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Abstract
We are interested in occupation times of Lévy processes with jumps rational Laplace
transforms. The corresponding boundary value problems via the Feynman-Kac rep-
resentation are solved to obtain an explicit formula for the joint distribution of the
occupation time and the terminal value of the Lévy processes with jumps rational
Laplace transforms.
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1 Introduction

The occupation time is the amount of time a stochastic process stays with in a certain
range. It is an interesting topic for stochastic processes. Many explicit results on Laplace
transforms for occupation times have been obtained for some well known examples of
Lévy process. For a standard Brownian motion W = {W, : ¢t > 0}, P. Lévy’s arcsine law is
a well known result. It states the following, let ' (¢) be the time W spends above 0 up
to time ¢:

t
F+(t)=/ ]—{WS>U}d5-
0

Lévy [10] (for more details see Chapter IV of [16]) showed that for each ¢ > 0 the variable
' (t)/t follows the arcsine law:

d
P(F*(t)/tedu):iu 0<u<l.

m/u(l —u)’
This result was then extended to a Brownian motion with drift by Akahori [2] and Takacs
[14]. After that, the investigation on occupation times of Lévy processes has made
much great progress. For recent works in this topic, see [1], [3], [12], [9], [15] and the
references therein for more details.
In this paper, we are interested in the joint Laplace transforms of X = (X;),., and
its occupation times, i.e, -
E, [om? i toexicmdtenen | (1.1)

where a > 0,8 > 0,~ is some suitable constant and e, is an independent (of X) expo-
nential random variable with rate o > 0 and X = (X}),., is a Lévy process with jumps
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rational Laplace transforms proposed by Lewis and Mordecki [11], see also Kuznetsov
[8]. And the purpose is deriving formulas for

(oo}
z/z(x)=/ ae T, [e‘5f51<h<xt<H}‘“+WXT dr. (1.2)
0

This extends recent results obtained in Ait-Aoudia and Renaud [1], (Theorem 2) on the
processes with hyper-exponential jumps. More precisely, to find an explicit formula
for the function (x) in Equation (1.2), the corresponding boundary value problem via
the Feynman-Kac representation is considered. By direct calculation, the associated
ordinary integro-differential equation (OIDE) is transformed into a homogeneous ordinary
differential equation (ODE) of higher order, which is then solved in closed form and its
solution equals to ¥(x).

Results obtained here can be applied to price occupation time derivatives as in Cai
et al. [3], in which the authors have noted that there are several products in the real
market with payoffs depending on the occupation times of an interest rate or a spread of
swap rates. For other investigations, see, e.g., [15], [17] and [18].

The rest of the paper is organized as follows. In section 2, we introduce the jump-
diffusion process having jumps with rational Laplace transform. Section 3 contains our
main results.

2 The model
A Lévy jump-diffusion process X = {X;,t > 0} is defined as

Ny
X =Xo+pt+oWe+) Y, (2.1)
i=1
where 1 € R and o > 0 represent the drift and volatility of the diffusion part respectively,
W = {W,,t > 0} is a (standard) Brownian motion, N = {N;,t > 0} is a homogeneous
Poisson process with rate A and {Y;,i = 1,2,...} are independent and identically dis-
tributed random variables supported in R \ {0}; moreover, {W;,t > 0}, {N;,t > 0} and
{Y;,i=1,2,...} are mutually independent; finally, the probability density function (pdf)
of Y; is given by

m My n -71
ZZpu =T M s +ZZ% o V1 c0y,  (2:2)
j=11:=1 j=11i=1

7n9

where, pij, ¢i;; > 0 and they are such 37" | 377 pi+>70, >, gi; = 1. The parameters
n; and 6; can in principle take complex values (see [11]) with

0<m < Re(nz) <--- < Re(Nm),

0<6; < Re(02) << Re(@n)
Another important tool to establish the key result of the article is the infinitesimal

generator of X. Note that X is a Markovian process and its infinitesimal generator is
given by

Chz) = lim XD Xo = 2] = h(z)
= m :
+oo

2
= @+ G @[ her il -n@). e
for any bounded and twice continuously differentiable function h.

Throughout the rest of the paper, the law of X such that X, = z is denoted by IP, and

the corresponding expectation by E,; we write P and IE when x = 0. The Lévy exponent
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of X is given by

G(C) —_ InE [GXp(CXt)]

t
_ 122 CY1y
—MC+2C+)\(E[6 ] 1)

0_2 m My n N q
- G323y ) )
2 : (¢ + 9
Jj=11i= j=11:i=1
Accordingly, G is a rational function on C. The equation G({) —a =0 with @ > 0,0 > 0
and ;1 € Ryields S = M + N + 2 zeros with M = Y7, m; and N = >_"_, m; (see [8] for
details). Let us denote the zeros of G(¢) — « in the half-plane Re(¢) > 0{Re(¢) < 0} as

Plas P2as- s PM+1a 1PLas P2.as -+ s PN+1a )

3 Main results

Throughout this paper X = {X;,¢ > 0} will be a Lévy process of the type described
before, that is with jumps rational Laplace transforms. The time spent by X between the
lower barrier h and the upper barrier H, from time 0 to time 7', is given by

T
/ lipex,<mydt.
0

Our main objective is to obtain the joint distribution of foe“ 1ip<x,<mydt and Xe, where
e, is an independent (of X) exponential random variable with rate a > 0. In order to do
so, we will compute the following joint Laplace-Carson transform with respect to T": for
each z € R, set

P(r) =, [e*B Jo 1<h<Xt<H}dt+7X9a} , (3.1)

where 5 > 0, > 0 and we assume that 0 < v < min(7;,6;) and G(y) < a. Clearly, we
have

Y(x) = / ae T, [ A LoncxicmdtiaXe | T, (3.2)
0

By the Feynman-Kac formula (see, for instance, [13] Theorem 1.4.3) we have that ¢ (z)
must satisfy

(E —a— 61{h<I<H}) Y(x) = —ae?®, z € R. (3.3)
Now, our goal is to solve the boundary problem (3.3) and find explicit formulae for v (z).
We first show that i satisfies an integro-differential equation and then derive an ordinary
differential equation for ¢). Based on the ODE, we show ) can be written as a linear
combination of known exponential functions.

Let Po(¢) = [17 [T (—C + ) [T T2 (C + 6;)°, then Pa(€) = Po(O)(G(O) — a)
is a polynomial whose zero coincide with those of G(¢) — a. Also, denote by D, the
differential operator such that its characteristic polynomial is P, ().

The following Lemma will be needed for our proof of Proposition 3.2.

Lemma 3.1. Let d%) indicate the k-th derivative with respect to = of any differentiable
function. Let ¢ be a bounded and continuous function on R and for § > 0, we define two
functions F™ and F~ such that

(1) z
Fide) = (+0) o [ st p e 3.4
d (%) “+o0 )
F~(i,0,z) = (_dz + 5) 6596/ o(y)(y — m)z_le_‘sydy, (3.5)

with (£ +6) “ be the Generalized Leibniz operator such that
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(ii + 5) . Z (;) ()" (£1)Fa®).

k=0
Then for alli > 1,
FE(i,0,z) = (i — 1)l¢(z). (3.6)

Proof. We need only to prove first part of the Lemma, the proof of the second part is
similar. We proceed by induction on ¢. For : = 1, we have

F*(1,6,z) = (+5> / B(y)e’?dy

I / o(y)eMdy + () + 5o~ / o(y)edy
— $(@).

Moreover, for all ¢ > 2,

<+(5> / o(y)(x —y)'1e¥dy

/ ¢ ZL'— )11§ydy+z_1 / (b .I'— 7,25ydy

bo=0% / b (@ — y)' ey
—-ne [ " )@ — y)i ey,

It follows inductively that for all ¢ > 2,

d (i) . ‘
FT(i,6,z) = (dx + 5) 6—595/_ d(y)(z — )i~ LeS¥dy
d (i=1)

() ) s

e o R

— (i—1)F*(i—1,61)

(i — D)IF*(1,6,2)

= (i—1)!o(x),

which is the desired result. O

We may now state.
Proposition 3.2. Suppose a bounded solution ) defined on R to the boundary value
problem (3.3) exists. Then on R\ {h, H}, ¢(z) = t(z) + e’/ (G(7) — o — Blipn<ocry)
is infinitely differentiable and satisfies the ODE

Dsp=0, onR\ {h,H}, (3.7)
with & = a+ S on (h, H) and & = « on (—oo, h) U (H, +00). Hence,
SMAL QLeprar G?’j;za’ v <h,
(o) = { TMEL Qhermarss £ TNH Qleprarst - Lo hcg < H,  (3.8)
ZN—Fleepk(,zi%’ v > H,

for some constants Qr,Q%, Q} and QY.
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Proof. Using the same idea as in Chen et al.[6] (see also, Cai et al.[3]). Applying the
infinitesimal generator £ to the function ¢, we obtain

2 n
[:Qb(l’) = %Q/’ ( )+/L¢ +/\ZZQU / (b _ z 1€0jydy
j=11:=1
m  Mj +o00 4
A p Pt / oY) (y — z) e MVdy — Ap(x).
j=1:i=1 x

Next, ¢ will be shown to satisfy an ODFE. Thanks to Lemma (3.1), we get for j =
1,2,...,mandi=1,2,...,m,,

(;z + 9j> ! el /1 (x—y) ' o(y)e"vdy = (i — 1)!p().

—0o0

Similarly, we obtain for j =1,2,...,nandi=1,2,...,n;,

d (2) . +oo . - )
<_dx + m‘) ew/ (y —2) " o(y)e¥dy = (i — 1)p().
Now, since L£e7* = G(v)e" then from (3.3), it easily follows that for = € (h, H),

(L—a=Blhcucmy)d(z) = (L—a—p)o(x)

= LoD+ gy a—p)

_ aLer” a(a+ B
= Uom B G e T T G a8
aG(y)er™ ala+ B)er™

Gy)—a—B G(y)—a-5

= —we" +

= 0. (3.9
The same computation will yield, for z € (—oo, h) U (H, +00),
(L—a—=Blipcucmy)d(z) = (L—a)o(z)
= (L—a)(¥(z)+

—ae™ + ae™”

= 0. (3.10)

ae’®

G(v)—a)

Thanks to Proposition 3.3 in the work of Chen et al.[5], ¢ is infinitely differentiable on
R\ {h,H} and forz € R\ {h,H},

nj

0 - ﬁn( +m) ﬁﬂ<+e)(i)<c—a>¢<x>

j=1li=1 j=1li=1
" (@) , 2 32
o d d
. —_ 0. i — — )=
j=1li=1 j=li= 1< i ) (2 d$2 'ud(p a) ¢(x)

m My (l) i
XS I T (gem) gyt

Jj=114i=1 k=1,k#j l=1,

I
s 1
NN
/_\
+

3
v
::]:
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noom 0
22 1l Hl(iﬁ@k) th(<9)1) (i = Dloa), (311

with & = a+ S on (h,H) and & = a on (—oo,h) U (H,400). Hence, Equation (3.11)
transforms the integro-differential equation (£ — &)¢ = 0 into an ODE: Dq& = 0, where D
is the high order differential operator.

To complete the proof, D must be shown to coincide with Dgs. To show that the
characteristic polynomials of D, and D will suffice. Write 75(C ) as the characteristic
polynomial of D. Then, by (3.11), Pis given by

mo M n nj

A . . 2
PO = TTTIC¢+n) TITIC +60 e + 5 ¢
j=1i=1 j=1i=1
zm: S Pu (n;)" Zn:i qz’j(gj)il _1)-a
j=1i=1 (=C+m))’ j= A (D

= Po(¢) (G(¢) —&).

This equation reveals that the characteristic polynomial P, (¢) of D4 equals that, 75(C )
of D. Therefore, any solution to (3.3) can be expressed as

M+1 N+1 YT
SAT Qe + T Qe - 8t w <,
w(gj) = ZM+1 Qoepk atBT ZN+1 Qlepk at+BT _ W—’Y;—B’ h<az<H, (3.12)
N+1 M+1 z
Sty Qetner + 3500 Qe et — g, w2 A,

Furthermore, we can argue that the coefficients QOL’ , and Qg . should be zero. In fact,
we know that

’(/}(CE) _ /oo ae_aT]ECE |:€_B foT 1{h<xt<H}dt+'y(XT—m):| T
0
= /Oo ae TR |:676 foT 1{h<Xt<H}dt+’YXT:| dT
0

< / = e (=GN T g
0

o (&%
a—G(y)
Thus, lim (z)/e”” < 400, which implies Q% . and QY , must be zero and the proof is
T— 00 ’ ’
complete. O

Proposition 3.3. Suppose that 1 is a bounded solution to the boundary value problem

(3.3) and,
EJW‘H QLePk o G?e)"” r<h
¥ - ?
P(x) = St Qlerkater 4 ZN“ Qpefrots® — 00— h<w<H,  (3.13)
ZN“ e v > H,

for somme constants Qﬁ, 0, Q% and QkU. Then the constant vector

Q= (QFQQLQ"Y,i=1,....M+1,j=1,...,N+1)

77y

satisfies a linear system
AQ=V. (3.14)

ECP 23 (2018), paper 68. http://www.imstat.org/ecp/
Page 6/13


http://dx.doi.org/10.1214/18-ECP169
http://www.imstat.org/ecp/

Occupation time of Lévy processes with jumps rational Laplace transforms

HereV is an 25 = 2(M + N + 2)-dimensional vector;

T
V=(eo—co) (Vilh) Va(h) Va(h) Vi(H) Va(H) V()" (3.15)
where
& @ C @
1 = &~ €=
G(v) -« G(y)—a-p
Vi(s) = (1 7))
s 1 e A S SR
Va(s) = e ( (m—7) (m—v)™1 (nm—7) (N —y)mm )
s 1 1 1 1
V) = (@ o owmEm  me  me )
and A is an 25 x 2S5 matrix R
BO, BD;
A= N ; 3.16
< BD, BO, > ’ (3.16)
where O, D1,05 and D, are four S x S diagonal matrices given by the formulas
0O, = diag (em*“h ..., ePMivah opraish ,epN“*““ﬁh)
Dy = diag (0,...,0,ePratah | ePNtratsh)
O, = diag( p1, "+5H . epM“f‘*“’H, eﬁmH7 e 7eﬁN““*H)
D, = diag (0, 0,e’ ‘**BH . .,e’)N“*O‘*ﬂH) ,

and B and B are given by

B=0umnN[(pra:--sPM+1,0); (PLat8s -5 PN+1,0+8)]
B=0num[(Arar - AN+1,0); (PLatBs -+ s PM+1,a+8)] 5

©,; is defined such that for all k = [(u1,...,w;); (v1,...,v;)]

] . 1 1 . -1
U1 (7 —U1 —Vj
1 - m 1 .. 1
M1 —u1 M1 —U; 71 —v1 M —vj
my Ty my my my
71 1 n1 n
(771 ul) (771—“7’,> (771 'Ul) (771 v;)
Nm Nm NMm NMm
Nm — U1 MNm —Usq Mm —V1 MNm —Vj
Mm . Mo Mm Mm
0, k] = Nim : Nim Nim o Nim
Nm —U1 . Nm —U; Tm —V1 Nm —Vj
61 . 61 61 e 61
01+u 01+u; 01+v1 01+v;
0, " e 0, " 01 " e 0y "
014uq 014u; 014v, 01+v;
O A _On 2% - 0n
On+ur On+u; On+v1 On+v;
0, Nn : 0, MNn 0, Nn . 0, MNn
01+u : On+u; On+v1 On+v;

(3.17)
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Proof. We suppose that 1 is a bounded solution to the boundary value problem (3.3) and

M+1 ©
wi(x) = Ypl) QFerte” — g z<h,
M N vy
U(@) = qua(r) = 3,0 “ Qerrietst 4+ 30 Qlelretst — 8 < g < H,
N+1 Yz
ws(z) =Y, QYelrot — G?Wc)ia, x> H.

(3.18)
Then equation (3.3) can be rewritten as three separate equations in the regions (—oo, h),
(h,H) and (H,+00). For x < h,

2
—ae™ = %wi’(x) + pw' () — (A + @)wy (z)

0 n i1
-y :
+ A{/ wi(z +y) g E q” —— 1))' ¥ dy

Jj=11i=1
h—x m My i—1
+/ z+y) ZZPU ‘ e Ydy
0 j=114i=1 - !
H—x mo My —1
+/ z+y) ZZPU : e Vdy
h—a j=11i=1 a !
+oo m -1
+/ s(z+7y) ZZ]}U : *"-fydy}, (3.19)
fo Jj=11i=1 - !

and for z > H,

—ae™® = Towj(x) + puwh () — (A + aJus(x)

j=11i=1
H—x n nj (9J z( ) — by
+ WQ(I-I—y)ZZqU ( e”Ydy
h—z j=1i=1
0 n nj 0.)i _
+/ w3($+y)zz%j( j( ( y))| eelydy
H-x j=11i=1
too m M i (o)i—1
+/ wg(aj+y)22pij(ngi)(y1))'eﬂjydy:|' (320)
0 J=1i=1 -

Now, observe that G(px,o) —a = 0 for all k£ and

0 . .
/ yledy = b7 (4, 2b)
z

i—1 2 1

= b —1)le? Z %
=0

= b7 —1)le? [1+o(z1)]

with T" (4, u) is the incomplete gamma function (see [7], p. 342).
Consequentely, substituting w; (z), wa(z) and ws(x) into (3.19) and (3.20) yields that
forany x < h

) Niphpk,o ( NiphPr,atp
e"Pk, n;)'e"Pr:
0= 303 e (Y- (Qp BV gp (Ve
321 ; 1; () = Pra)’ (M = Pr,a+s)’
ECP 23 (2018), paper 68. http://www.imstat.org/ecp/
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Qi)' retn ol(zx — B — (er — ¢ e’
+kz=:1 (M = Pr,a+p)’ )[1+ (=19 = e 0)(77j—’y)i}
m mj M+1 oH5 i e
i (@—H) 1 (ny)elPrats o (ny)'ePre
+;;pm {(;[Q s~ e+ k(nj—ﬁm)i]

ieHpk,avp
+> Qk(m)i) [1+o((z —

= (= Pratp)
and, forx > H

M+1

0= S (Lt T - A

¥ g UOLEED) 1ol )] = s = o) =g
B R et

+ ; AL [t ol(o — 1)) — - ) =S

Therefore, the constant vector @ or, in other words, the coefficients {Qf Jk=1,... M+

1L {Q%k=1,.... M+ 1}, {Q},k=1,...,N+1}and {QY,k=1,..., N + 1} satisfy the
following: For j =1,...,m,i=1,...,m;,
M+l L (n;)iehPra (n;)iehProts Ql( ;)iehPna eYh
OZZ[ k +Q 5 T — (e1 — o)
=" (1 = pra)’ (5 = Pravp)”  F=2 (1) = Pr,avp) (n; =)
M+1 ioH Pk, atp NigHpr,o  NAL 0. VieHpr a+s evH
R L
= (0 — Prats) (5 = Pra)™ = " (N = Pr.ats) (nj =)
andforj=1,...,n,i=1,...,n;,
MZH[Q (O oo Og)iehee R Qi e
+ e — (1 — )
= E (i +Pka) "0 +Pka+ﬂ) = (0 + Piatp)’ (v +6;)°
M+1 i H H N+1 H H
0.:)teiPk,a 0 Pk,a+p 7/ Pk,a+p e
0= Z[Qllc (9J) _ l_’_ U(oﬂ) ZQk _(cl_CO)ﬁ'
=05+ pra) O + Prato)” = " (0 + Pr.atp)’ (v +6;)

In adition, we can also obtain another four equations from the fact that ¢(x) is continu-
ously differentiable at xt = h and x = H:

M+1 M+1 N+1
§ Qéehpk,a _ Clevh — § Qzehpk,a-f-ﬁ 4 E Q;lvehp’“'“” _ coe'yh
k=1 k=1 k=1
N+1 M+1 N+1
§ Qgerk,a — e = E Qgerk,aw + E leHpk,aw — cpe"H
k=1 k=1 k=1
M+1 M+1 N+1
L hpr h 0 h 14 hp h
E Q pr,ae " re —crye™ = E Qrpr,arpe Fot? 4 E Q1Pr,arpe F P —ycpe
k=1 k=1 k=1
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N+1 M+1 N+1

U ~ Hpyp H 0 H 1A Hp H
E Qk P, Fo —crye? = E QPk,a+pe" PHoth + E QpPk,a+pe” "FotP —coye.
k=1 k=1 k=1

Consequently, since all of these equations are linear with respect to the undetermined

parameters, it follows that the constant vector Q@ = (Qf,Q?,Q},QY,i=1,..., M +1,j =
1,...,N+ 1) satisfies a linear system (3.14) which completes the proof. O

Proposition 3.4 (Uniqueness of the solution of the OIDE (3.3)). A bounded solution to

the problem OIDE (3.3), if it exists, must be unique. More precisely, suppose ¥ (x) solves

the OIDE (3.3) and sup |(x)| < C' < oo for some constant C > 0. Then we must have
zeR

oo
w(m):/ e  “E, [e—ﬁfo”{hammdtﬂxs ds. (3.21)
0

Proof. Using the same idea as in Cai and Kou [4] (Theorem 4.1). Applying Ito’s formula
to the process {¢)(X;)e=**FJo Lin<x.<myds ¢ > () we obtain that the process

Mp: = (X))o Pl tinexsamds

t
_/ [( —a— /Bl{h<Xu<H})'l/)(Xu) + E,(/}(Xu)]e—au—ﬁfo“1{h<xv<H}dvdu7
0

is a local martingale starting from M, = ¢(x). Because 9 (z) solves the OIDE (3.3), we
have that

t
Mt — ,l/)(Xt)e*Oét*ﬁ fot 1{h<XS<H}d5 +/ ae*asfﬁ f; 1{h,<Xu<H}du+’YXst.
0
Since G(v) < «, it follows from Fubini’s theorem that

t
EM] < CHa / Ele "7 ¥:]ds
0

t
C—l—a/ e sla=Glgg
0
el=a+G(M))t _ 1

o B TN
ta —a+ G(v)

< 0o0.

So, using Lebesgue’s dominated convergence theorem, we have that {M;,¢ > 0} is
actually a positive martingale. In particular

Y(x) = My = B[ lim M) :/ ae” T, [e*ﬁﬁfl{h<xt<mdt+7x~<} ds, (3.22)
0

t—+4o00
which ends the proof. O

Lemma 3.5. For a given value of a > 0 the matrix A given by Equation (3.16) is
invertible.

Proof. Assume that AC = 0 for some vector C = (Cy,Cs,.. .,CQS)T. Consider the
function V(x) = Ziil Cre ® for x € R\ {h, H}, with p1, ..., p2s be the distinct zeros of
the equation G(z) —& = 0 with & = a+ S on (h,H) and & = o on (—oo, h) U (H, +00).
Since AC' = 0 and V(z) is a solution to the boundary value problem

{(c—a—m o(r) =0, we(hH), (3.23)
(L—a)d(x)=0, x € (—oo, h] U [H, 4+00).
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From the uniqueness of solutions to the boundary value problem (3.23), V(z) = 0 on

reR\{h,H}.
Now, evaluating Ziil Cref*® atx =0,1,...,25 — 1, we obtain
1 1 . 1
eP1 eP2 . eP2s Cl
@) ) e ()] <0 6o
(epl).25—1 (e”)és_l o (e”ZS.)QS_l Cas

Because the ef*, are distinct, the Vandermonde matrix in equation (3.24) is invertible.

Consequently C' = 0 and A is invertible. O

In the following, y - z is written for the usual inner product of the vector y and z in C°
and for every real value z, ei(x) = [ePre® .. ePMt1aT] e%l(x) = [ePra® ... ePMiLal
ePra® . ePN+1.0%] and el (x) = [ePra® ... ePN+1.aT], Where p1a,-.., P+l Plov- -+ s

pnt+1 are the S = N + M + 2 roots of the equation G(¢) = a. Our main result is
the following:

Theorem 3.6. For any § > 0,a > 0 and 0 < v < min(n,60;) such that « > G(v), the
following assertions are equivalent:
@ ¥(@) = [} ae TE, [ =B I3 Linex, <mdtaXr | g,

(b) The function 1 (x) solve the boundary problem (3.3).
(c) The function ¢ (x) is given by the formula

QL -el(z) - 76,?;;;, ifz < h,
d(x) = QM - el 4(2) — giSa=py fh <z <H,
QY -el(2) - gi5—a ifz > H,

with (Q",Q%',QY) = A~V and A and V are given by the formulas (3.16) and
(3.15), respectively.

Proof. The fact that (b) implies (c) is straightforward consequence of Proposition 3.3.
Conversely, consider the function

M+1 ePk.a _ ae?®
ZM+1 * G(W)Na+71 3 Y S h7
— 0 @ 1 a *
W(z) = ZN+1 QhePrats 4N T QfePriatsT — G(%eﬂk[w h<xz<H, (3.25)
v
o1 QF et — Gc(f)—a’ 2> H,

for somme constants Q’,;J, 0.Q} and Qg . Then the same reasoning as in Proposition 3.3
shows that for any = < h,

m Mmj ) h Pk,a . iehpk,aJrB
(L —a) W(:v)—f—ae’\””—ZZp G h){( [QL (m;)'e QY (nj) ]

k
=1 =1 1 (1j = Pra)’ () = Pra+8)’
N+1 h h
Q 1 Pk,a+8 . e
DI SRS [+ o (@ = b)) = (e = o) }
=1 pk: a+ﬂ) (77] - 7)
m M M+1 Hp i Hpp
- (e ™s g () eHP
+ pyen {3 [0 -+ Q5 ]
; ; N ,; (0 — Pr,a+p)’ (nj — Pr.a)’
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Page 11/13


http://dx.doi.org/10.1214/18-ECP169
http://www.imstat.org/ecp/

Occupation time of Lévy processes with jumps rational Laplace transforms

N+1

+ZQk

Using the fact that Q = (Qf, Q% k=1,.... M +1,Q},Qp,l=1,.... N+1) = A7V
where A and V are given by the formulas (3.16) and (3.15), respectively, we get that
for any = < h the function W (z) solves the boundary value problem (3.3). Applying the
same reasoning for z € (h, H) and = € (H, +00), we consequently have (c) implies (b).
Let us finally assume that (a) holds. Then by Feynman-Kac formula, the function v (z)
solve the boundary problem (3.3); hence (b) holds. Conversely, thanks to Proposition
3.4, the boundary problem (3.3) has a unique solution, consequently (b) implies (a). The
proof is complete. O

lHk
77] Pk,a+p

) [1+o((x — H))] = (e — co)(e’w_}.

— Ph,atp) nj — )"

4 Conclusion

The main result of this paper is an explicit representation for the joint distribution of
the occupation time and the terminal value of the Lévy processes with jumps rational
Laplace transforms. The corresponding boundary value problem via the Feynman-Kac
representation is considered. By direct calculation, the associated ordinary integro-
differential equation (OIDE) is transformed into a homogeneous ordinary differential
equation (ODE) of higher order, which is then solved in closed form to obtain an explicit
formula for the joint distribution of the occupation time and the terminal value of the
Lévy processes with jumps rational Laplace transforms.
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