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Abstract. In this paper, we introduce a Bayesian approach for clustering data
using a sparse finite mixture model (SFMM). The SFMM is a finite mixture
model with a large number of components k previously fixed where many
components can be empty. In this model, the number of components k can be
interpreted as the maximum number of distinct mixture components. Then,
we explore the use of a prior distribution for the weights of the mixture
model that take into account the possibility that the number of clusters kc
(e.g., nonempty components) can be random and smaller than the number of
components k of the finite mixture model. In order to determine clusters we
develop a MCMC algorithm denominated Split-Merge allocation sampler. In
this algorithm, the split-merge strategy is data-driven and was inserted within
the algorithm in order to increase the mixing of the Markov chain in relation
to the number of clusters. The performance of the method is verified using
simulated datasets and three real datasets. The first real data set is the bench-
mark galaxy data, while second and third are the publicly available data set
on Enzyme and Acidity, respectively.

1 Introduction

The main goal of the clustering analysis is to group the observed data into homogeneous
clusters. The first works on clustering are due Sneath (1957) and Sokal and Michener (1958).
Since the publication of these articles the clustering problem has been studied by many au-
thors as Hartigan and Wong (1978), Binder (1978), Anderson (1985), Banfield and Raftery
(1993), Bensmail et al. (1997) and Witten and Tibshirani (2010). According to Bouveyron
and Brunet (2013), more and more scientific fields requires clustering data with the aim of
understanding the phenomenon of interest.

Usual clustering approaches are distance-based, such as k-means (MacQueen (1967)) and
hierarchical clustering (Ward (1963)). Although simple and visually appealing these meth-
ods can be implemented only for cases where the number of clusters are known. Besides,
according to Oh and Raftery (2007) “these methods are not based on standard principles of
statistical inference and they do not provide a statistically based method for choosing the
number of clusters”.

Under a probabilistic approach McLachlan and Basford (1988), Banfield and Raftery
(1993), McLachlan and Peel (2000) and Fraley and Raftery (2002) proposed the use of a
finite mixture model in which each component of the mixture represents a cluster. In these
methods, partitions are determined by the EM (expectation-maximization) algorithm and the
number of components of the mixture are, in general, determined comparing fitted models
with different number of components using some model selection criterion, such that, AIC
(Akaike (1974), Bozdogan (1987)) or BIC (Schwarz (1978)). A similar strategy is adopted in
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the Bayesian approach, considering the DIC (Spiegelhalter et al. (2002)) as model selection
criterion, see, for example, Celeux, Hurn and Robert (2000).

This can be seen as a drawback to be overcome, since in practice it may be very tedious
to fit several models and afterwards compare them according to a model selection criterion.
Also, in many cases the estimation depends on iterative methods which may not converge
imposing additional difficulties to the process. Thus, a practical and efficient computational
algorithm to estimate the number of cluster jointly with the component-specific parameters is
desirable. Under this scenario, the Bayesian approach has been successful, in special, due the
reversible-jump Markov Chain Monte Carlo algorithm proposed by Richardson and Green
(1997) in the context of Gaussian mixture models. However, one difficulty frequently encoun-
tered for implementing a reversible-jump algorithm is the construction of efficient transitions
proposals that lead to a reasonable acceptance rate.

In this paper, we consider a sparse finite mixture model for clustering data. This model is
a finite mixture model with k components, previously fixed as a large number, where many
components can be empty. The large value assumed for k can be interpreted as the maximum
number of distinct mixture components. The term sparse refers refers to the existence of many
empty components. The main motivation to consider this model is the fact that a finite mixture
model is a population model, then given an observed sample y not all k components may
have observations in the sample and we may have empty components. In addition, assuming
this model, we avoid the need to use the reversible-jump MCMC method. It allowed us to
implement the split-merge movements using the observed data; instead of to use a transition
function as in a RJMCMC.

Thus, we assume that the number of clusters kc (i.e., number of non empty components) is
an unknown quantity, but smaller than k. To estimate kc jointly with the other parameters of
interest, we consider a Bayesian approach. In this approach, we set up a symmetric Dirich-
let prior distribution with hyperparameter γ on the weights of the mixture. So, using the
Dirichlet integral we integrate out the weights and derive the prior and posterior allocations
probabilities.

In order to simulate from joint posterior distribution of the parameters of interest, we de-
velop a MCMC algorithm, the Split-Merge Allocation sampler (SMAS). This algorithm con-
sist of three steps. In the first step, parameters of the not-empty components (e.g., clusters) are
updated from its conditional posterior distribution and parameters of the empty components
are updated from prior distribution. In the second step, a Gibbs sampling is performed to up-
date the latent indicator variables using the posterior allocations probabilities. And the third
step consist of a split-merge step that change the number of clusters on the neighbourhood
±1, respectively. This step was inserted within the algorithm in order to allow a major change
in configuration of the latent variables in a single iteration of the algorithm, and consequently
increasing the mixing of the Markov chain in relation to the number of clusters.

The split and merge movements are developed in a way that they are reversible. In a split
move each observation is allocated to one of two new partitions based on probabilities which
are calculated according to marginal likelihood function from observations previously allo-
cated to two new partitions.

Given the proposed allocation of observations, the candidate-values for component param-
eters are generated from the conditional posterior distributions. Choosing the posterior den-
sity as candidate-generating density, the likelihood ratio and the ratio of prior densities from
the Metropolis–Hastings acceptance probability cancels the corresponding term in the pos-
terior density, simplifying the computation of the acceptance probability. Thus, the proposed
algorithm performs a standard Metropolis–Hastings update with an acceptance probability
which depends only on data associated with component(s) selected for a split or a merge.

Our approach does not require the specification of transition functions to estimate the
number of clusters jointly with the component-specific parameters and when a new cluster is
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Table 1 Mathematical notation

Notation Description

k Number of components
kc Number of clusters
θj Parameter of the j th component, for j = 1, . . . , k

θ = (θ1, . . . , θk) The whole vector of parameters
wj Weight of the j th component, for j = 1, . . . , k

Yi The ith sampled value, for i = 1, . . . , n

ci The ith indicator variable, for i = 1, . . . , n

y = (y1, . . . , yn) The vector of independent observations
c = (c1, . . . , cn) The vector of latent indicator variables
� = (θ, c, kc) Current state
�sp = (θ sp, csp, k

sp
c ) Split state

�mg = (θmg, cmg, k
mg
c ) Merge state

created, through a split or a merge movement, it determines a new partition in the data set.
This is due to the way that we implement the split-merge movements which is data-driven
instead of parameter based.

In order verify the performance of the SMAS, we develop a simulation study consider-
ing data sets generated with a different number of clusters. We also verify its sensibility to
the choice of the value of hyperparameter γ of the Dirichlet prior distribution. To do this,
we explore two scenery. In the first we set up γ = r , where r is value of a grid G. In the
second, we consider one more hierarchical level with a prior distribution on γ and estimat-
ing it from its posterior distribution. For each artificial dataset, we present the performance
of SMAS in terms of posterior probability for number of clusters, convergence, mixing and
autocorrelation.

We also apply the methodology to three real data sets. The first is the benchmark data
on velocities from distant galaxies diverging each other, previously analyzed by Roeder and
Wasserman (1997), Escobar and West (1995), Richardson and Green (1997), Stephens (2000)
and Saraiva, Louzada and Milan (2014), available in R software. The second and the third
one are Enzyme and Acidity datasets extracted from website https://people.maths.bris.ac.uk/
~mapjg/mixdata.

The remainder of the paper is structured as follows. In Section 2, we describe the sparse
finite mixture model for clustering data. In Section 3, we introduce the hierarchical Bayesian
approach and develop the SMAS algorithm. In Section 4, the proposed sampler is applied to
simulated data sets to access its performance and to real data sets to illustrate its use. Section 5
concludes the paper with final remarks. Additional details are provided in the supplementary
material (Saraiva, Suzuki and Milan (2019)), denoted by prefix “SM” when referred to in this
paper. Table 1 presents the main notations used throughout the article.

2 Mixture model for clustering

Consider a population composed by k subpopulations, such that, the sampling units are ho-
mogeneous with respect to the characteristic under study within the subpopulation and het-
erogeneous among the subpopulations. Let w1, . . . ,wk be the relative frequencies of each
subpopulation in relation to the overall population, for 0 ≤ wj ≤ 1 and

∑k
j=1 wj = 1. As-

sume that each subpopulation j is modeled by a probability distribution F(θj ) indexed by
parameter θj (scalar or vector), for j = 1, . . . , k.

Suppose that the sampling process consists of choosing a subpopulation j with probability
wj and then sample a Yi value of this subpopulation, for j = 1, . . . , k and i = 1, . . . , n where

https://people.maths.bris.ac.uk/~mapjg/mixdata
https://people.maths.bris.ac.uk/~mapjg/mixdata
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n is the sample size. Then we can represent each sample unit by the pair (Yi, ci), where ci is
an indicator variable that assume a value of the set {1, . . . , k} with probabilities {w1, . . . ,wk},
respectively. Thus, we have that

(Yi |ci = j, θj ) ∼ F(θj ) and P(Ci = j |w) = wj , (2.1)

where w = (w1, . . . ,wk), for i = 1, . . . , n and j = 1, . . . , k.
In many practical problems such as clustering problems indicator variables are non-

observable (also known as latent variables). The probability of ith observation coming from
subpopulation j is wj , for i = 1, . . . , n and j = 1, . . . , k. The marginal probability density
function for Yi = yi is given by

f (yi |θ ,w) =
k∑

j=1

wjf (yi |θj ), (2.2)

where f (yi |θj ) is the probability density function of F(θj ), θ = (θ1, . . . , θk) is the whole
vector of parameters and w = (w1, . . . ,wk) are the weights. Model (2.2) is denominated in
the literature by finite mixture model. In this model each probability density function, f (·|θj ),
corresponds to a component of the mixture.

The finite mixture model is a natural probabilistic approach for clustering. However, as
model (2.2) is a population model, then given an observed sample y = (y1, . . . , yn) not all
k components may have observations in the sample and we may have empty components,
that is, fewer than k components are in the sample (Fruhwirth-Schnatter (2017)). In this case,
we have that the number of clusters (i.e., non-empty components) is smaller than the number
of components k. Walli, Frhwirth-Schnatter and Grn (2016) and Fruhwirth-Schnatter (2017)
call this model by sparse finite mixture model.

Our interest is to infer about the number of clusters kc and the latent variables c jointly
with the components parameters. Due to this, we consider c as “parameters” to be estimated
in model (2.2).

2.1 Joint distribution for complete data

Let (y, c) be the complete data, where y = (y1, . . . , yn) is the vector of independent observa-
tions and c = (c1, . . . , cn) is the vector of latent indicator variables, with y and c being paired.
Consider kc the number of clusters defined by the configuration c, kc ≤ k.

From model (2.1), we have that the joint probability for the latent indicator variables c is
given by

π(C = c|w, k) =
k∏

j=1

w
nj

j , (2.3)

where nj is the number of observations yi ’s allocated to subpopulation j , for j = 1, . . . , k.
The distribution of the number of observations assigned to each component, n1, . . . , nk ,

called the occupation number, is multinomial

(n1, . . . , nk|n,w) ∼ Multinomial(n,w), (2.4)

where n = n1 + · · · + nk .
Consider Dj = {yi; ci = j} be the set of observations allocated to component j , for j =

1, . . . , k. Without loss of generality, assume that clusters are labelled from 1 to kc and that
the empty components are labelled from kc + 1 to k. Thus, the joint distribution for complete
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data (y, c) conditional on mixing proportions w, component parameters θ and number of
components k is

P(Y = y,C = c|w, θ, k) = P(Y = y|c,w, θ, k)π(C = c|w, k)

=
k∏

j=1

n∏
i=1

[
wjf (yi |θj )

]Ici (j)

=
kc∏

j=1

w
nj

j

(∏
Dj

f (yi |θj )

)
, (2.5)

where Ici
(j) = 1 if ci = j and Ici

(j) = 0 otherwise, for i = 1, . . . , n and j = 1, . . . , k.
At this point some remarks about the label switching are necessary. Note that, the cluster

labels j = 1, . . . , kc are not uniquely determined and a permutation of the labels would lead
to the same model. Since our interest lies in inferences on partitions, the non-identifiability
of labels would cause a problem in posterior computation and allocation probabilities are
useless for partitioning the observations (Stephens (2000)). Therefore, we impose restrictions
on the class of component means of the clusters to get identifiability, that is, we assume that
μ1, . . . ,μkc are the component means for clusters and that μ1 < · · · < μkc . However, it does
not prevent the MCMC algorithm described in the next section from being applicable to other
labelling. For further discussion and additional references about label switching, see Stephens
(2000), Jasra, Holmes and Stephens (2005) and their references.

3 Bayesian approach

In order to estimate c and the number of clusters kc jointly with the component parameters θ ,
we consider the following hierarchical Bayesian model

Yi |ci = j, θ, k ∼ F(θj ),

ci |w, k ∼ Discrete(w1, . . . ,wk),

θj ∼ G(ηj ),

w|γ, k ∼ Dirichlet(γ ),

(3.1)

for i = 1, . . . , n, where G(ηj ) is the a priori distribution for component parameters θj , ηj

(scalar or vector) are the hyperparameters, for j = 1, . . . , k, and Dirichlet(γ ) represents the
symmetric Dirichlet distribution with parameter γ , γ > 0, and probability density function
given by

π(w|γ, k) = �(kγ )

[�(γ )]k
k∏

j=1

w
γ−1
j . (3.2)

The choice of the prior distribution G(ηj ) for the parameter θj depends on the probability
distribution F(θj ) assumed for Yi , for i = 1, . . . , n and j = 1, . . . , k. In Section 4, we discuss
the choice of G(ηj ) in the context in which F(θj ) is given by a Gaussian distribution with
mean μj and variance σ 2

j , i.e., θj = (μj , σ
2
j ), for j = 1, . . . , k.

It is important to note that depending on the value fixed for the hyperparameter γ the
Dirichlet sampling may generate some weights wj = 0 and consequently the multinomial
sampling given in (2.4) lead to partitions with nj = 0, for some j ∈ {1, ..., k}. According to
Walli, Frhwirth-Schnatter and Grn (2016) and Fruhwirth-Schnatter (2017) this happens when
we consider a small value for hyperparameter γ .
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In order to verify the sensibility of the results to the choice of the value for the hyper-
parameter γ we explore two scenery. First, we set up γ = r , where r is a value of the set
G = {R1,R2} in which R1 is a grid from 0.01 to 0.09 with a fixed increment step equals to
0.01 and R2 is a grid from 0.1 to 2 with a fixed increment step equals to 0.1. In the sec-
ond scenery, we consider one more hierarchical level with a gamma prior distribution on
γ , γ ∼ �(a, b), for a, b > 0. The parametrization of the gamma distribution is so that the
expected value is a/b and the variance is a/b2.

As our main interest lies on configuration c, then we integrate out the mixing proportion.
Taking the product of equations in (2.3) and (3.2) and integrating out the mixing proportions,
we can write the joint probability of c given γ and k as

π(C = c|γ, k) = �(kγ )

[�(γ )]k�(n + kγ )

k∏
j=1

�(nj + γ ). (3.3)

The joint probability for complete data (y, c) given θ , γ and k is given by

P(Y = y,C = c|θ , γ, k) = P(Y = y|c, θ , k)π(C = c|γ, k)

=
[

kc∏
j=1

(∏
Dj

f (yi |θj )

)]
π(C = c|γ, k), (3.4)

where π(C = c|γ, k) is given in (3.3).
Using the Dirichlet integral and keeping all but a single indicator variable fixed, the con-

ditional distribution for a single latent indicator variable ci given all others, denoted by
c−i = (c1, . . . , ci−1, ci+1, . . . , cn), is given by

π(Ci = j |c−i , γ ) = nj,−i + γ

n + kγ − 1
, (3.5)

where nj,−i is the number of observations in Dj except the observation yi , for i = 1, . . . , n

and j = 1, . . . , k.
From (3.5), the probability of observation yi to be assigned to one empty component is

π
(
Ci = j∗|c−i , γ

) = γ

n + kγ − 1
, (3.6)

for j∗ ∈ {kc−i
+ 1, . . . , k}, where kc−i

is the number of clusters defined by configuration c−i ,
for i = 1, . . . , n. The expression in (3.6) is the probability of a observation yi to define a new
cluster, for i = 1, . . . , n.

3.1 Posterior distribution

Using the Bayes theorem, the joint posterior distribution upon which inference is based is
given by

π(θ , c|y, γ, k) ∝ P(Y = y|c, θ, k)π(C = c|γ, k)π(θ |k), (3.7)

where P(Y = y|c, θ , k)π(C = c|γ, k) = L(θ |y, c, γ, k) is the complete-data likelihood func-
tion for θ , which is equal to the sampling distribution given in (3.4), regarded as a function of
the unknown parameters θ , and π(θ |k) = ∏k

j=1 πG(θj |ηj ) is the joint prior distribution for
θ with πG(θj |ηj ) being the probability density function of the prior distribution G(ηj ), for
j = 1, . . . , k.

In order to sample from the joint posterior distribution in (3.7) and estimate parameters of
interest, we propose the Split-Merge allocation sampler algorithm (SMAS). This is a MCMC
algorithm that makes use of the following three moves types.

(a) update the parameters θ ;
(b) update the allocation indicators c;
(c) split one cluster into two, or combine two clusters into one.
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3.1.1 Updating the parameters. Conditional on configuration c, we have kc clusters and
(k − kc) empty components. The conditional posterior distribution for θj is given by

π(θj |y, c, k) ∝ L(θj |Dj)πG(θj |ηj ), (3.8)

where

L(θj |Dj) =
⎧⎪⎨
⎪⎩

∏
Dj

f (yi |θj ), if Dj �= ∅;

1, if Dj = ∅

(3.9)

is the likelihood function for component j , for i = 1, . . . , n and j = 1, . . . , k.
Thus, we update component parameters according to Algorithm 1.

Algorithm 1. Let the state of the Markov chain consist of c = (c1, . . . , cn) and θ =
(θ1, . . . , θk). Conditional on configuration c, update component parameters θ as follows:

(1) For clusters j , j = 1, . . . , kc, generate θj from posterior distribution given in (3.8);
(2) For empty components j , j = kc + 1, . . . , k, generate θj from prior distribution, θj ∼

πG(θj );
(3) Accept the updated values, θupdated, only if adjacency condition for component pa-

rameters of the clusters is met, that is, if μ
updated
1 < · · · < μ

updated
kc

. Otherwise, keep

θupdated = θ ;

3.1.2 Updating the allocation indicators. Given the component parameters θ , the condi-
tional posterior probability for Ci = j is given by

π(Ci = j |yi, θj , c−i , γ ) = nj,−i + γ

n + kγ − 1
f (yi |θj ), (3.10)

for j = 1, . . . , kc−i and i = 1, . . . , n.
We need now to define the probability of an observation yi to be allocated to an empty

component, that is, to create a new cluster. In order to probability of creating a new cluster
does not depend of the parameter value θj∗ , which is generated from prior distribution, we
integrate parameters out for this case. Thus, the conditional posterior probability for Ci = j∗
is

π
(
Ci = j∗|yi, c−i , γ, ηj∗

) = γ

n + kγ − 1

∫
f (yi |θj∗)πG(θj∗ |ηj∗) dθj∗ (3.11)

for j∗ ∈ {kc−i
+ 1, . . . , k} and i = 1, . . . , n.

Let Pi = (Pc−i
,P0i

) be the vector of allocation probabilities for the ith observation, where
Pc−i

= (P1, . . . ,Pkc−i
) for Pj given in (3.10) and P0 = (Pkc−i

+1, . . . ,Pk) for Pj∗ given in
(3.11), for j = 1, . . . , kc−i , j∗ = kc−i

+ 1, . . . , k and i = 1, . . . , n.
Thus, we update the latent indicator variables according to Algorithm 2.

Algorithm 2. Let the state of the Markov chain consist of c = (c1, . . . , cn) and θ =
(θ1, . . . , θk). Conditional on θ , update c = (c1, . . . , cn) as follows. For i = 1, . . . , n:

(1) remove ci from current state c, obtaining c−i and kc−i
;

(2) calculate the vector of allocation probabilities Pi ;
(3) generate an auxiliary variable

Zi = (Zi1, . . . ,Zik) ∼ Multinomial(1,Pi );
(4) If Zij = 1, for j ∈ {1, . . . , kc−i

}, set up ci = j and do nj = nj,−i + 1;
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(5) If Zij∗ = 1 do nj∗ = 1 and kc = kc−i
+ 1. Generate a value for the component parameter

θj∗ of the new cluster from the posterior distribution π(θj∗ |yi). Relabel the kc clusters in
order to maintain the adjacency condition. If the component mean μj∗ of the new cluster
is so that:
(a) μj∗ = min1≤j≤kc μj , then do j∗ = 1 and relabel all other clusters doing j + 1;
(b) μj∗ = max1≤j≤kc μj , then do j∗ = kc and keep all other clusters labels;
(c) μj < μj∗ < μj+1, for j �= {1, kc}, then do j∗ = j + 1 and relabel all other clusters

j ′ ≥ j + 1 doing j ′ = j ′ + 1.

At this point, the estimation procedure could be done by iterating between Algorithms 1
and 2. But, Algorithm 2 may be inefficient in situations where clusters have near means.
This happens because the algorithm updates only one latent indicator variable at a time.
Consequently, we may have a poor exploration of observation clusters and the algorithm may
be trapped in local modes. This is the reason why we insert a split-merge step within the
MCMC algorithm in order to increase the mixing on kc.

3.2 Split-merge movements

Let � = (θ , c, kc) be the current state of the MCMC algorithm and �sp = (θ sp, csp, k
sp
c )

and �me = (θme, cme, kme
c ) be the proposal states obtained by split and merge movements,

respectively.
As dimension of the parametric space of θ = (θ1, . . . , θk) is fixed, the acceptance proba-

bility for a split or a merge movement is given by the Metropolis–Hastings acceptance prob-
ability (Chib and Greenberg (1995)), i.e., �[�∗|�] = min(1,A∗), where

A∗ = P(y|c∗, θ∗, k)

P (y|c, θ , k)

π(c∗|γ, k)

π(c|γ, k)

π(θ∗|η, k)

π(θ∗|η, k)

q[�|�∗]
q[�∗|�] , (3.12)

where “∗” means either a split or a merge, q[·] is the transition proposal which is obtained by
a split or a merge depending on the type of proposal, P(y|c, θ , k)π(c|γ, k) is the complete-
data likelihood function which is equal to the sampling distribution given in (3.4), regarded
as a function of the unknown parameters θ , and π(θ |k) = ∏k

j=1 πG(θj |ηj ) is the joint prior
distribution for θ .

3.2.1 Split movement. Let Psp|kc and Pme|kc be the probabilities of proposing a split and a
merge, respectively, with Psp|kc + Pme|kc = 1. These probabilities depend on kc because if
kc = 1, we can propose only a split, Psp|kc = 1; in the other hand, if kc = k we can propose
only a merge, Pme|kc = 1. For 2 ≤ kc ≤ (k − 1) we use Psp|kc = Pme|kc = 1/2.

Provided we choose a split, consider C2 be the number of clusters with nj ≥ 2. Select a
component Dj , with nj > 2, with probability Pj |C2 = 1

C2
and propose a split of observations

yi ∈ Dj in two new sets Dj1 and Dj2 as follows:

(i) Let yh1 and yh2 be the minimum and the maximum value of the set Dj , respectively;
(ii) Do Dj1 = {yh1}, Dj2 = {yh2} and nj1 = nj2 = 1;

(iii) For i = 1, . . . , n do the following:
(a) if ci = j and yi /∈ {yh1, yh2}, then allocate yi in Dj1 with probability

Pj1(yi)

= nj1

∫
f (yi |θj1)π(θj1 |Dj1) dθj1

nj1

∫
f (yi |θj1)π(θj1 |Dj1) dθj1 + nj2

∫
f (yi |θj2)π(θj2 |Dj2) dθj2

,

where π(θm|Dm) is the posterior distribution for θm given Dm, for m = j1, j2;
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(b) Generate an indicator variable Ii ∼ Bernoulli(Pj1(yi)). If Ii = 1, yi ∈ Dj1 . Then, do
Dj1 = {Dj1} ∪ {yi}, nj1 = nj1 + 1 and c

sp
i = j1. Otherwise, do Dj2 = {Dj2} ∪ {yi},

nj2 = nj2 + 1 and c
sp
i = j2;

(c) If ci = j and yi = yh1 , then do Pj1(yi) = 1 and c
sp
i = j1. If ci = j and yi = yh2 , then

do Pj1(yi) = 0 and c
sp
i = j2;

We fix the new labels as j1 = j , j2 = j +1 and for all other labels j ′ > j we do j ′ = j ′ +1,
for j ∈ {1, . . . , k}. Thus, we have a new configuration csp = (c

sp
1 , . . . , c

sp
n ) with k

sp
c = kc + 1

clusters where

(i) for all ci ∈ c, so that, ci = j , do c
sp
i = j1 or c

sp
i = j2 according to step (iii) above;

(ii) for all ci ∈ c, so that ci = j ′ for j ′ < j , do c
sp
i = ci ;

(iii) for all ci ∈ c, so that ci = j ′ for j ′ > j , do c
sp
i = ci + 1;

for i = 1, . . . , n, j ∈ {1, . . . , kc} and j ′ ∈ {1, . . . , k} \ {j1, j2}.
The probability of configuration Dj1 and Dj2 is

Palloc = ∏
yi∈Dj1

Pj1(yi)
∏

yi∈Dj2

(
1 − Pj1(yi)

)
.

Conditional on Dj1 and Dj2 , generate candidate-values θ
sp
j1

and θ
sp
j2

for parameters θj1 and
θj2 from posterior distributions π(θj1 |Dj1) and π(θj2 |Dj2), respectively. Thus, we have a new
vector of parameters θ sp = (θ

sp
1 , . . . , θ

sp
kc

, θ
sp
kc+1, . . . , θ

sp
k ), where

(i) for all θ
sp
j ′ ∈ θ sp, so that j ′ < j1, do θ

sp
j ′ = θj ′ ;

(ii) for all θ
sp
j ′ ∈ θ sp, so that j ′ > j2, do θ

sp
j ′ = θj ′−1;

for θj ′ ∈ θ and j ′ ∈ {1, . . . , k} \ {j1, j2}.
Now we must check if the adjacency condition is met in the split proposal, that is, if com-

ponent means for clusters are in increasing numerical order, μ
sp
j1−1 < μ

sp
j1

< μ
sp
j2

< μ
sp
j2+1. In

the case where it is not, the proposal is rejected because the movement may not be reversible
by the merge proposal.

If the adjacency condition is met, we have a new configuration csp and a new set of pa-
rameters θ sp with k

sp
c = kc + 1 clusters. This transition proposal is denoted by �sp|� and its

probability is given by

q
[
�sp|�] = Psp|kcPj |C2Pallocπ(θj1 |Dj1)π(θj2 |Dj2), (3.13)

where π(θm|Dm) is the posterior density for θm, for m = j1, j2.

3.2.2 Merge movement. We deal with merge a reverse of split movement. This movement
is initialized choosing sets Dj1 and Dj2 .

We establish a criterion which merges clusters adjacent in relation to the current values of
their means. This is due to the adjacency condition assumed in the split movement. Thus, the
probability of selecting Dj1 and Dj2 for a merge is

Pj1,j2 = Pj1Pj2|j1 + Pj2Pj1|j2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if kc = 2;
3

2kc
, if kc > 2 and j1 = 1 or j2 = kc;

1

kc
, if kc > 2 and j1 �= 1 or j2 �= kc;

where Pb1 is the probability of choosing cluster b1 and Pb2|b1 is the conditional probability
of choosing cluster b2 given the previous choice of b1.
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After selecting clusters Dj1 and Dj2 , we join them in a single cluster Dj , i.e., we do
Dj = {Dj1} ∪ {Dj2}. We fix the new labels as j = j1 and for all other labels j ′ with j ′ ≥ j2
we do j ′ = j ′ −1. Thus, we have a new configuration cme = (cme

1 , . . . , cme
n ) with kme

c = kc −1
clusters, where

(a) for all ci ∈ c, so that ci = j ′ and j ′ ≤ j1, do c
mg
i = ci ;

(b) for all ci ∈ c, so that ci = j ′ and j ′ ≥ j2, do c
mg
i = ci − 1;

for i = 1, . . . , n, j ′ = 1, . . . , kc and j ∈ {1, . . . , kc − 1}.
Conditional on Dj , generate the candidate-value θ

mg
j for parameter θj from posterior dis-

tribution π(θj |Dj). This determine a new vector of parameters θme = (θme
1 , . . . , θme

kc−1
, θme

kc
,

. . . , θme
k ), where

(i) for all θme
j ′ ∈ θme, so that j ′ < j1, do θme

j ′ = θj ′ ;
(ii) for all θme

j ′ ∈ θme, so that j ′ ≥ j2, do θme
j ′ = θj ′+1, for θj ′ ∈ θ and j ′ ∈ {1, . . . , k − 1} \

{j1, j2};
(iii) in order to complete θme, generate θme

k from prior distribution, θk ∼ πG(θk).

Here we also must check if the adjacency condition is met, i.e., μme
j−1 < μme

j < μme
j+1. In

the case where it is not, the proposal is rejected because the movement may not be reversible
by the split proposal.

If the adjacency condition is met, the merge proposal determine the new configuration cme

and a new vector of parameters θme with kme
c = kc − 1 clusters. This transition proposal is

denoted by �me|� and its probability is given by

q
[
�me|�] = Pme|kcPj1,j2π(θj |Dj)πG(θk|ηk). (3.14)

Defined the transition probabilities for split and merge movements, it is important to note
that, given the current state �, the probability of proposing a split of the cluster Dj in Dj1

and Dj2 (i.e., the split state �me) is equivalent to being in the state with Dj1 and Dj2 merged
in Dj (i.e., the merge state �me) and proposing the move back to the current state �. In terms
of transition probability this means that

q
[
�sp|�] = q

[
�|�me] = Psp|kme

c
Pj |Cme

2
Pallocπ(θj1 |Dj1)π(θj2 |Dj2). (3.15)

Besides, it is also important to note that, in the merge proposal there is only one way to
merge the observations from two components in one component. Thus, we need to calculate
the corresponding probability, Palloc, of generating the current split state from the proposed
merge state. This is done in the same way as the split proposal, but now considering the
known of the current split state. Analogously to (3.15), we have that

q
[
�me|�] = q

[
�|�sp] = Pme|ksp

c
Pj1,j2π(θj |Dj)πG(θk|ηk). (3.16)

3.2.3 Acceptance probability. From equation (3.12), the acceptance probability for a split
movement is �[�sp|�] = min(1,Asp), where

Asp = P(y|csp, θ sp, k)

P (y|c, θ , k)

π(csp|γ, k)

π(c|γ, k)

π(θ sp|k)

π(θ |k)

q[�|�sp]
q[�sp|�] .

The ratio of the joint probabilities of y conditional on latent indicator variables and com-
ponent parameters is given by

P(y|csp, θ sp, k)

P (y|c, θ , k)
= L(θ

sp
j1

|Dj1)L(θ
sp
j1

|Dj1)

L(θ
sp
j1

|Dj1)
, (3.17)

where L(θm|Dm) is given in (3.9), for m = j, j1, j2.
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From (3.3), the ratio of the joint prior probability for latent indicator variables is

π(csp|γ, k)

π(c|γ, k)
= �(nj1 + γ )�(nj2 + γ )

�(nj + γ )�(γ )
. (3.18)

The prior distributions ratio for component parameters is

π(θ sp|k)

π(θ |k)
=

∏k
j=1 πG(θ

sp
j |ηj )∏k

j=1 πG(θj |ηj )
= πG(θ

sp
j1

|ηj1)πG(θ
sp
j2

|ηj2)

πG(θj |ηj )πG(θk|ηk)
. (3.19)

From (3.13) and (3.16), the transition probability ratio for the split proposal is

q[�|�sp]
q[�sp|�] = Pme|ksp

c

Psp|kc

Pj1,j2

Pj |C2

1

Palloc

π(θj |Dj)πG(θk|ηk)

π(θ
sp
j1

|Dj1)π(θ
sp
j2

|Dj2)
= QspP r

Palloc
, (3.20)

where

Qsp = Pme|ksp
c

Psp|kc

Pj1,j2

Pj |C2

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
, if kc = 1;(
1

2

)1−Ic(k−1) 3C2

kc+1
, if kc ∈ K1;

2Ic(k−1) C2

kc + 1
, if kc ∈ K2;

Ic(k − 1) = 1 if kc = k − 1 and Ic(k − 1) = 0 otherwise, K1 = {2 ≤ kc ≤ k − 1; and j1 =
1 or j2 = kc}, K2 = {2 ≤ kc ≤ k − 1 and j1 �= 1 or j2 �= kc} and P r is the posterior densities
ratio, given by

π(θj |Dj)πG(θk)

π(θj1 |Dj1)π(θj2 |Dj2)

= L(θj |Dj)

L(θj1 |Dj1)L(θj2 |Dj2)

πG(θj |ηj )πG(θk|ηk)

πG(θj1 |ηj1)πG(θj2 |ηj2)

I(Dj1)I(Dj!)

I(Dj )
,

where I(Dm) = ∫
L(θm|Dm)πG(θm|ηm)dθm is the normalizing constant, for m = j, j1, j2.

Multiplying (3.17), (3.18), (3.19) and (3.20), a split is accepted with probability
�[�sp|φ] = min(1,Asp) for

Asp = I(Dj1)I(Dj2)

I(Dj )

�(nj1 + γ )�(nj2 + γ )

�(nj + γ )

Qsp

Palloc
.

Similarly, the acceptance probability for a merge is �[�me|�] = min(1,Ame) = 1
Asp .

3.2.4 Split-merge allocation sampler. Now the split-merge procedure is described as an
algorithm denominated by Split-Merge allocation sampler (SMAS).

SMAS Algorithm. Initialize with a configuration c(0). For lth iteration of the algorithm do:

(i) Update the component parameters θ using Algorithm 1;
(ii) Update the indicator variables c using Algorithm 2;

(iii) Choose between split or merge with probabilities Psp|kc and Pme|kc ;
(iv) Accept the proposal with probability �[�∗|�], where “∗” is either a sp or a me;

(a) If a split proposal is accepted, do k
(l)
c = k

(l−1)
c + 1;

(b) If a merge proposal is accepted, do k
(l)
c = k

(l−1)
c − 1;

(c) Otherwise, maintain k
(l)
c = k

(l−1)
c ;



334 E. F. Saraiva, A. K. Suzuki and L. A. Milan

In order to estimate the number of clusters, we discard the first B iterations as a burn
in and calculate N(kc = j), the number of times that kc = j in the L − B iterations, for
j ∈ {1, . . . , k}. Let P̃ (kc = j) = N(kc = j)/(L − B) be the estimated posterior probability
for kc = j , for j = 1, . . . , k. Thus, k̃c = argmax1≤j≤k(P̃ (kc = j)) is the estimate for the
number of clusters.

Conditional on k̃c, consider

(i) L
k̃c

= ∑L
l=B+1 Ik(l)

c
(k̃c) be the number of iterations for which kc = k̃c in L−B iterations,

where I
k
(l)
c

= 1 if in l-iteration k
(l)
c = k̃c and I

k
(l)
c

= 0 otherwise;

(ii) Nij = ∑L
l=B+1 Ic(l)

i

(j )I
k
(l)
c

be the number of times that observation yi is allocated in

component j in L
k̃c

iterations, where I
c
(l)
i

(j ) = 1 if in lth iteration ci = j and I
c
(l)
i

(j ) = 0

otherwise, for i = 1, . . . , n and j = 1, . . . , k.

Let P̃ (ci = j) = Nij

L
k̃c

be the posterior probability that the observation yi belongs to cluster

j , for j = 1, . . . , k̃c. If P̃ (ci = j) = max1≤j ′≤k̃c
(P̃ (ci = j ′)), then we consider that yi belongs

to cluster j , for i = 1, . . . , n and j = 1, . . . , kc.
We estimate parameters θj , j = 1, . . . , k̃c, considering the average of the generated values,

that is,

θ̃j |k̃c = 1

L
k̃c

L∑
l=B+1

θ
(l)
j I

k
(l)
c

(k̃c).

4 Data analysis

We illustrate the performance of the proposed method by using simulated data and three real
data sets. Following Richardson and Green (1997), we model these datasets by assuming
an univariate normal mixture model. From model (2.2), f (yi |θj ) is the density of a normal
distribution with mean μj and variance σ 2

j and θj = (μj , σ
2
j ), for j = 1, . . . , k.

In order to explore the fully conjugation, we consider the following prior distributions for
component parameters θj = (μj , σ

2
j ),

μj |σ 2
j ,μ0, λ ∼ N

(
μ0,

σ 2
j

λ

)
and σ−2

j |α,β ∼ �(α,β)

where μ0, λ, α and β are hyperparameters, N (μ0,
σ 2

j

λ
) represents the normal distribution

with mean μ0 and variance
σ 2

j

λ
and �(α,β) represents the Gamma distribution with location

parameter α and scale parameter β . The parametrization of the Gamma distribution is so that
the mean is α/β and the variance is α/β2. These prior distributions are also used by Casella,
Robert and Wells (2000), Nobile and Fearnside (2007) and Saraiva et al. (2016).

Since it may be unrealistic to assume the availability of strong prior information regarding
component parameters θj in practice, we specify the hyperparameters values according to
guidelines of Richardson and Green (1997) and Saraiva et al. (2016). Thus, we set μ0 = ε,
α = 2 and β = 0.2/10R2, where ε is the midpoint of the observed variation interval of the
data and R is the length of this interval. We also fix the hyperparameter λ = 10−2 in order to
get a prior distribution for component means with large variance. The normalizing constant
I(Dj ) present in the acceptance probability for split-merge is presented in Section S-1 of the
SM.
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4.1 Simulated data sets

Consider the population model given in (2.2) with k = 10 components. To simulate the data
sets, we set up the number of clusters kc and the component parameters for the kc clusters
according to the specified in Table 2.

In the set up A1 the two clusters have equal variances and weights while A2 has different
variances and weights. In A3 the three clusters have equal variances and similar weight and
A4 has different variances and weights. In A5 we consider four clusters with same weights
values and two clusters with higher variances in relation to the other two, and in A6 we
consider five clusters with different weights and one cluster with large variance in relation to
the others.

The procedure for generating the data sets is

(i) For i = 1, . . . , n, generate Ui ∼ U(0,1); if
∑j−1

j ′=1 wj < ui ≤ ∑j

j ′=1 wj , generate Yi ∼
N (μj , σ

2
j ), with fixed parameter values according to Table 2, for w0 = 0 and j =

1, . . . , kc.
(ii) In order to record from which component each observation is generated from we de-

fine G = (G1, . . . ,Gn) such that Gi = j if Yi ∼ N (μj , σ
2
j ), for i = 1, . . . , n and

j = 1, . . . , kc.

In the remainder of the paper, we simulate datasets with sizes n = 500; samples with size
n = 1000 also are simulated and results are presented in Section S-3 of the SM. Figure 1
shows the values generated by cluster for datasets A1 to A6 for n = 500.

We apply the proposed SMAS algorithm fixing L = 110,000 iterations and a burn in of
B = 10,000. We also consider a sample of one draw for every 20 obtaining a sequence of
5000 cases. These values were enough for reliable results.

For all values γ = r for r ∈ R1, the SMAS poses maximum posterior probability on the
kc true value. These results are presented in Section S-2 of the SM. For γ = r for r ∈ R2

Table 2 Number of clusters and parameter values used for simulating the datasets

Artificial
data set

Number of
Parameter values

clusters

A1 ktrue = 2
μ1 = 0, μ2 = 3,
σ1 = 1, σ2 = 1,

w1 = 0.50, w2 = 0.50,

A2 ktrue = 2
μ1 = 0, μ2 = 4,
σ1 = 1, σ2 = 2,

w1 = 0.70, w2 = 0.30,

A3 ktrue = 3
μ1 = −3, μ2 = 0, μ3 = 3,
σ1 = 1, σ2 = 1, σ3 = 1,

w1 = 0.30, w2 = 0.40, w3 = 0.30,

A4 ktrue = 3
μ1 = −5, μ2 = 0, μ3 = 7,
σ1 = 1, σ2 = 2, σ3 = 3,

w1 = 0.20, w2 = 0.30, w3 = 0.50,

A5 ktrue = 4
μ1 = −4, μ2 = 0, μ3 = 5, μ4 = 10,
σ1 = 1, σ2 = 2, σ3 = 1, σ4 = 2,

w1 = 0.25, w2 = 0.25, w3 = 0.25, w4 = 0.25,

A6 ktrue = 5
μ1 = −6, μ2 = 0, μ3 = 7, μ4 = 15, μ5 = 21,
σ1 = 1, σ2 = 2, σ3 = 3, σ4 = 2, σ5 = 1,

w1 = 0.15, w2 = 0.20, w3 = 0.30, w4 = 0.20, w5 = 0.15
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Figure 1 Values generated by cluster for datasets A1 to A6 with n = 500.

the SMAS tends to overestimate the number of clusters when we increase the r value. These
results are presented by Figure 2 which show the posterior probability for kc true value and
the kc values with maximum posterior probability for each γ = r ∈ R2. As one can note, for
large values of γ the method overestimate the number of cluster. For datasets A1, A2 and
A4, the maximum posterior on kc true value is obtained only for γ ∈ {0.1,0.2}; while the
maximum posterior on kc true value for datasets A3 and A5 is obtained for γ ∈ {0.1,0.2,0.3}
and for dataset A6 for γ ∈ {0.1,0.2,0.3,0.4}. Besides, for all simulated cases, the posterior
probability on kc true value goes to zero when γ approaches to 2.

Motivated by the sensibility to the choice of the γ we develop a second approach consid-
ering for γ a Gamma prior distribution, γ ∼ �(a, b), a, b > 0.

In this approach, rather than the value of γ it is the choice of the hyperparameters a and b

that are influential on the posterior probability for kc. To verify the sensibility in relation to
the choice of the hyperparameters values, we consider:

(i) a = b = 1, obtaining E(γ ) = 1 and Var(γ ) = 1. This prior represents the belief that the
weights have Uniform distribution over the simplex;

(ii) a = 2 and b = 4, obtaining E(γ ) = 0.5 and Var(γ ) = 0.125. This prior was suggested
by Escobar and West (1995) in the context of the Dirichlet process mixture model.

In order to simulate values from conditional posterior distribution of γ , π(γ |c,y, θ, k),
we implement a random walk Metropolis (RWM) algorithm. We consider the candidate-
generating density q[γ ∗|γ ], where γ ∗ is a candidate value, with Uniform distribution cen-
tered on the current value of γ , i.e., U(γ − ε, γ + ε). We set up ε = 0.05.

The candidate value γ ∗ is accepted with probability �(γ ∗|γ ) = min(1,Aγ ), where Aγ =
π(c|γ ∗,k)
π(c|γ,k)

π(γ ∗)
π(γ )

, since the proposal kernels from numerator and denominator cancel, π(c|γ, k)

is given in (3.3) and π(γ ) is the density of the Gamma prior for γ .
This algorithm is implemented as follows.

RWM Algorithm. Let the state of the Markov chain be c = (c1, . . . , cn), θ = (θ1, . . . , θk)

and γ . Conditional on c and θ , update γ at the lth iteration of the algorithm as follows.

(i) Generate γ ∗ ∼ U(γ − ε, γ + ε);
(ii) Calculate �(γ ∗|γ ) = min(1,Aγ );
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Figure 2 Posterior probability on kc true value and kc values with maximum posterior probability for n = 500.
“•” represents the posterior probability for the kc true value and “�” represents the kc value with maximum
posterior probability.

(iii) Generate U ∼ U(0,1). If u ≤ �(γ ∗|γ ) accept γ ∗ doing γ (l) = γ ∗. Otherwise, do γ (l) =
γ (l−1).

Estimate γ by the average of the simulated values, i.e.,

γ̃ = 1

L
k̃c

L∑
l=B+1

γ
(l)
j .

Tables 3 and 4 show the estimates and the credibility intervals (95%) for γ and the esti-
mates for posterior probabilities of kc for datasets A1 to A6, for γ ∼ �(1,1) and γ ∼ �(2,4),
respectively. All estimates for γ lead to the maximum posterior probability on the kc true
value (highlighted in bold). The prior �(1,1) on γ has led to higher posterior probability on
the kc than prior distribution �(2,4).

For each dataset the credibility intervals contain the most of the values r ∈ G that lead to
maximum posterior probability on the kc true value. For instance, for data sets A1 and A2,
all values r that lead to maximum posterior probability on the kc true value, except r = 0.2,
belong to the estimated credibility intervals.
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Table 3 Estimates for γ and estimated posterior probabilities for kc, with γ ∼ �(1,1)

Data
set

kc
true

Estimates for γ
Probabilities for kc values

1 2 3 4 5 6 7 ≥ 8

A1 2
0.0432

(0.0051,0.1318)
0.0000 0.8948 0.0968 0.0072 0.0010 0.0002 0.0000 0.0000

A2 2
0.0434

(0.0048,0.1323)
0.0000 0.8632 0.1218 0.0136 0.0012 0.0002 0.0000 0.0000

A3 3
0.0734

(0.0148,0.1883)
0.0000 0.0012 0.8512 0.1258 0.0182 0.0028 0.0006 0.0002

A4 3
0.0810

(0.0151,0.2145)
0.0000 0.0000 0.7510 0.2136 0.0308 0.0044 0.0002 0.0000

A5 4
0.1259

(0.0298,0.3072)
0.0000 0.0004 0.0098 0.7502 0.1972 0.0340 0.0070 0.0014

A6 5
0.1899

(0.0495,0.4719)
0.0000 0.0000 0.0002 0.0570 0.6782 0.1926 0.0486 0.0234

Table 4 Estimates for γ and estimated posterior probabilities for kc, with γ ∼ �(2,4)

Data
set

kc
true

Estimates for γ
Probabilities for kc values

1 2 3 4 5 6 7 ≥ 8

A1 2
0.0642

(0.0119,0.1710)
0.0000 0.7768 0.1986 0.0216 0.0028 0.0020 0.0000 0.0000

A2 2
0.0627

(0.0124,0.1639)
0.0000 0.8120 0.1634 0.0230 0.0016 0.0000 0.0000 0.0000

A3 3
0.0947

(0.0239,0.2166)
0.0000 0.0014 0.8262 0.1498 0.0186 0.0040 0.0000 0.0000

A4 3
0.1021

(0.0249,0.2537)
0.0000 0.0000 0.6910 0.2540 0.0478 0.0062 0.0010 0.0000

A5 4
0.1471

(0.0414,0.3349)
0.0000 0.0000 0.0132 0.6942 0.2246 0.0556 0.0082 0.0042

A6 5
0.2178

(0.0601,0.5331)
0.0000 0.0000 0.0000 0.0604 0.6324 0.2142 0.0666 0.0264

4.1.1 Performance of the SMAS. Now we verify empirically the convergence of the se-
quence of the posterior probability for kc across iterations and the capacity to move for
different values of kc in the course of the iterations and estimated autocorrelation function
(acf).

We present performance of SMAS using the results obtained with γ = γ̃ where γ̃ is the
estimated value for γ given in Table 3. For other values of γ (estimates given in Table 4 and
fixed as r for r ∈ G) with maximum posterior probability on the kc true value, the results are
similar.

Figure 3 shows the plots of P(kc|·) estimates across the iterations. To maintain a good vi-
sualization we display in each graphic only the three higher P(kc|·) estimates. The number of
iterations and burn in seems to be adequate to achieve stability for the posterior probabilities
of kc.
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Figure 3 A posteriori probability for kc across iterations for thinned sequence.

Table 5 Percentages of split and merge movements accepted

Movement
and γ

Data set

A1 A2 A3 A4 A5 A6

split 1.2391 1.2297 1.8985 1.2273 1.9273 4.7576
merge 1.2455 1.2333 1.9091 1.2191 1.9333 4.8424
γ 59.9394 59.8303 72.4455 74.0788 81.7727 87.0758

Figure 4 Sampled kc values for thinned sequence.

Figure 4 shows the sampled kc values in the course of iterations. The algorithm mix well
over kc and remains, in the most of iterations, around the target kc true values. The sampled
kc values do not present significant autocorrelation, as showed by Figure 5.

Table 5 shows the percentage of split-and-merge moves accepted and the percentage of
γ values accepted. Theses percentages show us that split-merge moves are proposed and
accepted in a balancing way. The high percentages of accepted values for γ is due the way
that we implement the RWM, assuming a small ε = 0.05 value.
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Figure 5 Estimated autocorrelation for thinned sequence.

Table 6 Estimated probabilities for kc, Galaxy data set, with γ ∼ �(1,1)

kc values

≤ 2 3 4 5 6 ≥ 7

P(kc|·) 0.0000 0.8958 0.0984 0.0050 0.0008 0.0000

Figure 2 in Section S-2.2 of the SM shows the simulated values and the clusters identi-
fied by the method. The clusters were satisfactorily identified. Section S-2.2 of the SM also
presents the estimates for components of each cluster (Tables 1 and 2) and the histogram of
the observed data and the estimated density function (Figure 3).

4.2 Galaxy data set

We now apply the proposed methodology to the well-known galaxy dataset, previously an-
alyzed by Roeder and Wasserman (1997), Escobar and West (1995), Richardson and Green
(1997), Stephens (2000), among others. The data set refers to velocity (in 103 km/s) from
distant galaxies diverging from our own. The sample size is n = 82 observations. For more
details on this dataset, see Escobar and West (1995) and Richardson and Green (1997).

We consider the galaxy velocities as realizations from a mixture of k normal distributions
and the Bayesian model in (3.1) with k = 10. We use the same hyperparameters specification
used for artificial datasets. To estimate the hyperparameter γ we consider the hierarchical
approach setting up γ ∼ �(a, b), for a = b = 1. The number of iterations, burn in and thin
value are the same used in previous analysis.

Considering the SMAS algorithm, the estimate and the credibility interval (95%) for γ

are 0.1029 and (0.0182,0.2696), respectively. The estimated posterior probabilities for kc,
1 ≤ kc ≤ 10, are presented in Table 6. The maximum posterior is at kc = 3 with P(kc =
3|·) = 0.8958. For the sake of comparison, estimates of k for this data set range from 3 and
4 for Roeder and Wasserman (1997) and Stephens (2000), from 5 to 7 for Richardson and
Green (1997) and just 7 for Escobar and West (1995).

Figure 6 shows the performance of the SMAS. Similar to simulation results, the SMAS
sampler mixes well over kc and shows a satisfactorily stability for probabilities of kc. The
sampled kc values do not present significant autocorrelation. The acceptance ratio for split
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Figure 6 Performance of SMAS for Galaxy data set.

Figure 7 Clusters and estimated density function by SMAS for Galaxy data set.

Table 7 Estimated probabilities for kc

Data set Estimate for γ
kc values % accepted values

1 2 3 4 ≥ 5 split merge γ

Enzyme
0.0862

(0.0162,0.2439)
0.0000 0.0136 0.7874 0.1766 0.0224 2.1761 1.9181 75.9424

Acidity
0.0794

(0.0077,0.2483)
0.0000 0.5096 0.3316 0.1282 0.0304 3.8545 3.8394 72.6606

and merge moves are 1.3818% and 1.4364%, respectively. The acceptance ratio for generated
γ values is 80.1695%.

Figure 7(a) shows clusters identified conditional on the estimate k̃c = 3. Figure 7(b) shows
the histogram of the observed data and the estimated density function. As noted by Roeder
and Wasserman (1997) and Stephens (2000), the multimodality of the velocities indicates the
presence of superclusters of galaxies surrounded by large voids, each mode representing a
cluster as it moves away at its own speed.

4.3 Enzyme and acidity datasets

Consider now the Enzyme and Acidity datasets downloaded from the website https://people.
maths.bris.ac.uk/~mapjg/mixdata. The Enzyme dataset re- fers to enzymatic activity in the
blood, for an enzyme involved in the metabolism of carcinogenic substances, among a group
of 245 unrelated individuals; and the acidity dataset refers to an acidity index measured in a
sample of 155 lakes in north-central Wisconsin.

The two datasets have been analyzed with SMAS using the same hyperparameters specifi-
cation, the number of iterations, burn in size and thin value used for Galaxy dataset. Table 7
shows the estimates for γ and for posterior probability of kc, for 1 ≤ kc ≤ 10. For Enzyme
dataset the maximum posterior is at kc = 3 with P(kc = 3|·) = 0.78744; while for Acid-
ity dataset the maximum posterior is at kc = 2 with P(kc = 2|·) = 0.5096. This Table also

https://people.maths.bris.ac.uk/~mapjg/mixdata
https://people.maths.bris.ac.uk/~mapjg/mixdata
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Figure 8 Performance of SMAS for Enzyme and Acidity data sets.

present the percentages of accepted values for split-merge movements and for γ values gen-
erated. For both datasets, the split-merge moves are proposed and accepted in a balancing
way. Section S-4 of the SM presents estimates for component parameters of the clusters,
the graphics of clusters identified conditional on the estimate k̃c and the histogram of the
observed data and the estimated density function.

Figure 8 shows the performance of the SMAS for both datasets. As one can note, the
SMAS sampler mixes well over kc and shows a satisfactorily stability for probabilities of kc.

5 Final remarks

In clustering analysis when the number of clusters is unknown the analyst has to estimate
the number of clusters and the parameters conditional on the number of cluster. In this paper,
we consider a sparse finite mixture model in order to accommodate the possibility of the
number of cluster kc to be smaller than the number of components k of the mixture model.
We develop a Bayesian approach to estimate kc and the parameters of interest jointly.

The estimation procedure was carried out through the SMAS-MCMC algorithm. The
SMAS is essentially a Metropolis–Hastings within Gibbs sampling with a split-merge step.
The split-merge step was inserted within the algorithm in order to increase the mixing of the
Markov chain in relation to the number of cluster kc. Due to the way that we implement the
split-merge strategy, these proposals determines a new partition in the observed data set. This
is one factor which improves the efficiency of the method in identifying clusters.

In order to verify the performance of SMAS, we developed a simulation study considering
a mixture of univariate normal distributions. The simulation study show us that the estimates
of the components are sensible to the choice of the value for hyperparameter γ of the prior
Dirichlet distributions; and that the approach considering γ as being an unknown quantity
and estimated from the data is preferable. The values used for hyperparameters a and b

(a = b = 1 and a = 2 and b = 4) of the Gamma prior distribution for γ lead to an estimate of
γ with maximum posterior on the kc true value. Thus we recommend the use of these values
for the hyperparameters a and b.

We also apply the SMAS to three real datasets. Results from simulated and real data
sets show that SMAS is an effective alternative for joint estimation of kc, identification of
clusters and estimation of parameters. A practical differential of the proposed algorithm is
its simplicity to implement in softwares like R (the Comprehensive R Archive Network,
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http://cran.r-project.org). The source code used in data set analysis was developed in soft-
ware R and is available upon request by emailing authors.

The SMAS algorithm was proposed here considering a Bayesian approach with conjugated
prior distribution so that we could develop the split-merge movements using the marginal
likelihood function and to use the posterior density as generating-candidate density. Extend-
ing the SMAS for nonconjugated cases and the generalization for the multivariate case are
possible future developments of the method.
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