(1, |q|−3) when q ∈ iR, thus the integral in (2.32) converges absolutely.

Now we plan to pass to Hankel’s contour of integration in (2.32). Corollary 2.12 tells
us that in some sector π/2 ≤ | arg(q)| < π/2 + θ the integrand is bounded from above by
C min(1, |q|−3). In the sector π/2+θ ≤ | arg(q)| ≤ π the term eqt is exponentially decaying.

When α > 1, the integrand is bounded by Ce2|q|
1/α+qt, which decays to zero exponentially.

When α ≤ 1 and ρ = 1/2 the integrand is bounded by Ceqt, which again decays to zero
exponentially. Thus all conditions of Lemma 2.6 are satisfied and we obtain

ht(x, y, z) :=
1

π

∫ ∞
0

Im
[
e2πi/αfX((y − z)eπi/αq1/α)fX((x− z)eπi/αq1/α)

]
q2/α−1e−qtdq.
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Assume first that x 6= y. We use formula (2.2) and apply Fubini’s Theorem to obtain

pt(x, y) =

∫ min(x,y)

0

ht(x, y, z)dz (2.33)

=
1

π

∫ ∞
0

{∫ min(x,y)

0

Im
[
e2πi/αfX((y − z)eπi/αq1/α)

× fX((x− z)eπi/αq1/α)
]
dz

}
q2/α−1e−qtdq.

To justify the application of Fubini’s Theorem, we use Corollary 2.12 and estimate the
integrand as follows:

|fX((y − z)eπi/αq1/α)fX((x− z)eπi/αq1/α)|q2/α−1e−qt (2.34)

≤ Cq2/α−1e−qt((y − z)αρ−1qρ̂−1/α +A(q))((x− z)αρ̂−1qρ−1/α +B(q)),

where A(q) = B(q) = 1 if ρ = 1/2 and α ≤ 1 and A(q) = B(q) = exp(max(x, y)|q|1/α) if
α > 1. Considering these two cases separately (α ≤ 1 and α > 1) one can check that the
function in the right-hand side of (2.34) is integrable in (z, q) ∈ {0 < z < min(x, y), q >

0} ⊂ R2 as long as x 6= y.
To finish the proof, we compute the integral in curly brackets in (2.33) using Corollary

2.13 and change the variable of integration q = λα. To remove the restriction x 6= y we
note that the right-hand side in (1.14) defines a continuous function of t, x, y > 0, and we
define pt(x, x) by continuity.

2.5 Proof of Theorem 1.3

Recall that we have defined ζ := π
2 min(1, 1/α). Let us define Sr to be the “shift

operator”: Sru(x) = u(r + x), and let Lu(z) :=
∫∞
0
u(x)e−xzdx denote the Laplace

transform of u. Note that u ∈ Hα implies Sru ∈ Hα for all r ≥ 0.

Lemma 2.14. Let u ∈ Hα. Then LSru(z) is an entire function and for every small ε > 0

there exists C = C(u, α, ε) such that for all r ≥ 0 we have |LSru(z)| ≤ C min(1, |z|−1) in
the sector | arg(z)| ≤ ζ + π/2− ε.

Proof. The fact that LSru(z) is an entire function follows from Definition 1.2, which
implies that u(x) is bounded for small x = 0 and decays faster than exp(−δx ln(x)) for
large x.

Let us fix β ∈ (−ζ, ζ). By the same estimate as above, we can rotate the contour of
integration and change the variable of integration x = eiβy to obtain

LSru(z) = eiβ

∫ ∞
0

e−ye
iβzu(r + eiβy)dy. (2.35)

According to Definition 1.2, there exists δ(u, α, ε) > 0 and C(u, α, ε) > 0 such that
|u(r + eiβy)| ≤ C min(1, y−δy) for all y > 0. Using the estimate Re(eiβz) ≥ sin(ε)|z| in the
sector | arg(eiβz)| ≤ π/2− ε we obtain (for all z in this sector)

|LSru(z)| ≤ C
∫ ∞
0

e− sin(ε)|z|ydy ≤ C

sin(ε)|z|
.

Furthermore,

|LSru(z)| ≤ C
∫ ∞
0

y−δydy.

Since β can be chosen arbitrary in the interval (−ζ, ζ), we obtain the desired result.
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Next, for u ∈ Hα we define

Ξu(λ) =

∫ ∞
0

fX(λx)u(x)dx. (2.36)

Lemma 2.15. Let (α, ρ) ∈ A and u ∈ Hα.

(i) There exists ε > 0 such that for every r ≥ 0 the function λ 7→ ΞSru(λ) is analytic in
the sector | arg(λ)| < π/α+ ε where it satisfies

|ΞSru(λ)| ≤ C ×min(|λ|αρ−1, |λ|−1), (2.37)

for some constant C = C(u, α, ρ, ε) > 0.

(ii) The function λ ∈ (0,∞) 7→ Πu(λ) satisfies

|Πu(λ)| ≤ C ×min(1, λ−1), (2.38)

for some constant C = C(u, α, ρ) > 0.

Proof. First we will prove part (i) in the special case r = 0 (so that Sru = u). Recall
that the Wiener-Hopf factor φ(z) (given by (2.6)) is the Laplace transform of fX(x)

and that φ(z) can be extended to a meromorphic function on R (the Riemann surface
of the logarithm function). Moreover, according to (2.6) and properties (i) and (ii) of
the double sine function on page 4, we see that the function φ(z) is analytic in the
sector | arg(z)| < π(1/α+ ρ̂) and satisfies |φ(z)| ≤ C min(1, |z|−αρ) in any smaller sector
| arg(z)| < π(1/α+ ρ̂)− ε for some C = C(α, ρ, ε).

Let us take u ∈ Hα. Observe that Ξu(λ) is the value of the convolution of fX(λx) and
u(−x) at x = 0 (we extend these functions to R by setting fX(λx) = u(x) = 0 when x < 0).
Both fX(λx) and u(−x) are integrable, so the Fourier transform of the convolution of
these two functions is the product of the corresponding Fourier transforms: λ−1φ(−iz/λ)

and Lu(iz). The estimates discussed above imply that the function λ−1φ(−iz/λ)Lu(iz) is
integrable over z ∈ R, and thus Ξu(λ) can be evaluated as the inverse Fourier transform
of λ−1φ(−iz/λ)Lu(iz) at zero. This allows us to write

Ξu(λ) =
1

2πλ

∫
R

φ(iz/λ)Lu(−iz)dz =
1

2πiλ

∫
iR
φ(z/λ)Lu(−z)dz.

If α ≤ 1 we choose any ε ∈ (0, πρ̂), and if α > 1 we choose any ε ∈ (0, π2 (1− 1/α)). Let us
define β = π/2− ζ + ε (where ζ = π

2 min(1, 1/α)). Applying Lemma 2.5, the upper bound
for φ and the properties of Lu(−z) described in Lemma 2.14 we can deform the contour
of integration in the above equation iR 7→ γ, where γ = (e−iβ∞, 0)∪ (0, eiβ∞), and obtain

Ξu(λ) =
1

2πiλ

∫
γ

φ(z/λ)Lu(−z)dz.

Rewriting this expression as two integrals and changing the variable of integration we
arrive at

Ξu(λ) = I1(λ) + I2(λ) (2.39)

=
eiβ

2πiλ

∫ ∞
0

φ(weiβ/λ)Lu(−weiβ)dw − e−iβ

2πiλ

∫ ∞
0

φ(we−iβ/λ)Lu(−we−iβ)dw.

Since φ(z) is analytic in the sector | arg(z)| < π(1/α + ρ̂), the functions I1(λ) and I2(λ)

are analytic in the sector | arg(λ)| < π(1/α+ ρ̂)−β. Considering separately the two cases
α ≤ 1 and α > 1 we check that ξ := πρ̂− β > 0, thus the function Ξu(λ) is analytic in the
sector | arg(λ)| < π/α+ ξ.

EJP 23 (2018), paper 10.
Page 20/29

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP134
http://www.imstat.org/ejp/


Spectral analysis of stable processes on the positive half-line

According to Lemma 2.14, we can estimate |Lu(−we±iβ)| ≤ C min(1, |w|−1). This
result and the bound |φ(we±iβ)| ≤ C min(1, |w|−αρ) combined with Lemma 2.7 give us
the upper bound (2.37).

The proof of the case r > 0 follows exactly the same steps, since the function
vr(x) = Sru(x) also belongs to Hα. Lemma 2.14 then tells us that the upper bound in
(2.37) is uniform in r.

The proof of part (ii) follows very similar steps. We choose ε and β in the same way as
above. Let f(z) :=

√
2/π

∫∞
0
F (x)e−zxdx. As we have established in formula (1.19), the

function f(z) can be analytically continued to a meromorphic function on R. Moreover,
f(z) is analytic in the sector | arg(z)| < πρ̂ and in any smaller sector | arg(z)| < πρ̂ − ε2
it satisfies an upper bound |f(z)| ≤ C min(1, |z|−1−αρ), which follows from (1.10) and
(1.19).

Note that e−xF (x) and eλxu(x) are in L2(R+). We express Πu using Plancherel’s
theorem for Laplace transform as follows

Πu(λ) =
√

2/π

∫ ∞
0

(e−λxF (λx))(eλxu(x))dx =
1

2πiλ

∫
λ+iR

f( zλ )Lu(−z)dz.

The contour of integration is deformed in the same way as in (2.39) and we obtain

Πu(λ) =
eiβ

2πiλ

∫ ∞
0

f(weiβ/λ)Lu(−weiβ)dw − e−iβ

2πiλ

∫ ∞
0

f(we−iβ/λ)Lu(−we−iβ)dw.

Applying Lemma 2.7 and the above mentioned estimate |f(we−iβ)| ≤ C min(1, |w|−1−αρ)
we get the desired result (2.38).

Lemma 2.16. Let α and ρ be as in Theorem 1.3. Then Π : L2(R+) 7→ L2(R+) is a
bounded self-adjoint operator and Π̂ : Hα 7→ L2(R+) is a symmetric operator such that
Π̂Hα is dense in L2(R+).

Proof. The fact that both operators Π and Π̂ are symmetric follows easily from their
definition (1.15). Let us denote byM the Mellin transform operator:

Mu(z) =
1√
2π

∫ ∞
0

u(x)x−1/2+izdx, z ∈ R. (2.40)

It is well-known that the Mellin transform operator is an isometry between L2(R+) and
L2(R). Since the operator Π is a Mellin convolution, Theorem 1.5(ii) and a standard
computation leads to identity

MΠu(z) =MF (z)×Mu(−z).

Formula (1.20) and location of poles/zeros of the double sine function imply that
MF (z) has no poles on the real line, and the asymptotic relation (1.10) tells us that
|MF (z)| exp((ρ − 1/2)π|z|) → 1 as z → ∞. Thus for ρ ≥ 1/2 the function MF (z) is
bounded and it induces a bounded multiplication operator on L2(R), thus the operator
Πu =M−1[MF ×M−1u] is a bounded (self-adjoint) operator on L2(R+).

The fact that Π̂ maps Hα into L2(R+) follows from Lemma 2.15(ii). Let us prove
that the image Π̂Hα is dense in L2(R+). Assume to the contrary that Π̂Hα is not
dense in L2(R+). Then there must exist a nonzero function w ∈ L2(R+) such that∫∞
0
w(x)Π̂u(x)dx = 0 for all u ∈ Hα. Consider any nonzero function u ∈ Hα and define

ua(x) = u(ax) for a > 0. As we have mentioned in the paragraph following Definition 1.2,
we have ua ∈ Hα for all a > 0. Let v(λ) = Π̂u(λ). Then it is clear from the definition of
Π̂ that Π̂ua(λ) = a−1v(a−1λ), so that all functions v(a−1x) belong to Π̂Hα and we have
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∫∞
0
w(x)v(a−1x)dx = 0 for all a > 0. Applying Plancherel’s Theorem for Mellin transform

we see that

0 =

∫ ∞
0

w(x)v(a−1x)dx =

∫
R

Mw(−z)Mv(z)a1/2+izdz, for all a > 0.

Thus the Fourier transform of a function Mw(−z)Mv(z) ∈ L1(R) is identically zero,
therefore

Mw(−z)Mv(z) = 0, for all z ∈ R. (2.41)

Next, due to the fact that v = Π̂u and the estimate (2.38) we see thatMv(z) is analytic
in a strip |Im(z)| < 1/2, thusMv(z) is nonzero almost everywhere in this strip. Equation
(2.41) then implies thatMw(−z) = 0 for almost all z ∈ R, therefore w ≡ 0 and we arrive
at a contradiction. (This argument is essentially an application of the L2 version of
Wiener’s Tauberian theorem for the Mellin transform.)

Proof of Theorem 1.3. Given the result in Lemma 2.16, it remains to establish formulas
(1.16), (1.17) and (1.18). Our plan is to prove (1.17) using similar method as in the proof
of Theorem 1.1(ii) and then to derive the remaining statements (1.16) and (1.18) as
corollaries of (1.17).

When ρ = 1/2 formula (1.17) follows at once from (1.14) and Fubini’s Theorem (whose
application is justified since the functions F and F̂ are bounded in this case). Thus we
will only consider the case when ρ > 1/2.

We recall that the operator Ξ is defined by (2.36) and Sr is the “shift” operator from
Lemma 2.14. Let us fix u ∈ Hα. We begin by rewriting formula (2.2):

Ptu(x) =

∫ x

0

kt(x, z)dz, (2.42)

where we have defined

kt(x, z) :=

∫ ∞
z

ht(x, y, z)u(y)dy.

The Laplace transform of t 7→ kt(x, z) can be computed by applying Fubini’s Theorem to
the above formula and using (2.1), (2.3) and (2.36):∫ ∞

0

e−qtkt(x, z)dt =

∫ ∞
z

q−1Hq(x, y, z)u(y)dy

= q2/α−1fX((x− z)q1/α)ΞSzu(q1/α) =: Kq(x, z).

Let us denote w = (x − z)|q|1/α. According to Corollary 2.12 and Lemma 2.15, the
function q 7→ Kq(x, z) is analytic in the sector | arg(q)| < π + ε and it is bounded in the
sector | arg(q)| ≤ π by

|Kq(x, z)| ≤ C(u, α, ρ)× |q|2/α−1 min(wαρ̂−1, w−α−1)×min(|q|ρ−1/α, |q|−1/α). (2.43)

For fixed z and x the upper bound (2.43) implies the estimate:

|Kq(x, z)| ≤ C(u, α, ρ, x, z)×min(1, |q|−2), | arg(q)| ≤ π. (2.44)

At the same time, using the trivial bounds min(wαρ̂−1, w−α−1) ≤ wαρ̂−1 and
min(|q|ρ−1/α, |q|−1/α) ≤ qρ−1/α we obtain from (2.43) the following result:

|Kq(x, z)| ≤ C(u, α, ρ)× |x− z|αρ̂−1, | arg(q)| = π. (2.45)
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Next, we fix x, z satisfying 0 < z < x, use the upper bound (2.44) and express kt(x, z)
as the inverse Laplace transform

kt(x, z) =
1

2πi

∫
iR
Kq(x, z)e

qtdq.

Next, we use the same upper bound (2.44) and Lemma 2.6 and pass to Hankel’s contour
of integration in the above integral:

kt(x, z) = − 1

π

∫ ∞
0

Im[Kqeπi(x, z)]e−qtdq.

Combining this result with formula (2.42) and applying Fubini’s Theorem we obtain

Ptu(x) = − 1

π

∫ ∞
0

[∫ x

0

Im[Kqeπi(x, z)]dz

]
e−qtdq. (2.46)

The use of Fubini’s Theorem in the previous step is justified since the function (z, q) 7→
Kqeπi(x, z)e−qt is absolutely integrable on (0, x) × (0,∞) – this follows easily from the
upper bound (2.45).

Next, we rewrite the integral in square brackets in (2.46) as follows∫ x

0

Im[Kqeπi(x, z)]dz (2.47)

= −q2/α−1
∫ x

0

∫ ∞
z

Im
[
e2πi/αfX((x− z)q1/αeπi/α)fX((y − z)q1/αeπi/α)u(y)

]
dydz

= −q2/α−1
∫ ∞
0

∫ min(x,y)

0

Im
[
e2πi/αfX((x− z)q1/αeπi/α)fX((y − z)q1/αeπi/α)

]
dzu(y)dy

= − 2

α
q1/α−1

∫ ∞
0

F (xq1/α)F̂ (yq1/α)u(y)dy = − 2

α
q1/α−1F (xq1/α)Π̂u(q1/α).

In the second step we have again applied Fubini’s Theorem: to justify its use note that
according to Corollary 2.12 we have

|fX((x− z)q1/αeπi/α)fX((y − z)q1/αeπi/α)u(y)| ≤ C × |x− z|αρ̂−1 × |y − z|αρ−1ey × |u(y)|

for some constant C = C(α, ρ, q), and the function in the right-hand side of the above
equation is integrable over the region {(z, y) ∈ R2 : 0 < z < min(x, y)}. In the third
step of (2.47) we have applied Corollary 2.13. Combining formulas (2.46) and (2.47) and
changing the variable of integration q = λα we obtain the desired result (1.17).

Formula (1.16) follows from (1.17) by taking the limit t→ 0+: Then Ptu(x)→ u(x) for
all x > 0 (since u is continuous and a Lévy process X killed on the first exit from (0,∞)

is continuous in probability), while the right-hand side of (1.17) converges to ΠΠ̂u.
Let us now prove formula (1.18). We denote by (u, v) the inner product in L2(R+).

We start with v, w ∈ Hα and use formulas (1.16) and (1.17) and the fact that operators Π

and Π̂ are symmetric to compute

(P̂tΠ̂w, v) = (Π̂w,Ptv) = (Π̂w,Πe−λ
αtΠ̂v)

= (ΠΠ̂w, e−λ
αtΠ̂v) = (w, e−λ

αtΠ̂v) = (Π̂e−tλ
α

w, v). (2.48)

In the last step we have used the fact that e−tλ
α

w ∈ Hα. Since (2.48) is valid for all
v ∈ Hα and Hα is dense in L2(R+) we conclude that P̂tΠ̂w = Π̂e−tλ

α

w. Therefore,
ΠP̂tΠ̂w = ΠΠ̂e−tλ

α

w = e−tλ
α

w, as desired.
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Proof of Corollary 1.4. Part (ii) of Corollary 1.4 was established above (see the discussion
following (2.48)). To prove part (i), we start with u ∈ Hα, v ∈ L2(R+) and denote Π̂u = w.
According to (1.16) we have Πw = u. We use formula (1.18) and compute

(PtΠv, w) = (PtΠv, Π̂u) = (v,ΠP̂tΠ̂u)

= (v, e−tλ
α

u) = (e−tλ
α

v,Πw) = (Πe−tλ
α

v, w). (2.49)

Since w ranges over Π̂Hα, and the latter is a dense subset of L2(R+) due to Theorem
1.3(i), we see that (2.49) implies that for all v ∈ L2(R+) we have PtΠv = Πe−tλ

α

v.
Application of Fubini’s Theorem (note that uλ(x) = F (λx) is bounded when ρ ≥ 1/2)
gives

PtΠv(x) =

∫ ∞
0

∫ ∞
0

pt(x, y)F (λy)v(λ)dλdy =

∫ ∞
0

Ptuλ(x)v(λ)dλ.

Since v ∈ L2(R+) is arbitrary, we have Ptuλ(x) = e−tλ
α

uλ(x) for almost all x, λ > 0. By
continuity, this relation holds for all x, λ > 0, as desired.

3 Doney classes

Doney [6] has introduced classes of stable processes for which the Wiener-Hopf
factors can be computed explicitly in terms of q-Pochhammer symbols. Let k, l ∈ Z and
let us define by Ck,l the class of stable processes with parameters (α, ρ) satisfying

αρ = l − kα. (3.1)

These classes include the spectrally-positive (C0,1) and the spectrally-negative processes
(C−1,−1). Note that X ∈ Ck,l if and only if X̂ ∈ C−k−1,−l. Let us define the q-Pochhammer
symbol

(a; q)n =


n−1∏
j=0

(1− aqj), n > 0,

|n|∏
j=1

(1− aq−j)−1, n < 0,

and (a; q)0 = 1.
The main result of Doney [6] is the following formula for the Wiener-Hopf factor: for

a process X ∈ Ck,l we have

φ(z) =

(
(−1)l+1zαeπiα(1−k); q

)
k(

(−1)k−1zeπi(l−1)/α; q̃
)
l

, (3.2)

where q := e2πiα and q̃ := e−
2πi
α . We note that this formula follows from our general result

(Theorem 2.3) and formula (A.8). It is not surprising that all expressions involving the
eigenfunctions F (x) also simplify considerably for Doney classes Ck,l.
Proposition 3.1. Assume that X ∈ Ck,l.

(i) The function G(x) (which is related to F (x) through (1.12)) is given by

G(x) =

∫ ∞
0

e−zxzα

(
(−1)lzαeπiα(k+3); q

)
−k−2(

(−1)k+1ze−πil/α; q̃
)
−l+1

dz. (3.3)

(ii) For Re(z) > max(0, cos(πρ))∫ ∞
0

e−zxF (x)dx =

√
α

2
S2(αρ)

(
(−1)lzαeπiα(k+2); q

)
−k−1(

(−1)kze−πil/α; q̃
)
−l+1

. (3.4)
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(iii) Assume that ρ ≥ 1/2 and Re(z) ∈ (−αρ̂, 0). If l > 0 then∫ ∞
0

xz−1F (x)dx =
1

2
(−1)(k+1)lΓ(z)

k+1∏
j=1

2 sin(π(z + (j − 1)α))

×
l∏

j=1

1

2 sin(π(z − j)/α)
, (3.5)

while if l < 0 we have∫ ∞
0

xz−1F (x)dx =
1

2
(−1)(k+1)lΓ(z)

|l|∏
j=1

2 sin(π(z + j − 1)/α)

×
|k+1|∏
j=1

1

2 sin(π(z − jα))
, (3.6)

Proof. The proof follows immediately from (1.11), (1.19), (1.20) and formulas (A.8) and
(A.9).

3.1 Spectrally one-sided processes

The spectrally-negative (spectrally-positive) processes belong to classes C0,1 (respec-
tively, C−1,−1). All the formulas given in Proposition 3.1 for general Doney classes Ck,l
remain valid, except that in the spectrally-negative case αρ = 1 we should take G(x) ≡ 0.
Let us consider this case in more detail.

In the spectrally-negative case it is well-known that the random variable Xe(1) has
exponential distribution with parameter one, so that

fX(x) = e−x, x > 0.

Following the same analysis as before (or simply using formula (2.21)), we would obtain
the co-eigenfunction

F̂ (x) = e−x cos(π/α) sin(x sin(π/α)).

The eigenfunction is given by (1.12) and (3.3):

F (x) = ex cos(π/α) sin(x sin(π/α) + π(2− α)/(2α))

+
α

2π
sin(πα)

∫ ∞
0

e−uxuαdu

1 + 2 cos(πα)uα + u2α
.

4 Conclusion

Our methods for establishing Theorems 1.1, 1.3 and 1.5 are fundamentally based on
the Wiener-Hopf factorization (Theorem 2.1), which comes from the fluctuation theory of
Lévy processes. We hope that the methods developed in this paper will help to study
spectral properties of semigroups of more general Lévy processes on a half-line (see
[17] for some results in this direction). Of course, the case of stable processes is a very
special one, as stable processes lie in the intersection of the class of Lévy processes and
the class of self-similar Markov processes. We would like to mention that the spectral
properties of the semigroup of general positive self-similar Markov processes (which
include stable processes killed on the first exit from (0,∞)) are studied in [23] using a
different approach (based on Lamperti transformation and Mellin transform techniques).

Finally, we would like to emphasize the importance of the double sine function S2(z;α)

in the study of stable processes. This function appears in the definition (1.12) of the
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eigenfunctions, in formulas (1.19) and (1.20) that give the Laplace and Mellin transform
of the eigenfunctions and in formula (2.6), which gives the Wiener-Hopf factors of stable
processes. So far, apart from some number-theoretic applications [14, 27], this curious
special function has appeared mostly in the Physics literature [10, 24, 26, 30], where it
is used in studying quantum topology and cluster algebras. It is an interesting question
whether this appearance of the double sine function in our study of stable processes is
simply a coincidence or there is indeed a deeper connection between stable processes
on the half-line and quantum topology and/or cluster algebras.
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Appendix A The double sine function

In a series of papers Koyama and Kurokawa (see [13, 14], for example) have studied
the multiple sine functions Sr(z;w) where z ∈ C, r ∈ N and w = (w1, . . . , wr), wi ∈
C \ (−∞, 0]. These are homogeneous functions (in the sense that Sr(cz; cw) = Sr(z;w)

for any c > 0) that satisfy certain functional equations. Considering the case r = 2, the
function S2(z;w) satisfies

S2(z + wi;w) =
S2(z;w)

2 sin(πz/wi)
, i ∈ {1, 2}.

It can be shown [29] that S2(z;w) is a unique meromorphic function of z which satisfies
the above functional equations and has value one at z = (w1 + w2)/2. Due to the
homogeneity of S2(z; (w1, w2)) we can set w1 = 1, and from now on we will write simply
S2(z;α) = S2(z; (1, α)). Note that the same homogeneity property implies an identity

S2(z;α) = S2(z/α; 1/α). (A.1)

As the double sine function is becoming better known and more widely used in
Mathematics and Physics literature, it seems that most authors introduce a new notation
for this object, which makes it very hard to navigate the literature and to find relevant
results. Below we provide a short summary of various notations used for the double sine
function S2(z;α):
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(i) The double sine function Sb(z) of Ponsot and Teschner [24]:

S2(z;α) = S√α(z/
√
α)−1.

(ii) The hyperbolic gamma function Ghyp(w1, w2; z) of Ruijsenaars [26, 4]:

S2(z;α) = Ghyp(1, α; i(1/2 + α/2− z))−1.

(iii) The hyperbolic gamma function Γh(z;w1, w2) of van de Bult [29]:

S2(z;α) = Γh(z; 1, α)−1.

(iv) The double gamma function G(z;α) of Barnes [1]:

S2(z;α) = (2π)(1+α)/2−z
G(z;α)

G(1 + α− z;α)
. (A.2)

(iv) The γ-function (see [30] and the references therein): assume that Im(α) > 0 and
define q := e2πiα, q̃ := e−2πi/α and

γ(z;α) :=
(qe−2iπz; q)∞
(e−2πiz/α; q̃)∞

, (A.3)

where (a, q)∞ :=
∏
k≥0(1 − aqk) is the q-Pochhammer symbol. The γ-function is

related to the double sine function through the identity

S2(z;α) = e−πi(2z−1−α)2/(8α)+πi(α+1/α)/24 × 1

γ(z;α)
. (A.4)

(iv) The quantum dilogarithm function Φ~(z) (see [10] and the references therein) is
related to the double sine function S2(z;α) through the above formula (A.4) and
the identity

γ(z;α) = Φα(πi(1 + α− 2z))−1.

For fixed α ∈ C \ (−∞, 0], the double sine function is meromorphic in z-variable and
it admits the product representation of the form

S2(z;α) = eA(α)+B(α)z+C(α)z2 z

z − 1− α
∏
m≥0

∏
n≥0

′ P (−z/(m+ αn))

P (z/(m+ 1 + α(n+ 1)))
(A.5)

where P (z) := (1− z) exp(z + z2/2) and the prime in the second product means that the
term corresponding to m = n = 0 is omitted. The explicit expressions for A(α), B(α) and
C(α) can be found in [27, Theorem 6]. It is clear from (A.5) that S2(z;α) has zeros at
points {−m−αn : m ≥ 0, n ≥ 0} and poles at points {m+αn : m ≥ 1, n ≥ 1}. Moreover,
the pole at z = α+ 1 is simple (other poles may have multiplicity greater than one when
α is rational). Note that if Im(α) > 0 and if we look at the lattice {m + αn, m, n ∈ Z},
then the poles (zeros) of S2(z;α) lie in the first (respectively, third) quadrant of this
lattice (see Figure 2).

Besides the value S2(1/2 + α/2;α) = 1, the following values are known explicitly [14]:

S2(1;α) = 1/S2(α;α) =
√
α, S2(1/2;α) = S2(α/2;α) =

√
2. (A.6)

The above result (A.2) implies a very useful reflection formula

S2(z;α)S2(1 + α− z;α) = 1. (A.7)
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Figure 2: The roots (blue crosses) and the poles (red circles) of the double sine function
S2(z;α).

Let us denote q = e2πiα and q̃ = e−
2πi
α . Using (A.3), (A.4), (A.7) and the identity

(a; q)∞ = (aqn; q)∞(a; q)n we can derive a useful result

S2(1/2 + α/2 + (m− nα)/2 + z;α)S2(1/2 + α/2 + (m− nα)/2− z;α) (A.8)

= e−πi(m−αn)z/α ((−1)m−1e−2πiz+πiα(1−n); q)n
((−1)n−1e−2πiz/α+πi(m−1)/α; q̃)m

.

When m,n ∈ Z+, we can apply repeatedly the functional equations (1.9) and prove the
following result

S2(z;α)

S2(z +m− nα;α)
= (−1)mn

m∏
j=1

2 sin(π(z + j − 1)/α)

n∏
j=1

1

2 sin(π(z − jα))
. (A.9)

A similar expression when −m,−n ∈ Z+ can be easily obtained from the above formula
by changing variables z +m− nα = w (or by using transformation (A.1) or the reflection
formula (A.7)).

An asymptotic behavior of the double sine function as the imaginary part of the
argument increases is described by the following equation

|S2(c+ iy;α)| = eπ|y|(1+α−2c)/(2α)(1 + o(1)), y →∞. (A.10)

See formula 135 in [24]. It is easy to prove that this result holds uniformly for c on
compact subsets of R. We note that this result implies (1.10).

Finally, the “b-beta integral” of Ponsot-Teschner (Lemma 15 in [24], see also formula
7 in [30]) implies the following result: For α > 0, 0 < b < (1 + α)/2 and s ∈ (−b, b) we
have∫ ∞

0

xs−1|S2(1/2 + α/2 + b+ iα ln(x)/(2π);α)|2dx =
2π√
α

S2(2b;α)

S2(b+ s;α)S2(b− s;α)
. (A.11)
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