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Abstract

In this note we give upper bounds on the quantiles of the one-sided maximum of a
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Lp. Our upper bounds involve the entropy in the case of nonnegative martingales in the
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1 Introduction

This note is motivated by the question below. Let (Mk)0≤k≤n be a real-valued sub-
martingale in L1. Define M∗

n = max(M0,M1, . . . ,Mn). How to provide an upper bound
on the quantiles ofM∗

n under some additional integrability conditions onMn?
In order to explain our results, we need the definition of the quantile function of a

random variable X and some basic properties of this function.

Definition 1.1. Let X be a real-valued random variable. The tail function HX is defined
by HX(t) = P(X > t). The function QX is the cadlag inverse of HX .

The basic property of QX is: x < QX(u) if and only if HX(x) > u. This property
ensures that QX(U) has the same distribution as X for any random variable U with the
uniform distribution over [0, 1].

Let us now recall Doob’s maximal inequalities. Below we assume that the random
variablesM0,M1, . . . ,Mn are nonnegative. The first inequality is in fact due to Ville ([19],
Theorem 1, page 100): for any x > 0,

P(M∗
n > x) ≤ x−1E(Mn) or, equivalently, QM∗

n
(1/z) ≤ zE(Mn) for any z > 1. (1.1)

Doob ([6], Theorem 1.1) proved the more precise inequality

P(M∗
n ≥ x) ≤ x−1E

(
Mn 1M∗

n≥x

)
for any x > 0. (1.2)
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Define now the nonincreasing function Q̃X by

Q̃X(u) = u−1
u∫
0

QX(s)ds for any u ∈]0, 1]. (1.3)

Clearly QX ≤ Q̃X . Notice that, since QX(U) has the same law as X, Q̃X(1) = E(X).
For a nonnegative random variable X, Q̃X is the maximal function associated with
X introduced by Hardy and Littlewood [10]. In mathematical finance, Q̃X is called
conditional value at risk (CVaR) of X. Blackwell and Dubins [2] derived from (1.2) the
upper bound

QM∗
n
(u) ≤ Q̃Mn

(u) for any u ∈]0, 1]. (1.4)

Dubins and Gilat [7] proved the optimality of (1.4). Later Gilat and Meilijson [9] proved
that the nonnegativity assumption on (Mk)0≤k≤n can be dropped in (1.4). As said by Gilat
[8], “Thus a complete equivalence is established between Doob’s maximal martingale
inequalities and the corresponding results of Hardy and Littlewood (on the CVaR of X)”.
Hence, from now on, the main focus will be on optimal upper bounds on the CVaR of a
random variable X with given expectation, satisfying an additional moment condition.

Let us start by considering the class L logL of nonnegative random variables X
such that E(X log+X) < ∞, where log+ x = max(0, log x). Up to now, upper bounds
on E(Q̃X(U)) have received more attention than upper bounds on Q̃X(u). Gilat ([8],
Theorem 3) proved that the inequality

E(Q̃X(U)) ≤ cE(X logX) + d (1.5)

holds for any c > 1 and any d ≥ e−1c2(c− 1)−1. In particular, if c = e/(e− 1) then (1.5)
holds true with d = e/(e − 1). The martingale counterpart of (1.5) may be found in
Osekowski ([14], Theorem 7.7).

Starting from (1.2) and introducing the entropy ofMn, Harremoës [11] improved the
martingale counterpart of (1.5). For a nonnegative real-valued random variable X such
that E(X) > 0 and E(X log+X) <∞, define the entropy H(X) of X by

H(X) = E
(
X logX

)
− E(X) logE(X). (1.6)

Under the above conditions H(X) is finite. Furthermore H(X) ≥ 0 and H(X) = 0 if
and only if X is almost surely constant. Assuming that (Mk)0≤k≤n is a nonnegative
martingale such thatM0 = 1, Harremoës [11] derived from (1.2) the upper bound

E(M∗
n)− 1 ≤ E(Mn logM

∗
n) ≤ H(Mn) + logE(M∗

n). (1.7)

Defining g : [0,∞[ 7→ [0,∞[ by g(x) = x− log(1 + x), (1.7) implies that

E(M∗
n) ≤ 1 + g−1

(
H(Mn)

)
, (1.8)

Harremoës ([11], Theorem 4) also proved that (1.8) is tight. It appears here that the
entropy is the adequate quantity in the class L logL. Therefore, in Section 2, we give an
elementary covariance inequality involving entropy. This covariance inequality is applied
in Section 3. Particularly, Theorem 3.1, which is the main result of this note, provides a
sharp upper bound on the CVaR of a nonnegative random variable in the class L logL.
An interesting application is that (1.1) can be improved only if log z > H(Mn)/E(Mn)

(see Remark 3.2 in Section 3). In Section 5, we apply Theorem 3.1 to the class of
subGaussian random variables introduced (in spirit) by Ledoux [13]: we say that a
centered real-valued random variable Y with finite Laplace transform on R+ is entropic
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subGaussian on the right with parameter 1 if H(etY )/E(etY ) ≤ t2/2 for any positive t.
Using Theorem 3.1, we obtain sharper bounds on QY (u) than the usual bound

QX(u) ≤ min
(√

2| log u|,
√
(1/u)− 1

)
, (1.9)

valid for any centered random variable X such that logE(etX) ≤ t2/2 for any positive t.
However (1.9) is suboptimal and has not yet been improved. So, in Section 5, we also give
the exact upper bound on QX(u) for a random variable X fulfilling the above condition
and we prove that our bound on QY (u) remains sharper than the exact bound on QX(u).
In Sections 6 and 7, we apply these results to martingales with bounded increments and
functions of independent random variables.

Assume now that the submartingale (Mk)0≤k≤n is in Lp for some p > 1. For any real
y, let y+ = max(0, y). By (1.1) applied to the nonnegative submartingale (Mk −E(Mn) )

p
+,

P(M∗
n ≥ E(Mn) + x) ≤ x−pE

(
(Mn − E(Mn) )

p
+

)
for any x > 0. (1.10)

However this upper bound tends to ∞ as x ↘ 0. Recall now that, for any real-valued
random variable X in L2 and any positive x,

P(X ≥ E(X) + x) ≤ σ2/(x2 + σ2), where σ2 = VarX.

The above inequality, often called Tchebichef-Cantelli inequality (see Tchebichef [17],
pages 159–160 and Cantelli [5], Inequality (19), p. 53) is efficient for any x > 0 and
equivalent to the upper bound

QX(u) ≤ E(X) + σ
√
(1/u)− 1 for any u ∈]0, 1[. (1.11)

Wald [20] tried to generalize the Tchebichef-Cantelli inequality in the case p 6= 2 to a
nonnegative random variableX in Lp with prescribed expectation and Lp-norm. However
he obtained only an implicit upper bound on the tail of X. In Section 4, we will obtain a
sharp and explicit extension of (1.11) to the CVaR of a random variable X in Lp for p > 1.
We emphasize that, in contrast to the tail inequalities, quantile inequalities support
explicit extensions to Lp for arbitrary p.

2 A covariance inequality involving entropy

Throughout this section Y is a nonnegative real-valued random variable. We assume
that E(Y log+ Y ) <∞ and E(Y ) > 0.

Theorem 2.1. Let Y be a nonnegative random variable satisfying the above condi-
tions and η be a real-valued random variable with finite Laplace transform on a right
neighborhood of 0. Then

E(Y η) ≤ inf
{
b−1

(
E(Y ) logE

(
ebη

)
+H(Y )

)
: b ∈]0,∞[

}
.

Proof. Define the two-parameter family of functions ϕa,b by ϕa,b(x) = (x/b) log(x/a) for
any x ≥ 0 and any positive reals a and b, with the convention 0 log 0 = 0. Clearly

Y η ≤ ϕa,b(Y ) + ϕ∗
a,b(η), where ϕ∗

a,b(y) = sup{xy − ϕa,b(x) : x ∈ [0,∞[ }. (2.1)

Next the function x 7→ xy − ϕa,b(x) takes its maximum at point x = aeby − 1, from which
ϕ∗
a,b(y) = (a/b) exp(yb− 1). It follows that

Y η ≤ b−1
(
Y log Y − Y log a+ a exp(bη − 1)

)
. (2.2)

Taking the expectation in the above inequality,

E(Y η) ≤ b−1
(
E(Y log Y )− E(Y ) log a+ (a/e)E

(
ebη

) )
. (2.3)
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Let us now minimize the upper bound. Differentiating the upper bound with respect to a,
we get that the optimal value of a is a = eE(Y/E(ebη). Choosing this value in (2.3), we
get that

E(Y η) ≤ b−1
(
E(Y log Y )− E(Y ) logE(Y ) + E(Y ) logE

(
ebη

) )
for any b > 0, (2.4)

which implies Theorem 2.1.

Remark 2.1. Applying Theorem 2.1 to Y = QMn
(U) and η = log(1/U), one can prove

(1.8) for any nonnegative submartingale (Mk)0≤k≤n in L logL such that E(Mn) = 1. (see
Rio [16], Remark 2.2). Notice that the proof of (1.5) in Gilat [8] is based on the inequality
QX(U)η ≤ ϕ1,b(QX(U)) + ϕ∗

1,b(η), where b = 1/c. The minimization with respect to a is
omitted, which leads to a suboptimal inequality.

3 Bounds on the CVaR involving entropy

The main result of this section is the optimal upper bound below on conditional value
at risk of a nonnegative random variable X. We refer to Rio [16] for applications of
Theorem 3.1 to upper bounds on the tail of the maximum of a nonnegative submartingale
in the class L logL.

Theorem 3.1. Let X be a nonnegative random variable, such that E(X) = 1 and
H(X) = H for some H in ]0,∞[. Let Q̃X be defined by (1.3). Then, for any z > 1

Q̃X(1/z) ≤ ψH(z) where ψH(z) = inf
t>0

t−1
(
H − log z + log

(
ezt + z − 1

) )
. (a)

An other formulation of ψH is

ψH(z) = z inf
{(
H − log z + log(c+ z − 1)

)
/ log c : c > 1 }. (b)

Furthermore

ψH(z) = z for any z ≤ eH and ψH(z) < z for any z > eH . (c)

Conversely, for any H in ]0,∞[ and any z > 1, there exist a nonnegative random variable
Y such that

E(Y ) = 1, H(Y ) = H and Q̃Y (1/z) = ψH(z). (d)

Proof. By Theorem 2.1 applied to Y = QX(U) and η = z 1zU≤1,

Q̃X(1/z) ≤ inf
t>0

t−1
(
H + log

(
z−1ezt + 1− z−1

) )
,

which implies (a). To prove (b) it is enough to set t = z−1 log c in the definition of ψH .
Then ezt = c, which gives (b).

To prove (c) and (d), we separate two cases. If H ≥ log z,

H − log z + log(c+ z − 1) ≥ log(c+ z − 1) ≥ log c.

Hence, ψH(z) ≥ z by Theorem 3.1(b). Now

lim
c→∞

(
H − log z + log(z + c− 1)

)
/ log c = 1, (3.1)

which ensures that ψH(z) = z. Let Y = eH 1U≤e−H . Then E(Y ) = 1, H(Y ) = H and

Q̃Y (1/z) = z
1/z∫
0

QY (s)ds = z
1/z∫
0

eH 1s≤e−Hds = z = ψH(z).
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which proves (d) in the case z ≤ eH . If H < log z, define

B = z 1zU≤1, Zt = exp(tB) and Yt = Zt/E(Zt). (3.2)

Set

RB(t) = z−1(etz − 1 + z), `B(t) = logRB(t) and f(t) = t−1(H + `B(t)). (3.3)

(RB is the Laplace transform of B). By definition, ψH(z) is the minimum of f . Now

f ′(t) = t−2
(
t`′B(t)− `B(t)−H

)
.

Next `B is infinitely differentiable, strictly convex and has the asymptotic expansion

`B(t) = − log z + zt+O(e−zt) as t ↑ ∞.

It follows that g : t 7→ t`′B(t) − `B(t) is continuous, strictly increasing and satisfies
lim0 g = 0 and lim∞ g = log z > H. Hence there exists a unique t0 > 0 such that
g(t0) = H and f has a minimum at t = t0. Furthermore, since f ′(t0) = 0,

ψH(z) = `′B(t0) < z. (3.4)

which proves (c) in the case z > eH . Let then Y = Yt0 , where Yt is defined in (3.2):
E(Y ) = 1 and, with the notations introduced in (3.3),

H(Y ) = E
(
(t0B − `B(t0)) exp(t0B)/RB(t0)

)
= t0`

′
B(t0)− `B(t0) = H.

Furthermore, by (3.4),

Q̃Y (1/z) = et0z/RB(t0) = `′B(t0) = ψH(z), (3.5)

which gives (d) and completes the proof of Theorem 3.1.

Remark 3.1. For any nonnegative random variable X and any positive α, Q̃αX = αQ̃X

and H(αX) = αH(X). Hence Theorem 3.1(a) implies that, for any nonnegative random
variable X such that E(X) > 0 and H(X) <∞,

Q̃X(1/z) ≤ E(X)ψH(z) for any z > 1, where H = H(X)/E(X). (3.6)

Remark 3.2. From (1.4) and the above Remark, Theorem 3.1 applied to any positive
submartingale (Mk)0≤k≤n in the class L logL yields

QM∗
n
(1/z) ≤ E(Mn)ψH(z) for any z > 1, where H = H(Mn)/E(Mn). (3.7)

By Theorem 3.1(c), ψH(z) < z for any z > eH . Consequently, if E(Mn) log z > H(Mn),
then ψH(z) < z and (3.7) improves (1.1). If E(Mn) log z ≤ H(Mn), then ψH(z) = z and
(3.7) does not improve (1.1).

Remark 3.3. Let µ be any law on [0,∞[ with finite entropy. From Lemma 2 in Dubins and
Gilat [7], there exists a nonnegative continuous time martingale (Mt)t∈[0,1] such thatM1

has the law µ and M∗
1 = sup{Mt : t ∈ [0, 1] } satisfies QM∗

1
= Q̃M1

. Hence Theorem 3.1
provides an optimal upper bound for continuous time martingales, which shows that
(1.1) cannot be improved if z ≤ eH .
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4 Tchebichef type inequalities

In this section we give an extension of the Tchebichef-Cantelli inequality to random
variables X in Lp.

Theorem 4.1. Let p be any real in ]1,∞[ and X be a real-valued random variable in Lp.
Let Q̃X be defined by (1.3). Set σp = ‖X − E(X)‖p. Then

Q̃X(1/z) ≤ E(X) + σpz
1/p(1 + (z − 1)1−p)−1/p for any z > 1. (a)

Conversely, for any z > 1, there exists a random variable X in Lp such that

E(X) = 0, ‖X‖p = 1 and Q̃X(1/z) = z1/p(1 + (z − 1)1−p)−1/p. (b)

Remark 4.1. If p = 2, the upper bound is equal to E(X) + σ
√
z − 1, where σ is the

standard deviation of X, which implies (1.11).

Applying (1.4), we immediately get the corollary below. We refer to Rio ([16], Sections
4 and 5) for applications of this corollary.

Corollary 4.1. Let p be any real in ]1,∞[ and (Mk)k∈[0,n] be a submartingale in Lp:

QM∗
n
(1/z) ≤ E(Mn) + z1/p(1 + (z − 1)1−p)−1/p‖Mn − E(Mn)‖p for any z > 1.

Proof of Theorem 4.1. Clearly it suffices to prove the result in the case E(X) = 0. Then
Q̃X(1) = 0. Set u = 1/z. For any b in [0, 1],

u Q̃X(u) = u Q̃X(u)− b Q̃X(1) =
1∫
0

QX(s)
(
1s≤u − b

)
ds. (4.1)

Applying then the Hölder inequality on [0, 1] with exponents p and q = p/(p− 1) to QX

and 1[0,u] − b, we get that u Q̃X(u) ≤ σp
(
u(1− b)q + (1− u)bq

)1/q
or, equivalently,

Q̃X(u) ≤ σpz
1/p

(
(1− b)q + (z − 1)bq

)1/q
. (4.2)

We now minimize the upper bound with respect to b. Let f(b) = (1− b)q + (z − 1)bq.
Then f is strictly convex and

q−1f ′(b) = −(1− b)q−1 + (z − 1)bq−1 = 0 iff z − 1 = (1− b)q−1/bq−1.

Next 1/(q − 1) = p− 1. Consequently b0 = 1/
(
1 + (z − 1)p−1) is the unique critical point.

Setting b = b0 in (4.2), we then get that

Q̃X(u) ≤ σpz
1/p(z − 1)1/q

(
(z − 1)p−1 + 1

)−1/p
,

which gives Theorem 4.1(a).
We now prove Theorem 4.1(b). Let X be the Bernoulli random variable defined by

P
(
X = z

1
p (1+(z−1)1−p)−

1
p
)
= 1/z = 1−P

(
X = −(z−1)−1z

1
p (1+(z−1)1−p)−

1
p
)
. (4.3)

Then E(X) = 0 and Q̃X(1/z) = z1/p(1 + (z − 1)1−p)−1/p. Furthermore

E
(
|X|p

)
=

(
(1/z)z + (1− 1/z)(z − 1)−p z

)
(1 + (z − 1)1−p)−1 = 1.

Numerical comparisons. Below we compare Corollary 4.1 with the usual upper bound

QM∗
n
(1/z) ≤ E(Mn) + z1/p‖Mn − E(Mn)‖p, (4.4)

which can be immediately derived from (1.10), in the case p = 3/2, E(Mn) = 0 and
‖Mn − E(Mn)‖p = 1. We consider here values z of statistical interest. One can see that
Corollary 4.1 is significantly better than (4.4) even for large values of z.

Ineq. z=2 z=4 z=10 z=20 z=40 z=100 z=200
(4.4) 1.59 2.52 4.64 7.37 11.70 21.54 34.20
Cor. 4.1 1.00 1.86 3.83 6.42 10.59 20.21 32.67
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5 SubGaussian random variables

In this section, for any real-valued random variable X we denote by `X the logarithm
of the Laplace transform of X, defined by `X(t) = logE

(
etX) for any real t.

Definition 5.1. Let b be any positive real. The random variable X is said to be subGaus-
sian on the right with parameter b if X ∈ L2, X has a finite Laplace transform on R+

and

`X(t) ≤ tE(X) + b2(t2/2) for any t > 0. (5.1)

We denote the collection of such random variables by G(b).
The subGaussian constant is the smallest real b such that (5.1) holds. We refer to

Bobkov et al [3] for estimates of this constant on some examples. We now introduce a
slightly stronger condition on the Laplace transform.

Definition 5.2. Let b be any positive real. A real-valued random variable X is said to be
entropic subGaussian on the right with parameter b if X ∈ L2, X has a finite Laplace
transform on R+ and

t`′X(t)− `X(t) ≤ b2(t2/2) for any t > 0. (5.2)

We denote the collection of such random variables by GE(b).

If X belongs to GE(b), then X satisfies (5.1) with the same parameter b (see Ledoux
[13], pages 69–70), which implies that GE(b) ⊂ G(b). However GE(b) and G(b) are not
equal. Thus, there is some hope to get better bounds for the quantiles of entropic
subGaussian random variables. Nevertheless, under the median the bounds are exactly
the same, as shown by Proposition 5.1 below.

Proposition 5.1. For any p in [1/2, 1[,

sup
X∈GE(b)

(
QX(p)− E(X)

)
= sup

X∈G(b)

(
Q̃X(p)− E(X)

)
= b

√
(1/p)− 1.

Proposition 5.1 also proves that the Tchebichef-Cantelli inequality cannot be improved
under the median, both in GE(b) and G(b). Before proving this proposition, we state the
main result, which concerns the deviations over the median.

Theorem 5.1. Let p be any real in ]0, 1/2[. Set v = p/(1− p). Then

sup
X∈G(b)

(
QX(p)− E(X)

)
= sup

X∈G(b)

(
Q̃X(p)− E(X)

)
= b

(
2| log v|
1− v2

)1/2

. (a)

Furthermore the above upper bound is strictly less than b
√
min((1/p)− 1, 2| log p|).

Define the function L∗
v by L

∗
v(y) = +∞ if y > 1 and

L∗
v(y) =

(
v + y

v + 1

)
log

(
1 +

y

v

)
+

(
1− y

v + 1

)
log(1− y) if y ∈ [0, 1].

Then, for any p in ]0, 1/2[ ,

sup
X∈GE(b)

(
Q̃X(p)− E(X)

)
≤ b inf

x∈]0,1[

L∗
v(x) + log(1 + x/v)√

2L∗
v(x)

< b

(
2| log v|
1− v2

)1/2

. (b)

Notice that, from (1.4), one can immediately deduce upper bounds on the quantiles
of the maximum of a subGaussian martingale. The statement is left to the reader.
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Proof of Proposition 5.1. Notice that VarX ≤ b2 for any X in G(b). Hence, from Theo-
rem 4.1 and Remark 4.1,

sup
X∈G(b)

(
Q̃X(p)− E(X)

)
≤ b

√
(1/p)− 1. (5.3)

Consequently, it suffices to prove that, for any p in [1/2, 1[,

sup
X∈GE(b)

(
QX(p)− E(X)

)
≥ b

√
(1/p)− 1. (5.4)

In order to prove (5.4), we will mainly use the lemma below.

Lemma 5.1. For any p ≥ 1/2, the Bernoulli law b(p) is entropic subGaussian with
parameter

√
p(1− p).

Proof of Lemma 5.1. We start by noticing that, for any random variable X with finite
Laplace transform (t`′X − `X)′(t) = t`′′X(t). Therefrom, if `′′X(t) ≤ b2 for any positive t,
then X is entropic sub-Gaussian with parameter b.

Now let X be a random variable with law b(p). Then `X(t) = log(1− p+ pet) and

`′′X(t) = p(1− p)et(1− p+ pet)−2 = p(1− p)
(
(1− p)e−t/2 + pet/2

)−2
.

Next (1 − p)e−t/2 + pet/2 = cosh(t/2) + (2p − 1) sinh(t/2) ≥ 1 for any p ≥ 1/2 and any
positive t. Hence `′′X(t) ≤ p(1− p) for any positive t, which implies Lemma 5.1.

We now prove (5.4). Let U be a random variable with uniform law over [0, 1]. Let q be
any real in ]p, 1[. Set Bq = b( q(1− q) )−1/2 1U≤q. From Lemma 5.1, the random variable
Bq is entropic sub-Gaussian with parameter b. Now

QBq (p) = b( q(1− q) )−1/2 and E(Bq) = b( q/(1− q) )1/2,

whence

QBq (q)− E(Bq) = b( q(1− q) )−1/2(1− q) = b
√
(1/q)− 1 .

Now the right hand term in the above equality converges to b
√
(1/p)− 1 as q ↘ p, which

completes the proof of (5.4). Finally (5.3) and (5.4) imply Proposition 5.1.

Proof of Theorem 5.1. We need to introduce the Legendre-Fenchel dual. For a convex
nondecreasing function L : R+ 7→ R+, the Legendre-Fenchel dual L∗ of L is defined by

L∗(x) = sup{xt− L(t) : t > 0} for any x ≥ 0. (5.5)

Clearly it is enough to prove Theorem 5.1 in the case b = 1. Let us prove (a). Notice
first that, if X belongs to G(1), then, by the Jensen inequality, E(X | A) belongs to
G(1) for any σ-field A. Recall that, if U has the uniform distribution over [0, 1], QX(U)

has the same law as X. Now let A be the σ-field generated by the event (U ≤ p).
Then βp = E(QX(U) | A)− E(X) is a binary centered random variable in the class G(1).
Furthermore P(βp = Q̃X(p) − E(X)) = p, which implies that βp has the same law as
(Q̃X(p)− E(X))ξv, where v = p/(1− p) and ξv is the random variable defined by

P(ξv = 1) = v/(1 + v) and P(ξv = −v) = 1/(1 + v). (5.6)

Since Q̃X(p)− E(X) ≥ 0, it follows that

sup{Q̃X(p)− E(X) : X ∈ GE(1)} = a1, where a1 = sup{c ≥ 0 : cξv ∈ G(1)}. (5.7)
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Now, for a centered random variable X, define the subGaussian constant CG(X) by

CG(X) = sup
{(

2`X(t)/t2
)1/2

: t > 0
}
. (5.8)

By Lemma 2.22, page 25 in Bercu et al [1],

1/CG(X) = inf
{(

2`∗X(x)/x2
)1/2

: x > 0
}
. (5.9)

We now apply this result to ξv. From Formula (2.55), page 29 in Bercu et al [1], `∗ξv = L∗
v,

where L∗
v is the function already defined in Theorem 5.1. Hence

1/CG(ξv) = inf
{(

2L∗
v(x)/x

2
)1/2

: x > 0
}
=

(
2| log v|/(1− v2)

)1/2
, (5.10)

according to Lemma 2.26, page 29 in Bercu et al [1] (see also Hoeffding [12] for a proof
of this result). Consequently a1 = 1/CG(ξv). Now (5.7) implies the equality on the right
in Theorem 5.1(a). Finally

sup
X∈G(1)

(
QX(p)− E(X)

)
≥ sup

w>v

(
1/CG(ξw)

)
=

(
2| log v|/(1− v2)

)1/2
,

which completes the proof of (a).
We now prove that, for p < 1/2,

2| log v|/(1− v2) < min((1/p)− 1, 2 log(1/p)). (5.11)

Since v = p/(1− p), we have v < 1 and (1/p) = 1 + (1/v). Now

| log v| =
∑
k>0

k−1(1− v)k < (1− v) + 1
2 (1− v)2

∑
j≥0

(1− v)j = (1− v2)/(2v).

This inequality ensures that

2| log v|/(1− v2) < 1/v for any v < 1. (5.12)

Next, the strict convexity of the function x 7→ x log x ensures that

(1− v2) log(1 + v) + v2 log v > 0, or, equivalently (1− v2) log(1 + 1/v) > − log v,

which completes the proof of (5.11).
It remains to prove (b). Let X be any random variable in the class GE(1) and λ be any

positive real. Set
Yλ = exp(λX − `X(λ)). (5.13)

By the Jensen inequality applied to the convex function x 7→ eλx,

exp
(
λQ̃X(p)

)
≤ p−1

p∫
0

exp
(
λQX(s)

)
ds,

which is equivalent to
Q̃X(p) ≤ λ−1

(
`X(λ) + log Q̃Yλ

(p)
)
. (5.14)

By definition E(Yλ) = 1. Hence, we may apply Theorem 3.1(a) with z = 1/p to Yλ:

Q̃X(p) ≤ λ−1
(
`X(λ) + logψHλ

(1/p)
)
, where Hλ = H(Yλ) (5.15)

and ψH is the function already defined in Theorem 3.1(a). Let us now give a more
tractable formula for ψH(1/p). One can easily prove that, if v = p/(1 − p) and ξv is
defined by (5.6), then

ψH(1/p) = 1 + v−1 inf
t>0

t−1
(
H + `ξv (t)

)
. (5.16)
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Now the inversion formula below holds true (see Bercu et al [1], page 57): if X is a
nondegenerate centered random variable with a finite Laplace transform on [0,∞[,

`∗−1
X (x) = inf{t−1(`X(t) + x) : t > 0} for any x ≥ 0. (5.17)

Since `∗ξv = L∗
v (see Bercu et al [1], p. 29), it follows that

ψHλ
(1/p) ≤ 1 + v−1L∗−1

v (Hλ) where Hλ = H(Yλ) and v = p/(1− p). (5.18)

Next X belongs to GE(1), which ensures that Hλ ≤ λ2/2. Hence, using the monotonicity
of L∗−1

v ,

ψHλ
(1/p) ≤ 1 + v−1L∗−1

v (λ2/2). (5.19)

From (5.15), (5.19) and the fact that X is also subGaussian with parameter 1, we get
that, for any λ > 0,

Q̃X(p) ≤ λ−1
(
λ2/2 + log

(
1 + v−1L∗−1

v (λ2/2)
) )
. (5.20)

Let x be any real in ]0, 1[. Taking λ =
√
2L∗

v(x) in the above inequality, we obtain

Q̃X(p) ≤ (2L∗
v(x))

−1/2
(
L∗
v(x) + log(1 + x/v)

)
:= ϕ(x). (5.21)

Since this upper bound is valid for any x in ]0, 1[, it implies the first part of (b). Now, if
p < 1/2, v = p/(1− p) < 1. Therefore, we can choose x = 1− v in (5.21). For this choice
of x,

log(1 + x/v) = | log v| = − log v = − log(1− x). (5.22)

Hence L∗
v(1− v) = (1 + v)−1(1− v)| log v| and ϕ(1− v) =

√
2| log v|/(1− v2) . Now

ϕ′(1− v) =
(
2L∗

v(1− v)
)−1/2(

1− 2v| log v|/(1− v2)
)
> 0 (5.23)

by (5.12), which gives the second part of (b). Theorem 5.1 is proved.

6 Martingales with bounded increments

In this section, (Mk)0≤k≤n is a martingale with bounded increments. Applying the
results of Section 5, we derive the new upper bound below on the CVaR of Mn from
Lemma 2.4 in van de Geer [18].

Theorem 6.1. Let (Mk)0≤k≤n be a martingale with bounded increments, adapted to
some filtration (Fk)0≤k≤n, satisfyingM0 = 0. Assume that for each k in [1, n], there exist
two Fk−1-measurable bounded random variables Ak and Bk such that Ak ≤ Mk ≤ Bk

almost surely. Then, for any real z > 2,

Q̃Mn
(1/z)) ≤

√
Dn| log v|
2(1− v2)

, where v = 1/(z − 1) and Dn =
∥∥∥ n∑

k=1

(Bk −Ak)
2
∥∥∥
∞
. (6.1)

Proof. Let W0 = 0 and Wk =
∑k

j=1(Bj − Aj)
2 for k in [1, n]. By Lemma 2.4 in van de

Geer [18], ζk(t) := exp(tMk −Wkt
2/8) is a supermartingale for any positive t. Hence

E(ζn(t) ≤ E(ζ0(t)) = 1. Next ζn(t) ≥ exp(tMn −Dnt
2/8) almost surely, whence

logE(exp(tMn)) ≤ t2Dn/8 for any t > 0. (6.2)

Theorem 6.1 follows now from (6.2) and Theorem 5.1(a) applied with p = 1/z.
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Numerical comparisons. By Theorem 2.5 in van de Geer [18] applied with c2 = Dn,

QMn
(1/z) ≤

√
Dn/4

√
2 log z. (6.3)

By the comparison inequality (2.8) in Pinelis [15],

Q̃Mn(1/z) ≤
√
∆n/4QY ((5/e)

5/(5!z) ), where ∆n =

n∑
k=1

‖Bk −Ak‖2∞. (6.4)

Below we give the values of the above upper bounds in the case ∆n = Dn = 4 for integer
values of z, including the quartile and the decile. One can see that (6.4) is better than
(6.1) as soon as z > 10. However Dn is often strictly less than ∆n in the applications.

Ineq. z=4 z=6 z=10 z=20 z=40 z=100
(6.3) 1.67 1.89 2.15 2.45 2.72 3.035
(6.4) 1.71 1.89 2.11 2.37 2.62 2.92
(6.1) 1.57 1.83 2.11 2.43 2.71 3.032

7 Bounded functions of independent random variables

Throughout this section E is a Polish space and f is a bounded and measurable
function from En into R. For any k in [1, n], let δk be a bounded and measurable function
from En−1 into [0,∞[ such that, for any x = (x1, x2, . . . , xn) in En,

sup
(y,z)∈E×E

|f(x1, . . . , xk−1, y, xk+1, . . . , xn)− f(x1, . . . , xk−1, z, xk+1, . . . , xn)| ≤ δk(x
(k)),

(7.1)
where x(k) = (x1, . . . , xk−1, xk+1, . . . , xn). Define then

Vn(x) =
1

4

n∑
k=1

δ2k(x
(k)) and Tn = ‖Vn‖1/2∞ . (7.2)

Let X be a random vector with values in En and independent components. Applying the
results of Section 5, we now derive the new upper bound below on the CVaR of f(X)

from the inequalities of Section 6.2 in Boucheron et al [4].

Theorem 7.1. Let f be a bounded and measurable function from En intoR. LetX be any
random vector with values in En and independent components. Set Z = f(X)−E(f(X)).
Then, for any z > 2,

Q̃Z(1/z) ≤ Tn inf
x∈]0,1[

L∗
v(x) + log(1 + x/v)√

2L∗
v(x)

, (7.3)

where v = 1/(z − 1) and L∗
v is defined as in Theorem 5.1.

Proof. Let `Z(t) = logE(exp(tZ)). Then, t`′(t) − `(t) ≤ T 2
nt

2/2 for any positive t, by the
inequality page 175, line 9 in Boucheron et al [4]. Consequently Z belongs to GE(Tn).
Now Theorem 5.1(b) implies (7.3).

Numerical comparisons. By Theorem 6.5 in Boucheron et al [4],

QZ(1/z) ≤ Tn
√

2 log z for any z > 1. (7.4)

By the comparison inequality (2.8) in Pinelis [15],

Q̃Z(1/z) ≤ ΘnQY ((5/e)
5/(5!z) ) for any z > 1, where Θn =

1

2

√√√√ n∑
k=1

‖δk‖2∞. (7.5)
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Below we give the values of the above upper bounds in the case Θn = Tn = 1 for integer
values of z, including the quartile and the decile. One can see that (7.5) is better than
(7.3) for z > 16 and almost equivalent for z = 16. However Tn is often strictly less than
Θn in the applications. Note also that (7.3) is significantly better than (7.4) for z ≤ 40.

Ineq. z=4 z=6 z=10 z=16 z=20 z=40
(7.4) 1.67 1.89 2.15 2.35 2.45 2.72
(7.5) 1.71 1.89 2.11 2.29 2.37 2.62
(7.3) 1.55 1.80 2.07 2.29 2.39 2.67
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