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In this paper, we obtain upper and lower bounds for the moments of the solution to a
class of fractional stochastic heat equations on the ball driven by a Gaussian noise
which is white in time and has a spatial correlation in space of Riesz kernel type. We
also consider the space-time white noise case on an interval.

Keywords: Stochastic heat equation; fractional Laplacian; Dirichlet boundary conditions; heat
kernel estimates.
AMS MSC 2010: Primary 60H15; 35R60, Secondary 60G52; 35K08.
Submitted to ECP on July 15, 2017, final version accepted on June 25, 2018.

1 Introduction

Consider the fractional stochastic heat equation on the unit ball D = {y ∈ Rd : |y| <
1}, d ≥ 1, with zero Dirichlet boundary conditions:{

∂tut(x) = −(−∆)α/2ut(x) + λσ(ut(x))Ẇ (t, x) x ∈ D, t > 0,

ut(x) = 0 x ∈ Dc, t > 0,
(1.1)

and the initial condition is a measurable and bounded function u0 : D → R+. The
operator −(−∆)α/2, where 0 < α ≤ 2, is the L2-generator of a symmetric α-stable
process killed when exiting the ball D. The coefficient σ : R→ R is a globally Lipschitz
function. The Gaussian noise Ẇ (t, x) is white in time and coloured in space, that is,

E
(
Ẇ (t, x)Ẇ (s, y)

)
= δ0(t− s)f(x− y), (1.2)

where f : Rd → R+ is a nonnegative definite (generalized) function whose Fourier
transform f̂ = µ is a tempered measure. Finally, the parameter λ > 0 measures the level
of the noise.

Following Walsh [21], we define the mild solution to equation (1.1) as the adapted
and jointly measurable random field u = {ut(x)}t>0,x∈D satisfying

ut(x) =

∫
D

u0(y)pD(t, x, y) dy + λ

∫
D

∫ t

0

pD(t− s, x, y)σ(us(y))W (ds, dy), (1.3)
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Moment bounds for fractional stochastic heat equations

where pD(t, x, y) denotes the Dirichlet fractional heat kernel on D and the stochastic
integral is understood in an extended Itô sense.

Following Dalang [7], it is well-known (see also [19, Appendix] and [8]), that if the
spectral measure µ satisfies that ∫

Rd

µ(dξ)

1 + |ξ|α
<∞, (1.4)

then there exists a unique random field solution u to equation (1.3). Moreover, for all
p ≥ 2 and T > 0,

sup
t∈[0,T ],x∈D

E|ut(x)|p <∞.

Examples of spatial correlations satisfying (1.4) are:

1. The Riesz kernel f(x) = |x|−β, 0 < β < d. In this case, µ(dξ) = c|ξ|−(d−β)dξ and it
is easy to check that condition (1.4) holds whenever β < α.

2. The fractional kernel f(x) =
∏d

i=1 |xi|2Hi−2, where Hi ∈ ( 12 , 1) for i = 1, ..., d. In

this case, µ(dξ) = c
∏d

i=1 |ξi|1−2Hidξ and condition (1.4) holds whenever
∑d

i=1Hi >

d− α
2 .

3. The Bessel kernel f(x) =
∫∞
0
y

η−d
2 e−ye−

|x|2
4y dy. In this case, µ(dξ) = c(1+|ξ|2)−η/2dξ

and condition (1.4) holds whenever η > d− α.

4. The space-time white noise case f = δ0. In this case, µ(dξ) = dξ, and (1.4) is only
satisfied when α > d, that is, d = 1 and 1 < α ≤ 2.

Recall that the fractional heat kernel pD(t, x, y) has spectral decomposition

pD(t, x, y) =

∞∑
n=1

e−µntΦn(x)Φn(y) for all x, y ∈ D, t > 0,

where {Φn}n≥1 is an orthonormal basis of L2(D) and 0 < µ1 < µ2 ≤ µ3 ≤ · · · is a
sequence of positive numbers such that, for every n ≥ 1,{

−(−∆)α/2Φn(x) = −µnΦn(x) x ∈ D,

Φn(x) = 0 x ∈ Dc.
(1.5)

Some properties of these families of eigenvalues and eigenfunctions are the following.
From [3, Theorem 2.3] there exist positive constants c1 and c2 such that, for every n ≥ 1,

c1n
α/d ≤ µn ≤ c2n

α/d.

Moreover, from [5, Theorem 4.2] there exists c > 1 such that, for all x ∈ D,

c−1(1− |x|)α/2 ≤ Φ1(x) ≤ c(1− |x|)α/2, (1.6)

In the case that d = 1, α = 2, and D = (−1, 1), we have Φn(x) = sin(nπx2 ) and µn = (nπ2 )2.
The aim of this paper is to obtain upper and lower bounds in terms of t > 0 and

λ > 0 for the moments of the solution to equation (1.3). For this, we need some further
assumptions. We consider the following class of covariances that generalizes the Riesz
kernel.

Hypothesis 1.1. There exist positive constants c1, c2 and 0 < β < α ∧ d such that, for
all x ∈ Rd,

c1|x|−β ≤ f(x) ≤ c2|x|−β .
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Moment bounds for fractional stochastic heat equations

Since we are interested in upper and lower bounds for the moments, we also need
the following assumption on the coefficient σ.

Hypothesis 1.2. There exist positive constants lσ and Lσ such that, for all x ∈ R,

lσ|x| ≤ |σ(x)| ≤ Lσ|x|.

Finally, for the lower bounds, we need the following additional assumption on the
initial data.

Hypothesis 1.3. There exists ε ∈ (0, 12 ) such that

inf
x∈Dε

u0(x) > 0,

where Dε = {y ∈ Rd : |y| ≤ 1− ε}.
Essentially Hypothesis 1.3 says that there exists a large enough closed set of positive

measure inside D where the initial condition stays positive. The condition ε < 1
2 ensures

that min(ε, 1− ε) = ε which implies that Dε contains the closed ball of radius ε. This fact
will be used in the proof of Proposition 3.1 below, which is a key step to obtain the lower
bounds. Hypotheses 1.2 and 1.3 are usual when studying intermittency properties of
SPDEs.

We are now ready to state the main result of this paper.

Theorem 1.4. Assume Hypothesis 1.3.

a) If f satisfies Hypothesis 1.1 and σ(x) = x, then for all p ≥ 2 and δ > 0, there exist
positive constants c1, c1, c2(ε), c2(ε) such that for all λ > 0,

cp2e
pt

(
c2λ

2α
α−β −µ1

)
≤ inf

x∈Dε

E|ut(x)|p ≤ sup
x∈D

E|ut(x)|p ≤ cp1e
pt

(
c1p

α
α−β λ

2α
α−β −(1−δ)µ1

)
.

b) If f = δ0 and σ satisfies Hypothesis 1.2, then for all p ≥ 2 and δ > 0, there exist
positive constants c1(Lσ), c1(δ), c2(ε, `σ), c2(ε) such that for all λ > 0,

cp2e
pt

(
c2λ

2α
α−1 −µ1

)
≤ inf

x∈Dε

E|ut(x)|p ≤ sup
x∈D

E|ut(x)|p ≤ cp1e
pt

(
c1z

2α
α−1
p λ

2α
α−1 −(1−δ)µ1

)
,

where zp is the optimal constant in Burkholder-Davis-Gundy’s inequality (see [10]).

Both upper bounds hold for all t > 0 while both lower bounds hold for all t >
c(α)λ−

2α
α−1 . When α = 2, both lower bounds hold for all t > 0.

Several remarks are in order. Observe that the bounds are not sharp in p because the
proof of the lower bound is based on a second moment argument. However, as explained
below, we are mainly interested in the dependence on λ, t and µ1 of the moment bounds.
Observe also that in the multidimensional case, we only consider the case σ(x) = x

known as parabolic Anderson model, since the method used in the space-time white
noise case does not seem to apply in the multidimensional space setting. Instead, have
used the Wiener-chaos expansion of the solution which is very suitable when σ(x) = x.

The lower bound of Theorem 1.4b) when α = 2 was already obtained in the recent
paper [22]. Thus, Theorem 1.4 extends this lower bound to the fractional Laplacian and
higher space dimensions, and provides an upper bound of a similar type. Remark that
Theorem 1.4 can be easily extended to the ball of radius R > 0. However, the extension
to a bounded domain is not straightforward, because of the argument used in the proof
of Proposition 3.1.
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Moment bounds for fractional stochastic heat equations

A direct consequence of Theorem 1.4 are the following bounds for the moment-type
Lyapunov upper and lower exponents, in terms of λ > 0. In case a), we obtain that for all
λ > 0,

p
(
c2λ

2α
α−β − µ1

)
≤ lim inf

t→∞

1

t
log inf

x∈Dε

E|ut(x)|p

≤ lim sup
t→∞

1

t
log sup

x∈D
E|ut(x)|p ≤ p

(
c̃1(p)λ

2α
α−β − (1− δ)µ1

)
,

(1.7)

where c̃1(p) = c1p
α

α−β . Similar bounds hold for case b). Recall from [10] that u is said to
be weakly intermittent if for all x ∈ D

lim sup
t→∞

1

t
log E|ut(x)|2 > 0

and for all p ≥ 2 and x ∈ D

lim sup
t→∞

1

t
log E|ut(x)|p <∞.

Heuristically, this phenomenon says that the solution u will be concentrated into a
few very high peaks when t is large. See [10] and the references therein for a more
detailed explanation of this phenomenon. The bounds in (1.7) show that in case a), if
λ ≤ ((1− δ)µ1/c̃1(2))

α−β
2α , then the solution to equation (1.1) is not weakly intermittent,

while if λ ≥ (µ1/c2)
α−β
2α , then the solution is weakly intermittent. A similar result holds

for case b). However, using the definition of c̃1(p) we observe that for any fixed λ > 0

we can choose p0 large enough such that λ > ((1 − δ)µ1/c̃1(p0))
α−β
2α . In this case, we

cannot guarantee that there is no intermittency and we would need to have a sharp
lower bound in p in order to check what happens in those cases. The intermittency would
be of a different type that the one stated above since it would only hold for sufficiently
large moments (p > p0). But this would be sufficient in order to see the large peaks
phenomenon. We leave this question open for future research.

Intermittency for equations of the type (1.1) but in all Rd have been largely studied
in the literature, see e.g. [11, 16, 1, 14]. However, much less is known in the case
of bounded domains. In the recent paper [12] (see also [13] for the extension to the
fractional Laplacian), it is shown the existence of λ0(µ1) > 0 such that for all λ < λ0,

−∞ < lim sup
t→∞

1

t
log sup

x∈D
E|ut(x)|p < 0,

and for all ε > 0, the existence of a λ1(µ1, ε) > 0 such that for all λ > λ1,

0 < lim inf
t→∞

1

t
log inf

x∈Dε

E|ut(x)|p <∞.

Here u is the solution to equation (1.1) with a general spatial covariance function f , and σ
satisfying Hypothesis 1.2. However, λ0 and λ1 are not explicit in those papers. Therefore,
Theorem 1.4 provides an extension of these results with an explicit dependence of λ0 and
λ1 in terms of µ1. Observe that the results in [12, 22, 13] already imply a dicotomy on
the intermittency of the solution depending on large and small values of λ. In this paper,
precise bounds for the moments for t fixed are proved, which in particular imply more
accurate estimates on λ to deduce intermittency or non-intermittency of the solution.
Observe also that this dicotomy phenomenon does not occur if one considers the same
equation (1.1) in Rd or in D but with Neumann boundary conditions. In those cases, the
solution is weakly intermittent for all λ > 0, see e.g. [12, 14].
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Theorem 1.4a) also implies that for all p ≥ 2, t > 0 and x ∈ Dε,

lim
λ→∞

log log E|ut(x)|p

log λ
=

2α

α− β
,

and similarly for the case b), which is known as the excitation index of the solution
introduced by [17]. This result was obtained in [19] for p = 2, f the Riesz kernel and
σ satisfying Hypothesis 1.2. See also [17, 9] for previous results when α = 2 and W is
space-time white noise. The results in [9, 19] were the first that used the Gronwall’s
inequalities stated in Propositions A.1 and A.2 to show these type of results. The proof
of Theorem 1.4b) will be also based on those inequalities.

Consider now the deterministic heat equation ∂tu = ∆u+ λu on a bounded domain
O in Rd, d ≤ 3, with smooth boundary and Dirichlet boundary condition ut(x) = 0, x ∈
∂O, t > 0, and intial condition u0(x) = f(x), f ∈ L2(O). It is shown in [18] that if k0 is
the smallest integer such that 〈f, ek0

〉 6= 0, then

lim sup
t→∞

1

t
log ‖ut‖L2(O) = λ− µk0 .

In the same paper, the equation ∂tut(x) = ∆ut(x)+λut(x)dWt, whereWt is a real-valued
Wiener process is also considered. In this case, following similar computations as in that
paper, it is easy to show that

lim sup
t→∞

1

t
log
√

E‖ut‖2L2(O) =
λ2

2
− µk0

.

Hence, the dycotomy phenomenon is also present in the deterministic case and the space
independent white noise case. Observe that in those cases we have precise expressions
for the Lyapunov exponents. For our equation (1.1), even in the space-time white noise
case and parabolic Anderson model, obtaining an explicit expression for the upper
second moment type Lyapunov exponent remains an open problem. Theorem 1.4 gives a
first hint of the general form of this expression.

The rest of the paper is organized as follows. Section 2 is devoted to define rigorously
the Gaussian noise W , and the Wiener-chaos expansion of square integrable random
variables. In Section 3 we prove several heat kernel estimates that are needed for the
proof of Theorem 1.4, and are also interesting in their own right. Section 4 is devoted to
the proof of Theorem 1.4. Finally, in the Appendix we recall some heat kernel estimates
and fractional Gronwall’s inequalities used in the paper.

2 The Gaussian noise W

Let D(R+ ×Rd) be the space of real-valued infinitely differentiable functions with
compact support. Following [7] and [8], on a complete probability space (Ω,F ,P), we
consider a centered Gaussian family of random variables {W (ϕ), ϕ ∈ D(R+ ×Rd)} with
covariance

E [W (ϕ)W (ψ)] =

∫
R+×R2d

ϕ(t, x)ϕ(t, y)f(x− y)dxdydt,

where f is as in (1.2). Let H be the completion of D(R+ ×Rd) with respect to the inner
product

〈ϕ,ψ〉H =

∫
R+×R2d

ϕ(t, x)ϕ(t, y)f(x− y)dxdydt.

The mapping ϕ 7→W (ϕ) defined in D(R+ ×Rd) extends to a linear isometry between H
and the Gaussian space spanned by W . We will denote the isometry by

W (φ) =

∫
R+×Rd

φ(t, x)W (dt, dx), φ ∈ H.
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Notice that if ϕ,ψ ∈ H, then E [W (ϕ)W (ψ)] = 〈ϕ,ψ〉H. Moreover, H contains the space
of measurable functions φ on R+ ×Rd such that∫

R+×R2d

|φ(t, x)φ(t, y)|f(x− y)dxdydt <∞.

When handling equation (1.3) with σ(x) = x, we will make use of its chaos expansion.
For any integer n ≥ 1, we denote by Hn the nth Wiener chaos of W . Recall that H0

is simply R and for n ≥ 1, Hn is the closed linear subspace of L2(Ω) generated by the
random variables

{Hn(W (h)), h ∈ H, ‖h‖H = 1},

where Hn is the nth Hermite polynomial. For any n ≥ 1, we denote by H⊗n (resp. Hn)
the nth tensor product (resp. the nth symmetric tensor product) ofH. Then, the mapping
In(h

⊗n) = Hn(W (h)) can be extended to a linear isometry bewteen H⊗n (equipped with
the modified norm

√
n!‖ · ‖H⊗n) and Hn.

Let FW the σ-field generated by W . Then, any FW -measurable random variable F in
L2(Ω) can be expressed as

F = E(F ) +

∞∑
n=1

In(fn),

where the series converges in L2(Ω), and the elements fn ∈ H⊗n are determined by F .
This identity is called the Wiener-chaos expansion of F .

3 Heat kernel estimates

As a consequence of Theorems A.3 and A.4 in the Appendix, the following upper and
lower bounds for the fractional heat kernel on D hold.

Proposition 3.1. For any ε ∈ (0, 12 ), there exist positive constants c1(ε), c2(ε) and c3(ε)
such that for all x ∈ Dε = {y ∈ Rd : |y| ≤ 1− ε} and t > 0,∫

Dε

pD(t, x, y)dy ≥ c1e
−µ1t, (3.1)

for all x ∈ Dε and t > 0, ∫
Dε

p2D(t, x, y)dy ≥ c2e
−2µ1tt−d/α, (3.2)

and if f satisfies Hypothesis (1.1), then for all x,w ∈ Dε and t > 0 such that |x− w| ≤ tα,∫
Dε×Dε

pD(t, x, y)pD(t, w, z)f(y − z)dydz ≥ c3e
−2µ1tt−β/α. (3.3)

Proof. We start assuming α = 2. From Theorem A.3 and (1.6), for all x ∈ Dε and t > 0,∫
Dε

pD(t, x, y)dy ≥ c

∫
Dε

min

(
1,

ε2

1 ∧ t

)
e−µ1t

e−c
|x−y|2

t

1 ∧ td/2
dy

≥ ce−µ1t

(∫
Dε

min

(
1,
ε2

t

)
e−c

|x−y|2
t

td/2
1{t<1}dy +

∫
Dε

e−c
|x−y|2

t 1{t≥1}dy

)
.

The second integral in the last display is lower bounded by c(ε)1{t≥1}. The first one
equals ∫

Dε

e−c
|x−y|2

t

td/2
1{t<ε2}dy + ε2

∫
Dε

e−c
|x−y|2

t

t1+
d
2

1{ε2≤t<1}dy.
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The second integral in the last display is lower bounded by c(ε)1{ε2≤t<1}, while the first
one is lower bounded by ∫

Dε

e−c
|x−y|2

t

td/2
1{|x−y|2≤t<ε2}dy.

We now observe that if t < ε2 and ε < 1
2 , then min(

√
t, 1− ε) =

√
t. Thus, for all x ∈ Dε,

Vol(y ∈ Dε : |x− y|2 ≤ t) = Vol(Bx(
√
t) ∩B0(1− ε)) ≥ 1

2
Vol(B0(

√
t)) = cdt

d/2,

where Bx(r) = {y ∈ Rd : |y − x| ≤ r}, for x ∈ Rd and r > 0, and Vol denotes the
d-dimensional volume. This shows that∫

Dε

e−c
|x−y|2

t

td/2
1{|x−y|2≤t<ε2}dy ≥ cd1{t<ε2},

which proves (3.1) for α = 2.
Following along the same lines, we get that∫

Dε

p2D(t, x, y)dy ≥ ce−2µ1t

{∫
Dε

e−c
|x−y|2

t

td
1{|x−y|2≤t<ε2}dy + 1{t≥ε2}

}
≥ ce−2µ1t

{
t−d/21{t<ε2} + 1{t≥ε2}

}
≥ ce−2µ1tt−d/2,

which shows (3.2) when α = 2.
We next show (3.3) for α = 2. We assume that f satisfies Hypothesis 1.1. From

Theorem A.3 and (1.6), for all x,w ∈ Dε and t > 0,∫
Dε×Dε

pD(t, x, y)pD(t, w, z)f(y − z)dydz

≥ ce−2µ1t

{∫
Dε×Dε

e−c
|x−y|2

t

td/2
1{|x−y|2≤t<ε2}

e−c
|w−z|2

t

td/2
1{|w−z|2≤t}|y − z|−βdydz + 1{t≥ε2}

}
.

Next observe that since |x − w| <
√
t, |x − y|2 ≤ t, and |w − z|2 ≤ t, we get that

|y − z|−β ≥ t−β/2. Therefore, proceeding as above, we conclude that if x,w ∈ Dε and
t > 0 are such that |x− w| <

√
t, then∫

Dε×Dε

pD(t, x, y)pD(t, w, z)f(y − z)dydz ≥ ce−2µ1t
{
t−β/21{t<ε2} + 1{t≥ε2}

}
≥ ce−2µ1tt−β/2,

which concludes the proof of (3.2) when α = 2.
We now assume α ∈ (1, 2). Similarly as above, appealing to Theorem A.4 and (1.6),

for all x ∈ Dε and t > 0,∫
Dε

pD(t, x, y)dy

≥ ce−µ1t

{∫
Dε

min

(
1,
εα

t

)
min

(
t−1/α,

t

|x− y|α+d

)
1{t<1}dy + 1{t≥1}

}
.

The integral in the last display equals∫
Dε

min

(
t−1/α,

t

|x− y|α+d

)
1{t<εα}dy + εα

∫
Dε

min

(
t−1/α−1,

1

|x− y|α+d

)
1{εα≤t<1}dy.
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The second integral in the last display is lower bounded by c(ε)1{εα≤t<1}, while the first
one is lower bounded by∫

Dε

t−d/α min

(
t(d−1)/α,

(
t1/α

|x− y|

)d+α
)
1{|x−y|α<t<εα}dy.

Using the same argument as before, if t < εα and ε < 1
2 , then for all x ∈ Dε

Vol(y ∈ Dε : |x− y|α ≤ t) = Vol(Bx(t
1/α) ∩B0(1− ε)) ≥ 1

2
Vol(B0(t

1/α)) = cdt
d/α,

which concludes the proof of (3.1) for α ∈ (1, 2). Similarly,∫
Dε

p2D(t, x, y)dy

≥ ce−2µ1t

{∫
Dε

min

(
1,
ε2α

t2

)
min

(
t−2/α,

t2

|x− y|2(α+d)

)
1{t<1}dy + 1{t≥1}

}
≥ ce−2µ1t

{
t−d/α1{t<εα} + 1{t≥εα}

}
≥ ce−2µ1tt−d/α,

which shows (3.1) for α ∈ (1, 2).
Finally, for all x,w ∈ Dε and t > 0 such that |x− w| < t1/α,∫

Dε×Dε

pD(t, x, y)pD(t, w, z)f(y − z)dydz ≥ ce−2µ1t
{
t−β/α1{t<εα} + 1{t≥εα}

}
≥ ce−2µ1tt−β/α,

which proves (3.3) when α ∈ (1, 2).

Proposition 3.2. For all δ > 0, there exist c1, c2(δ) > 0 such that for all x,w ∈ D and
t > 0, ∫

D

pD(t, x, y)dy ≤ c1e
−µ1t, (3.4)

and ∫
D×D

pD(t, x, y)pD(t, w, z)f(y − z)dydz ≤ c2e
−(2−δ)µ1tt−a/α, (3.5)

where

a =

{
d, if f = δ0,

β, if f satisfies Hypothesis 1.1.

Proof. We first assume α = 2. By Theorem A.3, for all x ∈ D and t > 0,∫
D

pD(t, x, y)dy ≤ ce−µ1t

∫
D

e−c
|x−y|2

t

1 ∧ td/2
dy ≤ ce−µ1t,

which shows (3.4). Let f = δ0. By the semigroup property and Theorem A.3, for all δ > 0,∫
D

p2D(t, x, y)dy = pD(2t, x, x) ≤ ce−2µ1t
1

1 ∧ td/2
≤ c(δ)e−(2−δ)µ1tt−d/2.

Finally, by Theorem A.3, when f satisfies Hypothesis 1.1, we get that∫
D×D

pD(t, x, y)pD(t, w, z)f(y − z)dydz ≤ ce−2µ1t

∫
D×D

e−c
|x−y|2

t

1 ∧ td/2
e−c

|w−z|2
t

1 ∧ td/2
|y − z|−βdydz

≤ c(δ)e−(2−δ)µ1t

∫
Rd×Rd

e−c
|x−y|2

t

td/2
e−c

|w−z|2
t

td/2
|y − z|−βdydz

≤ c(δ)e−(2−δ)µ1tt−a/α,
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where we have used [19, Lemma 4.1] in the last inequality.

4 Proof of Theorem 1.4

4.1 Proof of the lower bound of Theorem 1.4b)

By Jensen’s inequality, for any p ≥ 2,

E|ut(x)|p ≥
(
E|ut(x)|2

)p/2
. (4.1)

Therefore, it suffices to prove the lower bound for p = 2. Taking the second moment to
the mild formulation (1.3) we obtain that, for all x ∈ D and t > 0,

E|ut(x)|2 =

(∫
D

u0(y)pD(t, x, y)dy

)2

+ λ2
∫ t

0

∫
D

p2D(t− s, x, y)E|σ(us(y))|2dyds.

Hypothesis 1.3 and the heat kernel estimate (3.1) yield to∫
D

u0(y)pD(t, x, y)dy ≥ inf
y∈Dε

u0(y)

∫
Dε

pD(t, x, y)dy ≥ ce−µ1t.

On the other hand, from Hypothesis 1.2 and the heat kernel estimate (3.2), we get that∫ t

0

∫
D

p2D(t− s, x, y)E|σ(us(y))|2dyds ≥ `2σ

∫ t

0

∫
Dε

p2D(t− s, x, y)E|us(y)|2dyds

≥ `2σ

∫ t

0

hε(s)

∫
Dε

p2D(t− s, x, y)dyds

≥ c

∫ t

0

hε(s)e
−2µ1(t−s)(t− s)−1/αds,

where hε(s) := infy∈Dε
E|us(y)|2. Now, set gε(t) = e2µ1thε(t). The estimates above show

that for all t > 0,

gε(t) ≥ c

(
1 + λ2

∫ t

0

(t− s)−1/αgε(s)ds

)
.

Finally, Proposition A.1 with ρ = 1− 1
α and Proposition A.2 conclude the desired lower

bound.

4.2 Proof of the upper bound of Theorem 1.4b)

Taking the pth moment to the mild formulation (1.3) and appealing to Burkholder-
Davis-Gundy’s and Minkowski’s inequalities, it holds that for all x ∈ D and t > 0,

E|ut(x)|p ≤ 2p−1

{(∫
D

u0(y)pD(t, x, y)dy

)p

+ λpzpp

(∫ t

0

∫
D

p2D(t− s, x, y)(E|σ(us(y))|p)2/pdyds
)p/2}

,

where zp is as in the statement of Theorem 1.4b). Since u0 is bounded, and using the
heat kernel estimate (3.4), we get that∫

D

u0(y)pD(t, x, y)dy ≤ c1e
−µ1t.
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Using Hypothesis 1.2 and the heat kernel estimate (3.5), we obtain∫ t

0

∫
D

p2D(t− s, x, y)(E|σ(us(y))|p)2/pdyds ≤ L2
σ

∫ t

0

∫
D

p2D(t− s, x, y)(E|us(y)|p)2/pdyds

≤ L2
σ

∫ t

0

h(s)

(∫
D

p2D(t− s, x, y)dy

)
ds

≤ c

∫ t

0

h(s)e−(2−δ)µ1(t−s)(t− s)−1/αds,

where h(s) = supy∈D(E|us(y)|p)2/p. The estimates above show that, for all t > 0,

g(t) ≤ c

(
1 + λ2z2p

∫ t

0

g(s)

(t− s)1/α
ds

)
,

where g(t) = e(2−δ)µ1th(t). Finally, Proposition A.1 with ρ = 1− 1
α concludes.

4.3 Proof of Theorem 1.4a)

In this case, following [1], the solution to (1.1) has the following Wiener-chaos
expansion in L2(Ω)

ut(x) = h0(t, x) +
∑
n≥1

λnIn(hn(·, t, x)), (4.2)

where h0(t, x) =
∫
D
u0(y)pD(t, x, y)dy, and for n ≥ 1, In denotes the multiple Wiener

integral with respect to W in Rn
+ ×Dn, and for any (t1, ..., tn) ∈ Rn

+ and x1, ..., xn ∈ D,

hn(t1, x1, ..., tn, xn, t, x) = pD(t− tn, x, xn)pD(tn − tn−1, xn, xn−1)

· · · pD(t2 − t1, x2, x1)h0(t1, x1)1{0<t1<···<tn<t}.

Therefore,
E|ut(x)|2 = |h0(t, x)|2 +

∑
n≥1

λ2nn!‖h̃n(·, t, x)‖2H⊗2 ,

where h̃n denotes the symmetrization of hn. That is,

n!‖h̃n(·, t, x)‖2H⊗2 =

∫
0<t1<···<tn<t

∫
D2n

pD(t− tn, x, xn)pD(t− tn, x, yn)f(xn − yn)

× pD(tn − tn−1, xn, xn−1)pD(tn − tn−1, xn, yn−1)f(xn−1 − yn−1) · · · pD(t2 − t1, x2, x1)

× pD(t2 − t1, x2, y1)f(x1 − y1)|h0(t1, x1)|2dx1 · · · dxndy1 · · · dyndt1 · · · dtn.

Now, appealing to Propositions 3.1 and 3.2, we obtain

c2e
−2µ1t

∫
0<t1<···<tn<t

(t− tn)
−β/α

n∏
i=2

(ti − ti−1)
−β/αdt1 · · · dtn

≤ n!‖h̃n(·, t, x)‖2H⊗2 ≤ c1e
−(2−δ)µ1t

∫
0<t1<···<tn<t

(t− tn)
−β/α

n∏
i=2

(ti − ti−1)
−β/αdt1 · · · dtn.

Following similar computations as in [1, 2] it is easy to see that the last display implies
that

c2e
−2µ1t

∑
n≥0

λ2nCn
2 (n!)

β
α−1t(1−

β
α )n ≤ E|ut(x)|2 ≤ c1e

−(2−δ)µ1t
∑
n≥0

λ2nCn
1 (n!)

β
α−1t(1−

β
α )n.

Finally, [1, Lemma A.1] and [2, Lemma 5.2] conclude the proof of Theorem 1.4a) for
p = 2. The lower bound for p ≥ 2 follows using Jensen’s inequality as in (4.1). For the
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upper bound, as in [1, 2], we have that by Minkowski’s inequality and the equivalence of
norms in a fixed Wiener chaos, for all p ≥ 2,

(E|ut(x)|p)1/p ≤ |h0(t, x)|+
∑
n≥1

(p− 1)n/2λn
(
n!‖h̃n(·, t, x)‖2H⊗2

)1/2
,

which implies the desired upper bound.

A Appendix

We recall the following fractional Gronwall’s inequalities.

Proposition A.1. [15, Lemma 7.1.1], [14] Let ρ > 0 and suppose that g(t) is a locally
integrable function satisfying

g(t) ≤ c1 + k

∫ t

0

(t− s)ρ−1g(s)ds for all t > 0, (A.1)

for some positive constants c1, k. Then there exist positive constants c2, c3 such that

g(t) ≤ c2e
c3k

1/ρt for all t > 0.

If instead of (A.1) the function is non-negative and satisfies

g(t) ≥ c1 + k

∫ t

0

(t− s)ρ−1g(s)ds for all t > 0,

then
g(t) ≥ c2e

c3k
1/ρt for all t >

e

ρ
(Γ(ρ)k)−1/ρ.

The next result shows that when ρ = 1
2 , the lower bound can be obtained for all t > 0.

Proposition A.2. [9] Let g(t) be a non-negative locally integrable function satisfying

g(t) ≥ c1 + k

∫ t

0

g(s)√
t− s

ds for all t > 0,

for some positive constants c1, k. Then there exist positive constants c2, c3 such that

g(t) ≥ c2e
c3k

2t for all t > 0.

We also recall the following estimates of the Dirichlet fractional heat kernel.

Theorem A.3. [20, Theorem 2.2] Assume α = 2. There exist positive constants C, c1 and
c2 such that, for all x, y ∈ D and t > 0,

C−1 min

(
1,

Φ1(x)Φ1(y)

1 ∧ t

)
e−µ1t

e−c2
|x−y|2

t

1 ∧ td/2
≤ pD(t, x, y)

≤ Cmin

(
1,

Φ1(x)Φ1(y)

1 ∧ t

)
e−µ1t

e−c1
|x−y|2

t

1 ∧ td/2
.

Theorem A.4. [6, Theorem 1.1] Assume α ∈ (1, 2). There exist a positive constant C
such that, for all x, y ∈ D and t > 0,

C−1e−µ1t
{
min

(
1,

Φ1(x)√
t

)
min

(
1,

Φ1(y)√
t

)
min

(
t−d/α,

t

|x− y|α+d

)
1{t<1}

+Φ1(x)Φ1(y)1{t≥1}
}

≤ pD(t, x, y)

≤ Ce−µ1t
{
min

(
1,

Φ1(x)√
t

)
min

(
1,

Φ1(y)√
t

)
min

(
t−d/α,

t

|x− y|α+d

)
1{t<1}

+Φ1(x)Φ1(y)1{t≥1}
}
.
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