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Beyond Whittle: Nonparametric Correction
of a Parametric Likelihood with a Focus

on Bayesian Time Series Analysis∗

Claudia Kirch†,‡, Matthew C. Edwards§, Alexander Meier¶, and Renate Meyer‖

Abstract. Nonparametric Bayesian inference has seen a rapid growth over the
last decade but only few nonparametric Bayesian approaches to time series anal-
ysis have been developed. Most existing approaches use Whittle’s likelihood for
Bayesian modelling of the spectral density as the main nonparametric characteris-
tic of stationary time series. It is known that the loss of efficiency using Whittle’s
likelihood can be substantial. On the other hand, parametric methods are more
powerful than nonparametric methods if the observed time series is close to the
considered model class but fail if the model is misspecified. Therefore, we suggest
a nonparametric correction of a parametric likelihood that takes advantage of the
efficiency of parametric models while mitigating sensitivities through a nonpara-
metric amendment. We use a nonparametric Bernstein polynomial prior on the
spectral density with weights induced by a Dirichlet process and prove posterior
consistency for Gaussian stationary time series. Bayesian posterior computations
are implemented via an MH-within-Gibbs sampler and the performance of the
nonparametrically corrected likelihood for Gaussian time series is illustrated in a
simulation study and in three astronomy applications, including estimating the
spectral density of gravitational wave data from the Advanced Laser Interferom-
eter Gravitational-wave Observatory (LIGO).

Keywords: Bayesian nonparametrics, frequency domain, laser interferometric
gravitational wave data, spectral density, stationary time series.

1 Introduction

Statistical models can be broadly classified into parametric and nonparametric models.
Parametric models, indexed by a finite dimensional set of parameters, are focused, easy
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to analyse and have the big advantage that when correctly specified, they will be very
efficient and powerful. However, they can be sensitive to misspecifications and even mild
deviations of the data from the assumed parametric model can lead to unreliabilities of
inference procedures. Nonparametric models, on the other hand, do not rely on data be-
longing to any particular family of distributions. As they make fewer assumptions, their
applicability is much wider than that of corresponding parametric methods. However,
this generally comes at the cost of reduced efficiency compared to parametric models.

Standard time series literature is dominated by parametric models like autoregres-
sive integrated moving average models (Box et al., 2013), autoregressive conditional
heteroskedasticity models for time-varying volatility (Engle, 1982; Bollerslev, 1986),
state-space (Durbin and Koopman, 2012) and Markov switching models (Bauwens et al.,
2000). In particular, Bayesian time series analysis (Steel, 2008) is inherently paramet-
ric in that a completely specified likelihood function is needed. Nonetheless, the use of
nonparametric techniques has a long tradition in time series analysis. Schuster (1898)
introduced the periodogram which may be regarded as the origin of spectral analysis
and a classical nonparametric tool for time series analysis (Härdle et al., 1997). An
important class of nonparametric methods is based on frequency domain techniques, in
particular those based on smoothing the periodogram.

Frequentist time series analyses especially use nonparametric methods (Fan and Yao,
2002; Wasserman, 2006) including a variety of bootstrap methods, computer-intensive
resampling techniques initially introduced for independent data, that have been taylored
to and specifically developed for time series (Härdle et al., 2003; Kreiss and Lahiri, 2012;
Kreiss and Paparoditis, 2011). These include a variety of frequency domain bootstrap
methods based on the periodogram strongly related to the Whittle likelihood (Hurvich
and Zeger, 1987; Franke and Härdle, 1992; Kirch and Politis, 2011; Kirch, 2007; Kim and
Nordman, 2013) and found important applications in a variety of disciplines (Hidalgo,
2008; Costa et al., 2013; Emmanoulopoulos et al., 2013).

Despite the fact that nonparametric Bayesian inference has been rapidly expanding
over the last decade, as reviewed by Hjort et al. (2010), Müller and Mitra (2013), and
Walker (2013), only very few nonparametric Bayesian approaches to time series analysis
have been developed. With the exception of Rousseau et al. (2012), who use the full
Gaussian likelihood, most papers use the Whittle likelihood (Whittle, 1957) for Bayesian
modelling of the spectral density as the main nonparametric characteristic of stationary
time series. Examples include the papers by Carter and Kohn (1997), Gangopadhyay
et al. (1999), Liseo et al. (2001), Choudhuri et al. (2004), Hermansen (2008), Chopin
et al. (2013).

The Whittle likelihood is an approximation of the true likelihood, which is exact only
for Gaussian white noise. While in a Gaussian setting, the advantage of the Whittle
likelihood is mainly of computational nature both in terms of speed and numerical
errors, for non-Gaussian time series the full likelihood is no longer accessible, while
Whittle’s likelihood still often leads to asymptotically correct statistical inference in
many situations. As shown in Contreras-Cristán et al. (2006), the loss of efficiency
using the Whittle likelihood can be substantial in the Gaussian AR-model for small
samples if the autocorrelation of the Gaussian process is high. For this reason in the
Gaussian small sample situation, Chopin et al. (2013) use a second importance sampling
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step to correct a posterior sample obtained in an initial step based on the Whittle
likelihood. This importance sampling step is necessary only for time series of lengths
< 103, while for lengths� 104 the importance sampling correction step becomes quickly
too expensive. A different approach based on de-biasing the Whittle likelihood has been
suggested in Sykulski et al. (2017) for second-order stationary stochastic processes with
the same computational complexity as the original Whittle likelihood. Cadonna et al.
(2017) develop a novel Bayesian approach to spectral density estimation for multiple
time series by replacing the Whittle likelihood with a structured mixture of Gaussian
distributions, defined through frequency-dependent mixture weights and Gaussian mean
functions.

The Whittle likelihood has two potential sources of approximation errors: The first
one is the assumption of independence between Fourier coefficients which holds only
asymptotically but not exactly for a finite time series and the second one is the Gaus-
sianity assumption. In this paper, we restrict our attention to the first problem. Extend-
ing the proposed methods to non-Gaussian situations will be a focus of future work.
In order to introduce some reasonable dependence between Fourier coefficients Kreiss
and Paparoditis (2003) propose a semi-parametric approach for bootstrapping that we
adopt in this work for Bayesian inference.

Parametric methods are more powerful than nonparametric methods if the observed
time series is close to the considered model class but fail if the model is misspecified.
To exploit the advantages of both parametric and nonparametric approaches, two con-
ceptually different lines of research have been pursued in the frequentist literature. The
first approach consists of pre-whitening by fitting a parametric model first, followed by a
nonparametric kernel density estimate based on the residual time series and subsequent
recolouring (Andrews and Monahan (1992)). The second approach uses a nonparamet-
ric correction of a parametric likelihood. This idea was first proposed by Hjort and
Glad (1995) for i.i.d. observations and by Kreiss and Paparoditis (2003) in terms of the
autoregressive-aided periodogram bootstrap within the frequentist bootstrap world of
time series analysis. It fits a parametric working model to generate periodogram ordi-
nates that mimic the essential features of the data and the weak dependence structure
of the periodogram while a nonparametric correction is used to capture features not
represented by the parametric fit. This has been extended in various ways (see Jentsch
and Kreiss (2010); Jentsch et al. (2012); Kreiss and Paparoditis (2012)). Its main un-
derlying idea is a nonparametric correction of a parametric likelihood approximation.
The parametric model is used as a proxy for rough shape of the autocorrelation struc-
ture as well as the dependency structure between periodogram ordinates. Sensitivities
with respect to the spectral density are mitigated through a nonparametric amendment.
We propose to use a similar nonparametrically corrected likelihood approximation as a
pseudo-likelihood in the Bayesian framework to compute the pseudo-posterior distribu-
tion of the power spectral density (PSD) and other parameters in time series models.
This will yield a pseudo-likelihood that generalises the widely used Whittle likelihood
which, as we will show, can be regarded as a special case of a nonparametrically cor-
rected likelihood under the Gaussian i.i.d. working model. Software implementing the
methodology is available in the R package beyondWhittle, which is available on the
Comprehensive R Archive Network (CRAN), see Meier et al. (2017). In this paper, we
will focus and illustrate the methodology on zero mean stationary time series which
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in more general contexts such as regression models with time series errors, time series
change point models, and unit root tests will represent the error term. Our proposed
Bayesian semiparametric estimation approach can be readily extended to these models.

The main contribution of this paper is a novel semiparametric Bayesian estimator
of the spectral density of a stationary time series via a nonparametric correction of a
parametric likelihood. The correction adds robustness while taking advantage of the
efficiency of the parametric model. The nonparametrically corrected likelihood provides
a generalization of the Whittle likelihood which is shown to be a special case when the
parametric working model is i.i.d. Gaussian white noise. Making use of a parametric
model other than i.i.d. Gaussian white noise has the advantage that sharp peaks are
better estimated than with the Whittle likelihood. The new method facilitates the es-
timation of the spectral density by a reparametrization. It puts the Bernstein-Dirichlet
prior not on the spectral density itself but on a pre-whitened version which is in gen-
eral smoother and thus easier to approximate by Bernstein polynomials. Furthermore,
a parameter η ∈ [0, 1] that quantifies the degree of confidence in the parametric model
is introduced and treated as an unknown parameter to be estimated from the data. It
is shown in simulations to have ‘oracle’ properties in the sense of aligning the semi-
parametric spectral density estimate to the parametric model in the well-specified case
and to the nonparametric estimate under model misspecification. Last but not least,
the pseudo-posterior distribution based on Bernstein polynomial prior and corrected
likelihood is proven to be consistent.

The paper is structured as follows: In Section 2, we briefly revisit the Whittle likeli-
hood and demonstrate that it is a nonparametrically corrected likelihood, namely that
of a Gaussian i.i.d. working model. Then, we extend this nonparametric correction to
a general parametric working model. The corresponding pseudo-likelihood turns out to
be equal to the true likelihood if the parametric working model is correctly specified
but also still yields asymptotically unbiased periodogram ordinates if it is not correctly
specified. In Section 3, we propose a Bayesian nonparametric approach to estimating
the spectral density using the pseudo-posterior distribution induced by the corrected
likelihood of a fixed parametric model. We describe the Gibbs sampling implementation
for sampling from the pseudo-posterior. This nonparametric approach is based on the
Bernstein polynomial prior of Petrone (1999) and used to estimate the spectral density
via the Whittle likelihood in Choudhuri et al. (2004). We show posterior consistency
of this approach and discuss how to incorporate the parametric working model in the
Bayesian inference procedure. Section 4 gives results from a simulation study, including
case studies of sunspot data, S. Carinae variable star light intensities, and gravitational
wave data from the sixth science run of the Advanced Laser Interferometric Gravita-
tional Wave Observatory (LIGO). This is followed by discussion in Section 5, which
summarises the findings and points to directions for future work. The proofs, the de-
tails about the Bayesian autoregressive sampler as well as some additional simulation
results are deferred to the supplementary material (Kirch et al., 2018).

2 Likelihood approximation for time series

For Gaussian time series, the full likelihood is a function of the spectral density but
its evaluation is computationally expensive and prone to numerical errors. To avoid
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the full likelihood evaluation, Whittle (1957) defined a pseudo-likelihood, known as the
Whittle likelihood, which is only an approximation of the true likelihood but compu-
tationally much easier. Chopin et al. (2013) initially sampled from a pseudo-posterior
using the Whittle likelihood, then subsequently used importance sampling to obtain
samples from the true posterior with a numerically efficient implementation of the full
likelihood. However, in the non-Gaussian situation, the full likelihood is not accessi-
ble, but statistical procedures based on the Whittle likelihood still yield asymptotically
correct results for many but not all statistics.

Another approach is to use parametric models such as AR or MA models with
data-dependent order selection. These can also be considered as approximations to the
true likelihood due to their universal approximation properties. For the MA model,
this comes by way of the famous Wold theorem (see e.g. Paragraph 5.7 in Brockwell
and Davis (2009)). Similar results also hold for AR-approximations, which gave rise to
AR-sieve bootstrap methods (see Kreiss et al. (2011)) among others. However, these
methods tend to produce biased results when the parametric approximation to the
underlying time series is poor.

In the following subsection we will revisit the approximate likelihood proposed by
Whittle (1957) before introducing a semiparametric approach which extends the Whit-
tle likelihood in a way that combines a parametric approximation with a nonparametric
correction of the parametric likelihood. In Section 4 we will see that a Bayesian pro-
cedure based on this likelihood inherits the efficiency of the parametric model when
correctly specified and the robustness of the nonparametric approach when the para-
metric model is completely misspecified. Moreover, it even improves upon both when
the parametric model is only partially correct.

2.1 Whittle likelihood revisited

Assume that {Zt : t = 0, 1, . . .} is a real zero mean stationary time series with absolutely
summable autocovariance function

∑
h∈Z

|γ(h)| < ∞. Under these assumptions the
spectral density of the time series exists and is given by the Fourier transform (FT) of
the autocovariance function

f(λ) =
1

2π

∞∑
k=−∞

γ(k) exp(−ikλ), 0 ≤ λ ≤ 2π.

Consequently, there is a one-to-one-correspondence between the autocovariance function
and the spectral density, and estimation of the spectral density is amenable to smoothing
techniques. The idea behind these smoothing techniques is the following observation,
which also gives rise to the so-called Whittle approximation of the likelihood of a time
series: Consider the periodogram of Zn = (Z1, . . . , Zn)

T ,

In(λ) = In,λ(Zn) =
1

2πn

∣∣∣∣∣
n∑

t=1

Zt exp(−itλ)

∣∣∣∣∣
2

.
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The periodogram is given by the squared modulus of the discrete Fourier coefficients,
the Fourier transformed time series evaluated at Fourier frequencies λj = 2πj

n , for j =
0, . . . , N = �(n− 1)/2�. It can be obtained by the following transformation: Define

cj =
√
2
ej =

1√
2
(ej + en−j), sj =

√
2�ej =

1

i
√
2
(ej − en−j),

where

ej = n−1/2(ej , e
2
j , . . . , e

n
j )

T , ej = exp(−2πij/n), j = 0, . . . , N

and for n even, en/2 is defined analogously. Then,

Fn =

{
(e0, c1, s1, . . . , cN , sN , en/2)

T , n even,

(e0, c1, s1, . . . , cN , sN )T , n odd,

is an orthonormal n × n matrix (cf. e.g. Brockwell and Davis (2009), paragraph 10.1).
Real- and imaginary parts of the discrete Fourier coefficients are collected in the vector

Z̃n := (Z̃n(0), . . . , Z̃n(n− 1))T = FnZn

and the periodogram can be written as

In(λj) =
1

4π

(
Z̃2
n(2j) + Z̃2

n(2j − 1)
)
, j = 1, . . . , N,

In(λ0) =
1

2π
Z̃2
n(0), as well as for n even: In(λn/2) =

1

2π
Z̃2
n(n− 1). (1)

It is well known that the periodograms evaluated at two different Fourier frequencies
are asymptotically independent and have an asymptotic exponential distribution with
mean equal to the spectral density, a statement that remains true for non-Gaussian and
even non-linear time series (Shao and Wu, 2007). Similarly, the Fourier coefficients Z̃n

are asymptotically independent and normally distributed with variances equal to 2π
times the spectral density at the corresponding frequency. This result gives rise to the
following Whittle approximation in the frequency domain

pW
Z̃n

(z̃n|f) ∝ det(Dn)
−1/2 exp

(
−1

2
z̃T
nD

−1
n z̃n

)
(2)

by the likelihood of a Gaussian vector with diagonal covariance matrix

Dn := Dn(f)

:= 2π

{
diag(f(0), f(λ1), f(λ1), . . . , f(λN ), f(λN ), f(λn/2)), n even,

diag(f(0), f(λ1), f(λ1), . . . , f(λN ), f(λN )), n odd.
(3)

As explicitly shown in the supplementary material, this yields the famous Whittle like-
lihood in the time domain via the transformation theorem

pW
Zn=FT

n Z̃n
(zn|f) ∝ exp

⎧⎨⎩−1

2

n−1∑
j=0

(
log f(λj) +

In,λj (zn)

f(λj)

)⎫⎬⎭ , (4)
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which provides an approximation of the true likelihood. It is exact only for Gaussian
white noise in which case f(λj) = σ2/2π. It has the advantage that it depends directly
on the spectral density in contrast to the true likelihood that depends on f indirectly
via Wiener-Khinchin’s theorem. Sometimes, the summands corresponding to j = 0 as
well as j = n/2 (the latter for n even) are omitted in the likelihood approximation. In
fact, the term corresponding to j = 0 contains the sample mean (squared) while the
term corresponding to j = n/2 gives the alternating sample mean (squared). Both have
somewhat different statistical properties and usually need to be considered separately.
Furthermore, the first term is exactly zero if the methods are applied to time series that
have been centered first, while the last one is approximately zero and asymptotically
negligible (refer also Remark 2).

2.2 Nonparametric likelihood correction

The central idea in this work is to first conceive the Whittle likelihood as the likelihood of
an i.i.d. Gaussian white noise working model that is nonparametrically corrected in the
frequency domain. We then generalize the Whittle likelihood by employing more realistic
parametric working models that more adequately describe the dependence structure of
the time series.

Let us assume that we start with an i.i.d. N(0, 1) working model which has constant
spectral density 1/2π. This will in general not give a good spectral density estimate of
the time series. Therefore we correct this by defining a correction matrix

Cn(f/f i.i.d.N(0,1)) =

⎧⎨⎩diag
(

f(λ0)
1/2π , f(λ1)

1/2π , f(λ1)
1/2π , . . . , f(λN )

1/2π , f(λN )
1/2π ,

f(λn/2)

1/2π

)
, n even,

diag
(

f(λ0)
1/2π , f(λ1)

1/2π , f(λ1)
1/2π , . . . , f(λN )

1/2π , f(λN )
1/2π

)
, n odd.

and correct the Fourier-transformed time series in the frequency domain by multiplying
by the square root of the correction matrix and inverse-Fourier-transform back into the
time domain. This can be illustrated in a schematic diagram:

time domain frequency domain

Zi
i.i.d.∼ N(0, 1)

FT
−−−−−−−−−−−−−→ FnZn⏐⏐⏐⏐⏐⏐�Dn(f) = Cn(f/f i.i.d.N(0,1))

FT
n Cn(f/f i.i.d.N(0,1))

1/2FnZn

FT−1

←−−−−−−−−−−−−− Cn(f/f i.i.d.N(0,1))
1/2FnZn

Then the density induced by this linear transformation is the Whittle likelihood as
Dn(f) = Cn(f/f i.i.d.N(0,1)) in (3).

Adopting this viewpoint, it is straightforward to generalize the Whittle likelihood.
We start with some parametric likelihood in the time domain, such as e.g. obtained
from an ARMA-model, that is believed to be a reasonable approximation to the true
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time series. We denote the spectral density that corresponds to this parametric working
model by fparam(·). If the model is misspecified, then this spectral density is also wrong
(biased) and needs to be corrected for the corresponding likelihood to have the correct
second-order dependence structure. To this end, we define a correction matrix

Cn = Cn(f/fparam) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

diag
(

f(λ0)
fparam(λ0)

, f(λ1)
fparam(λ1)

, f(λ1)
fparam(λ1)

, . . . ,

f(λN )
fparam(λN ) ,

f(λN )
fparam(λN ) ,

f(λn/2)

fparam(λn/2)

)
, n even,

diag
(

f(λ0)
fparam(λ0)

, f(λ1)
Fparam(λ1)

, f(λ1)
fparam(λ1)

, . . . ,

f(λN )
fparam(λN ) ,

f(λN )
fparam(λN )

)
, n odd.

Our proposed concept of a nonparametric correction of a parametric time domain
likelihood is illustrated in the schematic diagram:

time domain frequency domain

Zn ∼ parametric working model
FT

−−−−−−−−−−−−−→ FnZn⏐⏐⏐⏐⏐⏐�Cn(f/fparam)

FT
n Cn(f/fparam)

1/2FnZn

FT−1

←−−−−−−−−−−−−− Cn(f/fparam)
1/2FnZn

As a result we obtain the following nonparametrically corrected likelihood function
under the parametric working model

pCparam(Zn|f) ∝ det(Cn)
−1/2 pparam(F

T
n C

− 1
2

n FnZn), (5)

where pparam denotes the parametric likelihood.

The diagonal correction via Cn(f/fparam) is a bias correction from the parametric
spectral density to the true spectral density, while the covariance structure of the peri-
odogram ordinates is inherited from the parametric model (see Proposition 1 c) below).
In particular, for non-i.i.d. parametric models, the covariance of the periodogram ordi-
nates is not diagonal (which can also be seen by the form of the corrected likelihood
as given in the proof of Theorem 3.1 in the supplementary material on page 2). This is
in contrast to Whittle’s likelihood under which the periodogram ordinates are indeed
independent.

Such an approach in a bootstrap context has been proposed and successfully applied
by Kreiss and Paparoditis (2003) using an AR(p) approximation. In the context of
nonparametric density estimation of i.i.d. data a similar semi-parametric correction
approach has been proposed by Hjort and Glad (1995).

Remark 1. Parametric models with a multiplicative scale parameter σ �= 1 yield the
same corrected likelihood as the one with σ = 1, i.e. if σZn is used as working model this
leads to the same corrected likelihood for all σ > 0. For instance, if the parametric model
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is given by i.i.d. N(0, σ2) random variables with σ2 > 0 arbitrary, then the correction
also results in the Whittle likelihood (for a proof we refer to the supplementary material).
Analogously, for linear models Zt =

∑∞
l=−∞ dlet−l, et ∼ (0, σ2), which includes the class

of ARMA-models, the corrected likelihood is independent of σ2.

We can now prove the following proposition which shows two important things: First,
the corrected likelihood is the exact likelihood in case the parametric model is correct.
Second, the periodograms associated with this likelihood are asymptotically unbiased
for the true spectral density regardless of whether the parametric model is true.

Proposition 1. Let {Zt} be a real zero mean stationary time series with absolutely
summable autocovariance function

∑
h∈Z

|γ(h)| < ∞ and let fparam(λ) ≥ β > 0 for
0 ≤ λ ≤ π be the spectral density associated with the (mean zero) parametric model used
for the correction.

a) If f = fparam, then pCparam = pparam.

b) The periodogram associated with the corrected likelihood is asymptotically unbiased
for the true spectral density, i.e.

EpC
param

In,λj (Zn) =

∫
In,λj (z1, . . . , zn) dp

C
param(zn, . . . , zn)

=
f(λj)

fparam(λj)
Epparam In,λj (Zn) = f(λj) + o(1),

where the convergence is uniform in j = 0, . . . , �(n− 1)/2�.

c) Furthermore, for all k, l = 0, . . . , �(n− 1)/2�,

CovpC
param

(In,λl
(Zn), In,λk

(Zn))

=
f(λl)f(λk)

fparam(λl) fparam(λk)
Covpparam(In,λl

(Zn), In,λk
(Zn)).

The proof (which can be found in the supplementary material), shows that the vec-
tor of periodograms under the corrected likelihood has exactly the same distributional
properties as the vector of the periodograms under the parametric likelihood multiplied
with f(·)/fparam(·). Hence, asymptotic properties as the ones derived in Theorem 10.3.2
in Brockwell and Davis (2009) carry over with the appropriate multiplicative correction.

In the remainder of the paper we describe how to make use of this nonparametric
correction in a Bayesian set-up.

3 Bayesian semiparametric approach to time series
analysis

To illustrate the Bayesian semiparametric approach and how to sample from the pseudo-
posterior distribution, in the following we restrict our attention to an AR(p) model as
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our parametric working model for the time series, i.e. Zi =
∑p

l=1 alZi−l+ εi, where {εi}
are i.i.d. N(0, 1) random variables with density denoted by ϕ(·). Note that without loss
of generality, σ2 = 1, cf. Remark 1. This yields the parametric likelihood of our working
model, depending on the order p ≥ 0 and on the coefficients a = (a1, . . . , ap):

pparam(Zn|a)= pAR(Zn|a) ∝ pAR(Zp|a)
n∏

i=p+1

ϕ

(
Zi −

p∑
l=1

alZi−l

)
(6)

with spectral density

fparam(λ;a) =
1

2π

∣∣∣∣∣1−
p∑

l=1

ale
−ilλ

∣∣∣∣∣
−2

. (7)

The second factor in (6) gives the likelihood of Zp+1, . . . , Zn given Z1, . . . , Zp and is
usually referred to as partial likelihood. In the paper, we will use the full likelihood
with the exception of the analysis of the LIGO data in Section 4.5 below, where the
partial likelihood was used for computational reasons. We assume the time series to
be stationary and causal. Thus, a is restricted such that φ(z) := 1 − a1z − · · · − apz

p

has no zeros inside the closed unit disc, cf. Theorem 3.1.1. in Brockwell and Davis
(2009). Because the corresponding spectral density is strictly positive and continuous
on [0, π], it is bounded away from 0. Furthermore, each Xt depends only on the previous
p observations whose influence on future observations decreases exponentially fast. As a
consequence, this property is inherited by the autocovariance function of causal AR(p)
(in fact causal ARMA(p, q)) time series. More precisely, it holds by (3.3.10) in Brockwell
and Davis (2009): |γAR(h)| ≤ c |h|p r−|h| ≤ CR−|h| for some c, C > 0 and r,R > 1. In
particular, the assumptions on the parametric model as given in Proposition 1 and
Assumption A.1 below are fulfilled.

For now, we assume that the parameters (p,a) of the parametric working model
are fixed (and in practice set to Bayesian point estimates obtained from a preceding
parametric estimation step). An extension to combine the estimation of the parametric
model with the nonparametric correction will be detailed later in Section 3.4.

3.1 Nonparametric prior for spectral density inference

For a Bayesian analysis using either the Whittle or nonparametrically corrected like-
lihood, we need to specify a nonparametric prior distribution for the spectral density.
Here we employ the approach by Choudhuri et al. (2004) which is essentially based on
the Bernstein polynomial prior of Petrone (1999) as a nonparametric prior for a prob-
ability density on the unit interval. We briefly describe the prior specification and refer
to Choudhuri et al. (2004) for further details.

In contrast to the approach in Choudhuri et al. (2004), we do not specify a nonpara-
metric prior distribution for the spectral density f(·), but for a pre-whitened version
thereof, incorporating the spectral density of the parametric working model into the
estimation. To elaborate, for 0 ≤ η ≤ 1, consider the eta-damped correction function

cη(λ) = cη(λ;a) := f(λ)/fparam(λ;a)
η. (8)
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This corresponds to a reparametrization of the likelihood (5) by replacing Cn =
Cn(f/fparam) with Cn = Cn(cη(λ;a)fparam(λ;a)

η−1).

We now put a prior on cη(·), which – for fixed η – includes the two extreme cases:
(i) prior on the spectral density f (if η = 0) and (ii) the correction f/fparam (if η = 1).
Because nonparametric estimation becomes generally easier the smoother the function
to be estimated is, a prior on f is preferable if the density is smoother than the correc-
tion while a prior on the correction f/fparam is preferable otherwise. If the parametric
working model is already close to the truth or captures the more prominent peaks it is
thus preferable to set η close to one, otherwise it is preferable to set η close to 0. In this
sense, the parameter η can be seen as a model confidence parameter.

The choice of η will be detailed in Section 3.4, but for now, η is assumed fixed.

We reparametrise cη(·) to a density function q(·) on [0, 1] via cη(πω) = τq(ω), 0 ≤
ω ≤ 1 with normalization constant τ =

∫ 1

0
cη(πω)dω. Thus, a prior for cη(·) may

be specified by putting a Bernstein polynomial prior on q(·) and then an independent
Inverse-Gamma(ατ , βτ ) prior on τ , its density denoted by pτ . The Bernstein polynomial
prior of q is specified in a hierarchical way as follows:

1. q(ω|k,G) =
∑k

j=1 G( j−1
k , j

k ]β(ω|j, k − j + 1) where G(u, v] = G(v) − G(u) for

a distribution function G and β(ω|l,m) = Γ(l+m)
Γ(l)Γ(m) ωl−1(1 − ω)m−1 is the beta

density with parameters l and m.

2. G has a Dirichlet process distribution with base measure α = MG0, where M > 0
is a constant and G0 a distribution function with Lebesgue density g0.

3. k has a discrete distribution on the integers k = 1, 2, . . ., independent of G, with
probability function p(k) ∝ exp(−θ k log(k)). Note that smaller values of k yield
smoother densities.

Furthermore, we achieve an approximate finite-dimensional characterization of this non-
parametric prior in terms of 2L+3 parameters (V1, . . . , VL,W0,W1, . . . ,WL, k, τ) by em-
ploying the truncated i.e. stick-breaking representation of the Dirichlet process (Sethu-
raman, 1994)

G =
L∑

l=1

plδWl
+ (1− p1 − . . .− pL)δW0

with p1 = V1, pl =
(∏l−1

j=1(1− Vj)
)
Vl for l ≥ 2, Vl ∼ beta(1,M), and Wl ∼ G0,

all independent. This gives a prior finite mixture representation of the eta-damped
correction

cη(πω) = τ

k∑
j=1

w̃j,kβ(ω|j, k − j + 1), (9)

where w̃j,k =
∑L

l=0 plI{
j−1
k < Wl ≤ j

k} and p0 = 1−
∑L

l=1 pl.
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The joint prior density of cη by means of this finite-dimensional approximation can
be written as

p(V1, . . . , VL,W0,W1, . . . ,WL, k, τ)

∝
(

L∏
l=1

M(1− Vl)
M−1

)(
L∏

l=0

g0(Wl)

)
pk(k) pτ (τ). (10)

Here, we specify a diffuse prior by choosing the uniform distribution for G0 and
M = 1. We set θ = 0.01, ατ = βτ = 0.001 and follow the recommendation by Choudhuri
et al. (2004) for the truncation point L = max{20, n1/3}.

3.2 Posterior computation

The prior (9) on cη(·) induces a prior on f(·) by multiplication with fparam(·;a)η, see
(8). Accordingly, the pseudo-posterior distribution of f(·) can be computed as prior
times the corrected parametric likelihood:

pCpost(V1, . . . , VL,W0,W1, . . . ,WL, k, τ |Zn,a, η)

∝ p(V1, . . . , VL,W0,W1, . . . ,WL, k, τ) det(Cn)
−1/2pparam(F

T
n C−1/2

n FnZn|a),

where Cn = Cn(cη(λ;a)fparam(λ;a)
η−1) and fparam(λ;a) as in (7). Samples from the

pseudo-posterior distribution can be obtained via Gibbs sampling following the steps
outlined in Choudhuri et al. (2004). The full conditional for k is discrete and readily
sampled, as is the conjugate full conditional of τ . We use the Metropolis algorithm
to sample from each of the full conditionals of Vl and Wl using the uniform proposal
density of Choudhuri et al. (2004).

Remark 2. As in Choudhuri et al. (2004), we omit the first and last terms in the cor-
rected likelihood that correspond to λ = 0 and λ = n/2 (and setting cη(0) = cη(n/2) = 0
as well as FnZn(0) = FnZn(n) = 0). This is due to the role that the corresponding
Fourier coefficients play (being equal to the sample mean respectively alternating sample
mean), which typically requires a special treatment (see Proposition 10.3.1 and equation
(10.4.7) in Brockwell and Davis (2009)). For the application to spectral density estima-
tion in this paper this leads to more stable statistical procedures irrespective of the true
mean of the time series. However, in situations, where the time series is merely used
to describe the error terms such as regression models, change point or unit-root testing,
these coefficients should be included and the likelihood used for the time series Zt − μ,
where μ is the mean (not the sample mean) of the time series.

3.3 Posterior consistency

In this section, we will show consistency of the pseudo-posterior distribution based on
the Bernstein polynomial prior and the corrected likelihood for a given working model
under the same assumptions as Choudhuri et al. (2004). Bayesian parametric modelling
has the advantage of Bernstein-von-Mises theorems that guarantee that frequentist and
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Bayesian inference procedures are asymptotically equal to the first order of approxi-
mation. Because this is no longer true for Bayesian nonparametric models, we need
to explicitly show posterior consistency, i.e. that the posterior distribution eventually
concentrates in the neighbourhood of the true parameter value as the sample size gets
large. To this end, contiguity is a powerful concept, introduced by Le Cam and Yang
(1960), for comparing the asymptotic behaviour of two sequences of probability mea-
sures, defined on spaces depending on the sample size n. The main usefulness of mutual
contiguity of the true joint distribution of the Fourier Coefficients FnZn, the Whit-
tle measure N(0, Dn) and as shown below the corrected likelihood, is that consistency
results (or rates of convergence) obtained under the Whittle measure or corrected like-
lihood immediately carry over to the true original Gaussian measure. This is important
to be able to use techniques of Bayesian nonparametric asymptotics that only work if
the posterior is based on the true likelihood, which is not the case when the Whittle
measure or the corrected likelihood is used. This is also one of the main challenges in
obtaining consistency results in the non-Gaussian case.

The paper by Ghosal et al. (1999) gives sufficient conditions for consistency of the
posterior distribution when using Bernstein polynomial priors in terms of the existence
of exponentially powerful tests for testing H0 : θ = θ0 and prior positivity of a Kullback-
Leibler neighbourhood. But these require i.i.d. observations. To prove posterior consis-
tency under the Whittle (and hence by contiguity the true) likelihood, Choudhuri et al.
(2004) extend this result to independent but not identically distributed observations
and apply this to the periodogram ordinates which are independent exponential ran-
dom variables under the Whittle likelihood. However, because periodogram ordinates
under the corrected likelihood are no longer independent, that theorem is no longer
applicable. Therefore, we derive an extension to non-independent Gaussian random
variables allowing us to prove consistency under the corrected and hence by contiguity
the true Gaussian likelihood.

Throughout the section, we will make the following assumption, where from now on
we denote the true spectral density by f0 to avoid confusion.

Assumption A.1. a) For the parametric working model with autocovariance function
γparam(·) and spectral density fparam(·) it holds that∑

h∈Z

hα|γparam(h)| < ∞ for some α > 1,

fparam(λ) ≥ β > 0 for some β > 0 and all 0 ≤ λ ≤ π.

b) {Zt} is a stationary mean zero Gaussian time series with autocovariance function
γ0(·) and spectral density f0(·) with∑

h∈Z

hα|γ0(h)| < ∞ for some α > 1,

f0(λ) ≥ β > 0 for some β > 0 and for all 0 ≤ λ ≤ π.

The density and the distribution of Zn = (Z1, . . . , Zn) is denoted by pn,f0(·) and Pn,f0 .
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An important first observation is, that in the Gaussian case the corrected likelihood,
the Whittle likelihood as well as the true likelihood are all mutually contiguous (for a
definition we refer to Van der Vaart (1998), Definition 6.3). This fact may also be of
independent interest:

Theorem 1. Under Assumptions A.1 the true density pn,f0(·), the Whittle likelihood
pW (·|f) given in (4) as well as the corrected (Gaussian) parametric likelihood pCparam(·|f)
given in (5) are all mutually contiguous.

With the help of this theorem we are now able to prove posterior consistency under
certain assumptions on the time series and prior (a detailed proof of Theorems 1 and 2
can be found in the supplementary material).

Theorem 2. Let 0 ≤ η ≤ 1 be fixed. Let Assumptions A.1 hold in addition to the
following assumptions on the prior for cη(·):

(P1) for all k, 0 < pk(k) ≤ B exp−b k log k for some constants B, b > 0,

(P2) g0 is bounded, continuous and bounded away from 0,

(P3) the parameter τ is assumed fixed and known.

Let c0,η(λ) = f0(λ)/f
η
param(λ). Then the posterior distribution is consistent, i.e. for any

ε > 0,

Πn(c : ||c− c0,η||1 > ε|Zn) → 0

in Pn,f0-probability, where Πn(·|Zn) denotes the pseudoposterior distribution computed
using the corrected likelihood.

While we prove consistency only for the Gaussian case, we conjecture that con-
sistency of the spectral density holds also for non-Gaussian time series (with certain
moment assumptions) as the asymptotic distribution of the spectral density only de-
pends on the first and second-order structure of the time series (see the simulation
results for non-Gaussian data in the supplementary material). This is supported by the
fact that the asymptotic distribution of the spectral density only depends on the first
and second order structure of the time series in combination with theoretical findings on
the applicability as well as limitations of the corresponding likelihood approximations in
a bootstrap context (see Franke and Härdle (1992), Dahlhaus and Janas (1996), Kreiss
and Paparoditis (2003), Kreiss et al. (2011)).

The assumption of a known, fixed τ is needed to prove posterior consistency but can
be relaxed to a sequence of prior distributions that asymptotically bracket the true value
as in Remark 1, Section 5 of Choudhuri et al. (2004). In simulation and case studies,
we assumed τ to be unknown with an Inverse-Gamma(0.001,0.001) prior distribution.
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3.4 Prior for the parameters of the working model

In the following we will consider a stationary autoregressive time series of order p in
its causal representation as a working model. This fulfills the assumptions on the au-
tocovariance function (which decreases exponentially with increasing lag h) and on the
spectral density, see Brockwell and Davis (2009).

In the previous sections, the parameters of the working model were assumed to be
fixed, as e.g. obtained in an initial pre-estimation step. From a Bayesian perspective,
it is desirable to couple the inference about the parametric working model with the
nonparametric correction, allowing for the inclusion of prior knowledge about the model
and for uncertainty quantification about the interaction of model and correction. Thus,
for a fixed order p, we include both the autoregressive parameters a = (a1, . . . , ap) and
the spectral shape confidence η from (8) into the Bayesian inference. The introduction
of the parameter η effectively robustifies the procedure in the sense that it guarantees
our method will not be worse than a corresponding fully nonparametric one. Putting a
prior on these additional parameters, may make these parameters (but not the spectral
density) unidentifiable, but will lead to superior performance as demonstrated by the
following simulations. In the context of priors for variance components, additional non
identifiable parameters have also been successfully introduced by Gelman (2006).

Because the domain of the parameter space for stationary and causal AR(p)-processes
has a rather complicated shape (namely the roots of the characteristic polynomial need
to lie outside the unit circle), we use a reparametrization suggested by Nam et al. (2014)
based on the partial autocorrelation ρ = (ρ1, . . . , ρp). Then the only condition needed
to ensure stationarity and causality (and hence identifiability) of the parametric model
is the condition that all partial autocorrelations ρj , j = 1, . . . , p, take values between
−1 and 1, which is ensured by our i.i.d. U(−1, 1)-prior. The autoregressive parame-
ters a = a(ρ) can be readily obtained from this parametrisation (further details can be
found in the supplementary material).

We consider the following prior specification for the spectral density:

f(λ) = cη(λ)fparam(λ;ρ)
η,

with a Bernstein-Dirichlet prior on cη(·) as in Section 3.1, a uniform prior on η and
uniform priors on the ρl’s, all a priori independent. Of course, it is possible to em-
ploy different prior models (see Liseo and Macaro (2013); Sørbye and Rue (2016)). In
conjunction with the corrected parametric likelihood, we obtain samples from the joint
pseudo-posterior distribution

pCpost(v1, . . . , vL, w0, w1, . . . , wL, k, τ, ρ1, . . . , ρp, η|Zn)

analogously to Section 3.2 via Gibbs sampling. Note that, since the corrected parametric
likelihood is the Lebesgue density of a probability measure, it is sufficient that the prior
distributions are proper for the posterior distribution to be proper. We use random walk
Metropolis-within-Gibbs steps with normal proposal densities to sample from the full
conditionals of η and ρ1, . . . , ρp respectively. The proposal variance for η is set to 0.01,
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where proposals larger than 1 (smaller than 0) are truncated at 1 (at 0). To achieve
proper mixing of the parametric model parameters, the proposal variances σ2

l for ρl are
determined adaptively as described in Roberts and Rosenthal (2009) during the burn-in
period, aiming for an acceptance rate of 0.44, where proposals with absolute value larger
or equal to one are discarded.

Remark 3. While we assume the autoregressive order p to be fixed, it is also possible
to include the autoregressive order in the Bayesian inference by using a Reversible-jump
Markov Chain Monte Carlo scheme (Green, 1995) or stochastic search variables (Bar-
nett et al., 1996). However, the simulations in Section 4.1 indicate and the discussion
in Section 4.2 points out, that this may only be done in combination with a heavily
penalized prior on p. In our approach, we suggest a preliminary model selection step
instead (as outlined in Section 4.2).

3.5 Missing values

The Gibbs sampler can be easily extended to handle missing values in the time series.
Missing values are treated as unknown parameters and sampled from the full conditional
density. For Gibbs sampling, it is sufficient to consider the case of a single missing
value, say Zm for m ∈ {p+ 1, . . . , n}, cf. the detailed illustration for Gibbs sampling of
autoregressive time series in McCulloch and Tsay (1994).

Let θ = (V1, . . . , VL,W0,W1, . . . ,WL, k, τ,a, η) denote the vector of parameters, then
the full conditional posterior distribution of Zm given Z(−m) and θ is proportional to

the parametric likelihood pparam(F
T
n C

−1/2
n FnZn|a) and thus again a normal distribution

which is given in the supplementary material.

4 Numerical evaluation

In this section, we evaluate the finite sample behavior of our nonparametrically corrected
(NPC) approach to Bayesian spectral density estimation numerically. To demonstrate
the trade-off between the parametric working model and the nonparametric spectral
correction, we compare our approach to both fully parametric and fully nonparametric
approaches. We first present the results of a simulation study with ARMA data in
Section 4.1 before considering sunspot data in Section 4.3, light intensities of the S.
Carinae variable star in Section 4.4 as well as gravitational wave data in Section 4.5.
An implementation of all procedures presented below is provided in the R package
beyondWhittle, which is available on CRAN, see Meier et al. (2017).

4.1 Simulated ARMA data

We consider data generated from the ARMA model

Zt = aZt−1 + bet−1 + et, 1 ≤ t ≤ n (11)



C. Kirch, M. C. Edwards, A. Meier, and R. Meyer 1053

with standard Gaussian white noise et and different values of a, b and n including pure
AR (with b = 0) and pure MA (with a = 0) models. The following competing approaches
are compared with NPC:

Nonparametric estimation (NP). The procedure from Choudhuri et al. (2004), which
is based on the Whittle likelihood and a Bernstein-Dirichlet prior on the spectral density.
Note that this coincides with the NPC approach with a white noise parametric working
model (p = 0), cf. Remark 1.

Autoregressive estimation (AR). For p = 0, 1, . . . , pmax, an autoregressive model of
order p is fitted to the data using a Bayesian approach based on the full parametric
likelihood as given in (6) with the same partial autocorrelation parametrization and
the same prior assumptions as for the parametric working model within the nonpara-
metrically corrected likelihood procedure, see Section 3.4 (for details on the sampling
scheme we refer to the supplementary material). The order p∗ minimizing the Deviance
Information Criterion (DIC) is then chosen for model comparison. For computational
reasons, the partial likelihood was used to calculate the DIC.

The working model in the NPC approach is chosen to be the AR(p∗) model from the
AR procedure. The prior for the working model parameters is as described in Section 3.4
and the prior for the nonparametric correction is as described in Section 3.1. For the
NP approach, the same Bernstein-Dirichlet prior for f(·) is used as for cη(·) in the NPC
approach.

We compare the average Integrated Absolute Error (aIAE) of the posterior median
spectral density estimate, the empirical coverage probability of a Uniform Credible
Interval (cUCI) as well as the median of the median lengths of these uniform credible
intervals (mLEN). It is well known, that the frequentist coverage of Bayesian credibility
sets can fail badly in theory and practice (see Szabó et al. (2015) for a recent treatment
on the matter), but it appears that our methodology yields reasonable results at least
in the simple examples considered.

Pointwise posterior credible intervals are not suited for investigating coverage, since
they do not take the multiple testing problem into account that arises at different
frequencies. Following Häfner and Kirch (2016) (see also Neumann and Polzehl (1998)),
a Uniform Credible Interval for the spectral density can be constructed as follows:
Denote by f∗

1 (·), . . . , f∗
N (·) the posterior spectral density samples obtained by one of the

procedures. Then for 0 < α < 1 the Uniform α-Credible Interval is given by

[exp (log f∗(λ)− C∗
ασ

∗(λ)) , exp (log f∗(λ) + C∗
ασ

∗(λ))] ,

where f∗(λ) denotes the sample median at frequency 0 ≤ λ ≤ π, σ∗(λ) the median
absolute deviation of log f∗

1 (λ), . . . , log f
∗
N (λ) and C∗

α is chosen such that

1

N

N∑
j=1

1

{
max

0≤λ≤π

log f∗(λ)− log f∗
j (λ)

σ∗(λ)
≤ C∗

α

}
≥ 1− α.

The intervals are constructed on a logarithmic scale to ensure that their covered range
contains only positive values. Because small values of f∗ lead to very large absolute
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(a) Order selection via DIC.
AR(1): MA(1): ARMA(1, 1):
a = 0.95 b = 0.8 a = 0.75, b = 0.8

n = 64 n = 128 n = 256 n = 64 n = 128 n = 256 n = 64 n = 128 n = 256
aIAE
AR 2.590 2.012 1.533 0.292 0.241 0.190 1.203 1.016 0.851
NP 3.543 2.946 2.370 0.197 0.153 0.119 1.022 0.806 0.625
NPC 2.992 2.240 1.612 0.206 0.157 0.121 1.083 0.907 0.727
cUCI
AR 0.959 0.970 0.990 0.857 0.869 0.871 0.844 0.830 0.886
NP 0.863 0.771 0.801 0.998 0.999 0.995 0.953 0.919 0.906
NPC 0.952 0.973 0.996 0.998 1.000 1.000 0.999 1.000 0.998
mLEN
AR 0.184 0.108 0.071 2.402 1.572 0.909 3.304 1.402 0.668
NP 1.024 0.441 0.248 1.303 0.660 0.399 1.441 0.630 0.344
NPC 0.632 0.290 0.150 3.273 1.689 0.985 4.862 2.110 0.974
η̂ 0.697 0.818 0.896 0.285 0.191 0.121 0.483 0.384 0.272

(b) Fixed order p = 1.
ARMA(1, 1): a = 0.75, b = 0.8

aIAE cUCI mLEN
n = 64 n = 128 n = 256 n = 64 n = 128 n = 256 n = 64 n = 128 n = 256

AR(p=1) 1.171 1.234 1.289 0 0 0 0.295 0.177 0.116
NPC(p=1) 0.942 0.741 0.586 0.986 0.969 0.954 0.847 0.443 0.264
η̂ 0.601 0.635 0.670 - - - - - -

Table 1: Average Integrated Absolute Error (aIAE), Uniform 0.9-Credible Interval cover-
age (cUCI), median length of credible intervals and average posterior model confidence η̂
for different realizations of model (11).

values on a log scale, we do not employ the usual logarithm, but the Fuller-logarithm
as described in Fuller (1996), page 496, i.e.

logFuller(x) = log(x+ ξ)− ξ/(x+ ξ),

for some small ξ > 0. We use α = 0.9 and ξ = 0.001 in our simulations. The chains
were run for 12,000 iterations for AR (after a burn-in period of 8,000 iterations) and for
20,000 iterations for NP and NPC (after a burn-in period of 30,000 iterations), where
a thinning of 4 was employed for NP and NPC. We choose pmax = 15 and consider
lengths n = 64, 128, 256 from model (11) with N = 1024 replicates (N a power of 2 to
use the computational resources efficiently) respectively.

The results are shown in Table 1a. For AR(1) data, the AR procedure yields the best
results (in terms of aIAE, cUCI and mLEN), whereas the NP performs worst. It can be
seen that AR and NPC benefit from the well-specified parametric model. For MA(1)
data, however, the AR approach yields the worst results, whereas NPC benefits from the
nonparametric correction, yielding only slightly worse integrated errors than NP, at the
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Figure 1: Posterior median spectral density estimates of AR (dashed), NP (dotted) and
NPC (solid black) for a single instance of the AR(1), MA(1), and ARMA(1,1) time
series compared to the true spectral density (gray).

expense of longer credible intervals. In case of ARMA(1,1) data, the estimation does not
benefit from the autoregressive fit, i.e. the moving average misspecification dominates
the estimation. Thus the results are similar to the MA(1) case. For the correctly specified
AR(1) model, the estimate of the confidence parameter η̂ is close to 1, in particular it
increases with increasing sample size. In the misspecified case of the MA(1) model, η̂
is close to zero and decreases with increasing sample size, while in the intermediate
ARMA(1,1) case, its estimate is close to 0.5 but also decreases with increasing sample
size.

The fact, that the nonparametric correction does not benefit from the parametric
fit in the case of the ARMA(1,1) model is somewhat surprising. However, this is due to
the use of the DIC for order selection which is not optimal for the nonparametric cor-
rection as explained in Section 4.2 below. Table 1b shows the simulation results for the
ARMA(1,1) model and a fixed order of p = 1. While a parametric AR(1) model is clearly
not able to explain the data (see e.g. the zero coverage of the uniform credibility inter-
vals), this choice of the order significantly improves the results of the NPC procedure
for the ARMA(1,1) data. In fact, the latter is now better than both the AR procedure
as well as the NP procedure in terms of aIAE. At the same time the confidence in the
model as indicated by η̂ increases and the median length of the credible sets is now
smaller than for all other procedures while the coverage is comparable or even larger.

Figure 1 shows the posterior median spectral density estimates for one exemplary
replication of each of the three models considered in Table 1a. The true spectral density
is shown in gray. The other lines are the (pointwise) posterior median spectral densities
of AR (dashed), NP (dotted) and NPC (solid black).

We also explored cases where the time series is almost non-stationary. Table 2 shows
average integrated absolute errors and coverage of 90% credible intervals for AR(1)
models with autoregressive parameters a = 0.98, 0.99, 0.995, and 0.999. Even for AR(1)
models that are close to a unit root, the average integrated absolute error of NPC is gen-
erally smaller than that of NP and very close that of the correctly specified parametric



1056 Nonparametric Correction of a Parametric Likelihood

AR(1): a = 0.98 AR(1): a = 0.99 AR(1): a = 0.995 AR(1): a = 0.999
n = 64 n = 128 n = 256 n = 64 n = 128 n = 256 n = 64 n = 128 n = 256 n = 64 n = 128 n = 256

aIAE
AR 7.93 6.39 4.82 16.11 13.40 10.37 26.80 23.21 18.32 37.41 33.26 27.14

NP 10.03 9.13 8.10 18.93 18.02 16.69 29.86 28.99 27.71 40.72 39.94 38.75
NPC 9.15 7.35 5.32 17.87 15.32 11.87 28.63 25.71 20.87 39.25 36.30 29.98

cUCI
AR 0.85 0.91 0.96 0.73 0.84 0.91 0.65 0.77 0.89 0.61 0.73 0.86

NP 0.51 0.29 0.26 0.22 0.05 0.04 0.11 0.01 0.00 0.06 0.00 0.00
NPC 0.89 0.94 0.99 0.78 0.90 0.97 0.72 0.86 0.96 0.66 0.82 0.93

mLEN
AR 0.171 0.104 0.067 0.174 0.102 0.066 0.168 0.099 0.065 0.166 0.099 0.065

NP 1.162 0.504 0.281 1.238 0.551 0.307 1.251 0.575 0.342 1.247 0.604 0.372
NPC 0.580 0.262 0.140 0.550 0.242 0.136 0.530 0.232 0.127 0.500 0.220 0.126

η̂ 0.742 0.859 0.932 0.755 0.881 0.942 0.761 0.886 0.950 0.765 0.890 0.948

Table 2: Average Integrated Absolute Error (aIAE), Uniform 0.9-Credible Interval cov-
erage (cUCI) and median length of credibility intervals for different realizations of
model (11) close to unit root.

model. Furthermore, the coverage of the 90% credible interval of NPC reach the nominal
value for increasing sample sizes whereas the coverage for the NP method is close to 0
even though they are considerably longer than the credibility intervals obtained from
NPC with a much better coverage. The values of the model confidence parameter η are
increasing with sample size and for n = 256 very close to 1.

Further simulation results can be found in Section 3 in the supplementary material.
In particular, we get qualitatively the same results even for non-Gaussian data, indicat-
ing that the properties of the NPC approach that we illustrated in this section carry
over to the non-Gaussian case.

4.2 Elbow Criterion

Under relatively weak conditions (see e.g. Kreiss et al. (2011)) a linear process can be
written as an AR(∞)-process with white noise errors (similarly to the famous Wold
representation). Consequently, an AR(p)-model with sufficiently large order captures
the structure of a (Gaussian) linear process to any degree of accuracy. In this sense, the
use of an AR-model with a sufficiently large order can be viewed as a nonparametric
procedure, a fact, that has been exploited by AR-sieve-bootstrap methods for quite
some time. For a recent mathematical analysis of the validity and limitations of this
approach we refer to Kreiss et al. (2011).

Consequently, an AR-model can still be used for spectral density estimation under
misspecification as long as the order is sufficiently large. This is why standard order se-
lection techniques such as DIC-minimization tend to choose large orders in misspecified
situations. In combination with the nonparametric correction such a large order leads
to suboptimal results as has been seen in the above simulations probably due to the
use of two competing nonparametric procedures. The simulation study suggests that it
is indeed much better for NPC to use a parametric model that improves the spectral
density estimate over that of Gaussian white noise but also leaves some room for the
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nonparametric correction to work. Consequently, we aim at choosing a relatively small
order that is still capturing the main features. In other words, we are not interested
in an elaborate AR(∞) approximation but rather in a proxy model that captures the
main parametric features of the data.

As a rule-of-thumb we suggest to look at scree-like plots of the negative maximum
log likelihood: For increasing orders one can often see a clear bend (elbow) in the curve
(with a slow decay from that point on that is not slow enough to be captured by standard
penalization techniques). Similar to the use of scree plots in the context of Principal
Components Analysis (PCA), that point can be seen as a reasonable truncation point
(‘elbow criterion‘) where those features best explained by the parametric model have
been captured. While this small model does not yet fully explain the data, adding more
parameters is not helping the nonparametrically corrected procedure that we propose.

In the context of an autoregressive working model for the generation of the elbow
plots only, we approximate the negative maximum log-likelihood by the negative log-
likelihood evaluated at the Yule-Walker estimate. This is to ensure numerical stability
and computational speed, especially for large orders. The approximation is motivated
by the asymptotic equivalence of both estimates, see e.g. Chapter 8 in Brockwell and
Davis (2009). The estimate is referred to as negative maximum log-likelihood in the text.

Figure 2: Negative maximum log likelihood for different AR(p) models applied to three
realizations of the ARMA(1,1) model with a = 0.75, b = 0.8 of length n = 128 (first 3
plots from left) and the sunspot data (rightmost plot). The respective DIC-minimizing
order is visualized by a black dashed line.

Figure 2 shows the scree-like plots for three exemplary ARMA(1,1) realizations from
the above model as well as the sunspot data set. In all three realizations the elbow is
at p = 1 or p = 2 while the DIC-criterion chooses much larger orders between 4 and 6.
Table 1b clearly shows the superiority of the choice of fixed order p = 1 over a DIC-based
order selection for the nonparametric correction.

For the sunspot data that effect can also be seen clearly as the above procedure
proposes to use p = 2 in the nonparametric procedure while the DIC-criterion suggests
p = 9. For a detailed discussion of this data analysis we refer to Section 4.3, similar
effects for the LIGO data are discussed in Section 4.5.

4.3 Sunspot data

In this section, we analyse the yearly sunspot data from 1700 until 1987. We take the
mean-centered version of the square root of the 288 observations as input data. We
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Figure 3: Posterior median spectral density estimates NPC (solid black) and AR (dashed
black) for the transformed sunspot data on a logarithmic scale, for different autoregres-
sive orders p. The log-periodogram is visualised in grey. For p = 0, NPC corresponds to
NP.

compare the AR and the NPC procedure for fixed values p = 0, 1, 2, 9. Note that for

p = 0 the NPC estimate is the same as the pure nonparametric estimate (NP) based on

the Whittle likelihood. While p = 9 minimises the DIC, p = 2 captures the main AR-

features of the data as indicated by the elbow criterion (see Section 4.2 and Figure 2 (d)).

The results are shown in Figure 3. While for p = 1 the Bernstein polynomials of the

nonparametric correction cannot yet capture the peaks sufficiently well, this is clearly

the case for p = 2 (the choice obtained from the elbow criterion): While the parametric

model itself can clearly not yet explain the data well, enough features are captured to

improve the nonparametric correction. For larger order choices, the estimate from the

NPC method does not change much anymore, so that the correction does indeed not

profit from additional parameters in the AR-model. In fact for p = 9 (as indicated by

DIC), the Bayes estimator of AR and NPC are very similar.

The posterior means of the parameter η were 0.42, 0.71, 0.72, and 0.75 for p =

0, 1, 2, 9 respectively. As already noted in the simulation study, this demonstrates again

that the parameter η can be interpreted as a model confidence parameter and adds

robustness to the corrected likelihood procedure. With increasing autoregressive order

p and thus improved fit of the parametric model, η increases. We also see that for p = 1

the NPC estimate based on the AR(1) working model is identical to the NP estimate.

The AR(1) spectral density clearly does not give an adequate fit which is reflected in

the low value of η, thus giving only little weight to the parametric AR(1) working model

in the NPC procedure. For p = 9, the AR(9) model fits well, the estimate of η is large

and the NPC estimate dominated by the parametric AR(9) model.
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Figure 4: 1189 observations of light intensity from the S. Carinae variable star data
after mean-centering and a square-root transformation.

Figure 5: Negative maximum log likelihood for different AR(p) models applied to the
S. Carinae data.

4.4 Variable star S. Carinae data with missing values

As a further example, we re-analyze the time series from Baldwin and Thomson (1978) of
light intensities of the S. Carinae variable star, that were previously analyzed by Carter
and Kohn (1997) and Huerta andWest (1999). The data set consists of 1189 observations
of 10-day averages of light intensities over several years. The mean-centered and square-
root-transformed observations are given in Figure 4 from which a periodicity of around
150 days can be discerned by visual inspection (fifteen ten-day means, corresponding to
a frequency of 0.42). The data set contains 40 missing values.

The scree-type plot in Figure 5 shows elbows at orders p = 2 and 17. Note that the
Bayesian analysis by Huerta and West (1999) that kept the autoregressive model order
variable gave high posterior probabilities to AR orders between 19 and 25. We compare
results of the AR, NP, and NPC procedure for p = 2 and p = 17 in Figure 6.

The Bernstein polynomial prior results in very smooth estimates of the spectral
density which do not approximate the major peaks visible in the periodogram. Again,
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Figure 6: Posterior median spectral density estimates of NPC (solid black, p = 2 (left)
and p = 17 (right)), AR(2) (dashed black), NP (dotted black) and periodogram (grey)
for the S. Carinae data.

we see how the NPC estimate benefits from the fit of the parametric AR(p) model. An
AR(2) model can only pick up the first major peak around 0.42 in the spectral density
corresponding to a period of 149.8 days. The NPC estimate benefits from this and is
able to considerably sharpen the first peak compared to the NP method. The AR(17)
model provides a much better fit and picks up the subsequent peaks at multiples of
0.42, corresponding to harmonics of the fundamental frequency at 0.42. Furthermore, it
shows a low amplitude peak near frequency 0.11 corresponding to a period of 568.4 days
which was also found in Baldwin and Thomson (1978) and which mirrors the findings in
Huerta and West (1999). Furthermore, Huerta and West (1999) estimated the posterior
probability of a unitary root to be 0.87.

4.5 Gravitational wave data

Gravitational waves, ripples in the fabric of spacetime caused by accelerating massive
objects, were predicted by Albert Einstein in 1916 as a consequence of his general theory
of relativity, see Einstein (1916). Gravitational waves originate from non-spherical accel-
eration of mass-energy distributions, such as binary inspiraling black holes, pulsars, and
core collapse supernovae, propagating outwards from the source at the speed of light.
However, they are very small (a thousand times smaller than the diameter of a proton)
so that their measurement has provided decades of enormous engineering challenges.

On Sept. 14, 2015, the Advanced Laser Interferometric Gravitational Wave Obser-
vatory (Advanced LIGO), see Aasi et al. (2015b), made the first direct detection of a
gravitational wave signal, GW150914, originating from a binary black hole merger (Ab-
bott et al., 2016b). As of May 2018, five additional gravitational wave signals have been
observed by the network of ground-based interferometers, which now includes Advanced
Virgo in Cascina, Italy (Acernese et al., 2015). Four of these signals came from binary
black hole mergers (Abbott et al., 2016a, 2017a,b,c), and one from a binary neutron
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star merger with an electromagnetic counterpart (Abbott et al., 2017d), heralding a new
era in astronomy. The two L-shaped LIGO instruments (in Hanford, Washington and
Livingston, Louisiana) each consist of two perpendicular arms, each 4 kilometers long.
A passing gravitational wave will alternately stretch one arm and squeeze the other,
generating an interference pattern which is measured by photo-detectors. The detec-
tor output is a time series that consists of the time-varying dimensionless strain h(t),
the relative change in spacing between two test masses. The strain can be modelled as
a deterministic gravitational wave signal h(t;θ) depending on a vector θ of unknown
waveform parameters plus additive noise n(t), such that

y(t) = h(t;θ) + n(t), t = 1, . . . , T.

There are a variety of noise sources at the LIGO detectors. This includes seismic
noise, due to the motion of the mirrors from ground vibrations, earthquakes, wind, ocean
waves, and vehicle traffic, thermal noise, from the microscopic fluctuations of the individ-
ual atoms in the mirrors and their suspensions, and shot noise, due to the discrete nature
of light and the statistical uncertainty from the “photon counting” that is performed by
the photo-detectors. In particular, Advanced LIGO noise includes high power, narrow
band, spectral lines, visible as sharp peaks in the log-periodogram. As the Advanced
LIGO spectrum is time-varying and subject to short-duration large-amplitude transient
noise events, so-called “glitches”, a precise and realistic modelling and estimation of
the noise component jointly with the signal is important for an accurate inference of
the signal parameters θ. The current approach, which was also used for estimating the
parameters of GW150914 in Abbott et al. (2016c), is to first use the Welch method
(Welch, 1967) to estimate the spectral density from a separate stretch of data, close to
but not including the signal and then to assume stationary Gaussian noise with this
known spectral density in order to estimate the signal parameters.

Several approaches have been suggested in the recent gravitational wave literature
to simultaneously estimate the noise spectral density and signal parameters. These in-
clude generalising the Whittle likelihood to a Student-t likelihood as in Röver et al.
(2011), similarly modifying the likelihood to include additional scale parameters and
then marginalising over the uncertainty in the PSD as in Littenberg et al. (2013), using
cubic splines for smoothly varying broad-band noise and Lorentzians for narrow-band
line features as in Littenberg and Cornish (2015), a Morlet-Gabor continuous wavelet
basis for both gravitational wave burst signals and glitches as in Cornish and Litten-
berg (2015), the nonparametric approach of Choudhuri et al. (2004) using a Dirichlet-
Bernstein prior (Edwards et al., 2015) and a generalisation of this using a B-spline prior,
see Edwards et al. (2018).

We consider 1 s of real Advanced LIGO data collected during the sixth science run
(S6)1, recoloured to match the target noise sensitivity of Advanced LIGO (Christensen,
2010). The data is differenced and then multiplied by a Hann window to mitigate
spectral leakage. A low-pass Butterworth filter (of order 20 and attenuation 0.25) is
then applied before downsampling from a LIGO sampling rate of 16384 Hz to 4096
Hz, reducing the volume of data. For reasons of computational complexity, the partial
likelihood rather than the full likelihood of the working model is being used.

1The data is publicly available: https://losc.ligo.org/S6/

https://losc.ligo.org/S6/
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Figure 7: Negative maximum log likelihood for different AR(p) models applied to Ad-
vanced LIGO S6 data.

We first run a pure nonparametric model, corresponding to a nonparametrically cor-
rected likelihood with an AR(0) working model (i.e. the Whittle likelihood) to estimate
the spectral density. We then compare this to a nonparametrically corrected model with
an order of p = 14, where a clear elbow can be seen in the negative log-likelihood plot
(see Figure 7 and Remark 4.2). We run these simulations for 100,000 Markov Chain
Monte Carlo (MCMC) iterations, with a burn-in of 50,000, and thinning factor of 5.
Results are illustrated in Figure 8 (a).

Even though k converged to k ≈ 900 mixture components, it is clear that the
Bernstein-Dirichlet prior together with the Whittle likelihood is not flexible enough
to estimate the sharp peaks of the Advanced LIGO spectral density. The parametric
AR(14) model (estimated using the Bayesian autoregressive sampler described in the
supplementary material), captures the four main peaks but not their sharpness. Addi-
tionally, it does not capture the structure well in the frequency bands 0 to 450 Hz as well
as larger than 1100 Hz. When compared to the AR(0) model, the nonparametrically
corrected model based on p = 14 estimates the sharp peaks much better. Furthermore,
it sharpens all four peaks of the AR(14)-model (with a slight exception around 400 Hz,
where seemingly two very sharp peaks overlap, a feature that is not captured by the
AR(14) model at all). In the frequency bands 0 to 450 Hz as well as larger than 1100 Hz,
where the parametric model fails altogether, the correction yields similar results to the
nonparametric Whittle procedure. Similarly to the nonparametric Whittle procedure k
tends towards kmax = 800 indicating that the Bernstein-Dirichlet prior together with
an AR(14)-model is not yet flexible enough for this data set.

On the other hand, Bayesian Information Criterion (BIC) based on the Yule-Walker
estimators as in Figure 7 – DIC ran into convergence problems for this data set –
chooses an order of p = 118 and the results can be seen in Figure 8 (c). For this order,
the results of the purely autoregressive method and the nonparametric correction (based
on the same order) are very similar which is in line with the discussion in Section 4.2
stating that both methods can be seen as a nonparametric estimation procedure. Both
fit the peaks nicely at the expense of a possible overfitting in the high frequencies as
well as between peaks. Combined with the observation from the simulation study that
a smaller value of p typically results in a better fit and uncertainty quantification for
the nonparametric correction, this leads us to take another look at Figure 7. In fact,
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Figure 8: Estimated log spectral density for a 1 s segment of Advanced LIGO S6 data.
The posterior median log spectral density estimate of NPC under an AR(p) working
model (solid black), AR(p) (dashed black), and NPC under an AR(0) working model
(dotted black) are overlaid with the log periodogram (grey), where (a) depicts p = 14,
(b) depicts p = 35 and (c) depicts p = 118.
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the negative log-likelihood between the models AR(14) and AR(35) decreases by 533,
which is not as sharp as the elbow at p = 14, but still significant – keeping in mind
that the LIGO data is a very complex data set – much more so than the ARMA(1,1)
or the sunspot data. There is a moderately sized jump before p = 35, while afterwards
the descend slows down significantly. In fact, for the order chosen by BIC (p = 118) the
log-likelihood reaches the level of 879, showing that the difference between p = 14 and
p = 35 (of 533) is comparable to the one between p = 35 and p = 118 (of 512). This
indicates that there is indeed another change of gradient around p = 35. When looking
at penalized likelihoods, this is also the point, where different penalizations start to
obviously diverge. The results for p = 35 can be found in Figure 8 (b).

The parametric AR(35) model already provides a reasonable fit to the periodogram,
picking up the major peaks (with the exception around 100 Hz), but potentially under-
and overestimates some of the peaks. In particular there are still major problems in
the frequency bands 0 to 300 Hz and 400 to 700 Hz. The NPC procedure with p = 35
keeps the peaks that have been captured well by the parametric model but corrects
problems most prominently in the above mentioned frequency bands. Compared to the
fit for p = 118 the high-frequency spectrum as well as the spectrum between peaks is
now much smoother, the only setback being around 400 Hz. It is worth mentioning that
the correction works in several ways: Sharpening existing peaks (e.g. at 0 Hz), adding
new peaks (e.g. at 100 Hz) as well as smoothing out some conceivably spurious peaks
(e.g. at 600 Hz). Overall, the resulting estimate seems to capture the structure quite
well in all frequency bands. This impression is complemented by the results of the NPC
method with AR(35) working model together with the pointwise and uniform credible
bounds obtained from the procedure in Figure 9.

It is important for astrophysicists in their searches of gravitational waves to un-
derstand whether the peaks in the noise spectrum are instrumental in origin, or are
gravitational waves from astrophysical sources. So, effort is put into understanding the
instrumental origin of these spectral lines and peaks, and engineering the detectors to
keep the line bandwidth as narrow as possible. For instance, some of the peaks that are
most noticeable to the eye are all believed to be due to known instrumental effects:

• 60 Hz power line harmonics, including ‘wings’ extending ± 2 Hz around multiples
of 60 Hz, due to upconversion of low-frequency seismic noise. These arise, for ex-
ample, due to imperfect electronic shielding, and magnetic coupling to the mirror
suspensions.

• Thermally excited mirror suspension ‘violin modes’ at 329.5 Hz and in the 335–
350 Hz range, and harmonics due to the numerous mirror suspension wires in the
LIGO interferometers. These are an unfortunate but inevitable part of the LIGO
detector design.

• calibration lines inserted by moving the end mirrors (using photons from lasers)
or injecting phase modulations through particular electronic channels. Calibration
lines during S6 were at 46.7, 393.1, and 1144.3 Hz.
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Figure 9: Estimated log spectral density for a 1 s segment of Advanced LIGO S6 data.
The posterior median log spectral density estimate of NPC under an AR(35) working
model (solid black), pointwise 0.9-credible region (shaded red), and uniform 0.9-credible
region (shaded violet) are overlaid with the log periodogram (grey).

Note that continuous waves from non-axisymmetric spinning neutron stars also appear
as extremely narrow spectral peaks. Their frequency is modulated by the Doppler shift
due to the motion of the detectors with respect to the source. Because this is a small
effect, we expect the pulsar produced signals to be buried in the noise, and not visible in
the noise spectral densities of the detectors; matched filtering over the full observation
time is required to identify potential signals in the data. In addition to spectral lines
whose instrumental origin is identified, there are other peaks in the spectrum whose
origin remains unknown. All of these features were rejected by the continuous wave
searches conducted by the LIGO Scientific Collaboration, because they do not exhibit
the expected Doppler modulation, may exhibit very different amplitude and frequency
modulation, and/or are not seen with consistent amplitudes in other detectors, see also
Coughlin et al. (2010) and Aasi et al. (2015a).

5 Conclusion

In this work we propose a nonparametric correction of a parametric likelihood to obtain
an approximation of the true likelihood of a stationary time series that benefits from the
main parametric features of the data. This approach extends the famous approximation
by Whittle. For Gaussian data, the Whittle likelihood, the nonparametric correction
as well as the true likelihood are asymptotically equivalent. Secondly, we propose a
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Bayesian procedure for spectral density estimation which is based on this nonpara-

metrically corrected likelihood. We show consistency of the resulting pseudo-posterior

distribution for a fixed parametric likelihood. Furthermore, we present a Bayesian semi-

parametric procedure that combines inference about the parametric working model with

the nonparametric correction. The extent of the contribution of the parametric spectral

density to the spectral density estimate is controlled by a shape confidence parameter.

Simulation results have shown that this procedure inherits the benefits from the para-

metric working model if the latter is well-specified or describe a part of the features of

the data well, while in the misspecified case the results are comparable to the usage of

the Whittle likelihood.

Even though we have illustrated the nonparametrically corrected likelihood approach

in this paper using zero mean stationary time series and the focus has been on spec-

tral density estimation, this approach can be readily extended to more complex models

where this zero mean time series constitutes the error term, such as linear or nonlinear

dynamic regression models and these types of applications will be addressed in future

research. Furthermore, regarding future work, it is interesting to investigate whether

in the non-Gaussian case the class of time series for which asymptotically consistent

inference holds can be enlarged by choosing an appropriate model. It is important to

understand the distributional influence in the non-Gaussian case both in finite samples

and asymptotically. As an example, in a bootstrap context, it suffices to capture the

fourth order structure of a linear model to obtain asymptotically valid second-order fre-

quentist properties of the autocovariance structure (Dahlhaus and Janas (1996); Kreiss

and Paparoditis (2003)). As suggested by Kleijn et al. (2012) in a parametric setting,

this property does not simply carry over to a Bayesian context. Preliminary results

for non-Gaussian autoregressive time series however have shown considerable benefits

(with respect to first and second order frequentist properties) when the innovation dis-

tribution is well-specified in comparison to a Gaussian model. Since any parametric

likelihood is susceptible to misspecification, the ultimate goal is to consider a Bayesian

nonparametric model for the innovation distribution, such as Dirichlet mixtures of nor-

mals. Further directions for future work are automation of the elbow criterion discussed

in Remark 4.2. Instead of choosing a fixed order in advance, an automation might as

well serve as a guideline for specifying a prior on the AR order parameter, which can

be included in the inference by means of Reversible Jump Markov Chain Monte Carlo

(RJMCMC) (cf. Remark 3).

Supplementary Material

Supplementary material to ‘Beyond Whittle: Nonparametric Correction of a

Parametric Likelihood with a Focus on Bayesian Time Series Analysis’

(DOI: 10.1214/18-BA1126SUPP; .pdf). The electronic supplement contains the proofs

for this paper, some comments on the Bayesian autoregressive sampler, the full condi-

tional distribution of missing values as well as some additional simulation results.

https://doi.org/10.1214/18-BA1126SUPP
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