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Abstract

In this paper we find an upper bound for the probability that a 3 dimensional simple
random walk covers each point in a nearest neighbor path connecting 0 and the
boundary of an L1 ball of radius N in Zd. For d ≥ 4, it has been shown in [5] that
such probability decays exponentially with respect to N . For d = 3, however, the same
technique does not apply, and in this paper we obtain a slightly weaker upper bound:
∀ε > 0,∃cε > 0,

P
(
Trace(P) ⊆ Trace

(
{Xn}∞n=0

))
≤ exp

(
−cεN log−(1+ε)(N)

)
.
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1 Introduction

In this paper, we study the probability that the trace of a nearest neighbor path in Z3

connecting 0 and the boundary of an L1 ball of radius N is completely covered by the
trace of a 3 dimensional simple random walk.

First, we review some results we proved in a recent paper for general d’s. For any
integer N ≥ 1, let ∂B1(0, N) be the boundary of the L1 ball in Zd with radius N . We say
that a nearest neighbor path

P =
(
P0, P1, · · · , PK

)
is connecting 0 and ∂B1(0, N) if P0 = 0 and inf{n : ‖Pn‖1 = N} = K. And we say that a
path P is covered by a d dimensional random walk {Xd,n}∞n=0 if

Trace(P) ⊆ Trace(Xd,0, Xd,1, · · · ) := {x ∈ Zd,∃n Xd,n = x}.

In [5], we have shown that for any d ≥ 2 such covering probability is maximized over
all nearest neighbor paths connecting 0 and ∂B1(0, N) by the monotonic path that stays
within distance one above/below the diagonal x1 = x2 = · · · = xd.
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On covering paths with 3 dimensional random walk

Theorem 1.1. (Theorem 1.4 in [5]) For each integers L ≥ N ≥ 1, let P be any nearest
neighbor path in Zd connecting 0 and ∂B1(0, N). Then

P
(
Trace(P) ∈ Trace(Xd,0, · · · , Xd,L)

)
≤ P

(↗
P ∈ Trace(Xd,0, · · · , Xd,L)

)
where

↗
P =

(
arc1[0 : d− 1], arc2[0 : d− 1], · · · , arc[N/d][0 : d− 1], arc[N/d]+1[0 : N − d[N/d]]

)
,

arc1[0 : d− 1] =

(
0, e1, e1 + e2, · · · ,

d−1∑
i=1

ei

)
and arck = (k − 1)

∑d
i=1 ei + arc1.

Then noting that the probability of covering
↗
P is bounded above by the probability

that a simple random walk returns to the exact diagonal line for [N/d] times, one can
introduce the Markov process

X̂d−1,n =
(
X1

d,n −X2
d,n, X

2
d,n −X3

d,n, · · · , Xd−1
d,n −Xd

d,n

)
where Xi

d,n is the ith coordinate of Xd,n and see that {X̂d−1,n}∞n=0 is another d − 1

dimensional non simple random walk, which is transient when d ≥ 4. In particular,
starting from any point (x1, x2, · · · , xd−1) ∈ Zd−1, the transition probability of X̂d−1,· is
given as follows:

• (x1, x2, · · · , xd−1) → (x1 ± 1, x2, · · · , xd−1), both with probability 1/(2d).
• For any 2 ≤ i ≤ d − 1, (x1, · · · , xi−1, xi, xi+1, · · · , xd−1) → (x1, · · · , xi−1 ∓ 1, xi ±
1, xi+1, · · · , xd−1) each with probability 1/(2d).

• (x1, x2, · · · , xd−1) → (x1, x2, · · · , xd−1 ± 1), both with probability 1/(2d).

Thus, we immediately have the following upper bound:

Theorem 1.2. (Theorem 1.5 in [5]) There is a Pd ∈ (0, 1) such that for any nearest
neighbor path P = (P0, P1, · · · , PK) connecting 0 and ∂B1(0, N) and {Xd,n}∞n=0 which is
a d−dimensional simple random walk starting at 0 with d ≥ 4, we always have

P
(
Trace(P) ⊆ Trace

(
{Xd,n}∞n=0

))
≤ P

[N/d]
d .

Here Pd equals to the probability that {Xd,n}∞n=0 ever returns to the d dimensional
diagonal line.

Theorem 1.2 implies that for each fixed d ≥ 4, the covering probability decays
exponentially with respect to N .

For d = 3, the same technique may not apply since now {X̂2,n}∞n=0 is a recurrent 2
dimensional random walk, which means that P3 = 1 and that the original 3 dimensional
random walk will return to the diagonal line infinitely often. To overcome this issue, we
note that although the diagonal line

D∞ = {(0, 0, 0), (1, 1, 1), · · · }

is recurrent, it is possible to find an infinite subset D̃∞ ⊂ D∞ that is transient. And if we
can further show for this specific transient subset that the return probability is uniformly
bounded away from 1 (which is not generally true for all transient subsets, as is shown
in Counterexample 1 in Section 3), then we are able to show

P
(↗
P ∈ Trace(X3,0, X3,1, · · · )

)
≤ exp

(
−c
∣∣∣D̃∞ ∩

↗
P
∣∣∣) .

With this approach, we have the following theorem:
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On covering paths with 3 dimensional random walk

Theorem 1.3. For each ε > 0, there is a cε ∈ (0,∞) such that for any N ≥ 2 and any
nearest neighbor path P = (P0, P1, · · · , PK) ⊂ Z3 connecting 0 and ∂B1(0, N), we have

P
(
Trace(P) ⊆ Trace

(
{X3,n}∞n=0

))
≤ exp

(
−cεN log−(1+ε)(N)

)
.

Note that the upper bound in Theorem 1.3 seems to be non-sharp. The reason is

that we did not fully use the geometric structure of path
↗
P to minimize the covering

probability. I.e., although we require our simple random walk to visit the transient subset
for O(N log−1−ε(N)) times, those returns may be not enough to cover every point in

D̃∞∩
↗
P . In fact, the following conjecture seems to be supported by numerical simulations,

which is shown in Section 4.

Conjecture 1.4. There is a c ∈ (0,∞) such that for any N ≥ 2 and any nearest neighbor
path P = (P0, P1, · · · , PK) ⊂ Z3 connecting 0 and ∂B1(0, N), we always have

P
(
Trace(P) ⊆ Trace

(
{X3,n}∞n=0

))
≤ exp (−cN) .

The structure of this paper is as follows: In Section 2, we construct the infinite subset
D̃∞ of the diagonal line, calculate its density, and show it is transient. In Section 3, we
show the return probability of D̃∞ is uniformly (in the starting point) bounded away from
1, and with these techniques, finish the proof of Theorem 1.3. In Section 4, we present a
numerical simulation which seems to support Conjecture 1.4.

2 Infinite transient subset of the diagonal

Without loss of generality we can concentrate on the proof of Theorem 1.3 for
sufficiently large N . Recall that

↗
P =

(
arc1[0 : d− 1], arc2[0 : d− 1], · · · , arc[N/d][0 : d− 1], arc[N/d]+1[0 : N − d[N/d]]

)
is the path connection 0 and B1(0, N) that maximizes the covering probability. When
d = 3, let

D[N/3] = {(0, 0, 0), (1, 1, 1), · · · , ([N/3], [N/3], [N/3])}

be the points in
↗
P that lie exactly on the diagonal. Although it is clear that for simple

random walk {X3,n}∞n=0 starting at 0, D∞ is a recurrent set, following a similar construc-
tion to Spitzer [6, Chapter 6.26], we find a transient infinite subset of D∞ as follows: for
n1 = 0, n2 = dlog1+ε(2)e = 1, and for all k ≥ 3

nk =

⌈
k∑

i=1

log1+ε(i)

⌉
∈ Z, (2.1)

define
D̃∞ = {(nk, nk, nk)}∞k=1 ⊂ D∞.

Since log1+ε(k) > 1 for all k ≥ 3, it is easy to see that {nk}∞k=1 is a monotonically
increasing sequence. Moreover, for each 1 ≤ k1 < k2 < ∞,

nk2 − nk1 =

⌈
k2∑
i=1

log1+ε(i)

⌉
−

⌈
k1∑
i=1

log1+ε(i)

⌉

≥
k2∑

i=k1+1

log1+ε(i)− 1.
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On covering paths with 3 dimensional random walk

This implies that for all k2 ≥ 8 and 1 ≤ k1 < k2,

nk2
− nk1

≥ 1

2

∫ k2

k1

log1+ε(x)dx. (2.2)

For any N ∈ Z, define
D̃N = D̃∞ ∩ DN

and
CN =

∣∣∣D̃N

∣∣∣ = sup{k : nk ≤ N}.

Recalling the definition of nk in (2.1), we also equivalently have

CN = sup

{
k :

k∑
i=1

log1+ε(i) ≤ N

}
= inf

{
k :

k∑
i=1

log1+ε(i) > N

}
− 1.

Lemma 2.1. For any ε > 0, there is a constant Cε < ∞ such that

CN ∈
(
2−1−εN log−1−ε(N), CεN log−1−ε(N)

)
for all N ≥ 2.

Proof. Note that for any k such that

k∑
i=1

log1+ε(i) > N

we must have that k > CN , and that

k∑
i=1

log1+ε(i) ≥
∫ k

1

log1+ε(x)dx ≥ 1

21+ε

(
k − k1/2

)
log1+ε(k). (2.3)

For KN =
⌈
22+εN/ log1+ε(N)

⌉
, we have by (2.3)

KN∑
i=1

log1+ε(i) ≥ 1

21+ε

(
KN −K

1/2
N

)
log1+ε(KN )

≥ 1

21+ε
·KN ·

KN −K
1/2
N

KN
· log1+ε

(
22+εN/ log1+ε(N)

)
≥ 2N ·

KN −K
1/2
N

KN
·
log1+ε

(
22+εN/ log1+ε(N)

)
log1+ε(N)

.

(2.4)

Noting that KN → ∞ as N → ∞ and that

lim
N→∞

log1+ε
(
log1+ε(N)

)
log1+ε(N)

= lim
N→∞

(1 + ε)1+ε

[
log(log(N))

log(N)

]1+ε

= 0,

for sufficiently large N

KN∑
i=1

log1+ε(i) ≥ 2N ·
KN −K

1/2
N

KN
·
log1+ε

(
22+εN/ log1+ε(N)

)
log1+ε(N)

> N (2.5)

which implies CN < KN and finishes the proof of the upper bound. On the other hand,
note that

k∑
i=1

log1+ε(i) ≤
∫ k+1

1

log1+ε(x)dx ≤ k log1+ε(k + 1).
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On covering paths with 3 dimensional random walk

So for any k ≤ 2−1−εN log−1−ε(N),

k∑
i=1

log1+ε(i) ≤ k log1+ε(k + 1) ≤ 2−1−εN
log1+ε

(
2−1−εN log−1−ε(N) + 1

)
log1+ε(N)

< N.

Thus we have shown the lower bound and the proof of Lemma 2.1 is complete.

Next using Lemma 2.1 we can show that D̃∞ is transient for 3 dimensional simple
random walk:

Lemma 2.2. For 3 dimensional simple random walk {X3,n}∞n=0, D̃∞ is a transient subset.

Proof. According to Wiener’s test (see Corollary 6.5.9 of [3]), it is sufficient to show that

∞∑
k=1

2−kcap(Ak) < ∞ (2.6)

where Ak = D̃∞ ∩
[
B2(0, 2

k) \B2(0, 2
k−1)

]
. Then according to the definition of capacity

(see Section 6.5 of [3]), we have for all k ≥ 1

cap(Ak) ≤ |Ak| ≤
∣∣∣D̃∞ ∩B2(0, 2

k)
∣∣∣ ≤ ∣∣∣D̃2k

∣∣∣ = C2k . (2.7)

By Lemma 2.1,

cap(Ak) ≤ C2k ≤ Cε

log1+ε(2)

2k

k1+ε
. (2.8)

Thus we have
∞∑
k=1

2−kcap(Ak) ≤
Cε

log1+ε(2)

∞∑
k=1

1

k1+ε
< ∞

which implies that D̃∞ is transient.

3 Uniform upper bound on returning probability

Now we have D̃∞ is transient, i.e.,

P
(
Xn ∈ D̃∞ i.o.

)
= 0,

which immediately implies that there must be some x̄ ∈ Z3 \ D̃∞ such that

Px̄(TD̃∞
< ∞) < 1, (3.1)

where TD̃∞
is the first time a simple random walk visits D̃∞, and Px(·) is the distribution

of the simple random walk conditioned on starting at x. Then note that D̃∞ is a subset of
the diagonal line, which implies D̃∞ has no interior point while Z3 \ D̃∞ is connected.
Thus for any xk ∈ D̃∞, there exists a nearest neighbor path

Y = {y0, y1, · · · ym}

with y0 = xk, ym = x̄ while yi ∈ Z3 \ D̃∞, for all i = 1, 2, · · · ,m− 1. Combining this with
the fact that

Px(TD̃∞
< ∞) =

1

6

3∑
i=1

[
Px+ei(TD̃∞

< ∞) + Px−ei(TD̃∞
< ∞)

]
ECP 23 (2018), paper 57.
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On covering paths with 3 dimensional random walk

for all x ∈ Z3 \ D̃∞, we have
Pyi

(TD̃∞
< ∞) < 1,

for all i ≥ 1, which in turns implies that

Pxk
(T̄D̃∞

< ∞) < 1 (3.2)

for all k, where T̄D̃∞
is the first returning time, i.e. the stopping time a simple random

walk first visits D̃∞ after its first step.
However, in order to use the transient set D̃∞ in our proof, (3.2) is not enough.

We need to show that starting from each point xk = (nk, nk, nk) ∈ D̃∞, the probability
Pxk

(T̄D̃∞
< ∞) is uniformly bounded away from 1. And this is not generally true for

all transient subsets A. First of all, when A has interior points, the return probability
of those points are certainly one. And even if A has no interior point and Z3 \ A is
connected, we have the following counter example:

Counterexample 1: Consider subsets

Ak = {(2k, 1, n), (2k,−1, n), (2k + 1, 0, n), (2k − 1, 0, n)}kn=−k ∪ {(2k, 0, 0)}

and

A =

∞⋃
k=1

Ak

where the 2 dimensional projection of A is illustrated in Figure 1 (the distances between
Ak’s are not exact in the figure):

A1
A2

A3
A4

Figure 1: A counter example to uniform upper bound on returning probability

Using Wiener’s test, it is easy to see A is a transient subset. However, for points
ak = (2k, 0, 0) ∈ A, k ≥ 1, in order to have a simple random walk starting at ak never
returns to A, we must have the first k steps of the random walk be along the z−coordinate.
Thus

Pak
(TA = ∞) <

1

3k
,

which implies that

lim
k→∞

Pak
(TA < ∞) ≥ lim

k→∞

(
1− 1

3k

)
= 1.

Remark 3.1. It would be interesting to characterize uniformly transient sets i.e. sets
with uniformly bounded return probabilities.

Fortunately, for the specific transient subset D̃∞, since it becomes more and more
sparse as x → ∞, we can still have:

Lemma 3.2. For any ε > 0, there is a cε,1 > 0 such that

sup
k≥1

Pxk
(T̄D̃∞

< ∞) ≤ 1− cε,1. (3.3)
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On covering paths with 3 dimensional random walk

Proof. With (3.2) showing all returning probabilities are strictly less than 1, it is sufficient
for us to show that

lim sup
k→∞

Pxk
(T̄D̃∞

< ∞) < 1. (3.4)

Actually, here we prove a stronger statement

lim
k→∞

Pxk
(T̄D̃∞

< ∞) = P0(T̄0 < ∞) < 1. (3.5)

Note that for each k

Pxk
(T̄D̃∞

< ∞) > Pxk
(T̄xk

< ∞) = P0(T̄0 < ∞),

Pxk
(T̄D̃∞

< ∞) ≤ Pxk
(T̄xk

< ∞) + Pxk
(TD̃∞\{xk} < ∞),

and that

Pxk
(T̄D̃∞\{xk} < ∞) ≤

k−1∑
i=1

Pxk
(Txi < ∞) +

∞∑
i=k+1

Pxk
(Txi < ∞).

It suffices for us to show that

lim
k→∞

k−1∑
i=1

Pxk
(Txi

< ∞) = 0, (3.6)

and that

lim
k→∞

∞∑
i=k+1

Pxk
(Txi < ∞) = 0. (3.7)

To show (3.6) and (3.7), we first note the well known result that there is a C < ∞ such
that for any x 6= y ∈ Z3,

Px(Ty < ∞) ≤ C

|x− y|
.

First, to show (3.6) recall that xk = (nk, nk, nk), which implies that for any i and k,
|xk − xi| ≥ |nk − ni|. We have according to (2.2), for any k ≥ 8

k−1∑
i=1

Pxk
(Txi

< ∞) ≤
k−1∑
i=1

C

|xk − xi|
≤ 2C

k−1∑
i=1

1∫ k

i
log1+ε(x)dx

. (3.8)

Thus it is again sufficient to show that

lim
k→∞

k−1∑
i=1

1∫ k

i
log1+ε(x)dx

= 0. (3.9)

Note that

k−1∑
i=1

1∫ k

i
log1+ε(x)dx

=

[k1/2]∑
i=1

1∫ k

i
log1+ε(x)dx

+

k−1∑
i=

⌈
k1/2

⌉
1∫ k

i
log1+ε(x)dx

. (3.10)

For each k ≥ 8 and i ≤ [k1/2], we have∫ k

i

log1+ε(x)dx ≥
∫ k

k/2

log1+ε(x)dx ≥
∫ k

k/2

1dx = k/2.

Thus
[k1/2]∑
i=1

1∫ k

i
log1+ε(x)dx

≤
[k1/2]∑
i=1

2

k
≤ 2

k1/2
= o(1). (3.11)
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On covering paths with 3 dimensional random walk

Then for each k ≥ 8 and i ∈
[⌈
k1/2

⌉
, k − 1

]
,∫ k

i

log1+ε(x)dx ≥
∫ k

i

log1+ε(k1/2)dx =
1

21+ε
(k − i) log1+ε(k).

Thus
k−1∑

i=
⌈
k1/2

⌉
1∫ k

i
log1+ε(x)dx

≤ 21+ε

log1+ε(k)

k∑
i=1

1

i
. (3.12)

Noting that
k∑

i=1

1

i
≤ 1 +

∫ k

1

1

x
dx = 1 + log(k)

one can immediately have

k−1∑
i=

⌈
k1/2

⌉
1∫ k

i
log1+ε(x)dx

≤ 21+ε

log1+ε(k)

k∑
i=1

1

i
≤ 21+ε[1 + log(k)]

log1+ε(k)
= o(1). (3.13)

Combining (3.9), (3.11) and (3.13), we obtain (3.6).
Then, to show (3.7) we have according to (2.2), for any k ≥ 8

∞∑
i=k+1

Pxk
(Txi

< ∞) ≤
∞∑

i=k+1

C

|xi − xk|
≤ 2C

∞∑
i=k+1

1∫ i

k
log1+ε(x)dx

. (3.14)

Thus it is again sufficient to show that

lim
k→∞

∞∑
i=k+1

1∫ i

k
log1+ε(x)dx

= 0. (3.15)

Now for each k we separate the infinite summation in (3.15) as

∞∑
i=k+1

1∫ i

k
log1+ε(x)dx

=

k2∑
i=k+1

1∫ i

k
log1+ε(x)dx

+

∞∑
i=k2+1

1∫ i

k
log1+ε(x)dx

. (3.16)

For its first term we use similar calculation as in (3.12) and have

k2∑
i=k+1

1∫ i

k
log1+ε(x)dx

≤ 1

log1+ε(k)

k2∑
i=k+1

1

i− k
≤ 1

log1+ε(k)

k2∑
i=1

1

i
. (3.17)

And since
k2∑
i=1

1

i
≤ 1 +

∫ k2

1

1

x
dx = 1 + 2 log(k)

we have
k2∑

i=k+1

1∫ i

k
log1+ε(x)dx

≤ 1 + 2 log(k)

log1+ε(k)
= o(1). (3.18)

At last for the second term in (3.16), we have for each k ≥ 8 and i ≥ k2 + 1,∫ i

k

log1+ε(x)dx ≥
∫ i

i1/2
log1+ε(x)dx ≥ (i− i1/2) log1+ε(i1/2) ≥ 1

22+ε
i log1+ε(i).

Thus
∞∑

i=k2+1

1∫ i

k
log1+ε(x)dx

≤ 22+ε
∞∑

i=k2+1

1

i log1+ε(i)
. (3.19)
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On covering paths with 3 dimensional random walk

Finally, noting that

∞∑
i=3

1

i log1+ε(i)
≤
∫ ∞

2

1

x log1+ε(x)
dx =

1

ε logε(2)
< ∞,

we have the tail term
∞∑

i=k2+1

1

i log1+ε(i)
= o(1) (3.20)

as k → ∞. Thus combining (3.15)- (3.20), we have shown (3.7) and thus finished the
proof of this lemma.

Proof of Theorem 1.3. With Lemma 3.2, and recalling that

D̃N = D̃∞ ∩ DN

and

CN =
∣∣∣D̃N

∣∣∣ = sup{k : nk ≤ N},

we can define the stopping times T̄D̃[N/3],0
= 0,

T̄D̃[N/3],1
= inf

{
n > 0, X3,n ∈ D̃[N/3]

}
and for all k ≥ 2

T̄D̃[N/3],k
= inf

{
n > T̄D̃[N/3],k−1, X3,n ∈ D̃[N/3]

}
.

Then by Lemma 3.2, one can immediately see that for any k ≥ 0

P
(
TD̃[N/3],k+1 < ∞

∣∣∣T̄D̃[N/3],k
< ∞

)
≤ PX3,T̄D̃[N/3],k

(T̄D̃∞
< ∞) ≤ 1− cε,1,

and thus

P
(
TD̃[N/3],C[N/3]

< ∞
)
=

C[N/3]−1∏
k=0

P
(
TD̃[N/3],k+1 < ∞

∣∣∣T̄D̃[N/3],k
< ∞

)
≤ (1− cε,1)

C[N/3] .

(3.21)

By Lemma 2.1 we have

C[N/3] ≥ 2−ε−1[N/3] log−1−ε([N/3]) ≥ 2−ε−2

3
N log−1−ε(N) (3.22)

for all N ≥ 4. Thus combining (3.21) and (3.22)

P

(
↗
P ⊆ Trace

(
{X3,n}∞n=0

))
≤ P

(
D[N/3] ⊆ Trace

(
{X3,n}∞n=0

))
≤ P

(
D̃[N/3] ⊆ Trace

(
{X3,n}∞n=0

))
≤ P

(
TD̃[N/3],C[N/3]

< ∞
)

≤ exp
(
−cεN log−1−ε(N)

)
(3.23)

where cε = − 2−ε−2

3 log(1− cε,1). And the proof of Theorem 1.3 is complete.
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Figure 2: log-plot of covering probabilities of Di, i = 1, 2, · · · , 9

4 Discussions

In Conjecture 1.4, we conjecture that the cover probability should have exponential
decay just as the d ≥ 4 case. This conjecture seems to be supported by the following pre-
liminary simulation which shows the log-plot of probabilities that the first 5000 steps of a
3 dimensional simple random walk starting at 0 cover Di = {(0, 0, 0), (1, 1, 1), · · · , (i, i, i)}
for i = 1, 2, · · · , 9.

The simulation result above seems to indicate that after taking logarithm, the covering
probability decays almost exactly as a linear function, which implies the exponential
decay we predicted, indicating that the upper bound we found in Theorem 1.3 is not
sharp.

Another possible approach towards a sharp asymptotic is noting that although
{X̂2,n}∞n=0 is recurrent and will return to 0 with probability 1, the expected time between

each two successive returns is ∞. Moreover, in order to cover
↗
P , only those returns to

diagonal before that {X3,n}∞n=0 has left B2(0, N) ⊃ B1(0, N) forever could possibly help.
This observation, together with the tail probability asymptotic estimations using local
central limit theorem and techniques in [1] and [2] applied on the non simple random
walk {X̂2,n}∞n=0, and some large deviation argument, enable us to find a proper value of
T such that

• with high probability {X3,n}∞n=T ∩B2(0, N) = ∅,
• with high probability {X̂2,n}Tn=0 will not return to 0 for [N/3] times or more.

Right now this approach can only give us the following weaker upper bound (a detailed
proof can be found in technical report [4]):

Proposition 4.1. There are c, C ∈ (0,∞) such that for any nearest neighbor path
P = (P0, P1, · · · , PK) ⊂ Z3 connecting 0 and ∂B1(0, N),

P
(
Trace(P) ⊆ Trace

(
{X3,n}∞n=0

))
≤ C exp

(
−cN1/3

)
.

However, this seemingly worse approach might have the potential to fully use the

geometric structure of path
↗
P to minimize the covering probability. Note that in order to

cover D[N/3] we not only need {X̂2,n}∞n=0 to return to 0 for at least [N/3] times before
leaving B2(0, N), but also must have that the locations of X3,n at such visits cover each
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point on the diagonal. I.e., define the stopping times τl3,0 = 0

τl3,1 = inf{n ≥ 1 : X̂2,n = 0}

and for all i ≥ 2

τl3,i = inf{n > τl3,i−1 : X̂2,n = 0}.

Define
{Z3,n}∞n=0 =

{
X1

3,τl3,n
+X2

3,τl3,n
+X3

3,τl3,n

}∞

n=0
.

Noting that τl3,i < ∞ for any i, and that {X3,n}∞n=0 is translation invariant, {Z3,n}∞n=0 is a
well defined one dimensional random walk with infinite range. And we have

P
(
Trace(P) ⊆ Trace

(
{X3,n}∞n=0

))
≤ P

(
(0, 1, · · · , [N/3]) ⊆ Trace

(
{Z3,n}∞n=0

))
.

Thus Conjecture 1.4 would follow from the techniques described above for Proposition
4.1 if the following conjecture is proved.

Conjecture 4.2. There is a c ∈ (0,∞) such that for any N ≥ 2

P
(
(0, 1, · · · , [N/3]) ⊆ Trace

(
{Z3,n}N

3

n=0

))
≤ exp(−cN).
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