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W 1,p-Solutions of the transport equation by stochastic perturbation
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Abstract. We consider the stochastic transport equation with a possibly un-
bounded Hölder continuous vector field. Well-posedness is proved, namely,
we show existence, uniqueness and strong stability of W1,p-weak solutions.

1 Introduction

During decades the transport equation has attracted a lot of scientific interest. The main rea-
son is due that several physical phenomena in fluid dynamics and kinetic equations can be
modeled by the transport equation,

∂tu(t, x) + b(t, x) · ∇u(t, x) = 0, (1.1)

which is one of the most fundamental and at the same time the most elementary partial dif-
ferential equation with applications in a wide range of problems from physics, engineering,
biology, population dynamics or social science. See, for instance, Lions’ books (1996, 1998)
for application in to fluid dynamics, and to see also Dafermos’ book (2010) for more general
applications of the transport equation in the domain of conservation laws.

In view that we are interested to study the Cauchy problem (1.1), but in the stochastic case,
we are going to briefly recall some of the main recent results respect this equation. DiPerna
and Lions (1989) have introduced the notion of renormalized solution to the equation (1.1),
that is, for every β suitable, β(u) it is a solution such that

∂tβ
(
u(t, x)

) + b(t, x) · ∇β
(
u(t, x)

) = 0. (1.2)

We observe that (1.2) holds for smooth solutions, by an immediate application of the chain-
rule. However, when the vector field is not smooth, we cannot expect any regularity of the so-
lutions, so that (1.2) is a nontrivial request when made for all bounded distributional solutions.
This notion of renormalization motivates that, if the renormalization property holds, then so-
lutions of (1.1) are unique and stable. In this way, DiPerna and Lions (1989) proved that W 1,1

spatial regularity of the vector field b(t, x) (with an additional condition of boundedness on
the divergence) is sufficient to ensure uniqueness of weak solutions. Later, Ambrosio (2004)
proved uniqueness for the case of BV regularity for b instead of W 1,1. In both results, the
uniqueness was based on the commutator ideas. See Ambrosio and Crippa (2014) and De
Lellis (2007) for a nice review on that. There are generalizations of these results, but not so
far from them; for instance we can mention the works of Alberti, Bianchini and Crippa (2010)
and Hauray (2003) both in 2 dimensions, where the drift does not have any differentiability
regularity, but with some additional geometrical conditions.

The last years, a great deal of attention has been focused on the study of stochastic transport
equation ⎧⎪⎨

⎪⎩
∂tu(t, x) +

(
b(t, x) + dBt

dt

)
∇u(t, x) = 0,

u|t=0 = u0

(1.3)
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((t, x) ∈ UT ,ω ∈ �), where UT = [0, T ] ×R
d , for T > 0 be any fixed real number, (d ∈ N),

b : R+ × R
d → R

d is a given vector field (drift), with divb = 0, Bt = (B1
t , . . . ,Bd

t ) is a
standard Brownian motion in R

d and the stochastic integration is taken (unless otherwise
mentioned) in the Stratonovich sense.

We observe that, there are several situations where the stochastic problem has better be-
havior than deterministic one. A first result in this direction was given by Flandoli, Gubinelli
and Priola (2010a), where they obtained well-posedness of L∞-weak solutions of the Cauchy
problem (1.3) for the Hölder continuous and bounded drift term, with some integrability con-
ditions on the divergence and initial condition u0 ∈ L∞(Rd). The key tool of this work has
been a differentiable stochastic flow (characteristics method) constructed and analysed by
means of a special transformation of the drift of Itô-Tanaka type. Similarly, Fedrizzi and
Flandoli (2013) obtained a well-posedness result of “weakly differentiable solutions” un-
der only some integrability conditions on the drift term and considering the initial datum
u0 ∈ ⋂

r≥1 W
1,r
loc (Rd). Specifically, they only assumed that

b ∈ Lq([0, T ];Lp(
R

d))
,

for p,q ∈ [2,∞),
d

p
+ 2

q
< 1.

(1.4)

Later, Neves and Olivera (2015, 2016) under condition (1.4) got, for measurable initial con-
dition, existence and uniqueness of L∞-weak solutions for the stochastic transport/continuity
equation (1.3). In this work, the authors have used the main feature of the transport equation,
which is the transportation property, to show uniqueness in a different way from the renormal-
ization idea (which exploit commutators) used in, for example, Catuogno and Olivera (2013)
and Flandoli, Gubinelli and Priola (2010a). In 2013, Catuogno and Olivera proved existence
and uniqueness of Lp-solutions for the problem (1.3) with initial condition u0 ∈ Lp(Rd).
Here, the authors used the generalized Itô–Ventzel–Kunita formula (see Theorem 8.3 of
Kunita (1984a)) and the results on existence and uniqueness for the deterministic transport
linear equation (see, for instance, DiPerna and Lions (1989)). In another context Fedrizzi,
Neves and Olivera (2018), working with the notion of “quasiregular weak solutions”, ob-
tained uniqueness of (1.3) when the field vectors b ∈ L2

loc. We also mention that Mollinedo
and Olivera (2017a) showed uniqueness of L2-weak solutions for one-dimensional stochastic
transport/continuity equation with unbounded measurable drift without assumptions on the
divergence. More precisely, they only assumed the vector field b satisfies∣∣b(x)

∣∣ ≤ k
(
1 + |x|);

then, to prove uniqueness they have used the fact that “one primitive of a L2-weak solution”
is regular and verifies the stochastic transport equation (1.3). Finally, Mollinedo and Olivera
(2017b) obtained well-posedness of (1.3) with unbounded drift but in the context of weighted
spaces.

The contribution of the present paper is to prove uniqueness of W 1,p-weak solutions (see
Definition 2.2) of the Cauchy problem (1.3) for Hölder continuous, possibly unbounded,
divergence-free drift. In particular, this result implies the persistence of regularity for initial
conditions u0 ∈ W 1,p(Rd), with 1 < p < ∞. Here, as our drift term b is unbounded locally
Hölder continuous, then we have suitable regularity of the stochastic flow associated to this
vector field b (see Theorem 7 of Flandoli, Gubinelli and Priola (2010b)). Thereby in the proof
of our main results, using a regularization procedure, thanks to the free-divergence condition,
following the same strategy introduced in Mollinedo and Olivera (2017b) and in order to
avoid “commutators” and the problems there in, we are able to compose the solution u of the
stochastic transport equation with the stochastic flow, in fact its inverse; in this way, we can
bring the stochastic flow with all its space derivatives on the test function.
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In the context of the present paper, we would like to point and remark the following:

1. For the deterministic transport equation the problem W 1,p-solution is open, under essen-
tially weaker conditions than Lipschitz continuity of the vector field b. Besides that, we
would like to mention that Colombini, Luo and Rauch (2004) proved, through a specific
example in R

2 and considering divergence free vector fields b ∈ ⋂
1≤p<∞ W 1,p(R2), that

the persistence property for the deterministic case is not true even the uniqueness is estab-
lished. Specifically, one may start with an initial data u0 ∈ C∞

c (R2), but the deterministic
unique bounded solution is not continuous on any neighborhood of the origin.

2. Compared to Flandoli, Gubinelli and Priola (2012), the approach of our work to prove the
uniqueness result is different because in Flandoli, Gubinelli and Priola (2012) the authors
used ideas based in “commutator lemma” (see, for example, DiPerna and Lions (1989)
and Flandoli, Gubinelli and Priola (2010a)) and as it was mentioned previously we avoid
considering ideas on “commutators”. Moreover, in Flandoli, Gubinelli and Priola (2012,
Theorems 6 and 7) the authors worked with globally Hölder continuous and bounded vec-
tor field b ∈ L∞(0, T ;Cα

b (Rd;Rd)) with α ∈ (0,1) and initial condition u0 ∈ L∞(Rd),
which is not our case (see Hypothesis 2.1). Now, another difference with Flandoli, Gu-
binelli and Priola (2012) is related to the persistence property. In the work Flandoli, Gu-
binelli and Priola (2012, Theorem 4), was showed the persistence of C1-regularity but in
the present paper we prove persistence of W 1,p-regularity with 1 < p < ∞.

3. Now, concerning the work Mollinedo and Olivera (2017b) to prove well-posedness of the
SPDE (1.3) the authors worked in the context of weighted spaces. Indeed, they worked
in the space L2p(� × [0, T ] × R

d) ∩ Lp(� × [0, T ],W 1,p(Rd),μ) where the weight μ

is the Gaussian measure in R
d defined as μ = e−|x|2 (see Definition 2.1 of Mollinedo

and Olivera (2017b)). In the present paper, to show the main results, using the strategy
introduced in Mollinedo and Olivera (2017b) and thanks to the free-divergence condition
on the vector field, we avoid to work in the context of weighted spaces.

4. Finally, we would like to emphasize we are not interested in to show estimates on the
flow associated to vector field b because, under our conditions (see (2.1)), we have good
estimates that have been already investigated in Flandoli, Gubinelli and Priola (2010b,
Theorem 7). So, we only use these properties to prove well-posedness and the persistence
property of the Cauchy problem (1.3).

Throughout of this paper, we fix a stochastic basis with a d-dimensional Brownian motion
(�,F, {Ft : t ∈ [0, T ]},P, (Bt )).

2 Preliminaries

To establish well-posedness for the stochastic partial differential equation (SPDE) (1.3), we
need to assume the following hypothesis:

Hypothesis 2.1. The drift term is taken to be

b ∈ Cθ (
R

d,Rd)
, (2.1)

and

divb = 0. (2.2)

Besides that, for 1 < p < ∞ the initial condition satisfies

u0 ∈ W 1,p(
R

d)
.
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2.1 Notations

For any θ ∈ (0,1), we denote Cθ(Rd;Rd), d ≥ 1 the space of the vector fields f : Rd → R
d

for which

[f ]θ := sup
x 	=y,|x−y|≤1

|f (x) − f (y)|
|x − y|θ < ∞.

The space Cθ(Rd;Rd) becomes a Banach space with the norm

‖f ‖θ = ∥∥(
1 + | · |)−1

f (·)∥∥∞ + [f ]θ , (2.3)

where ‖ · ‖∞ denotes the supremum norm over Rd .
Now, we are going to recall some main results about stochastic flows. Thus, for 0 ≤ s ≤ t

and x ∈ R
d , consider the following stochastic differential equation (SDE) in R

d associated to
the vector field b

Xs,t (x) = x +
∫ t

s
b
(
Xs,r(x)

)
dr + Bt − Bs, (2.4)

where Xs,t (x) = X(s, t, x) and Xt(x) = X(0, t, x). Under condition (2.1), the process
Xs,t (x) is a stochastic flow of C1-diffeomorphism (see Flandoli, Gubinelli and Priola
(2010b)). Moreover, the inverse flow Ys,t (x) := X−1

s,t (x) satisfies the following backward
stochastic differential equation

Ys,t (x) = x −
∫ t

s
b
(
Yr,t (x)

)
dr − (Bt − Bs), (2.5)

for 0 ≤ s ≤ t , see Flandoli, Gubinelli and Priola (2010a). Usually Y is called the time reversed
process of X.

From Flandoli, Gubinelli and Priola (2010b), we also remember the following result that
we are going to use in our main results: Let bn ∈ Cθ(Rd,Rd) and let φn be the corresponding
stochastic flows. Assume that there exists b ∈ Cθ(Rd,Rd) such that bn − b ∈ Cθ

b (Rd,Rd),
n ≥ 1, and ‖bn − b‖Cθ

b (Rd ,Rd ) → 0 as n → ∞. If φ is the flow associated to b, then for all
p ≥ 1, T > 0, we have

lim
n→∞ sup

x∈Rd

sup
s∈[0,T ]

E

[
sup

t∈[s,T ]
∣∣Dφn

s,t (x) − Dφs,t (x)
∣∣p]

= 0, (2.6)

lim
n→∞ sup

x∈Rd

sup
s∈[0,T ]

E

[
sup

t∈[s,T ]

∣∣∣∣φ
n
s,t (x) − φs,t (x)

1 + |x|
∣∣∣∣p

]
= 0, (2.7)

and

sup
n

sup
x∈Rd

sup
s∈[0,T ]

E

[
sup

t∈[s,T ]
∣∣Dφn

s,t (x)
∣∣p]

< ∞. (2.8)

If we denote by ψ the inverse flow of φ, then same results are valid for the backward flows
ψn

s,t and ψs,t since are solutions of the same SDE driven by the drifts −bn and −b, respec-
tively.

2.2 Definitions of weak solutions

We present now a suitable definition of W 1,p-weak solution to equation (1.3) to treat the
problem of well-posedness under our Hypothesis 2.1. We denote C∞

c (Rd) the space of the
test functions with compact support.
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Definition 2.2. A stochastic process u ∈ Lp(� × [0, T ],W 1,p(Rd)) is called a W 1,p-weak
solution of the Cauchy problem (1.3) when: for any ϕ ∈ C∞

c (Rd), the real valued process∫
u(t, x)ϕ(x) dx has a continuous modification which is an Ft -semimartingale, and for all

t ∈ [0, T ], we have P-almost surely∫
Rd

u(t, x)ϕ(x) dx =
∫
Rd

u0(x)ϕ(x) dx

−
∫ t

0

∫
Rd

bi(x)∂iu(s, x)ϕ(x) dx ds

+
∫ t

0

∫
Rd

u(s, x)∂iϕ(x) dx ◦ dBi
s .

(2.9)

Remark 2.3. From the idea of the Lemma 13 of Flandoli, Gubinelli and Priola (2010a),
we can write the problem (1.3) in Itô’s form as follows. A stochastic process u ∈ Lp(� ×
[0, T ],W 1,p(Rd)) is a W 1,p-weak solution of the stochastic transport equation (1.3) iff for
every test function ϕ ∈ C∞

c (Rd), the process
∫

u(t, x)ϕ(x) dx has a continuous modification
which is a Ft -semimartingale and satisfies the following Itô’s formulation

∫
u(t, x)ϕ(x) dx =

∫
u0(x)ϕ(x) dx −

∫ t

0

∫
bi(x)∂iu(s, x)ϕ(x) dx ds

+
∫ t

0

∫
∂iϕ(x)u(s, x) dx dBi

s

+ 1

2

∫ t

0

∫
�ϕ(x)u(s, x) dx ds.

3 Main results

3.1 Existence of weak solutions

In this section, we will prove existence of W 1,p-weak solution under Hypothesis 2.1. The key
points of the proof is the “regularization procedure” and the inequalities (2.7) and (2.8).

Lemma 3.1. Assume Hypothesis 2.1. Then there exists a W 1,p-weak solution u of the Cauchy
problem (1.3) and u(t, x) = u0(φ

−1
t (x)).

Proof. We divide the proof in two steps.
Step 1: Assume u0 ∈ C∞

c (Rd). From a minor modification of the arguments in the Propo-
sition 2.3 of Mollinedo and Olivera (2017b) it follows that u(t, x) = u0(φ

−1
t (x)) satisfies∫

Rd
u(t, x)ϕ(x) dx =

∫
Rd

u0(x)ϕ(x) dx

−
∫ t

0

∫
Rd

∂iu(s, x)bi(x)ϕ(x) dx ds

+
∫ t

0

∫
Rd

u(s, x)∂iϕ(x) dx dBi
s

+ 1

2

∫ t

0

∫
Rd

u(s, x)�ϕ(x) dx ds.

(3.1)
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As divb = 0, that is, the Jacobian of the stochastic flow is identically one, we observe that
making the change of variables y = ψt(x) = φ−1

t (x) we obtain∫ T

0

∫
�

∫ ∣∣u0
(
ψt(x)

)∣∣p dxP(dω)dt = T

∫ ∣∣u0(y)
∣∣p dy

≤ T ‖u0‖p

W 1,p(Rd )

and ∫ T

0

∫
�

∫
Rd

∣∣Du0
(
ψt(x)

)∣∣p dxP(dω)dt

=
∫ T

0

∫
�

∫
Rd

∣∣Du0
(
ψt(x)

)∣∣p∣∣Dψt(x)
∣∣p dxP(dω)dt

≤
∫ T

0

∫
Rd

∣∣Du0(y)
∣∣pE[∣∣Dψt

(
φt(y),ω

)∣∣p]
dy(dω)dt.

(3.2)

Now, we see that

D
(
ψt

(
φt (x),ω

)) = D−1(
φt(x)

)
(3.3)

and

D−1(
φt (x)

) = Cof
(
Dφt(x)

)T
, (3.4)

where Cof denotes the cofactor matrix of Dφt . By inequality (2.8), we get that
Cof(Dφt (x))T ∈ L∞(Rd;Lp(�;L∞([0, T ]))). Thus, considering (3.2) we have∫ T

0

∫
�

∫
Rd

∣∣Du0
(
ψt(x)

)∣∣p dxP(dω)dt

=
∫ T

0

∫
Rd

∣∣Du0(y)
∣∣pE[∣∣Dψt

(
φt(y),ω

)∣∣p]
dy dt

≤ C

∫
Rd

∣∣Du0(y)
∣∣p dy

≤ C‖u0‖p

W 1,p(Rd )
.

Therefore, we conclude that u(t, x) = u0(φ
−1
t (x)) is a W 1,p-weak solution of the equation

(1.3).
Step 2: Assume u0 ∈ W 1,p(Rd). Let {ρε}ε be a family of standard symmetric mollifiers

and η a non-negative smooth cut-off function supported on the ball of radius 2 and such that
η = 1. So, for every ε > 0, we introduce the rescaled functions ηε(·) = η(ε·). In this way, we
define the family of regularized initial conditions given by

uε
0(x) = ηε(x)

([
u0(·) ∗ ρε(·)](x)

)
.

From step 1, it follows that uε(t, x) = uε
0(φ

−1
t (x)) verifies (Itô’s form)∫

Rd
uε(t, x)ϕ(x) dx =

∫
Rd

uε
0(x)ϕ(x) dx

−
∫ t

0

∫
Rd

∂iu
ε(s, x)b(x)ϕ(x) dx ds

+
∫ t

0

∫
Rd

uε(s, x)∂iϕ(x) dx dBi
s

+ 1

2

∫ t

0

∫
Rd

uε(s, x)�ϕ(x)dx ds.

(3.5)
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Now, we can see that uε(s, x) = uε
0(φ

−1
t (x)) converges strongly to u(s, x) = u0(φ

−1
t (x)) in

Lp(� × [0, T ],W 1,p(Rd)). In fact, doing the change of variables y = ψt(x) = φ−1
t (x) we

have ∫
�

∫ T

0

∫
Rd

∣∣uε
0
(
ψt(x)

) − u0
(
ψt(x)

)∣∣p dx dsP(dω)

=
∫ T

0

∫
Rd

∣∣uε
0(y) − u0(y)

∣∣p dy ds,

and using (3.4), (3.3) and (2.8) it results∫
�

∫ T

0

∫
Rd

∣∣Duε
0
(
ψt(x)

) − Du0
(
ψt(x)

)∣∣p dxP(dω)dt

≤
∫
�

∫ T

0

∫
Rd

∣∣Duε
0
(
ψt(x)

) − Du0
(
ψt(x)

)∣∣p∣∣Dψt(x)
∣∣p dxP(dω)dt

≤
∫ T

0

∫
Rd

∣∣Duε
0(y) − Du0(y)

∣∣pE[∣∣Dψt

(
φt(y),ω

)∣∣p]
dy dt

≤ C

∫
Rd

∣∣Duε
0(y) − Du0(y)

∣∣p dy.

Therefore, by the calculus made above, we can pass to the limit in (3.5) as ε → 0. Thus, we
conclude the that u(t, x) = u0(φ

−1
t (x)) is a W 1,p-weak solution of SPDE (1.3). �

3.2 Uniqueness of weak solutions

In the present section, we shall show the uniqueness result for W 1,p-weak solutions for the
SPDE (1.3). As mentioned in the introduction, using the divergence-free condition, in the
demonstration below we avoid to consider ideas on “commutators”.

Theorem 3.2. Under the conditions of Hypothesis 2.1 uniqueness holds for W 1,p-weak
solutions of the Cauchy problem (1.3) in the following sense: If u1, u2 ∈ Lp([0, T ] ×
�,W 1,p(Rd)) are two W 1,p-weak solutions with the same initial data u0 ∈ W 1,p(Rd), then
u1 = u2 almost everywhere in [0, T ] ×R

d × �.

Proof. We divide the proof in three steps. Before starting the proof we see that, by linear-
ity, is sufficient to prove that a W 1,p-weak solution with initial condition u0 = 0 vanishes
identically. Let us denote by u such a solution.

Step 1: Regularization. For ε > 0 and δ > 0, let us consider φε,φδ the standard symmetric
mollifiers. So, by considering uε(t, ·) = u(t, ·) ∗ φε we get the integral equation

uε(t, x) = −
∫ t

0

∫
Rd

∂iu(s, z)bi(z)φε(x − z) dz ds

+
∫ t

0

∫
Rd

u(s, z)∂iφε(x − z) dz ◦ dBi
s,

(3.6)

which, for each ε > 0, is strong in the analytic sense.
Now, let us denote by bδ and Xδ

t the standard mollification of b and the associated flow to
the SDE (2.4) (with bδ instead b), respectively. Analogously, let Y δ

t be the associated flow to
the SDE (2.5). In this way, by a change of variables x = Xδ

t (y) and for each ϕ ∈ C∞
c (Rd),

we see ∫
Rd

uε

(
t,Xδ

t (y)
)
ϕ(y)dy =

∫
Rd

uε(t, x)ϕ
(
Y δ

t (x)
)
dx, (3.7)
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for each t ∈ [0, T ] (recall that divbδ = 0, that is, the Jacobian of the stochastic flow is iden-
tically one). We also see that by applying Itô’s formula (see Kunita (1984b)) to the process
vδ(t, x) = ϕ(Y δ

t ) it satisfies the stochastic transport equation in the classical sense, that is,{
dvδ(t, x) + bδ(x)∇vδ(t, x) dt + ∇vδ(t, x) ◦ dBt = 0,

vδ|t=0 = ϕ(x).
(3.8)

As uε is strong in the analytic sense, then, by applying again Itô’s formula to the product of
semimartingales

uε(t, x)ϕ
(
Y δ

t

)
,

we have

uε(t, x)ϕ
(
Y δ

t

) = −
∫ t

0
uε(s, x)bδ(x)∇ϕ

(
Y δ

t

)
ds

−
∫ t

0
uε(s, x)∂xi

[
ϕ

(
Y δ

t

)] ◦ dBi
s

−
∫ t

0

∫
Rd

ϕ
(
Y δ

t

) ∫
Rd

∂yi
u(s, y)bi(y)φε(x − y)dy ds

+
∫ t

0

∫
Rd

ϕ
(
Y δ

t

)
u(s, y)∂yi

φε(x − y)dy ◦ dBi
s .

(3.9)

Step 2: Localization and Passing to the limit as ε → 0 and δ → 0. The idea in this step
is to pass to the limit in the above equation (3.9), but under condition (2.1) it is not possible
because the Dominated Convergence Theorem does not work. Thus, in order to avoid that
problem initially we need to do a “Localization”.

In fact, multiplying the equation (3.9) by a differentiable function ηR defined by ηR(x) =
η(x/R) (R > 0), where η ∈ C∞

c (Rd) is a cut-off function such that 0 ≤ η ≤ 1, η ≡ 1 in the
ball of radius one and with support in the ball of radius 2; and integrating on R

d we have∫
Rd

uε(t, x)ϕ
(
Y δ

t

)
ηR(x) dx

= −
∫ t

0

∫
Rd

uε(s, x)bδ(x) · ∇ϕ
(
Y δ

t

)
ηR(x) dx ds

−
∫ t

0

∫
Rd

uε(s, x)∂xi

[
ϕ

(
Y δ

t

)]
ηR(x) dx ◦ dBi

s

−
∫ t

0

∫
Rd

ϕ
(
Y δ

t

)
ηR(x)

∫
Rd

∂yi
u(s, y)bi(y)φε(x − y)dy dx ds

+
∫ t

0

∫
Rd

ϕ
(
Y δ

t

)
ηR(x)

∫
Rd

u(s, y)∂yi
φε(x − y)dy dx ◦ dBi

s .

Integrating by parts the last term on right-hand side of the above equation and using that
∂yi

φε(x − y) = −∂xi
φε(x − y) it results∫

Rd
uε(t, x)ϕ

(
Y δ

t

)
ηR(x) dx

= −
∫ t

0

∫
Rd

uε(s, x)bδ(x) · ∇ϕ
(
Y δ

t

)
ηR(x) dx ds

+
∫ t

0

∫
Rd

uε(s, x)ϕ
(
Y δ

t

)
∂xi

ηR(x) dx ◦ dBi
s

−
∫ t

0

∫
Rd

ϕ
(
Y δ

t

)
ηR(x)

∫
Rd

∂yi
u(s, y)bi(y)φε(x − y)dy dx ds.
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Passing to Itô’s formulation, we get∫
Rd

uε(t, x)ϕ
(
Y δ

t

)
ηR(x) dx

= −
∫ t

0

∫
Rd

uε(s, x)bδ(x) · ∇ϕ
(
Y δ

t

)
ηR(x) dx ds

+
∫ t

0

∫
Rd

uε(s, x)ϕ
(
Y δ

t

)
∂xi

ηR(x) dx dBi
s

+ 1

2

∫ t

0

∫
Rd

uε(s, x)ϕ
(
Y δ

t

)
�ηR(x)dx ds

−
∫ t

0

∫
Rd

ϕ
(
Y δ

t

)
ηR(x)∂xi

(
u(s, ·)b(·))ε(x) dx ds.

(3.10)

Now, for δ > 0 fixed, by the Dominated Convergence theorem we take the limit as ε goes to
0+ in the above equation to obtain∫

Rd
u(t, x)ϕ

(
Y δ

t

)
ηR(x) dx

= −
∫ t

0

∫
Rd

u(s, x)bδ(x) · ∇ϕ
(
Y δ

t

)
ηR(x) dx ds

+
∫ t

0

∫
Rd

u(s, x)ϕ
(
Y δ

t

)
∂xi

ηR(x) dx dBi
s

+ 1

2

∫ t

0

∫
Rd

u(s, x)ϕ
(
Y δ

t

)
�ηR(x)dx ds

−
∫ t

0

∫
Rd

ϕ
(
Y δ

t

)
ηR(x)∂xi

(
u(s, x)b(x)

)
dx ds.

(3.11)

Again, by using the Dominated Convergence theorem and the property (2.7), we can pass to
the limit in (3.11) as δ goes to 0+, on the space L2(� × [0, T ]), to conclude that∫

Rd
u(t, x)ϕ

(
Yt (x)

)
ηR(x) dx

= −
∫ t

0

∫
Rd

u(s, x)b(x) · ∇ϕ
(
Yt (x)

)
ηR(x) dx ds

+
∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
∂xi

ηR(x) dx dBi
s (3.12)

+ 1

2

∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
�ηR(x)dx ds

−
∫ t

0

∫
Rd

ϕ
(
Yt (x)

)
ηR(x)∂xi

(
u(s, x)b(x)

)
dx ds.

Step 3: Passing to the limit as R → +∞ and conclusion. We are going to prove that, given
ϕ ∈ C∞

c (Rd), the P-a.s. limit
∫
Rd

u
(
t,Xt(x)

)
ϕ(x)dx = lim

R→+∞

∫
Rd

u(t, x)ϕ
(
Yt (x)

)
ηR(x) dx

is zero. Hence, from the fact that Xt is a bijection we have that u is identically zero.
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We start integrating by parts the last term on the right-hand side of the equation (3.12):∫
Rd

u(t, x)ϕ
(
Yt (x)

)
ηR(x) dx

=
∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
∂xi

ηR(x) dx dBi
s

+ 1

2

∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
�ηR(x)dx ds

+
∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
bi(x)∂xi

ηR(x) dx ds.

(3.13)

Now, by considering the estimates (to R ≥ 1)

∣∣∇ηR(x)
∣∣ ≤ ‖∇η‖L∞(Rd )

R
IB(R,2R)(x)

and ∣∣�ηR(x)
∣∣ ≤ ‖�η‖L∞(Rd )

R2 IB(R,2R)(x),

where IA represents the indicator function of A and B(R,2R) = {x ∈ R
d : R < |x| < 2R},

we see that, doing R goes to +∞, all terms on the right- hand side of the equation (3.13)
converge to zero. In fact, as ϕ ∈ C∞

c (Rd), it is enough to see the following estimates:∫ T

0

∫
�

∣∣∣∣
∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
∂xi

ηR(x) dx dBi
s

∣∣∣∣2

≤
∫ T

0

∫
�

∫
Rd

∣∣u(s, x)
∣∣2∣∣ϕ(

Yt (x)
)∣∣2∣∣∂xi

ηR(x)
∣∣2 dxP(dω)ds

≤
‖∇η‖2

L∞(Rd )

R2

∫ T

0

∫
�

∫
Rd

∣∣u(
s,Xt(y)

)∣∣2∣∣ϕ(y)
∣∣2IB(R,2R)

(
Xt(y)

)
dyP(dω)ds.

Also, if 1
p

+ 1
q

= 1∣∣∣∣
∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
�ηR(x)dx ds

∣∣∣∣
≤

(∫ t

0

∫
Rd

∣∣u(s, x)
∣∣p∣∣�ηR(x)

∣∣p dx ds

)1/p(∫ t

0

∫
Rd

∣∣ϕ(
Yt (x)

)∣∣q dx ds

)1/q

≤ C

R2

(∫ t

0

∫
Rd

∣∣u(s, x)
∣∣pIB(R,2R)(x) dx ds

)1/p

.

Likewise, as above∣∣∣∣
∫ t

0

∫
Rd

u(s, x)ϕ
(
Yt (x)

)
bi(x)∂xi

ηR(x) dx ds

∣∣∣∣
≤

∫ t

0

∫
Rd

∣∣u(s, x)
∣∣∣∣ϕ(

Yt (x)
)∣∣∣∣bi(x)

∣∣∣∣∂xi
ηR(x)

∣∣dx ds

≤ ‖∇η‖L∞(Rd )

R
(1 + 2R)

∫ t

0

∫
Rd

∣∣u(s, x)
∣∣∣∣ϕ(

Yt (x)
)∣∣( |bi(x)|

1 + |x|
)

× IB(R,2R)(x) dx ds

≤ C‖b‖Cθ

(∫ t

0

∫
Rd

∣∣u(s, x)
∣∣pIB(R,2R)(x) dx ds

)1/p

.
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Therefore, passing to the limit in the equation (3.13) as R → +∞ we find out that∫
Rd

u
(
t,Xt (x)

)
ϕ(x)dx = 0 (3.14)

for each ϕ ∈ C∞
c (Rd), and t ∈ [0, T ].

To conclude, let K be any compact set in R
d . Then, from the above equation we obtain∫

K
E

∣∣u(t, x)
∣∣p dx =

∫
K
E

∣∣u(
t,Xt

(
Yt (x)

))∣∣p dx

= E

∫
Yt (K)

∣∣u(
t,Xt (y)

)∣∣p dy = 0,

where it has been used (3.14) and that Xt is a stochastic flows of diffeomorphism. Conse-
quently, the conclusion of our theorem is proved. �

3.3 Stability

In this last section, we prove the strong stability property for the solutions of the stochastic
transport equation (1.3). Such property will be shown first with respect to the initial condition
u0 and after respect to the vector field b.

Proposition 3.3. Assume the conditions (2.1) and (2.2). Then, for any sequence {un
0} ⊂

W 1,p(Rd) strong converging to u0 ∈ W 1,p(Rd) we have:

un(t, x) converges to u(t, x) in Lp([0, T ] × �,W 1,p(
R

d))
as n → ∞, where un(t, x) and u(t, x) are the unique W 1,p-weak solutions of the Cauchy
problem (1.3) with the initial data un

0 and u0, respectively.

Proof. From Lemma 3.1 and Theorem 3.2, we have that

un(t, x) = un
0
(
X−1

t

)
and u(t, x) = u0

(
X−1

t

)
.

Then, making y = X−1
t (x) we obtain (recall that divb = 0, that is, the Jacobian of the stochas-

tic flow Xt is identically one)∫ T

0

∫
Rd

E
∣∣un(t, x) − u(t, x)

∣∣p dx

=
∫ T

0

∫
Rd

E
∣∣un

0
(
X−1

t (x)
) − u0

(
X−1

t (x)
)∣∣p dx ds

= T

∫
Rd

∣∣un
0(y) − u0(y)

∣∣p dy.

(3.15)

And considering (3.3), (3.4) and (2.8) we have∫ T

0

∫
Rd

E
∣∣Dun(t, x) − Du(t, x)

∣∣p dx ds

=
∫ T

0

∫
Rd

E
[∣∣Dun

0
(
X−1

t (x)
) − Du0

(
X−1

t (x)
)∣∣p∣∣DX−1

t (x)
∣∣p]

dx ds

=
∫ T

0

∫
Rd

∣∣Dun
0(y) − Du0(y)

∣∣pE[∣∣DX−1
t

(
Xt(y),ω

)∣∣p]
dy ds

≤ C

∫
Rd

∣∣Dun
0(y) − Du0(y)

∣∣p dy.

(3.16)

So, by the calculus made above and as un
0 converges to u0 in W 1,p(Rd) the thesis our propo-

sition follows. �
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Proposition 3.4. Let u0 ∈ W 1,p(Rd) ∩ W 1,q(Rd) for some q > p. Then for any sequence
{bn} ⊂ Cθ(Rd,Rd) and b ∈ Cθ(Rd,Rd) satisfying the condition (2.2) such that ‖bn −
b‖Cθ

b (Rd ,Rd ) → 0 as n → ∞ we have:

un(t, x) converges to u(t, x) in Lp([0, T ] × �,W
1,p
loc

(
R

d))
as n → ∞, where un(t, x) and u(t, x) are the unique W 1,p-weak solutions of the Cauchy
problem (1.3) for the drift bn and b, respectively.

Proof. From Lemma 3.1 and Theorem 3.2, we obtain that

un(t, x) = u0
(
X

−1,n
t

)
and u(t, x) = u0

(
X−1

t

)
.

We also consider uε,n(t, x) = uε
0(X

−1,n
t (x)) the unique solution of the stochastic transport

equation with vector field bn and initial condition uε
0 ∈ C∞

c (Rd) such that uε
0 converges to

u0 in W 1,p(Rd). We observe that uε
0 ∈ W 1,p′

(Rd) with p′ > d , then by Morrey’s inequality

uε
0 ∈ C

0,β
b (Rd), where β = 1 − d

p′ . In this way, if K is a compact in R
d we have

∫ T

0

∫
K
E

∣∣un(t, x) − u(t, x)
∣∣p dx ds

≤ C

∫ T

0

∫
�

∫
K

∣∣u0
(
X

−1,n
t (x)

) − uε
0
(
X

−1,n
t (x)

)∣∣p dxP(dω)dt

+ C

∫ T

0

∫
�

∫
K

∣∣uε
0
(
X

−1,n
t (x)

) − uε
0
(
X−1

t (x)
)∣∣p dxP(dω)dt

+ C

∫ T

0

∫
�

∫
Rd

∣∣uε
0
(
X−1

t (x)
) − u0

(
X−1

t (x)
)∣∣p dxP(dω)dt

≤ C

∫
K

∣∣u0(y) − uε
0(y)

∣∣p dy

+ C

∫ T

0

∫
�

∫
K

∣∣X−1,n
t (x)) − X−1

t (x)
∣∣βp

dxP(dω)dt

+ C

∫
Rd

∣∣uε
0(y) − u0(y)

∣∣p dy.

Thus, from (2.7), doing first ε → 0 and after n → ∞, we get that un → u in Lp(� ×
[0, T ],Lp

loc(R
d)). Now, we see that∫ T

0

∫
K
E

[∣∣Dun(t, x) − Du(t, x)
∣∣p]

dx ds

≤
∫ T

0

∫
K
E

[∣∣Du0
(
X

−1,n
t (x)

)
DX

−1,n
t (x)

− Du0
(
X−1

t (x)
)
DX−1

t (x)
∣∣p]

dx ds

≤ C

∫ T

0

∫
K
E

[∣∣Du0
(
X

−1,n
t (x)

) − Duε
0
(
X

−1,n
t (x)

)∣∣p∣∣DX
−1,n
t (x)

∣∣p]
dx dt

+ C

∫ T

0

∫
K
E

[∣∣Duε
0
(
X

−1,n
t (x)

) − Duε
0
(
X−1

t (x)
)∣∣p∣∣DX

−1,n
t (x)

∣∣p]
dx dt

+ C

∫ T

0

∫
K
E

[∣∣Duε
0
(
X−1

t (x)
)∣∣p∣∣DX

−1,n
t (x) − DX−1

t (x)
∣∣p]

dx dt
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+ C

∫ T

0

∫
K
E

[∣∣Duε
0
(
X−1

t (x)
) − Du0

(
X−1

t (x)
)∣∣p∣∣DX−1

t (x)
∣∣p]

dx dt (3.17)

≤ C

∫ T

0

∫
K

∣∣Du0(y) − Duε
0(y)

∣∣pE[∣∣DX
−1,n
t

(
Xn

t (y),ω
)∣∣p]

dy dt

+ C

∫ T

0

∫
K
E

[∣∣X−1,n
t (x) − X−1

t (x)
∣∣βp∣∣DX

−1,n
t (x)

∣∣p]
dx dt

+ C

(∫ T

0

∫
K
E

[∣∣Duε
0
(
X−1

t (x)
) − Du0

(
X−1

t (x)
)∣∣pp′′]

dx dt

) 1
p′′

×
(∫ T

0

∫
K
E

[∣∣Duε
0
(
X−1

t (x)
)∣∣q]

dx dt

)p
q

+ C

∫ T

0

∫
K

∣∣Duε
0(y) − Du0(y)

∣∣pE[∣∣DX−1
t

(
Xt(y),ω

)∣∣p]
dy dt,

where p
q

+ 1
p′′ = 1. Thus, considering (3.3), (3.4), the estimations (2.6), (2.7) and (2.8), and

doing first ε → 0 and after n → ∞ we have Dun → Du in Lp(�×[0, T ],Lp
loc(R

d)). There-
fore, by the calculus made above the proof is complete. �
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