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Abstract

We study the concentration of a degree-d polynomial of the N spins of a general Ising
model, in the regime where single-site Glauber dynamics is contracting. For d = 1,
Gaussian concentration was shown by Marton (1996) and Samson (2000) as a special
case of concentration for convex Lipschitz functions, and extended to a variety of
related settings by e.g., Chazottes et al. (2007) and Kontorovich and Ramanan (2008).
For d = 2, exponential concentration was shown by Marton (2003) on lattices. We
treat a general fixed degree d with O(1) coefficients, and show that the polynomial
has variance O(Nd) and, after rescaling it by N−d/2, its tail probabilities decay as
exp(−c r2/d) for deviations of r ≥ C logN .
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1 Introduction

Concentration of measure for functions of random fields has been extensively studied
(see, e.g., [8]). A prototypical example for a system where the underlying variables are
weakly dependent is the high-temperature Ising model. The model, in its most general
form without an external magnetic field, is a probability measure over configurations
σ ∈ ΩN := {±1}N (assigning spins to the sites {1, . . . , N}), defined as follows: for a set
of coupling interactions {Jij}1≤i,j≤N , the corresponding Ising distribution π is given by

π(σ) = Z−1 exp [−H(σ)] where H(σ) = −
∑

i,j Jijσiσj ,

in which Z (the partition function) is a normalizer. For general {Jij} this includes
ferromagnetic/anti-ferromagnetic models, and spin-glass systems on arbitrary graphs.

The Gaussian concentration of functions f : ΩN → R in the high temperature regime
has been studied both using analytical methods, adapting tools from the analysis of
product spaces to the setting of weakly dependent random variables (see, e.g., [7, 12]),
and using probabilistic tools such as coupling (cf. [1]). In the presence of arbitrary
couplings {Jij}, our hypothesis for capturing the high-temperature behavior of the model
will be be based on contraction, as in the related works on concentration inequalities
in [1, 10, 11, 14], and is closely related to the Dobrushin uniqueness condition in [7].
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Concentration for polynomials of Ising spin systems

Definition. We say an Ising spin system π is θ-contracting if there exists a single-site
discrete-time Markov chain (Xt) which is reversible w.r.t. π and θ-contracting, i.e.,

max
σ,σ′:dH(σ,σ′)=1

WH

(
Pσ(X1 ∈ ·),Pσ′(X1 ∈ ·)

)
≤ θ < 1 ,

where dH(·, ·) is Hamming distance, WH(µ, ν) := inf{E[dH(X,Y )] : (X,Y ) ∼ (µ, ν)} is the
dH -Wasserstein distance, and Pσ is the probability starting from an initial state σ.

The discrete-time heat-bath Glauber dynamics for the Ising model is the reversible
chain that each step updates the spin of a uniform site i via Pπ(σi ∈ · | σ �{1,...,N}\{i}).
It is well-known that, for the Ising model with interactions Jij , if maxi

∑
j |Jij | ≤ 1− α,

then the corresponding single-site heat-bath Glauber dynamics is θ-contracting with
θ = 1− α/N , a concrete case where our results apply (see, e.g., [4, §8] and [9, §14.2]).

In this case, for linear functions f(σ) =
∑

i aiσi, it is known, as a special case of
results of Marton [11] regarding Gaussian concentration for Lipschitz functions (see
also [14] as well as [1, 6, 7, 10]) that there exists c = c(a1, . . . , aN , α) > 0 such that,

P(|f(σ)− Eπ[f(σ)]| ≥ u
√
N) ≤ exp(−cu2) .

For bilinear forms, where f(σ) =
∑

ij aijσiσj , Marton [12] showed that on lattices

P(|f(σ)− Eπ[f(σ)]| ≥ uN) ≤ exp(−cu) ,

whereas Daskalakis et al. [3] showed that, for a general Ising model, in a subset of this
regime (contraction as above with α > 3

4 vs. any α > 0), Varπ(f) = O(N2 log3 N).
Our main result recovers the correct variance and, up to a polynomial pre-factor, the

tail probabilities for a polynomial of any fixed degree d (for matching lower bounds, one
can take, for instance, the d-th power of the magnetization f(σ) =

∑
i σi).

Theorem 1. For every α, d > 0 there exists C(α, d) > 0 so that the following holds. Let
π be the distribution of the Ising model on N spins with couplings {Jij} satisfying∑

j:j∼i

|Jij | ≤ 1− α for all 1 ≤ i ≤ N . (1.1)

For every polynomial f ∈ R[σ1, . . . , σN ] of total-degree d with coefficients in [−K,K],

Varπ(f) ≤ CK2Nd , (1.2)

and for every r > 0,

Pπ

(
N−d/2|f(σ)− Eπ[f(σ)]| ≥ r

)
≤ CNd2

exp

(
− r2/d

CK2/d

)
. (1.3)

Moreover, (1.2)–(1.3) hold for every Ising model with couplings {Jij} for which the
corresponding ferromagnetic model with interactions {|Jij |} is (1− α

N )-contracting.

Remark 1.1. In [3], the authors used their variance bounds for bilinear forms of Ising
models to bound (in terms of N and ε) the number of samples that are required to
distinguish, with high probability, between a product measure and an Ising model
whose (symmetrized Kullback-Leibler) distance to any product measure is at least ε. In
Section 4, Theorems 4.1–4.2, we present a short application of Theorem 1 to improve
the upper bounds of [3] by considering fourth-order statistics of the Ising model.

Remark 1.2. In this paper, we always consider polynomials of Ising models with no
external field. As the following example shows, in the presence of an external field, such
polynomials may not be concentrated. Let µi = E[σi] for all i and expand,∑

aijσiσj =
∑

aij(σi − µi)(σj − µj) +
∑

aijσiµj +
∑

aijσjµi −
∑

aijµiµj .
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Concentration for polynomials of Ising spin systems

The first term on the right-hand side should have O(N) fluctuations while the second and
third terms

∑
i(
∑

j aijµj)σi can have order N3/2 fluctuations (e.g., if (µjaij)j all have the
same sign), implying (1.2)–(1.3) cannot hold in general under external field.

2 Concentration for quadratic functions

In this section, we prove the special and more straightforward case of concentration
for quadratic functions of the Ising model.

Theorem 2.1. For every α > 0 there exists C(α) > 0 so that the following holds. Let
π be the distribution of the Ising model on N spins with interaction couplings {Jij}
satisfying (1.1). For A = {aij}Ni,j=1, the function f(σ) =

∑
i,j aijσiσj on ΩN satisfies

Varπ(f) ≤ C
∑
i,j

|aij |2 , (2.1)

and for every r > 0,

Pπ

(
N−1

∣∣f(σ)− Eπ[f(σ)]
∣∣ > r

)
≤ CN2 exp

(
− r

C‖A‖∞

)
. (2.2)

Furthermore, this holds for any {Jij} such that the Ising model is (1− α
N )-contracting.

Proof of (2.1). Recall that the variational formula for the spectral gap of a reversible
Markov chain (Xt) with transition kernel P and stationary distribution π states that

gap = inf
f

E(f, f)
Varπ(f)

where E(f, f) = 1

2

∑
σ,σ′

π(σ)P (σ, σ′) |f(σ)− f(σ′)|2 . (2.3)

For any single-site discrete-time Markov chain for the Ising model, one has that

max
σ,σ′

P (σ, σ′) ≤ γ/N for some 0 < γ ≤ 1 (2.4)

(e.g., under (1.1), for heat-bath Glauber dynamics γ = 1
2 [1 + tanh(2(1− α))]). Thus,

E(f, f) ≤ γ

2N

∑
i

Eπ

[
(∇if)

2(σ)
]
, (2.5)

where (∇if)(σ) := f(σ)−f(σi) with σi the state obtained from σ by flipping σi. Moreover,
as mentioned, since this chain satisfies (1.1), it is (1− α

N )-contracting and therefore has
gap ≥ α/N by the results of [2] (see also [9, Theorem 13.1]).

Consider a linear function of the form g =
∑

aiσi; since |∇ig| = 2|ai|, one obtains
that E(g, g) ≤ 2γN−1

∑
i |ai|2, and therefore (2.3) implies that

Varπ(g) ≤ gap−1E(g, g) ≤ 2γ

α

∑
i

|ai|2 . (2.6)

Returning to the function f , assume w.l.o.g. that aii = 0 for all i (as σ2
i = 1) and let

gi(σ) :=
∑

j(aij + aji)σj , so |(∇if)(σ)| = 2|gi(σ)|. By symmetry, Eπ[gi(σ)] = 0, and

E(f, f) ≤ 2γ

N

∑
i

Varπ (gi(σ)) ≤
4γ2

αN

∑
i,j

|aij |2 ,

which, again applying (2.3), yields (2.1) for C = 4γ2

α2 .
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We now proceed to proving the exponential tail bounds on f . Throughout the paper,
we say a function f is b-Lipschitz on a set S if |f(σ) − f(σ′)| ≤ b dH(σ, σ′) for every
σ, σ′ ∈ S. A function f is b-Lipschitz if it is so on its whole domain, in our case ΩN . For
subsets of ΩN , endowed with its graph distance, by the triangle inequality, it suffices to
consider only σ, σ′ that are neighbors; f is b-Lipschitz on a connected set S ⊂ ΩN if

max
σ,σ′∈S:dH(σ,σ′)=1

|f(σ)− f(σ′)| ≤ b .

Proof of (2.2). We begin by bounding the Lipschitz constant of 1√
N
f . Observe that

N−1|f(σ)− f(σ′)| ≤ 2N−1dH(σ, σ′)
[
‖σTA‖∞ + ‖Aσ′‖∞

]
,

in light of which, if we define

Sb =
{
σ : max

{
‖Aσ‖∞, ‖ATσ‖∞

}
≤ 1

4b
√
N
}
, (2.7)

then 1√
N
f is b-Lipschitz on Sb—note that we only consider b ≤ ‖A‖∞

√
N .

In order to upper bound Pπ(S
c
b), we will use the following version of concentration

inequalities for Lipschitz functions of general contracting Markov chains [10]:

Proposition 2.2 ([10, Corollary 4.4, Eq. (4.13)], cf. [11, 14]). Let π be the stationary
distribution of a θ-contracting Markov chain with state space Ω, and suppose g : Ω → R

is b-Lipschitz w.r.t. to the graph metric induced by the chain. Then for all r > 0,

Pπ (|g(σ)− Eπ[g(σ)]| > r) ≤ 2 exp

(
− (1− θ2)r2

2θ2b2

)
.

Note that for every i and every σ, σ′ ∈ ΩN , we have |(Aσ)i − (Aσ′)i| ≤ ‖A‖∞‖σ − σ′‖1
and so σ 7→ (Aσ)i and σ 7→ (ATσ)i are both 2‖A‖∞-Lipschitz. By a union bound and
Proposition 2.2 with θ = 1− α/N and r = 1

4b
√
N , there exists κ(α) > 0 such that

Pπ(S
c
b) ≤ 4N exp

(
−

( 2αN − α2

N2 )b
2N

32(1− α
N )2(2‖A‖∞)2

)
≤ 4N exp

(
− b2

κ‖A‖2∞

)
. (2.8)

Next, consider the McShane–Whitney extension ([13, 15]) of N− 1
2 f from Sb, defined by

N−1/2f̃(η) = min
σ∈Sb

[
N−1/2f(σ) + b · dH(η, σ)

]
; (2.9)

this is designed so that f and f̃ agree on all of Sb, and N−1/2f̃ is b-Lipschitz on all of ΩN .
As a result, by Proposition 2.2, there exists C(α) > 0 such that

Pπ(|f̃(σ)− Eπ[f̃(σ)]| > rN) ≤ 2 exp(−r2/(Cb2)) . (2.10)

We also need to control the difference between the means of f, f̃ :

|Eπ[f̃(σ)]− Eπ[f(σ)]| ≤ Eπ

[
|f̃(σ)− f(σ)|1{σ ∈ Sc

b}
]

≤ 8‖A‖∞N3e−b2/(κ‖A‖2
∞) , (2.11)

where in the last line we used (2.8) to bound Pπ(S
c
b), as well as the fact that

max
σ

{|f(σ)|, |f̃(σ)|} ≤ ‖A‖∞N2 + bN3/2 ≤ 2‖A‖∞N2 .

Now let b =
√
‖A‖∞r and observe that if b is such that

|Eπ[f̃(σ)]− Eπ[f(σ)]| ≤ rN/3
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Concentration for polynomials of Ising spin systems

holds (in particular, this holds for all b > 2
√
κ‖A‖2∞ log(‖A‖∞N)), then

Pπ(|f(σ)− Eπ[f(σ)]| > rN) ≤ Pπ(|f̃(σ)− Eπ[f̃(σ)]| > rN
3 ) + Pπ(|f̃(σ)− f(σ)| > rN

3 ) .

By (2.10), and the choice of b, the first term above has

Pπ(|f̃(σ)− Eπ[f̃(σ)]| > rN/3) ≤ 2 exp

(
− r

9C‖A‖∞

)
.

Because f̃(σ) = f(σ) for all σ ∈ Sb, by our choice of b,

Pπ(|f̃(σ)− f(σ)| > rN/3) ≤ Pπ(S
c
b) ≤ 4N exp

(
− r

κ‖A‖∞

)
.

Replacing the requirement of b > 2
√
κ‖A‖2∞ log(‖A‖∞N) with a prefactor of N2, and

combining the above two estimates, we obtain (2.2) for some new C(α) > 0.

3 Concentration for general polynomials

The proof of (1.3) when d ≥ 3 is a more involved dynamical proof; this is needed since
f might only be b-Lipschitz on connected components of the analog of Sb from (3.4), as
opposed to on that entire set. We will need the following lemma to bound Eπ[∇`f ].

Lemma 3.1. For every p, α > 0 there exists C(p, α) > 0 such that the following holds.
Consider an Ising model π with couplings {Jij} and let π̃ be the Ising measure corre-
sponding to couplings {|Jij |}. If π̃ is a (1− α

N )-contracting Ising system and

h(σ) =
∑

i1,...,ip

bi1,...,ipσi1 · · ·σip

is a degree-p polynomial in (σ1, ..., σN ) for a degree-p tensor B, then

|Eπ[h(σ)]| ≤ C‖B‖∞Np/2 .

Proof. Begin by considering ferromagnetic models with non-negative couplings, {Jij}. It
is well-known that Eπ[σi1 · · ·σip ] ≥ 0 in the ferromagnetic Ising model with no external
field (e.g., by viewing its FK representation that enjoys monotonicity). Thus,

|Eπ[h(σ)]| ≤
∑

i1,...,ip

|bi1,...,ip |Eπ[σi1 · · ·σip ] ,

and taking Mp = (‖B‖∞)1/p, we see that∑
i1,...,ip

|bi1,...,ip |Eπ[σi1 · · ·σip ] ≤ Eπ

[∣∣∣∑
i

Mpσi

∣∣∣p] .
However,

∑
i Mpσi is clearly an Mp-Lipschitz function, and by spin-flip symmetry of the

Ising system, has mean 0, so by Proposition 2.2, there exists κ(α) > 0 such that

Pπ

(∣∣∣∑
i

Mpσi

∣∣∣p > rpNp/2

)
= Pπ

(∣∣∣∑
i

Mpσi

∣∣∣ > r
√
N

)
≤ e−r2/κM2

p ,

and therefore, by integrating, Eπ[|
∑

i Mpσi|p] ≤ C‖B‖∞Np/2 for some C(p, α) > 0.
Now suppose that {Jij} are not all non-negative; using the FK representation of Ising

spin systems with general couplings (not necessarily ferromagnetic)—see, e.g., [5, §11.5],
and in particular Proposition 259 and Eq. (11.44)—for every i1, ..., ip,∣∣Eπ[σi1 · · ·σip ]

∣∣ ≤ Eπ̃[σi1 · · ·σip ] . (3.1)
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Then, proceeding as before, we see that

|Eπ[h(σ)]| ≤
∑

i1,...,ip

|bi1,...,ip ||Eπ[σi1 · · ·σip ]| ≤ Eπ̃

[
|
∑
i

Mpσi|p
]
.

Since π̃ is contracting, we can apply Proposition 2.2 as before to obtain for the same
constant, C(p, α) > 0 that |Eπ[h(σ)]| ≤ Eπ̃[|

∑
i Mpσi|p] ≤ C‖B‖∞Np/2.

Proof of (1.2). Fix d and recall the variational formula for the spectral gap, (2.3). Fol-
lowing (2.5), we see that for γ defined in (2.4)

E(f, f) ≤ γ

2N

∑
`

Eπ

[
(∇`f)

2(σ)
]

where (∇`f)(σ) = f(σ) − f(σ`) as before. Let f(σ) =
∑

i1,...,id
ai1,...,idσi1 · · ·σid with

‖A‖∞ ≤ K, and w.l.o.g. (every polynomial can be rewritten as a sum of monomials)
assume ai1,...,id = 0 if ik = ij for some j 6= k. Then for every ` and every σ,

|(∇`f)(σ)| = 2

∣∣∣∣ ∑
i2,...,id

a`,i2,...,idσi2 · · ·σid + · · ·+
∑

i1,...,id−1

ai1,...,id−1,`σi1 · · ·σid−1

∣∣∣∣ ,
so that g`(σ) := (∇`f)

2(σ) is a 2(d− 1)-degree polynomial in σ with coefficients bounded
above by 4

(
2(d−1)
(d−1)

)
K2. By Lemma 3.1, there exists C(α, d) > 0 such that for every `,

Eπ[g`(σ)] ≤ 4

(
2(d− 1)

d− 1

)
CK2Nd−1 ,

so that using (2.3), (2.5), and the fact that gap ≥ α/N , for some new C(α, d) > 0,

Varπ(f) ≤ gap−1E(f, f) ≤ Nγ

2α
· CK2Nd−1 =

Cγ

2α
K2Nd .

Proof of (1.3). As before, since σ2
i = 1, every polynomial of degree d can be rewritten

as a sum of monomials of degree at most d. The concentration of the lower-degree
monomials can be absorbed into the constant in the prefactor in (1.3) of Theorem 1.
Moreover, it suffices by rescaling to prove the theorem for the case K = 1. Consider
a (1 − α

N )-contracting Ising model π; for every d, if f is a monomial of degree d (i.e.,
f(σ) =

∑
i1,...,id

ai1,...,idσi1 · · ·σid for a d-tensor A with ‖A‖∞ ≤ 1 and ai1...id = 0 if ij = ik
for some j 6= k), there exists κ(α, d) > 0 so that for every r > 0, and every N ,

Pπ

( 1

Nd/2

∣∣f(σ)− Eπ[f(σ)]
∣∣ > r

)
≤ κ[N2+d/2 log2(N)]d−1 exp

(
−r2/d/κ

)
. (3.2)

Since we are considering d fixed, throughout this section, . will be with respect to
constants that may depend on d. We prove (3.2) inductively over d ≥ 2. The base case
d = 1 is given by Proposition 2.2. Now assume that for every p ≤ d− 1, Eq. (3.2) holds
and show it holds for d. Fix 1 ≤ ` ≤ N and let σ` be the configuration that differs with σ

only in coordinate `. For every σ, we can compute the gradient N−d/2(∇`f)(σ) as

N−d/2|f(σ)− f(σ`)| = 2N−d/2

∣∣∣∣ ∑
i2,...,id

a`,i2,...,idσi2 · · ·σid + · · ·

+
∑

i1,...,id−1

ai1,...,id−1,`σi1 · · ·σid−1

∣∣∣∣ . (3.3)
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Define the following set of configurations:

Sb =

{
σ : max

`≤N ;j≤d

∣∣∣ ∑
i1,...,id:ij=`

ai1,...,idσi1 · · ·σij−1
σij+1

· · ·σid

∣∣∣ ≤ 1

2d
bN

d−1
2

}
. (3.4)

Since f is no longer quadratic, the bounds offered by Sb on the gradients in (3.3) no
longer imply that f is b-Lipschitz on the entire set Sb; instead, one only has that f is
b-Lipschitz on every connected component of Sb. In view of this, for each η ∈ Sb, let
Sη,b to be the connected component of Sb containing η. By this definition, the triangle
inequality, and (3.3), for each η ∈ Sb, the function N−(d−1)/2f is b-Lipschitz on Sη,b.

For every η, define the McShane–Whitney extension of N−(d−1)/2f from Sη,b as

N−(d−1)/2f̃η(σ
′) = min

σ∈Sη,b

[
N−(d−1)/2f(σ) + b · dH(σ, σ′)

]
,

so that N−(d−1)/2f̃η is b-Lipschitz on all of ΩN and f̃η �Sη,b
= f �Sη,b

.
Now let (Xt) be the single spin-flip Markov chain which was (1− α

N )-contracting with
stationary distribution π, and, for each η, bound

Pη(N
−d/2|f(Xt)− Eπ[f(Xt)]| > r) ≤ Φ1 +Φ2 +Ψ1 +Ψ2 , (3.5)

where

Φ1 = Φ1(η, r) = Pη(N
−d/2|f̃η(Xt)− Eη[f̃η(Xt)]| > r

4 ) ,

Φ2 = Φ2(η, r) = Pη(N
−d/2|f(Xt)− f̃η(Xt)| > r

4 ) ,

Ψ1 = Ψ1(η, r) = 1
{
N−d/2

∣∣Eη[f̃η(Xt)]− Eη[f(Xt)]
∣∣ > r

4

}
,

Ψ2 = Ψ2(η, r) = 1
{
N−d/2

∣∣Eη[f(Xt)]− Eπ[f(Xt)]
∣∣ > r

4

}
.

In order to bound Φ1 we will need the following result of Luczak (see [10, Eq. (4.14)]):

Proposition 3.2 ([10]). If (Yt) is a θ-contracting Markov chain on Ω with stationary
measure π, and g : Ω → R is b-Lipschitz w.r.t. to its induced graph metric, then

max
y0∈Ω

Py0

(
|g(Yt)− Ey0

[g(Yt)]| ≥ r
)
≤ 2 exp

(
− r2

b2
∑t

i=0 θ
i

)
.

First, by Proposition 3.2, there exists C(α) > 0 so that for every η ∈ Sb and every t,

Φ1 = Pη

(
N−d/2|f̃η(Xt)− Eη[f̃η(Xt)]| > r/4

)
≤ 2 exp

(
− r2

Cb2

)
. (3.6)

Second, the fact that f and f̃η agree on Sη,b implies that

Φ2 ≤ Pη(τSc
η,b

≤ t) = Pη(τSc
b
≤ t) , (3.7)

where the last equality crucially used that (Xt) is a single-site dynamics (whence starting
from η, exiting Sη,b and exiting Sb are equivalent).

By the definition of f̃η, we have that ‖f̃η‖∞ ≤ ‖f‖∞ +NLip(f �Sη,b
), implying that

Ψ1 ≤ 1
{
(1 + b)Nd/2Pη(τSc

b
≤ t) > r

4

}
. (3.8)

Finally, if we take t ≥ t0 := tmix(ε) for εr := (8rNd/2)−1, we obtain,

max
η∈ΩN

N−d/2 |Eη[f(Xt)]− Eπ[f(Xt)]| ≤ 2Nd/2εr < r/4 ,
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so that for all such t, for every η ∈ ΩN , we have Ψ2 = 0. Because (e.g., [9]) a Markov
chain that is θ-contracting with θ = 1− α

N has tmix & N logN , by sub-multiplicativity of
total variation distance to stationarity, this holds for t0 � N log2(N).

Combining (3.5)–(3.8), we see that for all η ∈ Sb and t ≥ t0,

Pη(N
−d/2|f(Xt)− Eπ[f(Xt)]| > r) ≤ 1

{
(1 + b)Nd/2Pη(τSc

b
≤ t) > r

4

}
+ Pη(τSc

b
≤ t) + 2 exp

(
− r2

Cb2

)
.

If we now average both sides over η ∼ π and set t = t0, we obtain

Pπ

(
N−d/2|f(Xt)− Eπ[f(Xt)] > r

)
≤ Pπ({η : Pη(τSc

b
≤ t) > r/((4 + 4b)Nd/2)})

+ Pπ(τSc
b
≤ t) + Pπ(S

c
b) + 2 exp

(
− r2

Cb2

)
≤

[
2t0 + (4 + 4b)r−1Nd/2t0

]
Pπ(S

c
b) + 2 exp

(
− r2

Cb2

)
, (3.9)

where we used using stationarity of the Markov chain and a union bound over all times
up to t0, and Markov’s inequality with Eπ[Pη(τSc

b
≤ t)] = Pπ(τSc

b
≤ t).

It remains to bound the probability Pπ(S
c
b). Let, for every 1 ≤ ` ≤ N , 1 ≤ j ≤ d,

g`,j(σ) =
∑

i1,...,id:ij=`

ai1,...idσi1 · · ·σij−1
σij+1

· · ·σid ;

by the inductive hypothesis there exists κ(α, d) > 0 such that uniformly over `, j,

Pπ

(
|g`,j(σ)− Eπ[g`,j(σ)]| > (bN

d−1
2 )/(4d)

)
.

[
N2+ d−1

2 log2(N)
]d−2

exp
(
− b

2
d−1 /κ

)
.

To upper bound Pπ(S
c
b), by (3.4) it suffices to show that |Eπ[g`,j ]| is at most (bN

d−1
2 )/(4d)

and then union bound over `, j. Since for each `, j, the function g`,j is a d − 1 degree
polynomial of the form of h(σ) in Lemma 3.1 there exists C ′(α, d) > 0 such that for every
1 ≤ ` ≤ N and 1 ≤ j ≤ d, |Eπ[g`,j ]| ≤ C ′N (d−1)/2. Therefore, for every b ≥ 4C ′d, by a
union bound over 1 ≤ ` ≤ N and 1 ≤ j ≤ d,

Pπ(S
c
b) . N

[
N2+(d−1)/2 log2(N)

]d−2
exp

(
− b

2
d−1 /κ

)
. (3.10)

Plugging (3.10) into (3.9), by stationarity of π and t0 � dN log2(N), we obtain

Pπ(N
−d/2|f(σ)−Eπ[f(σ)]| > r)

.
[
N2+d/2 log2(N)

]d−1
[
exp

(
− r2

Cb2

)
+ exp

(
− b2/(d−1)

κ

)]
,

at which point, the choice of b given by b = r(d−1)/d implies (3.2).

4 An application to testing Ising models

In [3], independence testing of Ising models was extensively studied. Suppose one is
given k samples of N bits, either from a product measure I or from an Ising measure
ν satisfying (1.1), whose Kullback–Leibler distance to I is at least ε. The goal is to
decide with high probability, using a minimum number of samples, which distribution
the samples came from. Our variance bound in Theorem 1 allows us to use a fourth-
order statistic to improve on the results of [3] in the high-temperature regime of (1.1),
including obtaining the sharp upper bound in the case of ferromagnetic Ising models.
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Consider an Ising model with couplings {Jij} satisfying 1.1 and for every i ∼ j, let

λπ
ij = Eπ[σxσy]− Eπ[σx]Eπ[σy] ,

which in the absence of external field equals Eπ[σxσy].

The Ising model has the special property that for two Ising models π and ν on
N vertices, with couplings {Jπ

ij} and {Jν
ij} and edge-magnetizations λπ

ij and λν
ij , the

symmetrized Kullback–Leibler divergence dSKL(π, ν) is given by

dSKL(π, ν) = Eπ

[
log

(π
ν

)]
− Eν

[
log

(ν
π

)]
=

∑
1≤i<j≤N

(Jπ
ij − Jν

ij)(λ
π
ij − λν

ij) .

Let I be the product measure on N independent, symmetric ±1 random variables. That
is to say that JI

ij = λI
ij = 0 for all i, j and dSKL(π, I) =

∑
i,j J

π
ijλ

π
ij . Finally, for an Ising

model π, let m denote the number of edges, i.e., the number of non-zero Jπ
ij .

Theorem 4.1. There exists a polynomial time algorithm that uses O(N/ε) samples from
a ferromagnetic Ising model π on N vertices satisfying (1.1), and distinguishes with
probability better than 3

4 , whether π = I or dSKL(π, I) ≥ ε. In the specific case where
the edge set {(ij) : Jπ

ij 6= 0} is known, this is improved to O(
√
m/ε) samples.

Theorem 4.2. There exists a polynomial time algorithm that uses O(N2/ε2) samples
from an Ising model π on N vertices satisfying (1.1), and distinguishes with probability
better than 3

4 whether π = I or dSKL(π, I) ≥ ε. In the specific case where the edge set
{(ij) : Jπ

ij 6= 0} is known a priori, this is improved to O(N
√
m/ε2) samples.

(The previous results of [3] gave a bound of O(m/ε) in the setting of Theorem 4.1,
and a bound of O(N10/3/ε2) in the setting of Theorem 4.2.)

The algorithms will take k i.i.d. samples (σ(1)
i )i≤N , ..., (σ

(k)
i )i≤N from π and compute

Zk = Zk(σ
(1), ..., σ(k)) =

∑
i,j

(
1

k

∑
1≤`≤k

σ
(`)
i σ

(`)
j

)2

; (4.1)

in the case where we do know the edge set of the underlying graph a priori, we sum only
over i ∼ j. Let P be the measure given by

⊗k
i=1 π. Observe first that

E[Zk] =
∑
i,j

(λπ
ij)

2 +
1

k

∑
i,j

(1− λπ
ij) ≥

∑
i,j

(λπ
ij)

2 . (4.2)

At the same time,

Var(Zk(σ)) =
1

k4
Var

(∑
i,j

∑
1≤`,`′≤k

σ
(`)
i σ

(`)
j σ

(`′)
i σ

(`′)
j

)
.

For every fixed k, we can view (σ
(`)
i )1≤i≤N,1≤`≤k as an Ising model on kN vertices, that

satisfies (1.1) since it corresponds to k independent copies of an Ising model each
satisfying (1.1). Therefore, by Theorem 1, specifically (1.2), we have Var(Zk) ≤ CN2/k2.

In the case when the underlying graph is known a priori, we have the following.

Lemma 4.3. Consider k i.i.d. samples σ(1), ..., σ(k) from an Ising model π on N vertices
and m edges, satisfying (1.1). There exists C(α) > 0 such that Var(Zk) ≤ Cm/k2.

Proof. Again view (σ
(`)
i )i,` as an Ising model on kN vertices with measure πk =

⊗k
i=1 π.

Recall that since {Jπ
ij} satisfy (1.1) for α > 0, the Ising model is 1 − α/N contracting.
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Since the spectral gap tensorizes, and π is 1− α/N contracting, πk has inverse spectral
gap satisfying gap−1 ≥ α/N . By the variational form of the gap (2.4)–(2.5), we have,

Var(Zk) ≤ gap−1E(Zk, Zk) ≤
2γ

α

∑
i,`

E
[
(∇i,`Zk)

2(σ)
]
.

Now we compute (∇i,`Zk)
2(σ) for fixed (i, `) = (i?, `?) and every σ. Expanding out,

(∇i?,`?Zk)
2(σ) =

4

k4

∑
j∼i?,j′∼i?

E
[
σ`?

j σ`?

j′
]
E
[
(
∑
` 6=`?

σ`
i?σ

`
j)(

∑
`′ 6=`?

σ`′

i?σ
`′

j′)
]

=
4

k4

∑
j∼i?,j′∼i?

E
[
σ`?

j σ`?

j′
]( ∑

` 6=`?,`′ 6=`?

E
[
σ`
i?σ

`
jσ

`′

i?σ
`′

j′
])

.

When ` = `′, the summands in the second sum are given by Eπ[σjσj′ ], whereas when
` 6= `′, we have E[σ`

i?σ
`
jσ

`′

i?σ
`′

j ] = Eπ[σi?σj ]Eπ[σi?σj′ ]. Therefore,

(∇i?,`?Zk)
2(σ) ≤ 4

k4

∑
j,j′∼i?

|Eπ[σjσj′ ]|
(
k|Eπ[σjσj′ ]|+ (k − 1)2|Eπ[σi?σj ]||Eπ[σi?σj′ ]|

)
≤ 4

k2

∑
j,j′∼i?

Eπ̃[σjσj′ ] , (4.3)

where the last inequality follows as in (3.1) and π̃ is the ferromagnetic Ising model with
couplings J π̃

ij = |Jπ
ij | (also satisfying (1.1) with the same α). But, we can write∑

j,j′∼i?

Eπ̃[σjσj′ ] = Eπ̃

[(∑
j

cjσj

)2]
,

where cj = 1{Ji?j 6= 0}. For squares of 1-Lipschitz functions of contracting Ising models,
we previously noted in (2.6) that

Eπ̃

[(∑
j

cjσj

)2]
= Varπ̃

(∑
j

cjσj

)
≤ 2γ

α

∑
j

|cj |2 =
2γdi?

α
,

with di? being the number of nonzero couplings incident i?. Summing over i?, and
plugging this bound into (4.3) and then into the variational form of the spectral gap, we

obtain the desired bound of Var(Zk) ≤ ( 32γ
2

α2 )(m
k2 ).

Proof of Theorem 4.1. The algorithm we use computes Zk as defined in (4.1) for k ≥
CN/ε (when we know the underlying graph, k ≥ C ′√m/ε), then outputs that π = I if
Zk ≤ ε/4 and outputs dSKL(π, I) ≥ ε otherwise. We first show that with probability at
lteast 9

10 , if π = I, the algorithm outputs that. Notice that EI [Zk] = 0, and by the above
computations of the variance, Var(Zk) ≤ CN2/k2 (when we know the underlying edge
set, Var(Zk) ≤ m/k2 by Lemma 4.3). By Chebyshev’s inequality,

P(Zk ≥ ε/4) ≤ 16ε−2Var(Zk) ,

which, after plugging in the above two bounds on Var(Zk) implies the number of samples
we require of k is sufficient for the right-hand side to be at most 9

10 .
When π is such that dSKL(π, I) ≥ ε, we again have the same bounds on Var(Zk).

We now lower bound Eπ[Zk] by (4.2) and the definition of dSKL(π, I). Since π is a
ferromagnetic, for all Jπ

ij ≤ 1 by the FKG inequality, λπ
ij ≥ tanh(Jπ

ij) ≥ Jπ
ij/2. Thus,

E[Zk] ≥
∑
i,j

(λπ
ij)

2 ≥ 1

2

∑
i∼j

Jπ
ijλ

π
ij ≥

ε

2
.
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Applying Chebyshev’s inequality to P(Zk ≤ ε/4), we see that the number of samples
we require of k is sufficient to identify that dSKL(π, I) ≥ ε with probability at least 9

10 .
A union bound over the cases π = I and dSKL(π, I) ≥ ε concludes the proof.

Proof of Theorem 4.2. The algorithm again computes the statistic, Zk defined in (4.1),
and now outputs that π = I if Zk ≤ ε2/2N and outputs dSKL(π, I) ≥ ε otherwise.

First, consider the situation π = I; by similar reasoning to the proof of Theorem 4.1,
after k ≥ CN2/ε2, (when we know the underlying graph, k ≥ C ′N

√
m/ε), with proba-

bility at least 9
10 , the algorithm outputs that π = I. Now suppose that π is such that

dSKL(π, I) ≥ ε; we wish to lower bound E[Zk]. By Cauchy–Schwarz inequality,

∑
i,j

(λπ
ij)

2 ≥
(
∑

i,j J
π
ijλ

π
ij)

2∑
i,j(J

π
ij)

2
≥ ε2

(∑
i∼j

(Jπ
ij)

2

)−1

.

When (1.1) holds, for every i and some α > 0, we have
∑

j:j∼i |Jπ
ij | ≤ 1− α. Therefore,

E[Zk] ≥ ε2
(
max
i,j

{|Jπ
ij |} ·

∑
i

∑
j∼i

|Jπ
ij |
)−1

≥ ε2
(∑

i

[1− α]

)−1

≥ ε2

N
.

We can then use Chebyshev’s inequality to bound

P(Zk ≤ ε2/(2N)) ≤ P(|Zk − E[Zk]| ≥ ε2/(2N)) ≤ 4ε−4N2Var(Zk)

via the aforementioned bounds on Var(Zk). Plugging in those bounds implies that the
number of samples k we require is sufficient to identify that in this case dSKL(π, I) ≥ ε

with probability at least 9
10 , at which point a union bound concludes the proof.
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