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Abstract

We study the angles between the eigenvectors of a random n × n complex matrix
M with density ∝ e−nTrV (M∗M) and x 7→ V (x2) convex. We prove that for unit
eigenvectors v,v′ associated with distinct eigenvalues λ, λ′ that are the closest to
specified points z, z′ in the complex plane, the rescaled inner product

√
n(λ′ − λ)〈v,v′〉

is uniformly sub-Gaussian, and give a more precise statement in the case of the Ginibre
ensemble.
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1 Introduction and main results

1.1 Setup and main results

Let V : R+ → R be a function such that the following holds.

For some α > 0, the function V (x2)− α
2 x

2 is convex. (1.1)

Let X be an n× n complex matrix with law

∝ e−nTrV (M∗M)dM, (1.2)

where dM is the standard Lebesgue measure on n× n complex matrices. In particular,
all eigenvalues of X are distinct, almost surely (see Remark 3.1).

Let z, z′ ∈ C and let λ and λ′ denote the eigenvalues of X that are the closest to
respectively z and z′ (if z = z′ or λ is the closest eigenvalue to both z and z′, then λ′ is
the second closest to z′). Let v and v′ denote some associated eigenvectors of unit `2
norm. We want to study the quantity n|λ′ − λ||〈v,v′〉|2, which leads us to introduce the
random variable Y , defined through any of the two following equivalent equations

Y := n
|λ′ − λ|2

|〈v,v′〉|−2 − 1
(1.3)
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Eigenvectors of non normal random matrices

or

n|λ′ − λ|2|〈v,v′〉|2 =
Y

Y
n|λ′−λ|2 + 1

, Y > 0 (1.4)

Since eigenvalues are almost surely distinct and |〈v,v′〉| is invariant under multiplication
of the eigenvectors by a complex scalar of norm 1, the random variable Y is well defined.

Recall α from (1.1). Our first main result is the following.

Theorem 1.1. The random variable Y satisfies

P(Y ≥ δ) ≤ 2 exp
(
−α

2
δ
)
, for any δ > 0. (1.5)

In particular, when n|λ′ − λ|2 � 1, (1.4) shows that

|〈v,v′〉| ≈
√
Y√

n|λ′ − λ|
,

and it follows from Theorem 1.1 and a union bound that all eigenvectors corresponding
to mesoscopically separated eigenvalues are asymptotically orthogonal to each other.

Remark 1.2. In the case of the Ginibre ensemble (V (x) = x, so that the entries of X are
i.i.d. standard complex Gaussian variables with variance n−1), the random variable Y

has an exponential law of mean 1. This fact is probably well known, and follows from
Equations (2.3) and (2.7)-(2.8) below. In particular,

√
Y is distributed like the norm of a

standard complex Gaussian variable.

(We recall that a standard complex Gaussian variable is a centered complex Gaussian
random variable Z such that EZ2 = 0 and E |Z|2 = 1.)

Our second main result is concerned with Ginibre matrices, for which we extend an
asymptotic version of Remark 1.2 to the multivariate framework.

Theorem 1.3. Suppose that V (x) = x. For a fixed k ≥ 2, let z1, . . . , zk be (deterministic)
points in the unit disk, possibly dependent on n, such that for a certain ε > 0, uniformly
in n,

√
n min

1≤i<j≤k
|zj − zi| ≥ nε. (1.6)

For each i, let λi be the eigenvalue that is the closest to zi and let vi be an associated
eigenvector. Let θi, i = 1, . . . , k, be i.i.d. variables uniformly distributed on the [0, 2π],
independent of X. Then the distribution of the triangular array(√

n(λj − λi)〈eiθivi, e
iθjvj〉

)
1≤i<j≤k

converges, as n → ∞, to the distribution of a triangular array of independent standard
complex Gaussian variables.

Remark 1.4. The typical distance between two eigenvalues of X that are “neighbors”
of each other in the spectrum of X has order n−1/2. Hence, because of Hypothesis (1.6),
this result is well adapted for most pairs of eigenvalues, but not for those that are as
close as possible (in our proof, Hypothesis (1.6) is necessary for estimates (2.11) to
(2.14) to hold). For one given pair of eigenvalues at distance � n−1/2, much information
is contained in the fact that the random variable Y introduced in (1.3) and (1.4) has
exponential distribution with mean one. If one considers not only one such pair, but an
arbitrary finite number k of eigenvalues that are at distances of order n−1/2, the problem
is less simple.
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Eigenvectors of non normal random matrices

1.2 Background

The study of eigenvectors of random Ginibre matrices seems to have been initiated
in [10]. For a matrix X, let vi (respectively, wi) denote the left (respectively, right)
eigenvectors corresponding to eigenvalues λi, where the normalization 〈vi,wj〉 = δij
is imposed. Using the Schur representation X = UTU∗ with T upper triangular and U

unitary, they computed, for the Ginibre ensemble, the correlations of eigenvectors and
cross correlations of right and left eigenvectors, with special emphasis on the correlator

O1,2 = E(〈v1,v2〉〈w1,w2〉). (1.7)

Using the joint density of entries of T , the evaluation of the latter correlations reduce to
the evaluation of certain Green functions. This point of view was recently significantly
expanded to more general models in [13] (using diagrammatic methods), as well as in [5],
where multi-points correlations are evaluated and related to two point correlations. We
refer the reader to the introduction of [5] for further details and an extensive bibliography.
Recent works [7, 4] study distributional limits for condition numbers, as well as refined
estimates for overlaps in the microscopic and mesoscopic regime.

Another very relevant recent work is [3], which deals with matrices X with joint
density of entries of the form (1.2) (whithout assuming the convexity of V ). In this
general setup, the correlator O12 from (1.7) is computed.

Our results, as well as [11, 5], build upon the evaluation of the joint distribution of
the entries of T , see [8, 15, 12]; these derivations do not address explicitely the ordering
of the diagonal elements in T ; in our approach, we choose the ordering as function of
the full set of diagonal elements. For this reason, we provide explicitly a proof of the
joint distribution of entries.

Finally, we mention that general delocalization results for eigenvectors of random
non-Hermitian matrices with independent entries appear in [14].

1.3 A conjecture

The inner products appearing in Theorem 1.3 can be written in terms of the off
diagonal entries of the upper triangular matrix T in the Schur decomposition of X, see
the proof of Theorem 1.1 below. In the Ginibre case, these entries (scaled by

√
n) are iid

standard complex Gaussians, and for general V , it is still the case that Y = n|t12|2, see
(2.3) below. This leads us to the following.

Conjecture 1.5. Under the assumptions of Theorem 1.1, the sequence Y/EY converges
in distribution, as n → ∞, to the exponential law of parameter one.

Some preliminary computations make the conjecture plausible. In addition, the
simulations in Figure 1 are in agreement with the conjecture.

2 Proofs

In the proofs below, we use the joint distributions derived in Theorem 3.3 from the
appendix.

Proof of Theorem 1.1. Set O := Oz,z′,z′,z′,...,z′ (see (3.2) for the definition of this set). By
Theorem 3.3, we know that X can be written X = UTU∗ with U unitary and T = [tij ]

upper triangular having the density

∝ 1(t11,...,tnn)∈O|∆(t11, . . . , tnn)|2e−nTrV (T∗T ), (2.1)

Hence by definition of O, λ and λ′ are the two first diagonal entries of T . Thus the

vectors w := (1, 0, . . . , 0) and w′ :=
(
|t12|2 + |λ′ − λ|2

)−1/2
(t12, λ

′ − λ, 0, . . . , 0) are unit
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(a) V (x) = x (Ginibre) (b) V (x) = x+ x4

4
+ x5

5

Figure 1: Universality of eigenvector angles: density 2xe−x2

(in red) vs the his-

tograms (in blue) of

√
n|λ′ − λ|√

|〈v,v′〉|−2 − 1
for λ 6= λ′ running through the spectrum of a matrix

with distribution ∝ e−nTrV (M∗M) (n = 150, sample of size 40, sampled thanks to Langevin
Monte Carlo), with 2 different choices for V . The sample on the right has been rescaled

so that its empirical second moment is 1 (because the distribution of |λ′−λ|√
|〈v,v′〉|−2−1

can

only be universal up to a rescaling of the matrix).

right eigenvectors of T for the eigenvalues λ and λ′. Hence as U is unitary,

|〈v,v′〉| = |〈w,w′〉| = |t12|
(|t12|2 + |λ′ − λ|2)1/2

, (2.2)

so that

Y = n
|λ′ − λ|2

|〈v,v′〉|−2 − 1
= n|t12|2 (2.3)

Thus we have to prove that for any δ > 0,

P(
√
n|t12| ≥ δ) ≤ 2e−

αδ2

2 . (2.4)

Notice first that for any fixed (t11, . . . , tnn) ∈ O, the distribution µ · |(t11,...,tnn) of
(tij)1≤i<j≤n conditional to (t11, . . . , tnn) has on Cn(n−1)/2 a density

∝ e−nTrV (T∗T ) (2.5)

for T the upper-triangular matrix with upper-triangular entries (tij)1≤i≤j≤n. Thus by
Lemma 3.16 and Remark 3.15, µ · |(t11,...,tnn) satisfies a LSI with constant (αn)−1. Note
also that for any fixed θ1, . . . , θn ∈ R, the density of µ · |(t11,...,tnn) given at (2.5) is invariant
under the transformation

(tij)1≤i<j≤n 7−→ (ei(θi−θj)tij)1≤i<j≤n.

We deduce that the expectation of t12 with respect to µ · |(t11,...,tnn) vanishes, so that by
the LSI, for any δ > 0,

µ · |(t11,...,tnn)(
√
n|t12| ≥ δ) ≤ 2e−

αδ2

2 . (2.6)

Integrating over (t11, . . . , tnn), we get (2.4).

Before the proof of Theorem 1.3, we prove two preliminary lemmas. We suppose here
that V (x) = x.
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Lemma 2.1. Let z0 in the unit disk, possibly depending on n and s ∈ (0, 1/2). Then with

probability tending to one as n → ∞, X has at least n1−2s

5 eigenvalues at distance ≤ n−s

from z0.

Proof. Let Ns denote the number of eigenvalues in the diskD(z0, n
−s). Let f be a smooth

non negative function with value 1 on the disk D(0, 1/2) and with support contained in
the disk D(0, 1). Then we have

Ns ≥
n∑

j=1

f(ns(λj − z0)),

where the λj denote the eigenvalues. By the local circular law by Yin [17, Th. 1.2] (see
also [16, Th. 9] for the case where |z0| < 1), we know that with probability tending to
one,

n∑
j=1

f(ns(λj − z0)) ≥
n

π

∫
|z|≤1

f(ns(λj − z0))dL(z)− nσ,

where L denotes the Lebesgue measure on C and σ := (1− 2s)/2. We deduce that with
probability tending to one,

Ns ≥
n∑

j=1

f(ns(λj − z0)) ≥
n1−2s

4
− nσ.

Lemma 2.2. Let z, z′ in the unit disk, possibly depending on n, such that for a certain
fixed ε ∈ (0, 1/2), uniformly in n,

√
n|z′ − z| ≥ nε.

Let λ, λ′ be the eigenvalues of X that are the closest to respectively z and z′ (if λ is the
closest eigenvalue to both z and z′, then λ′ is the second closest to z′). Then for any fixed
δ ∈ (0, ε), we have √

n|λ′ − λ| ≥ nδ

with probability tending to one as n → ∞.

Proof. Let s ∈ (1/2− ε, 1/2). By the previous lemma, we have

|λ− z| ≤ n−s and |λ′ − z′| ≤ n−s

with probability tending to one as n → ∞. Thus

|λ′ − λ| ≥ |z′ − z| − |λ− z| − |λ′ − z′| ≥ n−1/2+ε − 2n−s,

which allows to conclude, as −s < −1/2 + ε and ε > δ.

Remark 2.3. In Lemmas 2.1 and 2.2, the properties do not only hold with probability
tending to one but with probability at least 1−Cn−D for any D > 0 (and for C a constant
depending only on D, not on z0, z, z

′), which can be useful when using a union bound.
The proof is the same and follows from the fact that in [17], the error probability is
≤ Cn−D.

Proof of Theorem 1.3. For u, v some random variables implicitly depending on n, we use
the notation u ∼ v (resp. u = O(v), u = o(v)) when u/v tends in probability to one (resp.
u/v is tight, u/v tends in probability to 0) as n → ∞.
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Set O := Oz1,...,zk,zk,...,zk (see (3.2) for the definition of this set). By Theorem 3.3, we
know that X can be written X = UTU∗ with U unitary and T = [tij ] upper triangular
having the density

∝ 1(t11,...,tnn)∈O|∆(t11, . . . , tnn)|2e−n
∑

1≤i≤j≤n |tij |2 , (2.7)

so that the random variables
t̃ij :=

√
ntij (2.8)

are independent standard complex Gaussian variables.
By definition of O, λ1, . . . , λk are the k first diagonal entries of T .
Besides, as U is unitary,(√

n(λj − λi)〈vi,vj〉
)
1≤i<j≤k

=
(√

n(λj − λi)〈wi,wj〉
)
1≤i<j≤k

(2.9)

where the wi are the eigenvectors of T associated to the λi (multiplied by independent
uniform phases eiθi , independent of T ).

For each i, wi is in the kernel of T −λi, hence has only its i first coordinates non zero,
and these coordinates are proportional to the vector (xi(1), . . . , xi(i)) ∈ Ci, satisfying

(λ1 − λi)xi(1) + t1,2xi(2) + · · · · · · · · · · · · · · · · · · · · ·+ t1,ixi(i) = 0

. . .
... =

...

(λi−2 − λi)xi(i− 2) + ti−2,i−1xi(i− 1) + ti−2,ixi(i) = 0

(λi−1 − λi)xi(i− 1) + ti−1,ixi(i) = 0

xi(i) = 1

We solve this linear system:

xi(i) = 1

xi(i− 1) =
1

λi − λi−1
ti−1,i

xi(i− 2) =
1

λi − λi−2
(ti−2,i−1xi(i− 1) + ti−2,i)

xi(i− 3) =
1

λi − λi−3
(ti−3,i−2xi(i− 2) + ti−3,i−1xi(i− 1) + ti−3,i)

...

...

xi(1) =
1

λi − λ1
(t1,2xi(2) + · · ·+ t1,i−1xi(i− 1) + t1,i)

For each 1 ≤ i < j ≤ k, we have

〈wi,wj〉 =
ei(θj−θi)

‖xi‖‖xj‖

i∑
`=1

xi(`)xj(`). (2.10)

To analyse the asymptotic behavior of these inner products, let us analyse the asymptotic
behavior of each variable xi(`), 1 ≤ ` ≤ i ≤ k.

By (1.6) and Lemma 2.2, using the fact that k is fixed, we have

max
1≤i<j≤k

1

|λj − λi|
= o(n

1
2−

ε
2 ). (2.11)

By the previous equations and the estimate (2.11), using the fact that the random
variables t̃ij =

√
ntij are independent standard complex Gaussian variables, we have,

for any i = 1, . . . , k, we obtain successively the following estimates:
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xi(i) = 1

xi(i− 1) ∼ 1

λi − λi−1

t̃i−1,i√
n

= o(n−ε/2) (2.12)

xi(i− 2) ∼ 1

λi − λi−2

t̃i−2,i√
n

= o(n−ε/2) (2.13)

...

...

xi(1) ∼ 1

λi − λ1

t̃1,i√
n

= o(n−ε/2) (2.14)

It implies that for all 1 ≤ ` ≤ i− 1,

xi(`) = O

(
1√

n(λi − λ`)

)
and that, as xi(i) = 1,

‖xi‖ ∼ 1.

By (2.10), we deduce that

√
n(λj − λi)〈wi,wj〉 ∼ ei(θj−θi)t̃ij +

1√
n
O

(
i−1∑
`=1

λj − λi

λi − λ`(λj − λ`)

)
.

For each ` = 1, . . . , i− 1,

λj − λi

λi − λ`(λj − λ`)
=

1

λi − λ`

− λi − λ`

λi − λ`

1

λj − λ`
= o(n

1
2−

ε
2 ),

where we used (2.11). It follows that
√
n(λj − λi)〈wi,wj〉 ∼ ei(θj−θi)t̃ij + o(n−ε/2),

and, as (t̃ij)1≤i<j≤k is a collection of independent standard complex Gaussian variables
independent of the θi’s, the result is proved.

3 Appendix

3.1 Change of variables in the Schur decomposition

We endow the sets Mn(C) and Tn(C) of n × n respectively complex matrices and
upper-triangular complex matrices with the Euclidian structures defined by

X · Y := ReTr(XY ∗) (3.1)

and let dM (resp. dT ) denote the associated Lebesgue measure on Mn(C) (resp. on
Tn(C)). We also denote by Un the group of unitary n× n matrices and by dU the Haar
measure on Un.

Remark 3.1. It is useful to note that the set of matrices in Mn(C) with multiple eigen-
values is the set of matrices whose characteristic polynomial has null discriminant (see
[1, Def. A.10]), so that this set is a level set of a non constant polynomial function on
Mn(C), hence has zero Lebesgue measure (the last fact can be checked by applying
Fubini’s theorem).

We begin by defining admissible sets, a notion which will allow us to order the
eigenvalues of non Hermitian matrices in quite general ways. Sn denotes the set of
permutations of {1, . . . , n}.
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Definition 3.2. An open set O ⊂ Cn is said to be admissible if the sets σ · O :=

{(tσ(1), . . . , tσ(n)) ; (t1, . . . , tn) ∈ O}, σ ∈ Sn, are pairwise disjoint and Cn\ ∪σ∈Sn
σ · O has

null Lebesgue measure.

An important example of admissible set is the following one. Fix z1, . . . , zn ∈ C. Then
the set of n-tuples (t1, . . . , tn) ∈ Cn where for each i, the i-th entry ti is strictly closer to
zi than all the forthcoming ones, i.e. the set

Oz1,...,zn := {(t1, . . . , tn) ∈ Cn ; ∀i < j, |zi − ti| < |zi − tj |}, (3.2)

is admissible.

Theorem 3.3. Let ρ be a non negative measurable function on Mn(C) such that for any
M ∈ Mn(C) and any unitary matrix U ,

ρ(M) = ρ(UMU∗). (3.3)

Fix an admissible set O ⊂ Cn. Then the measure ρ(M)dM onMn(C) is the push-forward,
by the function (U, T ) 7→ UTU∗, of the measure

CndU ⊗
(
1(t11,...,tnn)∈O|∆(t11, . . . , tnn)|2ρ(T )dT

)
on Un × Tn(C), where

∆(t11, . . . , tnn) :=
∏

1≤i<j≤n

(tjj − tii)

and Cn is a constant depending only on n (and not on ρ).

Remark 3.4. Using the case of Ginibre matrices, one can compte Cn :

Cn =
1

π
3n2−n

2

∏
1≤k≤n−1 k!

(3.4)

Proof of Theorem 3.3. Some statements which are very close to Theorem 3.3 are proved
in various texts, as [8, 12, 6, 15]. However, firstly, these results are a bit less general
and written in slightly different languages and, secondly and more importantly, they do
not treat the question of the ordering the diagonal entries of T (which is the cornerstone
of our approach in this paper). For this reason, we provide a complete proof.

Lemma 3.5. Let T ,U ,M be some open subsets of respectively Rp, Rq and Rp+q. Let
ϕ : T ×U → M be a smooth diffeomorphism with reciprocal denoted by Ψ = (Ψ1,Ψ2). Let
also ρ be a non negative measurable function on M. Let dt,du,dm denote the Lebesgue
measures on respectively T ,U ,M. Then the push-forward of the measure ρ(m)dm on M
by the function Ψ1 : M → T is K(t)dt, with

K(t) :=

∫
u∈U

ρ ◦ ϕ(t, u)|Jϕ(t, u)|du,

with |Jϕ(t, u)| the Jacobian1 of ϕ.

Proof. Let f : T → R be a test function. Then∫
m∈M

f ◦Ψ1(m)ρ(m)dm =

∫
(t,u)∈T ×U

f ◦Ψ1 ◦ ϕ(t, u)︸ ︷︷ ︸
f(t)

ρ ◦ ϕ(t, u)|Jϕ(t, u)|dudt

=

∫
t∈T

f(t)K(t)dt.

1What we call here the Jacobian of a smooth function between two Euclidian spaces with the same dimension
is the absolute value of the determinant of the matrix of its derivative in any pair of orthogonal bases.
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Definition 3.6. Let U ′ be the set of unitary matrices whose entries are all non zero,
whose diagonal entries are positive and whose principal minors are all invertible.

The following lemma can be found in [1, Lemma 2.5.6].

Lemma 3.7. The map

Ξ : U ′ → Rn(n−1)

which maps U to 

0 u12

u11

u13

u11
· · · u1n

u11

0 u23

u22
· · · u2n

u22

0
. . .

0
un−1,n

un−1,n−1

0 0 0 · · · 0 0


(3.5)

(without the zeros) is diffeomorphism from U ′ onto a subset of Rn(n−1)/2 with closed null
mass complementary. We denote its inverse by Θ.

Set

TO := {T = [tij ] ∈ Tn(C) ; (t11, . . . , tnn) ∈ O}. (3.6)

Lemma 3.8 (Schur decomposition). For U ′ as in Definition 3.6 and TO as in (3.6), there
is an open subset M′ ⊂ Mn(C) with null mass complementary such that any M ∈ M′

can be written in a unique way

M = UTU∗ (3.7)

with T ∈ TO and U ∈ U ′.

Note that if M = UTU∗, then

ρ(M) = ρ(T ). (3.8)

Definition 3.9. For Θ as defined in Lemma 3.7, let ϕ : TO × Rn(n−1) → M′ be the
diffeomorphism defined by ϕ(T, x) = Θ(x)TΘ(x)∗ and let Ψ = (Ψ1,Ψ2) be its inverse.

By the unitary invariance of (3.3), the proof of the theorem reduces to the proof of
the fact that the push-forward, by Ψ1, of the measure

ρ(M)dM

is

Cn1(t11,...,tnn)∈O∆(t11, . . . , tnn)
2ρ(T )dT

for Cn a constant depending only on n. By (3.8) and Lemma 3.5, this push-forward is the
measure (

1(t11,...,tnn)∈Oρ(T )

∫
x∈Rn(n−1)

|Jϕ(T, x)|dx
)
dT.

Then, the following lemma concludes the proof of Theorem 3.3.

Lemma 3.10. On TO ×Rn(n−1), we have

|Jϕ(T, x)| = g(x)
∏

1≤i<j≤n

|tjj − tii|2,

with g(x) a measurable function of x.
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Proof. Let Θ̃ : Tn(C) × Rn(n−1) → Tn(C) × U ′ be defined by Θ̃(T, x) := (T,Θ(x)) and
F : Tn(C) × U ′ → Mn(C) be defined by F (T,U) := UTU∗ (note that F is defined on
a manifold and not on an open subset of an Euclidian space). We have ϕ = F ◦ Θ̃ on
TO ×Rn(n−1), so we have

|Jϕ(T, x)| = |JF (T,Θ(x))| × |JΘ(x)|,

hence it suffices to prove that on TO × U ′,

|JF (T,U)| = f(U)
∏

1≤i<j≤n

|tjj − tii|2,

where f( · ) is a function of U .
Note that the tangent space of U ′ at U is the space

TangentU (U ′) = {UH ; H ∈ iH0}

for
iH0 := {H = [hij ] ∈ Mn(C) ; H

∗ = −H and ∀i, hii = 0}. (3.9)

Note also that for all T,R ∈ Tn(C), U ∈ U ′ and H ∈ TangentU (U ′), we have

DF (T,U)(R,H) = HTU∗ + URU∗ + UTH∗

= U(U∗HT +R+ TH∗U)U∗

= U(U∗HT − TU∗H +R)U∗

As the transformation of Mn(C) defined by K 7→ UKU∗ is orthogonal for any unitary
U , |JF (T,U)| is the absolute value of the determinant of the matrix, in an orthonormal
basis, of the map Tn(C)× iH0 → Mn(C) defined by (R,K) 7→ KT − TK +R. Using the
fact that Mn(C) is the orthogonal sum of Tn(C) and of the space

T sl := {M = [mij ] ∈ Mn(C) ; ∀i ≤ j,mij = 0} (3.10)

of strictly lower triangular n × n matrices, it is easy to see that the determinant of
this map is the one of the map CT of Lemma 3.11 below, which concludes the proof of
Lemma 3.10.

Lemma 3.11. Let T sl be as in (3.10), iH0 be as in (3.9) and π : Mn(C) → T sl be the
canonical projection. Then for any T = [tij ] ∈ Tn(C), the map CT : iH0 → T sl defined by
CT (M) := π(MT − TM), has Jacobian∏

1≤i<j≤n

|tjj − tii|2,

all spaces being endowed with the Euclidian structure induced by (3.1).

Proof. To prove this lemma, we shall first fix some orthonormal bases of iH0 and T sl,
order them and then prove that the matrix of CT on these (conveniently ordered) bases
is lower triangular by 2 × 2 blocs with diagonal blocs having determinants |tjj − tii|2,
1 ≤ j < i ≤ n.

Let us denote the elementary matrices by Eij and let BiH0
be the family

1√
2
(Eij − Eji, iEij + iEji)1≤j<i≤n

and let BT sl be the family
(Eij , iEij)1≤j<i≤n.
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These are of course orthonormal bases of iH0 and T sl. Order the set {1, . . . , n}2 with
the lexicographical order made out of the reverse natural order on the first component
and the natural order on the second one (for this order, for example, (1, 3) ≤ (1, 4) and
(2, 1) ≤ (1, 5)) and use the induced order on the bases BiH0

and BT sl .
Let M = [mij ] ∈ iH0 and let [vij ] := MT − TM . We have

vij =

j∑
k=1

miktkj −
n∑

k=i

tikmkj = mij(tjj − tii) +

j−1∑
k=1

miktkj −
n∑

k=i+1

tikmkj (3.11)

It follows that the matrix of CT on the bases BiH0
and BT sl (ordered as above) is lower

diagonal by 2× 2 blocs, with 2× 2 diagonal blocs the matrices of the linear maps C→ C

(C considered as a real vector space)m 7−→ (tjj−tii)×m, 1 ≤ j < i ≤ n. The determinant
of such a map is |tjj − tii|2, so the result follows.

3.2 Klein’s lemma and consequences

The following lemma can be found in [1, Lemma 4.4.12].

Lemma 3.12 (Klein’s lemma). For any f : R → R convex and n ≥ 1, the function
M 7→ Tr f(M) is convex on the space of n× n Hermitian matrices.

For the previous lemma, we shall deduce the following one.

Lemma 3.13. Let f : R+ → R be such that g(x) := f(x2) is convex and n ≥ 1. Then the
function X 7→ Tr f(X∗X) is convex on the space Mn(C) of n× n complex matrices.

Remark 3.14. As a direct consequence, for any fixed (t11, . . . , tnn) ∈ Cn, the function

(tij)1≤i<j≤n ∈ Cn(n−1)/2 7→ Tr f(T ∗T ),

for T the upper-triangular matrix with entries (tij)1≤i≤j≤n, is convex.

Remark 3.15. Suppose now, with the notation of the lemma, that for some α > 0,
g(x)− α

2 x
2 is convex. Then, by the lemma, the function X 7→ Tr f(X∗X)− α

2 TrX∗X is
convex on the space Mn(C) of n×n complex matrices. In the framework of Remark 3.14,
as adding a constant to a convex function doesn’t break convexity, it implies that the
function

(tij)1≤i<j≤n ∈ Cn(n−1)/2 7→ Tr f(T ∗T )− α

2

∑
1≤i<j≤n

|tij |2

is convex.

Proof of Lemma 3.13. By Klein’s lemma, the function

X ∈ Mn(C) 7→ Tr g

((
0 X

X∗ 0

))

is convex. Then, conclude noting that for M :=

(
0 X

X∗ 0

)
,

Tr f(X∗X) =
1

2
(Tr f(X∗X) + Tr f(XX∗)) =

1

2
Tr f(M2) =

1

2
Tr g(M).

3.3 Logarithmic Sobolev Inequalities and concentration

The following lemma, due to Bobkov, Ledoux and Herbst, gives a sufficient condition
for a probability measure to satisfy a logarithmic Sobolev Inequality (LSI ) and states
one of its main consequences (see [1, Sec. 2.3.2] for a definition of LSI and a reference
for the following lemma).
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Lemma 3.16. For any V : Rn → R ∪ {+∞} and α > 0 such that V (x)− α
2 ‖x‖

2
2 is convex,

the probability measure PV,Rn ∝ e−V (x)dx satisfies a LSI with constant α−1. This implies
that for any 1-Lipschitz function f : Rn → R and any δ > 0, we have

PV,Rn

(
|f(x)− EPV,Rn f | ≥ δ

)
≤ 2e−αδ2/2.
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