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Abstract

It has been proved by Bovier & Hartung [Elect. J. Probab. 19 (2014)] that the maximum
of a variable-speed branching Brownian motion (BBM) in the weak correlation regime
converges to a randomly shifted Gumbel distribution. The random shift is given by
the almost sure limit of McKean’s martingale, and captures the early evolution of the
system. In the Bovier-Hartung extremal process, McKean’s martingale thus plays a
role which parallels that of the derivative martingale in the classical BBM. In this
note, we provide an alternative interpretation of McKean’s martingale in terms of a
law of large numbers for high-points of BBM, i.e. particles which lie at a macroscopic
distance from the edge. At such scales, ‘McKean-like martingales’ are naturally
expected to arise in all models belonging to the BBM-universality class.
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1 Introduction

Over the last years, one has witnessed an explosion of activity in the study of the
extremes of Branching Brownian Motion, BBM for short. The list of papers on the subject
is way too long to be given here: below, we shall only mention those works which are
indispensable for the discussion, and refer the reader to Bovier’s monograph [14] for an
exhaustive overview of the literature.

The classical, supercritical and time-homogeneous BBM is constructed as follows. A
single particle performs standard Brownian motion x(t), starting at 0 at time 0. After an
exponential random time T of mean one and independent of x, the particle splits into
two (say) particles. The positions of these particles are independent Brownian motions
starting at x(T ). Each of these processes have the same law as the first Brownian
particle. Thus, after a time t > 0, there will be n(t) particles located at x1(t), . . . , xn(t)(t),
with n(t) being the random number of offspring generated up to that time (note that
En(t) = et).
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High points of BBM

A fundamental link between BBM and partial differential equations was observed by
McKean [27], who showed that the law of the maximal displacement of BBM solves the
celebrated KPP-equation [25]. Thanks to the cumulative works [25, 27, 16, 26] it is now
known that the maximum of BBM weakly converges, upon recentering, to a random shift
of the Gumbel distribution. More precisely, let

m(t) ≡
√

2t− 3

2
√

2
log t, M(t) ≡ max

k≤n(t)
xk(t)−m(t) , (1.1)

and consider the so-called derivative martingale

Z(t) ≡
∑
k≤n(t)

(√
2t− xk(t)

)
exp

(
−
√

2
(√

2t− xk(t)
))

. (1.2)

Leaning on the work of McKean [27] and Bramson [16], Lalley and Sellke [26] proved
that

lim
t↑∞

Z(t) = Z a.s., (1.3)

with Z a positive random variable, and that

lim
t→∞

P [M(t) ≤ x] = Eexp
(
−CZe−

√
2x
)
. (1.4)

where C > 0 is a numerical constant. Inspecting the proof of this result, one gathers that
the derivative martingale captures the early evolution of the system. Perhaps a more
intuitive interpretation of the derivative martingale has been given by Arguin, Bovier
and Kistler [5] in the form of an ergodic theorem, to wit:

lim
t↑∞

1

t

∫ t

0

1{M(s) ≤ x} ds = exp
(
−CZe−

√
2x
)

almost surely. (1.5)

The derivative martingale may thus be seen as a measure of success, capturing the
fraction of particles which reach maximal heights.

Also of interest are time-inhomogeneous BBMs. These have been first introduced by
Derrida and Spohn [22], and are constructed as follows: one considers a BBM where,
at time s, all particles move independently as Brownian motions with time-dependent
variance

σ2(s) =

{
σ2

1 0 ≤ s < t/2

σ2
2 t/2 ≤ s ≤ t.

(1.6)

In the above, σ1, σ2 are (positive) parameters chosen in such a way that the total variance
is normalised to unity, to wit: σ2

1/2 + σ2
2/2 = 1. (One may also consider K > 2 distinct

variance-regimes, but the qualitative picture does not change much, as long asK remains
finite). Denoting by n̂(s) the number of particles at time s, and by {x̂k(s), k ≤ n̂(s)} their
position, it has been proved by Fang and Zeitouni [23] that

max
k≤n̂(t)

x̂k(t) =

{√
2t− 1

2
√

2
log(t) +OP(1) if σ1 < σ2√

2(σ1/2 + σ2/2)− 3
2
√

2
(σ1 + σ2) log(t) +OP(1) if σ1 > σ2,

(1.7)

The second case above, namely σ1 > σ2, is easily understood: the maximum of the
time-inhomogeneous process is given by the superposition of the relative maxima at time
t/2 and the maxima of their offspring after a t/2-lifespan.
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High points of BBM

The first case, σ1 < σ2, is arguably more interesting as it shows that the level of
the maximum coincides with that of Derrida’s REM [21]: in spite of what may look as
severe correlations between the Brownian particles, the extremes behave as if they were
coming from a field of independent random variables. This, however, is only true at the
above level of precision, as the weak limit of the maximum does detect the underlying
correlations. To formulate precisely, let us shorten

mREM(t) ≡
√

2t− 1

2
√

2
log(t), M̂(t) ≡ max

k≤n̂(t)
x̂k(t)−mREM(t). (1.8)

Bovier and Hartung [15] prove that in such a regime of “REM-collapse” (σ1 < σ2),

lim
t→∞

P
[
M̂(t) ≤ x

]
= Eexp− ĈẐe−

√
2x, (1.9)

for a numerical constant Ĉ > 0 and Ẑ a positive random variable. Much akin to the
homogeneous BBM, the weak limit of the time-inhomogeneous process is thus given by
a random shift of the Gumbel distribution. For our purposes, it is however crucial to
emphasize that the random shift in case of REM-collapse is not given by the derivative
martingale, but by the so-called McKean’s martingale. To see how the latter comes about,
recall the time-homogeneous BBM {xk(t), k ≤ n(t)}, and define McKean’s martingale by

Ẑ(t) ≡
∑
k≤n(t)

exp
[
−t(1 + σ2

1) +
√

2σ1xk(t)
]
. (1.10)

Bovier and Hartung [15] show that this is, in fact, a square integrable martingale,
provided that σ1 < 1 strictly. It therefore converges almost surely to a well defined
random variable whose law coincides with that of the Ẑ-random variable shifting the
maximum (1.9) of the time-inhomogeneous process1.

The analogy with the homogeneous BBM goes even further: an inspection of the proof
of the weak convergence (1.9) shows that McKean’s martingale captures, in fact, the
early evolution of the system (remark, in particular, that McKean’s martingale depends
solely on σ1).

The purpose of these notes is to uncover the fundamental connection between
McKean’s martingale and BBM, somewhat close in spirit to the ergodic theorem (1.5).
To formulate precisely, let

α ∈ (0,
√

2), ∆α ≡
√

2− α, and Zα(t) ≡ ] {k ≤ n(t) : xk(t) ≥ ∆αt} . (1.11)

The random variable Zα(t) thus counts the “α-high-points”, those particles which lag
behind the leader at time t by a macroscopic distance αt. Finally, consider the McKean’s
martingale

Yα(t) ≡
∑
k≤n(t)

exp

[
−t
(

1 +
1

2
∆2
α

)
+ ∆αxk(t)

]
. (1.12)

Through the matching α ≡
√

2(1− σ1), and by the aforementioned result of Bovier and
Hartung we see that this is, for α > 0, a square integrable martingale whose limit

1We emphasize tha the REM-collapse holds only for σ1 < σ2; given the normalization σ2
1/2 + σ2

2/2 = 1,
this is equivalent to σ1 <

√
2/2. The square integrability of McKean’s martingale holds however for any

σ1 < 1. The choice σ1 = 1 corresponds to a boundary case where square integrability no longer holds. It has
furthermore been proved by Lalley and Sellke [26] that for σ1 = 1 the limit of McKean’s martingale vanishes,
in which case it is the derivative martingale that enters the picture for the weak limit of the maximum of (the
time-homogeneous) BBM.
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High points of BBM

lim
t→∞

Yα(t) =: Yα (1.13)

exists almost surely. Here is our main result.

Theorem 1.1. (Strong law of large numbers) For any 0 < α <
√

2, and Yα as in (1.13),

lim
t→∞

Zα(t)

EZα(t)
= Yα , almost surely. (1.14)

According to the SLLN, the random shift entering the weak limit (1.9) in the Bovier-
Hartung extremal process thus captures the average number of successful particles. It
is however noteworthy that the definition of success comes here with a twist: it pertains
to those particles reaching2 heights which lie macroscopically lower than the level of
the maximum; this should be contrasted with (1.5), where successful particles reach
extremal heights.

The proof of the SLLN follows the strategy of [5]. Precisely, for some r = o(t) to
be specified later, and Fr ≡ σ (xk(r), k ≤ n(r)) the standard filtration of BBM, we first
decompose telescopically

Zα(t)

EZα(t)
=
E [Zα(t) | Fr]
EZα(t)

+
Zα(t)− E [Zα(t) | Fr]

EZα(t)
. (1.15)

The next Proposition will seamlessly follow from the strong Markov property of BBM
and classical Gaussian estimates.

Proposition 1.2. (Onset of McKean’s martingale) For r = o(t) as t→∞ it holds, that

E [Zα(t) | Fr]
EZα(t)

= (1 + o(1))Yα(r), almost surely. (1.16)

By the above, and with our main theorem in mind, an important ingredient is therefore
to prove that the second term on the r.h.s. of the telescopic decomposition (1.15) yields
an irrelevant contribution in the limit of large times. This is guaranteed by the following

Proposition 1.3. There exists κα > 0 such that for r = o(t) as t→∞,

P

(∣∣∣∣Zα(t)− E [Zα(t) | Fr]
EZα(t)

∣∣∣∣ > c

)
≤ (1 + o(1))

c+ 1

c2
e−καr , (1.17)

A small remark concerning the conceptual picture behind Proposition 1.3 is perhaps at
place. As mentioned, the proof strategy and, in particular, the telescopic decomposition
(1.15), are borrowed from [5]. In the latter paper, the counterpart of Proposition 1.3,
namely [5, Theorem 3] holds thanks to a delicate decorrelation at specific timescales of
the extremal particles of BBM which, in turns, is a consequence of the picture derived in
[4]. It is however unreasonable to expect here a similar decorrelation: α-high-particles,
namely those with xk(t) ≥ ∆αt, are unlikely to come from (genealogically) distant
ancestors. Indeed, quite the contrary is true: a wealth of random variables contributing
to Zα(t) turn out to be strongly correlated, but these are washed out, in the limit of large
times, by the exponentially large normalization EZα(t).

Assuming Proposition 1.2 and 1.3, our main theorem readily follows.

Proof of Theorem 1.1. We use the above telescopic decomposition

Zα(t)

EZα(t)
=
E [Zα(t) | Fr]
EZα(t)

+
Zα(t)− E [Zα(t) | Fr]

EZα(t)
=: (A) + (B) . (1.18)

2in a “distant past”, as will become clear in the course of the proof.
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High points of BBM

By Proposition 1.3, the (B)-term on the r.h.s. above vanishes in probability as t ↑ ∞
first, and r ↑ ∞ next. In fact, we may lift this to an almost sure statement in the single
limit t ↑ ∞: simply choose r = r(t)→∞ such that the r.h.s of (1.17) becomes integrable
(any choice of the form r = (log t)θ with θ > 1 will do) and appeal to the Borel-Cantelli
Lemma together with standard approximation arguments (for the latter, see e.g. [4]). But
for such choice r = r(t), and the almost sure convergence of the McKean’s martingale
established by Bovier-Hartung, the (A)-term will converge, almost surely, to Yα. This
settles the proof of the SLLN.

The rest of the paper is devoted to the proofs of Proposition 1.2 and 1.3. Before
giving the details, we conclude this section with the following

Conjecture. A SLLN as in Theorem 1.1 holds true, mutatis mutandis, in all models
belonging to the BBM-universality class, such as the 2-dim Gaussian free field [13, 17, 9,
10, 11, 12], the 2-dim cover times [20, 7, 8], the characteristic polynomials of random
unitary matrices [1, 19, 29], and the extreme values of the Riemann zeta function on
the critical line [2, 28, 3, 6]. In particular, we expect that an approximate McKean’s
martingale will capture in all such models the almost sure limit of the normalized
number of high-points. (What stands behind this wording becomes, of course, model
dependent).

2 Proofs

2.1 Some preliminaries, and Onset of McKean’s martingale

We will make constant use of some classical Gaussian tail estimates:

Lemma 2.1. Let X ∼ N (0, σ2) be centered Gaussian random variables. Then

P [X > a] = (2π)
−1/2

(σ/a)exp

[
− a2

2σ2

] (
1 +O

(
σ2/a2

))
(a/σ →∞) , (2.1)

with the r.h.s. above without error term being an upper bound valid for any a > 0.

The following is also elementary.

Lemma 2.2.

EZα(t) ∼
(

∆α

√
2π
)−1

exp

[(
1−∆2

α/2
)
t− 1

2
log(t)

]
. (2.2)

(Here and throughout, we use f(t) ∼ g(t) if the ratio converges, as t→∞, to one). In
order to exploit the strong Markov property of BBM, for t and r as in Proposition 1.2 ,
we re-label particles at time t according to their ancestor at time r:

(xk(t))k≤n(t) = (xi(r) + xi,j(t− r))i≤n(r),j≤ni(t−r) . (2.3)

Precisely: xi(r) is the position of the i-th particle at time r, n(r) is the number of such
particles, ni(t − r) stands for the number of offspring such particle has produced in
the timespan t− r, and finally xi,j(t− r) denotes the displacement of the j-th offspring
of particle i from its starting position xi(r). The labeling is done in a Markovian way
and using only the branching structure, but no information about the Brownian mo-
tion put on top, i.e each particle at time r draws a label i from {1, .., n(r)} and each
offspring of such a particle i at time t draws its label j from {1, .., ni(t − r)}, where
both drawings are conditionally on all n uniform and independt of the entire process
(xk(t))k≤n(t).
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High points of BBM

Proof of Proposition 1.2 (Onset of McKean’s martingale).

E [Zα(t) | Fr] = E

 ∑
k≤n(t)

1 {xk(t) ≥ ∆αt}
∣∣∣Fr
 =

= E

 ∑
i≤n(r)

∑
j≤ni(t−r)

1 {xi,j(t− r) ≥ ∆α(t− r)− (xi(r)−∆αr)}
∣∣∣Fr


=
∑
i≤n(r)

et−rP
[
x1(t− r) ≥ ∆α(t− r)− (xi(r)−∆αr)

∣∣∣Fr]
=
∑
i≤n(r)

et−r
√
t− r√

2π(∆α(t− r)− (xi(r)−∆αr))
exp

[
− (∆α(t− r)− (xi(r)−∆αr))

2

2(t− r)
+ o(1)

]
(2.4)

by Lemma 2.1 for r = o(t). The o(1) above is with respect to t→∞ uniformly in i almost
surely. Its correctness follows from (xk(r)−∆αr) / (t− r)→ 0 , see e.g. [24] (where, in
fact, control at even finer levels is provided). Computing the contributing terms using
this insight yields

=
∑
i≤n(r)

et−r
1√

2π∆α

√
t
exp

[
−∆2

α

2
(t− r) + ∆α(xi(r)−∆αr) + o(1)

]

=
(

∆α

√
2π
)−1

exp

[(
1−∆2

α/2
)
t− 1

2
log(t)

]
Yα(r)(1 + o(1)), a.s..

(2.5)

The claim then follows by Lemma 2.2.

2.2 Vanishing correlations, via 2nd moment

We will prove Proposition 1.3 by a 2nd moment estimate. For these computations to
go through, we need however to localize paths of contributing particles. (This approach
is by now classical in the field of BBM, see for instance [5] for a closely related setting).
As for the localization, let ε > 0 and consider

Z>α (t) ≡ ] {k ≤ n(t) : xk(t) ≥ ∆αt, ∃s ∈ [r, t] : xk(s) > (∆α + ε)s} , (2.6)

This random variable thus counts paths which overshoot at some point (in time) the
straight line connecting 0 to (∆α + ε)t. As it turns out, such particles do not contribute,
upon E[Zα(t)]-normalization, to the α-high-points. Here is the precise statement.

Lemma 2.3. (Localization of paths) For any ε > 0 fixed and r = o(t), r, t both sufficiently
large dependent on ε, it holds:

P
(
Z>α (t) ≥ cEZα(t)

)
≤ 1

c
exp

(
−r ε

2

4

)
, (2.7)

and

P
(
E[Z>α (t)|Fr] ≥ cEZα(t)

)
≤ 1

c
exp

(
−r ε

2

4

)
. (2.8)

for all c > 0.

Proof.

EZ>α (t) = et
∞∫

∆αt

P(x1(t) ∈ dy)P(∃s ∈ [r, t] : x1(s) > (∆α + ε)s|x1(t) = y) (2.9)
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High points of BBM

= et
∞∫

∆αt

P(x1(t) ∈ dy)P(∃s ∈ [r, t] : b(s) > (∆α + ε− y

t
)s), (2.10)

where b(s) ≡ x1(s) − s
tx1(t) is a Brownian bridge of length t. Consider the line l from

(0, εr/2) to (t, (∆α + ε/2)t− y). One easily checks that l(s) ≤ (∆α + ε− y
t )s for all s ∈ [r, t].

Hence the probability involving the Brownian brige is at most

P(∃s ∈ [0, t] : b(s) > l(s)) = exp

(
−2

l(0)l(t)

t

)
, (2.11)

by a well-known formula (see e.g. [31]). Using this, (2.10) is therefore at most

et
∞∫

∆αt

1√
2πt

exp

(
−y

2

2t
− εr

(
∆α +

ε

2
− y

t

))
dy

= exp

(
t− r

(
∆αε+

ε2

2

)
+
ε2r2

2t

) ∞∫
∆αt

1√
2πt

exp

(
− (y − εr)2

2t

)
dy,

(2.12)

which is, by Lemma 2.1,

∼
√
t

(∆αt− εr)
√

2π
exp

(
t− r

(
∆αε+

ε2

2

)
+
ε2r2

2t
− (∆αt− εr)2

2t

)
∼ E[Zα(t)]exp

(
−r ε

2

2
+ o(r)

)
,

(2.13)

the second asymptotical equivalence by Lemma 2.2. The claim of Lemma 2.3 thus follows
from Markov inequality.

As mentioned, we will prove Proposition 1.3 by means of a (truncated) second moment
computation. The following is the key estimate.

Lemma 2.4. (Pair counting) Let Ii,j be the the indicator of the event that the j-th
offspring at time t of particle i at time r contributes to Z≤α (t), i.e the event

{xi(r) + xi,j(t− r) ≥ ∆αt, ∀s ∈ [r, t] : xi(r) + xi,j(s− r) ≤ (∆α + ε)s} (2.14)

for i ≤ n(r) and j ≤ ni(r). Then, for any α ∈ (0,
√

2) there exists εα and κα, r(α) > 0 such
that

E

n(r)∑
i=1

ni(t−r)∑
j 6=j′=1

Ii,jIi,j′

 ≤ (1 + o(1))E[Zα(t)]2e−καr, as t→∞ , (2.15)

for r > rα.

Proof. Denoting by ϕγ the density of a centered Gaussian of variance γ, and with x a
standard Brownian motion, it holds that

1

2
E

n(r)∑
i=1

ni(t−r)∑
j 6=j′=1

Ii,jIi,j′

 =

=

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

ϕγ(y)P(∀s ∈ [r, γ] : x(s) ≤ (∆α + ε)s|x(γ) = y)×

× P (y + x(t− γ) ≥ ∆αt, ∀s ∈ [γ, t] : y + x(s− γ) ≤ (∆α + ε)s)
2
dydγ .

(2.16)
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High points of BBM

(See e.g. [30, pages 664 and 686] for a rigorous derivation of a similar “two-point
formula” or [16, lemma 10] for an intuative derivation) . Dropping the path-constraint
appearing in the integrand (yet keeping those in the domain of integration), (2.16) is at
most

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

ϕγ(y)P (x(t− γ) ≥ ∆αt− y)
2
dydγ

=

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y≥(∆α−ε)t}(·)dydγ +

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y<(∆α−ε)t}(·)dydγ ,

(2.17)

by distinguishing whether at time of splitting particles are above (respectively below) a
threshold which is slightly below the target.

As for the first scenario, we clearly have

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y≥(∆α−ε)t}(·)dydγ ≤
t∫

(1−2ε/∆α)t

e2t−γ

(∆α+ε)γ∫
∆αt−εt

ϕγ(y)dydγ , (2.18)

with the r.h.s. of (2.18) being at most

4ε2t2

∆α

√
2πt

exp

(
(1 + 2ε/∆α)t− (∆αt− εt)2

2t

)
≤ exp

(
(1−∆2

α/2 + ε(2/∆α + ∆α))t
)
,

(2.19)
for t large enough. Since 1−∆2

α/2 + ε(2/∆α + ∆α) < 2−∆2
α for some ε = εα, it follows

that (2.19) grows at most exponentially (in t) with rate smaller than 2−∆2
α, and therefore

yields a negligible contribution.
It thus remains to analyse the second scenario in (2.17). By Lemma 2.1 and shortening

ζ ≡ min{(∆α + ε)γ,∆αt− εt}, we have that

t∫
r

e2t−γ

(∆α+ε)γ∫
−∞

1{y<(∆α−ε)t}(·)dydγ

≤
t∫
r

e2t−γ

ζ∫
−∞

t− γ
2π
√
γ(∆αt− y)2

exp

(
− y

2

2γ
− (∆αt− y)2

(t− γ)

)
dydγ

=

t∫
r

e2t−γ

ζ∫
−∞

t− γ
2π
√
γ(∆αt− y)2

exp

(
−∆2

αt
2

t+ γ
−

(y − 2γ∆αt
t+γ )2

2γ(t− γ)/(t+ γ)

)
dydγ.

(2.20)

Since ∆αt−y ≥ εt on the entire domain of integration, and rearranging, (2.20) is at most

t∫
r

exp

(
2t− γ − ∆2

αt
2

t+ γ

) √
t2 − γ2

ε2t2γ
√

2π
P

(
x

(
γ(t− γ)

t+ γ

)
< ζ − 2γ∆αt

t+ γ

)
dγ. (2.21)

We split (2.21) again into two regions: the first concerns γ > (1− δ)t, with δ ≡ 3ε
∆α+ε .

In this case, estimating the probability by one and the remaining integrand by a rough
bound on its maximum yields a contribution of at most

t∫
(1−δ)t

exp

(
2t− γ − ∆2

αt
2

t+ γ

) √
t2 − γ2

ε2t2γ
√

2π
P

(
x

(
γ(t− γ)

t+ γ

)
< ζ − 2γ∆αt

t+ γ

)
dγ

≤ δtexp

(
(1− ∆2

α

2
+ δ)t

) √
t2 − γ2

ε2t2γ
√

2π
≤ exp

(
(1− ∆2

α

2
+ 2δ)t

)
,

(2.22)
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for t large enough. Therefore, for δ or equivalently ε small enough (depending on α only),
this term is also negligeable.

The second case in (2.21) pertains to γ < (1 − δ)t: in this region, and due to the
choice of δ, we have

ζ = (∆α + ε)γ =⇒ ζ − 2γ∆αt

t+ γ
= γ

(
ε−∆α

t− γ
t+ γ

)
< 0, (2.23)

(the last estimate again due to the choice of δ, and for sufficiently small ε depending on
α only). This, together with Lemma 2.1, implies that

(1−δ)t∫
r

exp

(
2t− γ − ∆2

αt
2

t+ γ

) √
t2 − γ2

ε2t2γ
√

2π
P

(
x

(
γ(t− γ)

t+ γ

)
< ζ − 2γ∆αt

t+ γ

)
dγ

≤
(1−δ)t∫
r

exp

(
2t− γ − ∆2

αt
2

t+ γ
− γ (∆α(t− γ)− ε(t+ γ))

2

2(t2 − γ2)

)
×

× t2 − γ2

(∆α(t− γ)− ε(t+ γ)) ε2t2γ
√

2πγ
dγ .

(2.24)
Using that −γε

2(t+γ)2

2(t2−γ2) < 0, and by simple algebra, (2.24) is at most

(1−δ)t∫
r

exp

(
(2−∆2

α)t+ (
∆2
α

2
− 1 + ∆αε)γ

)
2

∆α(1− 3ε
∆αδ

)ε2γ
√
γ2πt

dγ

∼ E[Zα(t)]2
2∆α

(1− 3ε
∆αδ

)ε2

(1−δ)t∫
r

γ−3/2exp

(
(
∆2
α

2
− 1 + ∆αε)γ

)
dγ ,

(2.25)

by Lemma 2.2. But for ε sufficiently small ∆2
α/2 − 1 + ∆αε < 0, hence the integral

in (2.25) vanishes exponentially fast in r. In other words, (2.25) can be bounded by
E[Zα(t)]2exp (−καr) for any κα < 1 − ∆2

α/2 and r large enough. Combining this with
the fact that the two error-terms (2.19) and (2.22) are of negligeable size compared to
E[Zα(t)]2 finishes the proof.

We can now move to the

Proof of Proposition 1.3. By the localization of paths from Lemma 2.3, and for t large
enough,

P

(∣∣∣∣Zα(t)− E [Zα(t)|Fr]
E [Zα(t)]

∣∣∣∣ ≥ c) ≤ P
(∣∣∣∣∣Z≤α (t)− E

[
Z≤α (t)|Fr

]
E [Zα(t)]

∣∣∣∣∣ ≥ c/2
)

+
8

c
exp

(
−r ε

2

4

)

≤
4E
[(
Z≤α (t)− E

[
Z≤α (t)|Fr

])2]
c2E [Zα(t)]

2 +
8

c
exp

(
−r ε

2

4

)
,

(2.26)
the last step by the Markov inequality. We thus need sufficiently good (upper) bounds for

E
[(
Z≤α (t)− E

[
Z≤α (t)|Fr

])2]
= E

[
E
[
(Z≤α (t))2|Fr

]
− E

[
Z≤α (t)|Fr

]2]
. (2.27)

Adopting the notation of Lemma 2.4,

Z≤α (t) =
∑
i≤n(r)

∑
j≤ni(t−r)

Ii,j , (2.28)
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in which case

E
[
(Z≤α (t))2|Fr

]
− E

[
Z≤α (t)|Fr

]2
=

=

n(r)∑
i,i′=1

E

ni(t−r)∑
j=1

Ii,j

ni′ (t−r)∑
j′=1

Ii′,j′

∣∣∣∣∣∣Fr


− E

ni(t−r)∑
j=1

Ii,j

∣∣∣∣∣∣Fr
E

ni′ (t−r)∑
j′=1

Ii′,j′

∣∣∣∣∣∣Fr
 .

(2.29)

In the above, and for i 6= i′, particles (i, j) and (i′, j′) have branched off before time r:
they are thus independent, conditionally upon Fr. This leads to a perfect cancellation of
all terms i 6= i′, and reduces the above formula to

E
[
(Z≤α (t))2|Fr

]
− E

[
Z≤α (t)|Fr

]2
=

n(r)∑
i=1

E


ni(t−r)∑

j=1

Ii,j

2
∣∣∣∣∣∣∣Fr

− E
ni(t−r)∑

j=1

Ii,j

∣∣∣∣∣∣Fr
2

.

(2.30)
Dropping the second term, and taking expectations, we thus obtain

E
[(
Z≤α (t)− E

[
Z≤α (t)|Fr

])2] ≤ E
n(r)∑
i=1

ni(t−r)∑
j,j′=1

Ii,jIi,j′

 . (2.31)

Collecting the terms j = j′ yields Z≤α (t), while all other terms sum over all unordered
pairs of particles that have split after time r. Choosing ε = εα small enough and r = o(t)

large enough, by Lemma 2.4 there exists κα > 0 such that

(2.31) ≤ E[Z≤α (t)] + (1 + o(1))E[Zα(t)]2e−καr = (1 + o(1))E[Zα(t)]2e−καr. (2.32)

The claim thus follows by plugging (2.32) into (2.26).
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