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On covering paths with 3 dimensional random walk
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Abstract

In this paper we find an upper bound for the probability that a 3 dimensional simple
random walk covers each point in a nearest neighbor path connecting O and the
boundary of an L; ball of radius N in Z®. For d > 4, it has been shown in [5] that
such probability decays exponentially with respect to N. For d = 3, however, the same
technique does not apply, and in this paper we obtain a slightly weaker upper bound:
Ve > 0,3ce > 0,

P (Trace(P) C Trace({Xn}neo)) < exp (—cgNlog_(Hs)(N)) .
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1 Introduction

In this paper, we study the probability that the trace of a nearest neighbor path in Z3
connecting 0 and the boundary of an L ball of radius NV is completely covered by the
trace of a 3 dimensional simple random walk.

First, we review some results we proved in a recent paper for general d’s. For any
integer N > 1, let 9B1(0, N) be the boundary of the L; ball in Z¢ with radius N. We say
that a nearest neighbor path

P = (PO,P1,~~ ,PK)

is connecting 0 and 0B;(0, N) if Py = 0 and inf{n : |P,||s = N} = K. And we say that a
path P is covered by a d dimensional random walk { X, }>2 if

Trace(P) C Trace(Xq,0, Xa1, ) :={x € 7%, 3n Xan =z}

In [5], we have shown that for any d > 2 such covering probability is maximized over
all nearest neighbor paths connecting 0 and 9B (0, N) by the monotonic path that stays
within distance one above/below the diagonal 1 = 25 = --- = x4.
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On covering paths with 3 dimensional random walk

Theorem 1.1. (Theorem 1.4 in [5]) For each integers L > N > 1, let P be any nearest
neighbor path in Z? connecting 0 and 0B,(0, N). Then

/
P(Trace(P) € Trace(Xg,0, - ,Xd,L)) < P(P € Trace(Xq,0, - - ,Xd,L))

where

/
P = (arcl[O td—1),arcs[0:d — 1, ,arcpy /g0 : d — 1], arcpy/ge[0: N — d[N/d]]),

d—1
arc1[0:d— 1] = <O,el,el +eg, - ,Zel)
i=1

and arc, = (k — 1) Zf-l:l e; + arcy.

A
Then noting that the probability of covering P is bounded above by the probability
that a simple random walk returns to the exact diagonal line for [N/d] times, one can
introduce the Markov process

% _ 1 2 2 3 d—1 d
Xd—l,” - (Xd,n - Xd,’erd,n - Xd,n’ e 7Xd,n - Xd,n)

where Xfm is the ith coordinate of X,, and see that {)A(d_lm};l’ozo is another d — 1
dimensional non simple random walk, which is transient when d > 4. In particular,
starting from any point (z1, 22, - ,24_1) € Z%"!, the transition probability of )A(d,lf is
given as follows:

e (x1,m9, - ,xg—1) = (¥1 £ 1,29, -+ ,24—1), both with probability 1/(2d).
» For any 2 S 1 S d - 1; (Ila"' s Lj—1, Ly Tid1, """ axd—l) — (Ila"' y Li—1 + 1axi +
1,241, ,xq4—1) each with probability 1/(2d).

o (z1,22, ,xg-1) = (z1, 22, -+ ,x4—1 £ 1), both with probability 1/(2d).
Thus, we immediately have the following upper bound:
Theorem 1.2. (Theorem 1.5 in [5]) There is a P; € (0,1) such that for any nearest
neighbor path P = (P, Py, - - - , Px) connecting 0 and 9B1(0, N) and {Xg4 ,}>>, which is
a d—dimensional simple random walk starting at 0 with d > 4, we always have

P (Trace(P) C Trace({de}nOO:O)) < PcEN/d]'

Here P, equals to the probability that {X,,}5%, ever returns to the d dimensional
diagonal line.

Theorem 1.2 implies that for each fixed d > 4, the covering probability decays
exponentially with respect to V.

For d = 3, the same technique may not apply since now {Xg_yn}ff:o is a recurrent 2
dimensional random walk, which means that P; = 1 and that the original 3 dimensional
random walk will return to the diagonal line infinitely often. To overcome this issue, we
note that although the diagonal line

Do ={(0,0,0),(1,1,1),---}

is recurrent, it is possible to find an infinite subset Doo C Do that is transient. And if we
can further show for this specific transient subset that the return probability is uniformly
bounded away from 1 (which is not generally true for all transient subsets, as is shown
in Counterexample 1 in Section 3), then we are able to show

/ - o
P(P € Trace(X3,0, X351, - )) < exp <—C‘Doo HPD .

With this approach, we have the following theorem:

ECP 23 (2018), paper 57. http://www.imstat.org/ecp/
Page 2/11


http://dx.doi.org/10.1214/18-ECP160
http://www.imstat.org/ecp/

On covering paths with 3 dimensional random walk

Theorem 1.3. For each ¢ > 0, there is a ¢. € (0,00) such that for any N > 2 and any
nearest neighbor path P = (P,, P,,--- , Px) C Z3 connecting 0 and B;(0, N), we have

P (Trace(P) C Trace({Xs,n}020)) < exp (—cENlog_(HE) (N)) )

Note that the upper bound in Theorem 1.3 seems to be non-sharp. The reason is

A
that we did not fully use the geometric structure of path P to minimize the covering
probability. I.e., although we require our simple random walk to visit the transient subset
for O(Nlog™*~¢(N)) times, those returns may be not enough to cover every point in

Do NP. In fact, the following conjecture seems to be supported by numerical simulations,
which is shown in Section 4.

Conjecture 1.4. There is a ¢ € (0,00) such that for any N > 2 and any nearest neighbor
path P = (Py, Py, -- , Px) C Z? connecting 0 and 0B;(0, N), we always have

P (Trace(P) C Trace({X3,}52)) < exp(—cN).

The structure of this paper is as follows: In Section 2, we construct the infinite subset
D of the diagonal line, calculate its density, and show it is transient. In Section 3, we
show the return probability of D, is uniformly (in the starting point) bounded away from
1, and with these techniques, finish the proof of Theorem 1.3. In Section 4, we present a
numerical simulation which seems to support Conjecture 1.4.

2 Infinite transient subset of the diagonal

Without loss of generality we can concentrate on the proof of Theorem 1.3 for
sufficiently large N. Recall that

A
P = (arcl[O :d—1],arcy[0: d —1],--- ,arciy/q[0 : d — 1], arciy/q4+1[0 : N — d[N/d]])

is the path connection 0 and B;(0, N) that maximizes the covering probability. When
d=3, let

be the points in 7/7 that lie exactly on the diagonal. Although it is clear that for simple
random walk {X3,,}7%, starting at 0, D is a recurrent set, following a similar construc-
tion to Spitzer [6, Chapter 6.26], we find a transient infinite subset of D, as follows: for
ny =0, ng = [log'™%(2)] = 1, and for all k > 3

k
ng = {Z log1+5(i)-‘ €z, (2.1)
=1

define )
DOO = {(nk,nk,nk)};il - D()o

Since log'*“(k) > 1 for all k¥ > 3, it is easy to see that {n;};°, is a monotonically
increasing sequence. Moreover, for each 1 < &k < ko < o0,

ko k1
Niy — Mgy = ’VZ log1+5(i)-‘ - ’VZ log1+5(i)-‘

k2
> > logte(i) - 1.

i=k1+1
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This implies that for all k; > 8 and 1 < k1 < ko,

I
Ngy — Ny > 5/ log' ¢ (z)da. (2.2)
k1

For any N € Z, define
Dy = Do N Dy

and .
Cy = ‘DN’ =sup{k: nr < N}.

Recalling the definition of n in (2.1), we also equivalently have

k k
Cy = sup {k : Zlog1+5(i) < N} = inf {k : Zlog1+5(i) > N} - L

i=1 i=1

Lemma 2.1. For any € > 0, there is a constant C. < oo such that
Cy € (2717°Nlog ' "(N),C.Nlog ' "¢(N))
for all N > 2.

Proof. Note that for any k such that

k
Z log'te(i) > N
i=1

we must have that £ > C), and that

k k
. 1 e
ZlogHE(z) > /1 log' ¢ (2)dx > IEE (k- k:l/Z) log' ¢ (k). (2.3)
i=1

For Ky = [22+°N/log'"*(N)], we have by (2.3)

Kn
) 1
ZIOgl-‘rE(z) > DI (Kn — K11v/2) log' ¢ (K )
i=1

1 KEn—KN? e ooy 14+ (2.4
> s Ky = log e (22N logt (V) )
Ky = K)* log'te (22+2N/log! * (V)

Ky log' ™€ (V)

\

> 2N

Noting that K — oo as N — oo and that

1 14¢ 1 1+e N
lim —2 (log ™*(V)) = lim (1+¢)'*®

N—o0 10g1+6(N) N—o0 log(N)

Fogaog(m)} T
for sufficiently large N

Ky — K\? log'te (2242 N/ log' e (N))
Kn log' T (V)

Kn
> log'*(i) = 2N - >N (2.5)
=1

which implies Cy < Ky and finishes the proof of the upper bound. On the other hand,
note that

k k41
Zlog1+‘g(i) < / log' ™ (2)dx < klog'™ (k +1).
i=1 1
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So forany k < 27'"¢Nlog ' ¢(N),

log'** (27175 Nlog ™' ~%(N) + 1)

< N.
log' "¢ (N)

z:logl""E ) <klog'™(k+1) <2717°N

Thus we have shown the lower bound and the proof of Lemma 2.1 is complete. O

Next using Lemma 2.1 we can show that Do is transient for 3 dimensional simple
random walk:

Lemma 2.2. For 3 dimensional simple random walk { X3 ,,}°2,, Do is a transient subset.

Proof. According to Wiener’s test (see Corollary 6.5.9 of [3]), it is sufficient to show that
Z 2 *cap(A4y) < oo (2.6)

where A, = Do N [B2(0,2%) \ B2(0,2°~1)]. Then according to the definition of capacity
(see Section 6.5 of [3]), we have forall £ > 1

cap(Ay) < |Ax| < ‘1500 mBQ(0,2’“)‘ < (ﬁgk = Oy 2.7)

By Lemma 2.1,
A < Cor < —C 2 2.8
cap(Ag) < 2= (0T () ke (2.8)

Thus we have

ZQ Cap Ak 1+6 Z k1+8 <0

which implies that D, is transient. O

3 Uniform upper bound on returning probability

Now we have D, is transient, i.e.,
P (X, € D ic0.) =0,
which immediately implies that there must be some 7 € Z3 \2500 such that
P(Tp < o0) <1, 3.1)

where T5_ is the first time a simple random walk visits Do, and P, (-) is the distribution

of the simple random walk conditioned on starting at x. Then note that Do is a subset of
the diagonal line, which implies D, has no interior point while Z? \ D, is connected.
Thus for any xj, € D, there exists a nearest neighbor path

y = {y07y1a e y77L}
with yg = 2, ¥, = T while y; € Z3 \’1500, foralli =1,2,--- ;m — 1. Combining this with
the fact that

3
1
P(Tf) < 00) 62 x+e(Tﬁ < 00) + P e(Tﬁ <OO)]
=1
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for all 2 € Z3 \ Do, we have
Pyi(Tﬁ(x, < o0) < 1,

for all 4 > 1, which in turns implies that
P, (Tﬁx, <o0)<1 (3.2)

for all k, where Tﬁw is the first returning time, i.e. the stopping time a simple random
walk first visits Do, after its first step.

However, in order to use the transient set f)oo in our proof, (3.2) is not enough.
We need to show that starting from each point z, = (ny,ng, nx) € Doo, the probability
Py, (Tﬁm < 00) is uniformly bounded away from 1. And this is not generally true for
all transient subsets A. First of all, when A has interior points, the return probability
of those points are certainly one. And even if A has no interior point and Z3 \ A is
connected, we have the following counter example:

Counterexample 1: Consider subsets
A ={(2F,1,n), (2%, -1,n), (2* +1,0,n), (2" — 1,0,n)}F__, U {(2¥,0,0)}
and
A= ] 4
k=1

where the 2 dimensional projection of A is illustrated in Figure 1 (the distances between
Ay’s are not exact in the figure):

o

e
9@
e

bl
o~

o~

Figure 1: A counter example to uniform upper bound on returning probability

Using Wiener’s test, it is easy to see A is a transient subset. However, for points
ap = (2’“,070) € A, k > 1, in order to have a simple random walk starting at a; never
returns to A, we must have the first k£ steps of the random walk be along the z—coordinate.
Thus

1
Pak(TA = OO) < 3?7
which implies that

. . 1
klig.lopak(TA < OO) > khm (1 - 3k> =1.

— 00

Remark 3.1. It would be interesting to characterize uniformly transient sets i.e. sets
with uniformly bounded return probabilities.

Fortunately, for the specific transient subset D, since it becomes more and more
sparse as x — oo, we can still have:

Lemma 3.2. For any € > 0, there is a c. 1 > 0 such that

sup P, (T < o00) <1—cen. (3.3)
E>1 °°
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Proof. With (3.2) showing all returning probabilities are strictly less than 1, it is sufficient
for us to show that

limsup Py, (T5 < o0) < 1. (3.4)

k—o0

Actually, here we prove a stronger statement
Jim P (Tp < o0)=Py(Tp < 00) < 1. (3.5)
—00 e

Note that for each k&

Py, (Tp < 00) > Py (Ta, < 00) = Py(To < 00),

sz (Tﬁoo < OO) < PCEA(TJI?k < OO) + PIk(TﬁOO\{rk} < OO),
and that
B k—1 %)
Po(Tp \ryy <00) <> Proy(Te, <00) + > Py (Te, < 00).
i=1 i=k+1
It suffices for us to show that
k—1
lim P, (T, < o0) =0, (3.6)

k—o00 4
=1

and that -
lim Z P, (T, < o) =0. (3.7)

k— o0
i=k+1
To show (3.6) and (3.7), we first note the well known result that there is a C' < co such
that for any x # y € 73,
C
lz —y|
First, to show (3.6) recall that xx = (ng,ng,nk), which implies that for any ¢ and %,
|z — x;| > |nk — n;|. We have according to (2.2), for any k > 8

P,(T, < o0) <

k—1 o k—1 1
Pl <00) £y o 20y (3.8)
i=1 ’ ; |2y, — @il = log' ¢ (z)dx
Thus it is again sufficient to show that
k—1
1
lim 1 =0 (3.9
e i fl log'** (z)da
Note that
k—1 (k72 k—1
1 1 1
—_———— = —_—— + —_—. (3.10)
k k k
; [ log" o (2)dx = [ log't(2)da iz[kZI/Q] [ log' () da

For each k > 8 and i < [k'/?], we have

k k k
/ log" ¢ (z)da > / log' ¢ (z)da > / ldx = k/2.

i k/2

Thus
[K172]

1 2 2
- < Z< 2= o). (3.11)
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Then for each k > 8 and i € [[k!/?] k —1],

k k
1
/i log' ¢ (2)dx > / log' ¢ (kY/?)da = 5i7e (k —i)log'*e (k).

i
Thus
= 1 ol+e Lo

< -. 3.12
Z fk log' ™ (z)dx ~ log'*< (k) ¢ ( )

i=[k1/2] i=1

Noting that

N\)—‘

M1
+/ —dx =1+ log(k)
x

R

one can immediately have

’“i 1 olte 1 2+l 4+ 1og(k)]

< S < = o(1). (3.13)
iR/ flk log' ¢ (z)dx log' ¢ (k) — i log' ¢ (k)

Combining (3.9), (3.11) and (3.13), we obtain (3.6).
Then, to show (3.7) we have according to (2.2), for any k£ > 8

> Pp(Ty, <)< Y ——— <2C _ (3.14)
i=k+1 i=k+1 |zi — x| i=k+1 fk log'**(z)dx

Thus it is again sufficient to show that
> 1
lim e T 0. (3.15)
koo fk log™ ™ (z)dx

Now for each k we separate the infinite summation in (3.15) as
(%s) 1 k2 1 [e's)

Z e Z Z —1 . (3.16)

- 4_
Marar fk log' ™ (z)dx  ,* Pl fk log't*(z)dz e fk log' ¢ (z)dx

For its first term we use similar calculation as in (3.12) and have

k2 1 1 52 1 ) K2 )
i < — < - (3.17)
i=zk;r1 Jilog! ™ (2)dw ~ log' (k) ig;rl i—k = log' "t (k) &
And since
k2 1 k2 1
Zf§1+/ —dz =1+ 2log(k)
N ] 1 X
i=1
we have .
k
1 1+ 2log(k
> < Lr2loslk) _ o(1). (3.18)

Ml log' ™ (z)dx ~ log' ™4 (k)

At last for the second term in (3.16), we have for each k£ > 8 and i > k2 + 1,

/k log' " (x)dx > / log' ¢ (z)dx > (i — i'/?)log! T (i/?) > 22+6zlogHE( i).

i1/2

Thus
— < 9%E —_— (3.19)
= . 1+e, .
:,; + log" ™t (z)da o, ilog" (i)
ECP 23 (2018), paper 57. http://www.imstat.org/ecp/
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Finally, noting that

oo

St [ e <o
Lo ilog™ (1) ~ o wlog™ (@) Elogt2) T
we have the tail term
> 1
i=k24+1 ? log (Z)
as k — oo. Thus combining (3.15)- (3.20), we have shown (3.7) and thus finished the
proof of this lemma. O

Proof of Theorem 1.3. With Lemma 3.2, and recalling that
ﬁN = boo N Dy

and
Cyn = ‘ﬁN’ =sup{k: ny < N},

we can define the stopping times T@[ =0,

N/3],0

ﬁ[N/s]J = inf {n > 0, Xg’n € '15[1\//3]}

and for all & > 2
Binjap ke = inf {n > Tﬁ[N/s]ykfl’ X37n € D[N/B]} .

Then by Lemma 3.2, one can immediately see that for any £ > 0

P (Tﬁ{f\’/?']’kJrl < OO‘Tﬁ[N/S]JC < OO) - PXBjﬁ[N/SM (Tﬁw < OO) s1-= Ces1s
and thus
Crnys—1
P (Tﬁ[w/a],cm/s] <o0) = H P (Tﬁ[zv/s],k-ﬁ-l <0 Tﬁ[N/3]ak7 < OO) (3.21)
k=0 :

IN

(1= cen) O,

By Lemma 2.1 we have

—e—2

Nlog '7¢(N) (3.22)

Cinys) > 271 [N/3]log ™~ (IN/3]) >
for all N > 4. Thus combining (3.21) and (3.22)
/[ o0 o0
PP Q TI‘aCG({Xgm}n:O) S P (D[N/S] g TI‘aCQ({thn}n:O))

< P (ﬁ[N/S] - Trace({Xg,n}fb‘;O» (323)
i

where ¢, = —27;72 log(1 — c.1). And the proof of Theorem 1.3 is complete. O
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number of steps=5000
T T

log(cover probability)

length of diaZona\ line
Figure 2: log-plot of covering probabilities of D;, : =1,2,---,9

4 Discussions

In Conjecture 1.4, we conjecture that the cover probability should have exponential
decay just as the d > 4 case. This conjecture seems to be supported by the following pre-
liminary simulation which shows the log-plot of probabilities that the first 5000 steps of a
3 dimensional simple random walk starting at 0 cover D; = {(0,0,0), (1,1,1),---,(¢,4,7)}
fori=1,2,---,9.

The simulation result above seems to indicate that after taking logarithm, the covering
probability decays almost exactly as a linear function, which implies the exponential
decay we predicted, indicating that the upper bound we found in Theorem 1.3 is not
sharp.

Another possible approach towards a sharp asymptotic is noting that although
{Xg,n};io is recurrent and will return to 0 with probability 1, the expected time between

each two successive returns is co. Moreover, in order to cover 7/7 only those returns to
diagonal before that { X3, }°2 has left B;(0, N) D B;(0, N) forever could possibly help.
This observation, together with the tail probability asymptotic estimations using local
central limit theorem and techniques in [1] and [2] applied on the non simple random
walk {)A(Q,n};'fzo, and some large deviation argument, enable us to find a proper value of
T such that

+ with high probability {X3,}2% N By(0,N) =0,

« with high probability { X5 ,}7_, will not return to 0 for [N/3] times or more.
Right now this approach can only give us the following weaker upper bound (a detailed
proof can be found in technical report [4]):

Proposition 4.1. There are ¢,C € (0,00) such that for any nearest neighbor path
P = (Py, P, ,Px) CZ3 connecting 0 and 9B, (0, N),

P (Trace(P) C Trace({ X3, }02g)) < Cexp (—cN1/3> .

However, this seemingly worse approach might have the potential to fully use the
A

geometric structure of path P to minimize the covering probability. Note that in order to
cover Djy/3 we not only need {X>,}52, to return to 0 for at least [V/3] times before
leaving B3 (0, N), but also must have that the locations of X3, at such visits cover each
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point on the diagonal. I.e., define the stopping times 7, o = 0
T,1 =inf{n >1: Xy, =0}

and forall 7 > 2
Tlyi = mf{n > Tlyi—1 " XQ,n = 0}

Define oo
{Z37n}7oz<):0 = {Xéﬁl:}m + X?i‘n&n + X33,‘rl37n}n:0 :

Noting that 7, ; < oo for any ¢, and that { X3 ,,}22, is translation invariant, {Z3,}72, is a
well defined one dimensional random walk with infinite range. And we have

P (Trace(P) C Trace({X3,}52,)) < P ((0,1,---,[N/3]) C Trace({Zsn}nly)) -

Thus Conjecture 1.4 would follow from the techniques described above for Proposition
4.1 if the following conjecture is proved.

Conjecture 4.2. There is a ¢ € (0,00) such that for any N > 2
P ((0, 1,---,[N/3]) C nace({zg,n}gio)) < exp(—cN).
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