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Abstract

We consider the endogenous solution to the stochastic recursion

X
d
=

N∨
i=1

AiXi ∨B,

where N is a random natural number, B and {Ai}i∈N are random nonnegative
numbers and Xi are independent copies of X, independent also of N , B, {Ai}i∈N.
The properties of solutions to this equation are governed mainly by the function

m(s) = E
[∑N

i=1 A
s
i

]
. Recently, Jelenković and Olvera-Cravioto assuming, inter alia,

m(s) < 1 for some s, proved that the asymptotic behavior of the endogenous solution
R to the above equation is power-law, i.e.

P[R > t] ∼ Ct−α

for some α > 0 and C > 0. In this paper we prove an analogous result when m(s) = 1

has unique solution α > 0 and m(s) > 1 for all s 6= α.
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1 Introduction

In this paper we study the maximum recursion on trees

X
d
=

N∨
i=1

AiXi ∨B, (1.1)

where N is a random natural number, B and {Ai}i∈N are random nonnegative numbers,

Xi are independent copies of X, which are independent also of N , B, {Ai}i∈N, and
d
=

denotes equality in law. Our main objective is to describe the asymptotic properties of
the endogenous solution to (1.1) (in the sense of [1]).

Observe that for N = 1 a.s. Equation (1.1) is merely the random extremal equation
considered by Goldie [9]. Moreover, in this case, taking the logarithm of both sides of
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Tail asymptotics of maximums on trees in the critical case

the equation, we obtain the classical Lindley’s equation related to the reflected random
walk. In general, Equation (1.1) is called the high-order Lindley equation and is a useful
tool in studying branching random walks. We refer to Aldous, Bandyopadhyay [1] and
Jelenković, Olvera-Cravioto [11] for a more complete bibliography on the subject and a
description of a class of other related stochastic equations.

We begin with explaining how to construct the endogenous solution to Equation (1.1).
Let T =

⋃
k≥0N

k be an infinite Ulam-Harris tree, where N0 = {∅}. For v = (i1, ..., in) we
define the length |v| = n and by vi we denote the vertex (i1, i2, ..., in, i). We write u < v

if u is a proper prefix of v, i.e. u = (i1, .., ik) for some k < n. Moreover, we write u ≤ v

if u < v or u = v. We will also use the lexicographical order on T , namely, for any pair
u = (i1, i2, ..., in), v = (j1, j2, ..., jk) ∈ T we write u ≺ v whenever n < k or in < jk for
n = k. Subsequently, we take {(N(v), B(v), A1(v), A2(v), ...)}v∈T a family of i.i.d. copies
of (N,B,A1, A2, ...) indexed by the vertices of T . Since Equation (1.1) depends only on
N first values of Ai’s, we can assume that Ai(v) = 0 for every v ∈ T and i > N(v). For
v ∈ T we also define a random variable L(∅) = 1 and L(vi) = L(v)Ai(v). We define

R =
∨
v∈T

L(v)B(v). (1.2)

One can conveniently deduce that if the maximum above is finite almost surely then the
random variable R satisfies (1.1) and it is called endogenous solution. Such a solution is
also referred to as the minimal solution since it is indeed minimal in the sense of natural
ordering of distributions, see Proposition 5 in [3]. We believe there are other solutions to
(1.1) and one can describe them using methods presented in [2], this problem is beyond
the scope of this article, though and we will focus on the endogenous solution because
of its minimality.

The properties of R are governed by the function

m(s) = E

[
N∑
i=1

As
i

]
.

Jelenković and Olvera-Cravioto [11] have recently studied the existence and the asymp-
totic properties of R in the case when the equation m(s) = 1 has two solutions 0 < α < β.
They proved, under a number of further assumptions, that R has a power-law distribution
of order β, i.e.

P [R > t] ∼ Ct−β , t → ∞

for some C > 0. In this paper we consider the critical case, when the equation m(s) = 1

has exactly one solution α and then m′(α) = 0. Our main result is the following.

Theorem 1.1. Suppose that

(A1) P [B > 0] > 0,

(A2) There exists α > 0 such that m(α) = E
[∑N

i=1 A
α
i

]
= 1,

(A3) m′(α) = E
[∑N

i=1 A
α
i logAi

]
= 0,

(A4) E[N ] > 1,

(A5) For some j the measure P[logAj ∈ du,Aj > 0, N ≥ j] is non-arithmetic,

(A6) E
[
Bα+δ +N1+δ +

∑N
i=1

(
A−δ

i +Aα+δ
i

)]
< ∞, for some δ > 0.

ECP 23 (2018), paper 48.
Page 2/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP145
http://www.imstat.org/ecp/


Tail asymptotics of maximums on trees in the critical case

Then the solution R of (1.1) given by (1.2) is well defined and

lim
t→∞

tαP[R > t] = C,

for some constant C > 0.

Equation (1.1) is similar to the linear stochastic equation (called also the smoothing
transform)

X
d
=

N∑
i=1

AiXi +B, (1.3)

where Xi are independent copies of X, which are also independent of a given sequence
of non-negative random variables (N,B,A1, A2, . . .). This equation was investigated in
a number of papers, see e.g. [5, 6, 7, 10, 12, 13]. In these papers the existence and
some further properties, including the asymptotic behavior, of the solutions to (1.3)
were considered. In particular, the techniques described therein can be applied in our
settings to study Equation (1.1). Let us underline that in the critical case studied in this
paper our results are stronger than those proved in [6] for the linear stochastic equation,
namely in [6] the asymptotic behavior of an endogenous solution to (1.3) was described
only for α < 1, whereas in our case we handle with arbitrary positive values of α.

Our model is closely related to branching random walk, which can be defined as
follows. An initial ancestor is located at the origin. Its N children, the first generation,
are placed in R according to the distribution of the point process Θ = {− logAi}Ni=1,
where N and {Ai} are as in (1.1). Each of the particles produces its own children who
are displaced relative to their parent according to the same distribution of Θ and thus
they form the second generation. This procedure perpetuates itself. The resulting system
is called a branching random walk.

Notice that if B = 1, thenM = − logR describes the global minimum of the branching
random walk, that is the leftmost position of all the particles in the system. Thus our
Theorem 1.1 implies that

lim
t→∞

eαtP[M < −t] = C

and C > 0. The same result, however under weaker hypotheses and using different
techniques based on the spinal decomposition, was independently proved by Madaule
[14].

The structure of the paper is the following. First, in Section 2 we prove lower and
upper estimates for P[R > t] and then in Section 3 we describe the asymptotic behavior.
The idea of our proof is fairly standard and we base on the arguments presented in [7]
and [6]. We define the function D(x) = eαxP[R > ex] on R and show that it satisfies the
Poisson equation

E
[
D(x+ Y )

]
= D(x) +G(x)

for some centered random variable Y on R and some function G having favourable
integrability properties. To obtain the asymptotics of D we cannot use the Poisson
equation directly, hence we apply some smoothing transform, in contrast to [6, 7], where
the proofs base on the Laplace transform. Thus, we follow the same way of reasoning,
omitting the parts which are similar and focusing on the elements of the proof requiring
new arguments.

2 Upper and lower estimates of R

The aim of this section is to provide upper and lower estimates for the tail of R
defined in (1.2).
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Tail asymptotics of maximums on trees in the critical case

Lemma 2.1. Under the assumptions of Theorem 1.1 there is a strictly positive constant
C such that for all t

tαP[R > t] ≤ C,

and for all large t
1

C
≤ tαP[R > t].

In particular, R is finite a.s.

Proof. Step 1. The many-to-one formula. We start with recalling a useful tool, called the
many-to-one formula. Let us introduce a random variable Y with distribution given by

E[f(Y )] = E

[
N∑
i=1

f(− logAi)A
α
i

]
, (2.1)

for any positive Borel function f . By (A2) the right hand side of the above defines a
probability measure. Moreover (A3), (A5) and (A6) imply that the random variable Y is
centered, non-arithmetic and has finite exponential moments, i.e.

E
[
e±δY

]
< ∞,

for some δ > 0.
Now, let {Yi} be a sequence of independent copies of Y defined by (2.1) and let Sn

be the sequence of their partial sums, Sn =
∑n

k=1 Yk. For a fixed n and any test function
f : Rn → R, the following many-to-one formula holds

E
[
eαSnf(S1, ..., Sn)

]
= E

[ ∑
|v|=n

f(− logL(v1), ...,− logL(vn))

]
, (2.2)

where for particle v with length n we denote v1, v2, ..., vn = v its ancestors at levels
1, 2, ..., n respectively. For the proof see e.g. Theorem 1.1 in Shi [16].

Step 2. The linear stochastic equation. We remind the estimates proved by Buraczewski
and Kolesko [6] for the minimal solution to the linear stochastic equation (1.3) in the
inhomogeneous case. ’Inhomogeneous’ means that the B-term does not reduce to 0. All
the solutions to this equation were described by Alsmeyer and Meiners [2]. In particular,
the minimal solution is given by

R̃ =
∑
v∈T

L(v)B(v),

assuming that the above series is finite a.s. If 0 < α < 1, then, under the hypotheses of
Theorem 1.1, the random variable R̃ is finite a.s. and moreover

P[R̃ > t] ∼ C̃t−α, (2.3)

for some C̃ > 0 (see [6], Theorem 1.1 and Proposition 2.1). Since the results in [6] are
proved only for α < 1 we split the proof into two cases. Primarily, we assume that α < 1

and we apply directly the results stated above. Next, we reduce the general situation to
this case.

Step 3. Estimates for α < 1 Assume that α < 1 and choose 0 < δ < 1− α. For the upper
bound, it suffices to note that

P [R > t] ≤ P
[
R̃ > t

]
,

and the desired estimates on the right-hand side come from Proposition 2.1 in [6].
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Tail asymptotics of maximums on trees in the critical case

To prove the lower bound we treat separately the case with B = 1 a.s and that of
when B is arbitrary.

Step 3a. First, let us assume that B = 1 a.s. For large M > 0, whose precise value will
be specified below, we write

P
[
R̃ > Mt

]
≤ P [R > t] + P

[
{R ≤ t} ∩ {R̃ > Mt}

]
.

Taking γ = α+ δ, we have

P
[
{R ≤ t} ∩ {R̃ > Mt}

]
≤ P

[∑
v∈T

L(v)1(L(v′) ≤ t for v′ ≤ v) > Mt

]

≤ P

[∑
v∈T

Lγ(v)1(L(v′) ≤ t for v′ ≤ v) > Mγtγ

]

≤ M−γt−γE

[∑
v∈T

Lγ(v)1(L(v′) ≤ t for v′ ≤ v)

]
.

Using the many-to-one formula (2.2) we obtain

E

[∑
v∈T

Lγ(v)1(L(v′) ≤ t for v′ ≤ v)

]
=
∑
n

E

∑
|v|=n

Lγ(v)1(L(v′) ≤ t for v′ ≤ v)


=
∑
n

E
[
eαSne−γSn1(Sk + log t ≥ 0 for k ≤ n)

]
=
∑
n

E
[
e−δ(Sn+log t)tδ1(Sk + log t ≥ 0 for k ≤ n)

]
= tδW (log t),

for

W (x) = E

[ ∞∑
i=0

e−δ(x+Si)1(Sj + x ≥ 0 for j ≤ i)

]
(2.4)

which is a bounded function (see Lemma 2.2 in [6]). The above implies

P
[
R̃ > Mt

]
≤ P [R > t] + C1M

−γt−α.

Conversely, by (2.3), we have the lower estimate

P
[
R̃ > Mt

]
> C2M

−αt−α,

for some C2 > 0 and large enough t. Therefore, taking M large enough, we can find
C > 0 such that

P [R > t] > Ct−α. (2.5)

Step 3b. We now consider the general B. Let us define R′ =
∨

v∈T L(v). By (A1) there
is some M > 0 for which P [B > M ] > 0. Since for any v ∈ T the random variables L(v)
and B(v) are independent, we can write
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Tail asymptotics of maximums on trees in the critical case

P [R > t] = P [L(v)B(v) > t for some v ∈ T ]

≥ P [L(v)B(v) > t and B(v) > M for some v ∈ T ]

≥ P [L(v) > t/M and B(v) > M for some v ∈ T ]

≥
∑
v∈T

P [L(v) > t/M,B(v) > M and L(u) ≤ t/M for any u ≺ v]

= P [B > M ]
∑
v∈T

P [L(v) > t/M and L(u) ≤ t/M for any u ≺ v]

= P [B > M ]P [L(v) > t/M for some v ∈ T ]

= P [B > M ]P [R′ > t/M ] .

From the discussion in step 3a there is C > 0 such that

P [R′ > t/M ] > CMαt−α,

hence
P [R > t] ≥ t−αCMαP [B > M ] .

Step 4. Estimates for α ≥ 1. Consider now α ≥ 1. Take any α0, δ0 such that 0 < α0+δ0 < 1

and αδ0
α0

< δ. Define
(
B,A1, A2, ...

)
=
(
Bα/α0 , A

α/α0

1 , A
α/α0

2 , ...
)
and R =

∨
v∈T L(v)B(v),

where L(v) is defined analogously to L(v) but using new weights Ai. We write

P [R > t] = P

[∨
v∈T

L(v)B(v) > t

]
= P

[∨
v∈T

(
L(v)B(v)

)α0/α
> t

]

= P

[∨
v∈T

L(v)B(v) > tα/α0

]
,

and the right hand side of the above is properly bounded by the estimates given in
step 3.

3 Asymptotics of R

To prove the precise asymptotic of R we adopt to our settings the arguments pre-
sented by Durrett and Liggett [7] (see also [4, 6]), where the problem was reduced to
studying the asymptotic properties of the solutions to a Poisson equation.

We define φ(x) = P[R > x] and D(x) = eαxφ(ex). Our aim is to prove

lim
x→∞

D(x) = C.

Lemma 3.1. Under assumptions of Theorem 1.1 the function D satisfies the following
Poisson equation

E[D(x+ Y )] = D(x) +G(x), (3.1)

where

G(x) = eαxE

[
N∑
i=1

φ

(
ex

Ai

)
− 1 + 1(B ≤ ex)

N∏
i=1

(
1− φ

(
ex

Ai

))]
(3.2)

and Y is the random variable defined in (2.1).
Moreover

lim
x→∞

G(x) = 0, (3.3)

and there is ε > 0 such that
eε|x|G(x) ∈ L1(R). (3.4)

ECP 23 (2018), paper 48.
Page 6/11

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP145
http://www.imstat.org/ecp/


Tail asymptotics of maximums on trees in the critical case

Proof. The formula (3.2) stems directly from the recursion formula (1.1), the definition
of Y and the many-to-one formula (2.2)

Step 1. Proof of (3.3). We decompose G as a difference of two functions

G(x) = eαxE

[
N∑
i=1

φ

(
ex

Ai

)
− 1 +

N∏
i=1

(
1− φ

(
ex

Ai

))]

− eαxE

[
1(B > ex)

N∏
i=1

(
1− φ

(
ex

Ai

))]
= f1(x)− f2(x).

(3.5)

Notice that f1 is positive. Indeed, it is sufficient to apply the following inequality, valid
for 0 ≤ ui ≤ vi ≤ 1 (see [7], p. 283):

n∏
i=1

ui − 1 +

n∑
i=1

(1− ui) ≥
n∏

i=1

vi − 1 +

n∑
i=1

(1− vi)

with ui = 1− φ
(

ex

Ai

)
and vi = 1.

Initially, we show that f1(x) tends to 0. For this purpose recall an elementary
inequality

u ≤ e−(1−u),

valid for any real u and write

f1(x) ≤ eαxE

[
N∑
i=1

φ

(
ex

Ai

)
− 1 +

N∏
i=1

(
e
−φ

(
ex

Ai

))]

= eαxE

[
N∑
i=1

φ

(
ex

Ai

)
− 1 + e

−
∑N

i=1 φ
(

ex

Ai

)]

= eαxE

[
F

(
N∑
i=1

φ

(
ex

Ai

))]
,

where F (u) = e−u − 1 + u. Observe that the function F is increasing on [0,∞), therefore
by Lemma 2.1.

eαxE

[
F

(
N∑
i=1

φ

(
ex

Ai

))]
≤ eαxE

[
F

(
Ce−αx

N∑
i=1

Aα
i

)]
.

Note that H(u) = F (u)
u is bounded and tends to 0 as u → 0. These observations and the

dominated convergence theorem give us

lim sup
x→∞

f1(x) ≤ lim sup
x→∞

eαxE

[
F

(
Ce−αx

N∑
i=1

Aα
i

)]

= lim sup
x→∞

eαxE

F
(
Ce−αx

∑N
i=1 A

α
i

)
Ce−αx

∑N
i=1 A

α
i

Ce−αx
N∑
i=1

Aα
i


= C lim sup

x→∞
E

[
H

(
Ce−αx

N∑
i=1

Aα
i

)
N∑
i=1

Aα
i

]

= C lim sup
t→0

E

[
H

(
t

N∑
i=1

Aα
i

)
N∑
i=1

Aα
i

]
= 0.
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Tail asymptotics of maximums on trees in the critical case

To bound f2 we use Chebyshev’s inequality with α < β < α+ δ

f2(x) = eαxE

[
1(B > ex)

N∏
i=1

(
1− φ

(
ex

Ai

))]
≤ eαxP(B > ex) ≤ E

[
Bβ
]
ex(α−β) → 0,

as x → ∞.

Step 2. Proof of (3.4). Once more we use decomposition (3.5). Take any 0 < ε <

min(α/2, δ). Let us first consider function eε|x|f1(x). To show the integrability on (∞, 0],
recall that f1 is positive and use Chebyshev’s inequality with ε

e−εxf1(x) ≤ e(α−ε)xE

[
N∑
i=1

φ

(
ex

Ai

)]
+ e(α−ε)x

≤ e(α−ε)xE

[ N∑
i=1

e−εxAε
i

]
+ e(α−ε)x

≤ Ce(α−2ε)x,

hence the integral
∫ 0

−∞ e−εxf1(x)dx is finite. To proceed with the right tail we employ
the fact that F is an increasing function on [0,∞) and F (u) ≤ u. Choose β such that
3
4α < β < α. Again using Chebyshev’s inequality we write

∫ ∞

0

eεxf1(x)dx ≤
∫ ∞

0

e(α+ε)xE

[
F

(
N∑
i=1

φ

(
ex

Ai

))]
dx

≤
∫ ∞

0

e(α+ε)xE

[
F

(
N∑
i=1

E[Rβ ]e−βxAβ
i

)]
dx

= E

[∫ ∞

0

e(α+ε)xF

(
E[Rβ ]e−βx

N∑
i=1

Aβ
i

)
dx

]
,

where the last equality holds by Fubini’s theorem.
We now use a substitution u = E[Rβ ]e−βx

∑N
i=1 A

β
i and again by Fubini’s theorem we

obtain

E

[∫ ∞

0

e(α+ε)xF

(
E[Rβ ]e−βx

N∑
i=1

Aβ
i

)
dx

]
≤ E

∫ ∞

0

1

β

(
C

N∑
i=1

Aβ
i

)α+ε
β

F (u)

u1+α+ε
β

du


= CE

( N∑
i=1

Aβ
i

)α+ε
β

∫ ∞

0

F (u)

u1+α+ε
β

du.

To show that the above is finite, we write∫ ∞

0

F (u)

u1+α+ε
β

du =

∫ 1

0

F (u)

u1+α+ε
β

du+

∫ ∞

1

F (u)

u1+α+ε
β

du.

To estimate the first integral we only need to bound the integrand near zero. To obtain
this, it is sufficient to observe that limu→0

F (u)
u2 = 1

2 and our assumptions on β and ε imply
α+ε
β < 2. For the second integral notice that F (u) ≤ u for any u ≥ 0, therefore∫ ∞

1

F (u)

u1+α+ε
β

du < ∞.
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Tail asymptotics of maximums on trees in the critical case

For the expectation factor we use the inequality

E

[(
N∑
i=1

X
1/r
i

)p]
≤ Cr,pE

[
N∑
i=1

Xi

]
,

valid, under assumption E[N1+δ] < ∞ for any sequence of positive random variables
{Xi}, r > 1 and p ∈ (1, r(1+δ)

r+δ ) (see [6], Lemma 3.4). Plugging r = α+ε
α and Xi = Arβ

i we
obtain

E

( N∑
i=1

Aβ
i

)α+ε
β

 < ∞.

The integrability of eε|x|f2(x) stems smoothly from Chebyshev’s inequality. Indeed,
once more take α+ ε < β < α+ δ

eε|x|f2(x) ≤ eε|x|eαP [B > ex] ≤ Cmin(ex(α−ε), ex(α+ε−β)).

This completes the proof of the Lemma.

Our aim is to deduce the asymptotic properties of the function D, knowing that it
is a solution to the Poisson equation (3.1) for some well behaved function G. A typical
argument reduces the problem to the key renewal theorem, which, in turn, requires G to
be directly Riemann integrable (see [8] for the precise definition). For this purpose we
ought to prove some local properties of G and this cannot be done directly. To avoid this
problem we proceed as in Goldie’s paper [9] and for an integrable function f we define
the smoothing operator

f̆(x) =

∫ x

−∞
e−(x−u)f(u)du.

Note that f(x) ≶ M implies f̆(x) ≶ M , limx→±∞ f(x) = 0 implies limx→±∞ f̆(x) = 0 and∫
R
f̆(x)dx =

∫
R
f(x)dx. Moreover, f̆ is always a continuous function and if f is integrable,

then f̆ is directly Riemann integrable (dRi) (see Goldie [9], Lemma 9.2).

Smoothing both sides of Equation (3.1) we obtain

E[D̆(x+ Y )] = D̆(x) + Ğ(x). (3.6)

Notice that Ğ has now better properties than G. Before we pass to the proof of our main
result we formulate the further Lemmas.

Lemma 3.2. For any y ∈ R we have

lim
x→∞

D̆(x+ y)

D̆(x)
= 1. (3.7)

Proof. Take K large enough to ensure that for any x ≥ K we have D(x) > 0. We define a
family {hx}x≥K of continuous functions by

hx(y) =
D̆(x+ y)

D̆(x)
.

Such a family and its properties were already considered e.g. in [6, 7, 12], with a slightly
different definition of the functionD, though. Notice that the family {hx}x≥K is uniformly
bounded and equicontinuous. Indeed, boundedness is straightforward since by (2.5) and
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Lemma 2.1 one has D(x) ≤ C and D(x) > 1
C > 0 for x sufficiently large and hence the

same holds for D̆. To obtain the equicontinuity, for h > 0, we write

|hx(y + h)− hx(y)| ≤
1

C

∣∣∣∣∣
∫ x+y+h

−∞
e−(x+y+h−u)D(u)du−

∫ x+y

−∞
e−(x+y−u)D(u)du

∣∣∣∣∣
=

1

C

∣∣∣∣∣
∫ x+y+h

x+y

e−(x+y+h−u)D(u)du−
∫ x+y

−∞
e−(x+y−u)D(u)(1− e−h)du

∣∣∣∣∣
≤ 1

C

(
h+ 1− e−h

)
→ 0 as h → 0

and the very last expression does not depend on x (it does not depend on y as well, so
we obtain even a uniform equicontinuity).

In view of the Arzelà-Ascoli theorem, the family {hx}x≥K is relatively compact in the
topology induced by the uniform norm on compact sets. We conclude that there is a
sequence xn → ∞ and h such that hxn → h uniformly.

Using (3.6) we write

D̆(x+ y) = E[D̆(x+ y + Y )]− Ğ(x+ y),

which we divide by D̆(x), to obtain

hx(y) = E [hx(y + Y )]− Ğ(x+ y)

D̆(x+ y)
hx(y). (3.8)

By Lemma 2.1 we have D(x) > C, hence also D̆(x) > C for any sufficiently large x.
Thus, by Lemma 3.1 we see that

lim
x→∞

Ğ(x)

D̆(x)
= 0. (3.9)

Passing with xn → ∞ in (3.8), using (3.9), and the dominated convergence theorem,
yield

h(y) = E [h(y + Y )] .

As a consequence of Choquet-Deny theorem (see e.g. [15], Theorem 1.3 in Chapter 5),
any positive Y -harmonic function is constant, thus we see that h(y) = h(0) = 1. It implies
that h is the unique accumulation point and (3.7) holds.

Now we are ready to prove our main result.

Proof of Theorem 1.1. Using Lemma 3.1, Lemma 3.2 and the bounds on D̆(x) we can
proceed exactly in the same way as in the proof of Proposition 3.11 in [6] putting Ğ and
D̆ in place of G and D therein, to conclude

lim
x→∞

D̆(x) = C, (3.10)

for some 0 ≤ C < ∞.
It remains to observe that

lim
x→∞

D̆(x) = lim
x→∞

∫ x

−∞
e−(x−u)D(u)du = lim

x→∞
e−x

∫ ex

0

D(log t)dt

= lim
x→∞

1

x

∫ x

0

D(log t)dt = lim
t→∞

tαP[R > t],

where the last equality is a consequence of Lemma 9.3 in [9].
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For the positivity of C in (3.10) one can mimic the reasoning from the proof of
Theorem 3.32 in [6], here we will slightly modify an argument given there, though.
Namely, the final conclusion follows from the equation (3.33) in [6]

E[Rz] =
zH(z)

(m(z)− 1)Γ(1− z)
.

Under stated assumptions α is a root of multiplicity at least two of H. Since the func-
tion m is strictly convex and m(α)− 1 = m′(α) = 0, m′′(α) > 0, α is a root of multiplicity
exactly two ofm(z)−1. The formula above implies that α is a removable singularity of the
function z 7→ E[Rz]. Therefore, this function can be extended analytically to some small
complex neighborhood of α. Now, the Landau Theorem (Theorem 3.31 in [6]) implies
that E[Rz] can be extended holomorphically to some strip 0 < <z < α+ ε, in particular
E[Rz+ε/2] is finite, contradicting to previously proved lower estimates (Corollary 3.7 in
[6]).
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