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Abstract

In this note, we establish the Harnack inequality and derivative formula for stochastic
heat equation driven by fractional noise with Hurst indexH ∈ ( 1
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1 Introduction and main results

Harnack inequality for stochastic partial differential equations is a recent research
direction in probability theory. For results on Harnack inequality and related Derivative
formula for stochastic differential equations we refer to, among others, X. Fan [3], F.
Wang [10], F. Wang and J. Wang [11], F. Wang and Yuan [13], F. Wang and Zhang [14],
L. Wang and X. Zhang [15], T. Zhang [16], X. Zhang [17, 18]. However, in contrast to
the extensive studies on Harnack inequality for stochastic differential equations, there
has been little systematic investigation on Harnack inequality for stochastic partial
differential equations. The main reasons for this, in our opinion, are the complexity
of dependence structures of solutions to SPDEs. We mention the works Bao et al [1],
Liu [5], Wang [10]. On the other hand, SPDEs driven by fractional noise also is a recent
research direction in probability theory, and it is very limited to study Harnack inequality
for such SPDEs.

Motivated by these results, in this note we consider the Harnack inequality and the
derivative formula associated with the following stochastic heat equation with Dirichlet
boundary condition:

∂
∂tu(t, x) = ∆u(t, x) + ẆH(t, x), t ≥ 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = f(x), x ∈ [0, 1],

(1.1)
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Harnack inequality for SHE with Fractional noise

where f(x) ∈ H := L2([0, 1]) and WH is the fractional noise. Clearly, the solution of
the above equation depends on the initial value f . So, we write u(t, x) = u(t, f, x) and
u(t, f) = u(t, f, ·) for all t ≥ 0. Let Bb(H) be the space of all bounded measurable
functions on H and define the operators Pt, t ≥ 0 by

PtG(f) = E[G(u(t, f))]

for G ∈ Bb(H), f(x) ∈ H. We also introduce the derivative operator D by

DgPTG(f) := lim
ε→0

PTG(f + εg)− PTG(f)

ε

provided the limit in the right-hand side exists, where G ∈ Bb(H) and f, g ∈ H.
Our main aims are to expound and prove the next theorems.

Theorem 1.1. Let u is the solution of the above equation. If 1
4 < H < 1

2 , then for any
non-negative function G ∈ Bb(H) and p > 1, T > 0, we have

(PTG(f2))
p ≤ (PTG

p)(f1) exp
(
CH,T

p

p− 1
‖f1 − f2‖2H

)
, 0 ≤ f1, f2 ∈ H, (1.2)

where

CH,T =
Γ2( 32 −H)T−2

(4− 4H)Γ2(2− 2H)

with Γ(·) being the classical Gamma function.

Theorem 1.2. Under the conditions of Theorem 1.1. If 1
4 < H < 1

2 , we then have

DgPTG(f) = E[G(u(T, f))ηT ],

for any T > 0, f, g ∈ H and G ∈ Bb(H), where

ηT =
1

T

∫ T

0

∫ 1

0

sH− 1
2 I

1
2−H
0+ s

1
2−Hζ(s, x)W (ds, dx)

and ζ(s, x) =
∫ 1

0
p(s, x− y)g(y)dy.

The rest of the paper is organized as follows. In Section 2, we recall some basic
results about fractional noise WH . In Section 3 and Section 4, we prove the above
theorems.

2 Preliminaries

A centered Gaussian process WH = {WH(t, A), t ∈ [0, T ], A ∈ B([0, 1])} defined on a
complete probability spaces (Ω,F , (Ft),P) is called a fractional noise if its covariance
function admits the representation

E(WH(t, A)WH(s,B)) =
1

2
(t2H + s2H − |t− s|2H)λ(A ∩B)

for all s, t ∈ [0, T ] and A,B ∈ B([0, 1]), where λ is the Lebesgue measure. Let E be the set
of step functions on [0, T ]× [0, 1] and let H be the Hilbert space defined as the closure of
E with respect to the scalar product

〈1[0,t]×A, 1[0,s]×B〉H = E(WH(t, A)WH(s,B))

for all s, t ∈ [0, T ] and A,B ∈ B([0, 1]). The linear mapping

E 3 ϕ 7→WH(ϕ) :=

∫ T

0

∫ 1

0

ϕ(t, x)WH(dt, dx)
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Harnack inequality for SHE with Fractional noise

defined by 1[0,t]×A 7→ WH(t, A) can be extended as an isometry between H and the
Gaussian spaces associated with WH . We call this is the Wiener integral with respect to
WH , denoted by

WH(ϕ) =

∫ T

0

∫ 1

0

ϕ(s, y)WH(ds, dy)

for ϕ ∈ H.
Consider the kernel function

KH(t, s) = cH(t− s)H− 1
2 + cH(

1

2
−H)

∫ t

s

(u− s)H− 3
2

(
1−

( s
u

) 1
2−H

)
du

with t > s > 0, where cH =
(

2HΓ( 2
3−H)

Γ(H+ 1
2 )Γ(2−2H)

) 1
2

. With the help of KH , one can show the

Cameron-Martin space H is the set of f which can be written as

f(t, x) =

∫ T

0

∫ 1

0

KH(t, s)f̃(s, x)dsdx

for some f̃ ∈ L2([0, T ]× [0, 1]).
Define the linear operator K∗

H from E to L2([0, T ]) as follows

(K∗
Hϕ)(s, x) = KH(T, s)ϕ(s, x) +

∫ T

s

(ϕ(r, x)− ϕ(s, x))
∂KH

∂r
(r, s)dr.

Then, we have
(K∗

H1[0,t]×A)(s, x) = KH(t, s)1[0,t]×A

and
〈K∗

Hϕ,K
∗
Hφ〉L2([0,T ]×[0,1]) = 〈ϕ, φ〉H

for all ϕ,ψ ∈ E , which show that the operator K∗
H provides an isometry between

E and L2([0, T ] × [0, 1]), which can be extended to H. Hence, the Gaussian family
W = {W (t, A), t ∈ [0, T ], A ∈ B([0, 1])} defined by

W (t, A) =WH((K∗
H)−11[0,t]×A)

is a space-time white noise, and

WH(t, A) =

∫
[0,t]×A

KH(t, s)W (ds, dy)

for all t ∈ [0, T ] and A ∈ B([0, 1]).
Lemma 2.1. We have∫ T

0

∫ 1

0

ϕ(s, y)WH(ds, dy) =

∫ T

0

∫ 1

0

K∗
Hϕ(s, y)W (ds, dy)

and

E[WH(ψ)WH(ϕ)] =

∫ T

0

∫ 1

0

K∗
Hϕ(t, x)K

∗
Hψ(t, x)dxdt,

and in particular, when 1
2 < H < 1 we have

E[WH(ψ)WH(ϕ)] = αH

∫
[0,T ]2

|t− s|2H−2dsdt

∫ 1

0

ψ(s, x)ϕ(t, x)dx

for ϕ,ψ ∈ H, where αH = H(2H − 1).
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Harnack inequality for SHE with Fractional noise

It is proved in [2] that the operator KH : L2([0, T ]) → I
H+ 1

2
0+ (L2([0, T ])) defined

by (KHf)(t) =
∫ t

0
KH(t, s)f(s)ds, f ∈ L2([0, T ]) is an isomorphism and it has the follow-

ing expression: for any f ∈ L2([0, T ])

(KHf)(s) =

{
I10+s

1
2−HI

H− 1
2

0+ s
1
2−Hf, H > 1

2 ,

I2H0+ s
1
2−HI

1
2−H
0+ sH− 1

2 f, H < 1
2 ,

where Iα0+ is the α-order left Riemann-Liouville fractional integral on [0, T ],

(Iα0+f)(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, α > 0.

The inverse operator K−1
H is given by

(K−1
H f)(s) =

{
sH− 1

2D
H− 1

2
0+ s

1
2−Hf ′, H > 1

2 ,

s
1
2−HD

1
2−H
0+ sH− 1

2D2H
0+ f, H < 1

2 ,

for all f ∈ I
H+ 1

2
0+ (L2([0, T ])), where Dα

0+ is the α-order left Riemann-Liouville deriva-
tion, i.e.

(Dα
0+f)(t) =

1

Γ(1− α)

d

dt

∫ t

0

f(s)

(t− s)α
ds, 0 < α < 1.

If f is absolutely continuous and H < 1
2 , it can be proved that

(K−1
H f)(s) = sH− 1

2 I
1
2−H
0+ s

1
2−Hf ′. (2.1)

Recall that WH is an Ft-fractional noise if it is a fractional noise such that the space-
time white noise W (t, A) defined above is Ft-adapted and for each t ∈ [0, T ], {W (s,A)−
W (t, A), A ∈ B([0, 1]), t ≤ s ≤ T} are independent of Ft. Given an Ft-adapted process
with integrable trajectories

ξ = {ξ(t, x), t ∈ [0, T ], x ∈ [0, 1]}.

Consider the transformation

W̄H(t, A) =WH(t, A) +

∫ t

0

∫
A

ξ(s, y)dyds.

Let W̄ (ds, dy) =W (ds, dy) +K−1
H

(∫ ·
0
ξ(r, y)dr

)
(s)dsdy, then

W̄H(t, A) =

∫ t

0

∫
A

KH(t, s)W̄ (ds, dy)

and the following Girsanov theorem for fractional noise holds:

Theorem 2.2 (Nualart and Ouknine [6]). Assume that

(i)
∫ ·
0
ξ(r, y)dr ∈ I

H+ 1
2

0+ (L2([0, T ]))⊗ L2([0, 1]), a.e.,
(ii) ELT = 1, where

LT = exp

[
−
∫ T

0

∫ 1

0

K−1
H

(∫ ·

0

ξ(r, y)dr

)
(s)W (ds, dy)

−1

2

∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0

ξ(r, y)dr

)
(s)

)2

dsdy

]
,

then W̄H is an Ft-fractional noise with Hurst index H under the new probability dP̃ =

LT dP.
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Harnack inequality for SHE with Fractional noise

3 Proof of Theorem 1.1

Following Walsh [8], an adapted process {u(t, x), t ≥ 0, x ∈ [0, 1]} is said to be a mild
solution of (1.1), if

u(t, x) =

∫ 1

0

p(t, x− y)f(y)dy +

∫ t

0

∫ 1

0

p(t− s, x− y)WH(ds, dy), (3.1)

where p(t, x) is the fundamental solution of the heat equation on R× [0, 1] with Dirichlet
boundary condition. It is clear that the fundamental solution p(t, x) satisfies

p(t, x) ≤ 1√
4πt

exp
(
−x

2

4t

)
for all t ≥ 0 and x ∈ [0, 1]. Clearly, the solution depends on the initial value f . So, for
notational simplicity we write u(t, x) = u(t, f, x) and u(t, f) = u(t, f, ·) for all t ≥ 0. We
say u(t, f) is a solution to (1.1) if and only if∫ 1

0

u(t, f)ϕ(x)dx−
∫ 1

0

f(x)ϕ(x)dx

=

∫ t

0

∫ 1

0

u(s, f)ϕ′′(x)dxds+

∫ t

0

∫ 1

0

ϕ(x)WH(ds, dx)

(3.2)

for all t ≥ 0 and ϕ ∈ C2([0, 1]) satisfying the next conditions:

• ϕ′(0) = ϕ′(1) = 0 and the integral∫ t

0

∫ 1

0

ϕ(x)WH(ds, dx) =

∫ t

0

∫ 1

0

KH(t, s)ϕ(x)W (ds, dx)

is well defined.

Let en(x) =
√
2 sin(nπx), n ≥ 1 be the eigenfunctions of ∆ = ∂2

∂x2 with Dirichlet boundary
conditions. Then, {en, n ≥ 1} constitutes an orthonormal system of H. Combining this
with (3.2), we get

u(t, f) = f(x) +

∫ t

0

∆u(s, f)ds+BH(t), (3.3)

where

BH(t) =

∞∑
n=1

∫ t

0

∫ 1

0

en(x)W
H(ds, dx)en

is a cylindrical fractional Brownian motion in H. Recall that Bb(H) denotes the space of
all bounded measurable functions on H and the operators Pt, t > 0 are defined by

PtG(f) = E[G(u(t, f))]

for all G ∈ Bb(H).

Proof of Theorem 1.1. We will prove the theorem in the three steps.
Step 1. For f1, f2 ∈ H, consider equation

∂
∂tv(t, x) = ∆v(t, x)

+ 1
T

u(t,f1)−v(t,f2)
‖u(t,f1)−v(t,f2)‖H ‖f1 − f2‖H1{t<τ} + ẆH(t, x), t ≥ 0, x ∈ [0, 1],

v(t, 0) = v(t, 1) = 0, t ≥ 0,

v(0, x) = f2(x), x ∈ [0, 1],
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Harnack inequality for SHE with Fractional noise

where τ := inf{s ≥ 0, u(s, f1) = v(s, f2)}. Let A(t, v) = ∆v + u(t,x)−v
‖u(t,x)−v‖H1{v 6=u(t,x)}. It

follows from the proof of Theorem A.2 in [9] that the operator A(t, v) satisfies (A1)-(A4)
in [9]. Then by a similar argument with Theorem II.2.1 and II.2.2 in [4], we can derive
that the above equation has a unique solution

v(t, f2) = f2(x) +

∫ t

0

∆v(s, f2)ds+BH(t)

+
1

T

∫ t

0

u(s, f1)− v(s, f2)

‖u(s, f1)− v(s, f2)‖H
‖f1 − f2‖H1{s<τ}ds

for all t ∈ [0, T ]. Then,

u(t, f1)− v(t, f2) = f1 − f2 +

∫ t

0

∆(u(s, f1)− v(s, f2))ds

− 1

T

∫ t

0

u(s, f1)− v(s, f2)

‖u(s, f1)− v(s, f2)‖H
‖f1 − f2‖H1{s<τ}ds

for all t ∈ [0, T ]. By the chain rule, we have

‖u(t ∧ τ, f1)− v(t ∧ τ, f2)‖H

= ‖f1 − f2‖H −
∫ t

0

‖f1 − f2‖H
T

1{s<τ}ds

+

∫ t∧τ

0

〈u(s, f1)− v(s, f2),∆(u(s, f1)− v(s, f2))〉H
‖u(s, f1)− v(s, f2)‖H

ds.

Notice that the operator ∆ is negative. We get

‖u(t ∧ τ, f1)− v(t ∧ τ, f2)‖H ≤ ‖f1 − f2‖H − t ∧ τ
T

‖f1 − f2‖H.

for all t ∈ [0, T ], which implies u(T, f1) = v(T, f2) a.s. on {τ > T}, and on {τ ≤ T} we
also have u(T, f1) = v(T, f2) and

‖u(t ∧ τ, f1)− v(t ∧ τ, f2)‖H = ‖u(t, f1)− v(t, f2)‖H1{t≤τ}

≤ T − t

T
‖f1 − f2‖H1{t≤τ}

for all t ∈ [0, T ].

Step 2. Define

ξ(s, x) :=
u(s, f1)− v(s, f2)

‖u(s, f1)− v(s, f2)‖H
· ‖f1 − f2‖H

T
1{s<τ}

and

W̃ (ds, dy) :=W (ds, dy) +K−1
H

(∫ ·

0

ξ(r, y)dr

)
(s)dsdy

for s ∈ [0, T ] and x ∈ [0, 1]. Then, we have that

W̃H(t, A) =

∫ t

0

∫
A

KH(t, s)W̃ (ds, dy)

=WH(t, A) +

∫ t

0

∫
A

ξ(s, y)dsdy, t ∈ [0, T ], A ∈ B((0, 1])
(3.4)
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Harnack inequality for SHE with Fractional noise

defines an fractional noise under the probability measure dQ = LT dP, where

LT = exp

[
−
∫ T

0

∫ 1

0

K−1
H

(∫ ·

0

ξ(r, y)dr

)
(s)W (ds, dy)

−1

2

∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0

ξ(r, y)dr

)
(s)

)2

dsdy

]
.

(3.5)

For this purpose, we need to show the conditions of Theorem 2.1 hold. Observe that
condition (i) is equivalent to

K−1
H

(∫ ·

0

ξ(r, y)dr
)
(s) ∈ L2([0, T ]× [0, 1]), a.e. (3.6)

and condition (ii) follows from Novikov criterion. Now, we verify (3.6), we have∣∣∣∣K−1
H

(∫ ·

0

ξ(r, y)dr
)
(s)

∣∣∣∣ = ∣∣∣sH− 1
2 I

1
2−H
0+ s

1
2−Hξ(s, y)

∣∣∣
=

1

Γ( 12 −H)
sH− 1

2

∫ s

0

|ξ(r, y)|r 1
2−H(s− r)−

1
2−Hdr

≤ ‖f1 − f2‖H
Γ( 12 −H)T

sH− 1
2

∫ s

0

|u(r, f1)− v(r, f2)|
‖u(r, f1)− v(r, f2)‖H

r
1
2−H(s− r)−

1
2−Hdr,

(3.7)

thus, ∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0

ξ(r, y)dr
)
(s)

)2

dsdy

≤ ‖f1 − f2‖2H
Γ2( 12 −H)T 2

·
∫ T

0

∫ 1

0

s2H−1

(∫ s

0

|u(r, f1)− v(r, f2)|r
1
2−H(s− r)−

1
2−H

‖u(r, f1)− v(r, f2)‖H
dr

)2

dyds.

Combining this and Minkowski’s integral inequality, we get∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0

ξ(r, y)dr
)
(s)

)2

dsdy

≤ ‖f1 − f2‖2H
Γ2( 12 −H)T 2

∫ T

0

s2H−1ds

·

[∫ s

0

r
1
2−H(s− r)−

1
2−H

(∫ 1

0

[u(r, f1)− v(r, f2)]
2

‖u(r, f1)− v(r, f2)‖2H
dy

) 1
2

dr

]2

=
‖f1 − f2‖2H

Γ2( 12 −H)T 2

∫ T

0

s2H−1

(∫ s

0

r
1
2−H(s− r)−

1
2−Hdr

)2

ds

=
B2( 32 −H, 12 −H)‖f1 − f2‖2H

(2− 2H)T 2HΓ2( 12 −H)
<∞.

(3.8)

Thus (3.6) is a direct consequence of (3.8). On the other hand, (3.8) implies

E exp

[
1

2

∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0

ξ(r, y)dr
)
(s)

)2

dsdy

]
<∞.

Using the Novikov criterion, we obtain ELT = 1.
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Step 3. We can rewrite v(t, f2) as

v(t, f2) = f2(x) +

∫ t

0

∆v(s, f2)ds+ B̃H(t), (3.9)

where B̃H(t) =
∑∞

n=1

∫ t

0

∫ 1

0
en(x)W̃

H(ds, dx)en is an cylindrical fractional Brownian mo-
tion under dQ = LT dP. It follows that the law of v(t, f2) under Q is the same as u(t, f2)
under P. Thus,

PTG(f2) = E(G(u(T, f2))) = E(LTG(v(T, f2))) = E(LTG(u(T, f1))).

LetMT = −
∫ T

0

∫ 1

0
K−1

H

(∫ ·
0
ξ(r, y)dr

)
(s)W (ds, dy). We then have

E
(
L

p
p−1

T

)
= E exp

[
p

p− 1
MT − p

2(p− 1)
〈M〉T

]
= E exp

[
p

p− 1
MT − 1

2

p2

(p− 1)2
〈M〉T +

p

2(p− 1)2
〈M〉T

]
≤ exp

[
CH

p

T 2(p− 1)2
‖f1 − f2‖2H

] (3.10)

with CH =
Γ2( 3

2−H)

(4−4H)Γ2(2−2H) . By using Hölder’s inequality, we have

(PTG(f2))
p = [E(LTG(u(T, f1)))]

p

≤ (PTG
p)(f1)

[
EL

p
p−1

T

]p−1

≤ (PTG
p)(f1) exp

[
CH

p

T 2(p− 1)
‖f1 − f2‖2H

]
for any f1, f2 ∈ H, and the theorem follows.

As an immediate consequence of Theorem 1.1 and a preliminary proving Theorem 1.2,
we can introduce the following proposition whose proof is very similar to Zhang [16].

Proposition 3.1. Let 1
4 < H < 1

2 . Then, the operator PT defined in Theorem 1.1 is
strong Feller, i.e., for each G ∈ Bb(H), the relation

lim
‖f1−f2‖H→0

PT (G(f1)) = PT (G(f2))

holds for any f1, f2 ∈ H.

4 Proof of Theorem 1.2

Recall the derivative operator D defined by

DgPTG(f) := lim
ε→0

PTG(f + εg)− PTG(f)

ε

provided the limit in the right-hand side exists, where G ∈ Bb(H), f, g ∈ H.

Proof of Theorem 1.2. We follow the method of [10, 12]. Given f, g ∈ H. According to
Theorem 1 in [6], the equation

∂uε(t,x)
∂t = ∆uε(t, x)− ε

T

∫ 1

0
p(t, x− y)g(y)dy + ẆH(t, x), t ≥ 0, x ∈ [0, 1],

uε(t, 0) = uε(t, 1) = 0, t ≥ 0,

uε(0, x) = f(x) + εg(x), x ∈ [0, 1]
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has a unique solution

uε(t, x) =

∫ 1

0

p(t, x− y)(f(y) + εg(y))dy +

∫ t

0

∫ 1

0

p(t− s, x− y)WH(ds, dy)

− ε

T

∫ t

0

∫ 1

0

∫ 1

0

p(t− s, x− y)p(s, y − z)g(z)dzdyds

=

∫ 1

0

p(t, x− y)(f(y) + εg(y))dy − ε

T

∫ t

0

∫ 1

0

p(t, x− z)g(z)dzds

+

∫ t

0

∫ 1

0

p(t− s, x− y)WH(ds, dy).

(4.1)

Combining this with (3.1) and (4.1), we have

uε(t, x)− u(t, f) =
T − t

T
ε

∫ 1

0

p(t, x− y)g(y)dy,

in particular, uε(T, x) = u(T, f). Let ζε(t, x) = − ε
T

∫ 1

0
p(t, x− y)g(y)dy and

ŴH(t, A) =WH(t, A) +

∫ t

0

∫
A

ζε(s, x)dsdx

=

∫ t

0

∫
A

KH(t, s)Ŵ (ds, dy)

(4.2)

with Ŵ (ds, dy) =W (ds, dy) +K−1
H

(∫ ·
0
ζε(r, y)dr

)
(s)dsdy. Denote by

Rε = exp

[
−
∫ T

0

∫ 1

0

K−1
H

(∫ ·

0

ζε(r, y)dr

)
(s)W (ds, dy)

−1

2

∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0

ζε(r, y)dr

)
(s)

)2

dsdy

] (4.3)

for every ε > 0.
We now prove that ŴH(t, A) is an fractional noise under the probability measure

RεdP. By Novikov criterion, it suffices to show that

E exp

[
1

2

∫ T

0

∫ 1

0

(
K−1

H

(∫ ·

0

ζε(r, y)dr
)
(s)

)2

dsdy

]
<∞.

This is clear, since ζε is nonrandom. We rewrite (4.1) as

uε(t, x) =

∫ 1

0

p(t, x− y)(f(y) + εg(y))dy +

∫ t

0

∫ 1

0

p(t− s, x− y)ŴH(ds, dy).

It follows that uε(T, x) = u(T, f + εg) under RεdP, and

PTG(f + εg) = E[G(u(T, f + εg))] = E[RεG(u
ε(T, x))] = E[RεG(u(T, f))]

for G ∈ Bb(H). Denote

M̂T := −
∫ T

0

∫ 1

0

K−1
H

(∫ ·

0

ζε(r, y)dr

)
(s)W (ds, dy)

=
−1

Γ( 12 −H)

∫ T

0

∫ 1

0

sH− 1
2

∫ s

0

ζε(r, y)r
1
2−H(s− r)−

1
2−HdrW (ds, dy)

= εηT .
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Observe that∫ 1

0

p(r, x− y)g(y)dy ≤ ‖g‖H
(∫ 1

0

p2(r, x− y)dy
) 1

2

≤ ‖g‖H
(∫
R

1

4πr
exp

(
− (x− y)2

2r

)
dy
) 1

2

=
‖g‖H√
2 4
√
2πr

.

This implies that

〈η〉T =

∫ T

0

∫ 1

0

s2H−1
(∫ s

0

r
1
2−H(s− r)−

1
2−Hζ(r, y)dr

)2
dsdy

≤ ‖g‖2H
2
√
2π

∫ T

0

s2H−1
(∫ s

0

r
1
4−H(s− r)−

1
2−Hdr

)2
ds

=
B2( 54 −H, 12 −H)T

3
2−2H

(3− 4H)
√
2π

‖g‖2H

with B(·, ·) being the classical Beta function. Then we have

〈M̂〉T ≤
B2( 54 −H, 12 −H)T

3
2−2H

(3− 4H)
√
2π

‖g‖2Hε2.

It follows that

DgPTG(f) = lim
ε→0

PTG(f + εg)− PTG(f)

ε

= lim
ε→0

E

[
G(u(T, f))

Rε − 1

ε

]
= lim

ε→0
E

[
G(u(T, f))

M̂T − 1
2 〈M̂〉T
ε

]

= lim
ε→0

E

[
G(u(T, f))

M̂T

ε

]
= E[G(u(T, f))ηT ].

This completes the proof.

As an application of Theorem 1.2, we have the following result, we omit the proof as
it is very similar to [12].

Proposition 4.1. If 1
4 < H < 1

2 , then for any non-negative function G ∈ Bb(H) and p > 1,
T > 0, we have

(PTG(f2))
p ≤ (PTG

p)(f1) exp
(
C1

H,T

p

p− 1
‖f1 − f2‖2H

)
, (4.4)

where 0 ≤ f1, f2 ∈ H and

C1
H,T =

B2( 54 −H, 12 −H)T
3
2−2H

(3− 4H)
√
2π

.
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