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Efficient Acquisition Rules for Model-Based
Approximate Bayesian Computation

Marko Järvenpää∗, Michael U. Gutmann†, Arijus Pleska‡,
Aki Vehtari§, and Pekka Marttinen¶

Abstract. Approximate Bayesian computation (ABC) is a method for Bayesian
inference when the likelihood is unavailable but simulating from the model is possi-
ble. However, many ABC algorithms require a large number of simulations, which
can be costly. To reduce the computational cost, Bayesian optimisation (BO) and
surrogate models such as Gaussian processes have been proposed. Bayesian opti-
misation enables one to intelligently decide where to evaluate the model next but
common BO strategies are not designed for the goal of estimating the posterior dis-
tribution. Our paper addresses this gap in the literature. We propose to compute
the uncertainty in the ABC posterior density, which is due to a lack of simulations
to estimate this quantity accurately, and define a loss function that measures this
uncertainty. We then propose to select the next evaluation location to minimise
the expected loss. Experiments show that the proposed method often produces
the most accurate approximations as compared to common BO strategies.

Keywords: approximate Bayesian computation, intractable likelihood, Gaussian
processes, Bayesian optimisation, sequential experiment design.

1 Introduction

We consider the problem of Bayesian inference of some unknown parameter θ ∈ Θ ⊂
R

p of a simulation model. Such models are typically not amenable to any analytical
treatment but they can be simulated with any parameter θ ∈ Θ to produce data xθ ∈
X . Simulation models are also called simulator-based or implicit models (Diggle and
Gratton, 1984). Our prior knowledge about the unknown parameter θ is represented
by the prior probability density π(θ) and the goal of the analysis is to update our
knowledge about the parameters θ after we have observed data xobs ∈ X .

If evaluating the likelihood function π(x |θ) is feasible, the posterior distribution
can be computed directly using Bayes’ theorem

π(θ |xobs) =
π(θ)π(xobs |θ)∫

Θ
π(θ′)π(xobs |θ′) dθ′ ∝ π(θ)π(xobs |θ). (1)
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In this article we focus on simulation models that have intractable likelihoods. This
means that one can only simulate from the model, that is, draw samples xθ ∼ π(· |θ),
but not evaluate the likelihood function π(xobs |θ) at all so that the standard Bayesian
approach cannot be used. For example, possibly high-dimensional unobservable latent
random quantities present in the simulation model can make evaluating the likelihood
impossible. Such difficulties occur in many areas of science, and typical application fields
include population genetics Beaumont et al. (2002); Numminen et al. (2013), genomics
Marttinen et al. (2015); Järvenpää et al. (2017), ecology (Wood, 2010; Hartig et al.,
2011) and psychology Turner and Van Zandt (2012), see e.g. Lintusaari et al. (2017)
and references therein for further examples.

Approximate Bayesian computation (ABC) replaces likelihood evaluations with
model simulations1, see e.g. Marin et al. (2012); Turner and Van Zandt (2012); Lin-
tusaari et al. (2017) for an overview. The main idea of the basic ABC algorithm is to
draw a parameter value from the prior distribution, simulate a data set with the given
parameter value, and accept the value as a draw from the (approximate) posterior if the
discrepancy between the simulated and observed data is small enough. This algorithm
produces samples from the approximate posterior distribution

πABC
ε (θ |xobs) ∝ π(θ)

∫
πε(xobs |x)π(x |θ) dx, (2)

where πε(xobs |x) ∝ 1Δ(xobs,x)≤ε, although other choices of πε are also possible (Wilkin-
son, 2013). The function Δ : X × X → R+ is the discrepancy that tells how different
the simulated and observed data sets are, and it is often formed by combining a set of
summary statistics even though, occasionally, the output data have a relatively small
dimension and the data sets can be compared directly. Sometimes the discrepancy func-
tion may be available from previous analyses with similar models or can be constructed
based on expert knowledge of the application field. The discrepancy and the summaries
affect the approximations and their choice is an active research topic (Blum et al., 2013;
Fearnhead and Prangle, 2012; Gutmann et al., 2017). In this work, we are concerned
with another, equally important, research question, namely given a suitable discrepancy
function, how to perform the inference in a computationally efficient manner.

The threshold ε controls the trade-off between the accuracy of the approximation
and computational cost: a small ε yields accurate approximations but requires more
simulations, see e.g. Marin et al. (2012). Given t samples from the model for some θ,

that is, x
(i)
θ ∼ π(· |θ) for i = 1, . . . , t, the value of the ABC posterior in (2) can be

estimated as

πABC
ε (θ |xobs) ∝∼ π(θ)

t∑
i=1

πε(xobs |x(i)
θ ), (3)

where “∝∼” means that the left-hand side is approximately proportional to the right-
hand side and where the extra approximation is due to replacing the integral with the
Monte-Carlo sum.

1Such approaches are also called likelihood-free in the literature although this name can be con-
sidered a misnomer. Namely, while the user does not need to provide the likelihood of the simulator
model, many methods construct some sort of likelihood approximation implicitly or explicitly.
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Algorithms based on Markov Chain Monte Carlo and sequential Monte Carlo have
been used to improve the efficiency of ABC as compared to the basic rejection sampler
(Marjoram et al., 2003; Sisson et al., 2007; Beaumont et al., 2009; Toni et al., 2009; Marin
et al., 2012; Lenormand et al., 2013). Unfortunately, the sampling based methods still
require a very large number of simulations. In this paper we focus on the challenging
scenario where the number of available simulations is limited, e.g. to fewer than a
thousand, rendering these sampling-based ABC methods infeasible. Different modelling
approaches have also been proposed to reduce the number of simulations required.
For example, in the synthetic likelihood method summary statistics are assumed to
follow the Gaussian density (Wood, 2010; Price et al., 2017) and the resulting likelihood
approximation can be used together with Markov Chain Monte Carlo (MCMC) but
evaluating the synthetic likelihood is typically still very expensive. Wilkinson (2014);
Meeds and Welling (2014); Jabot et al. (2014); Kandasamy et al. (2015); Drovandi
et al. (2015); Gutmann and Corander (2016); Järvenpää et al. (2017) all use Gaussian
processes (GP) to accelerate ABC in various ways. Some other alternative approaches
are considered by Fan et al. (2013); Papamakarios and Murray (2016). Also, Beaumont
et al. (2002); Blum (2010); Blum and François (2010) have used modelling as a post-
processing step to correct the approximation error of the nonzero threshold.

While probabilistic modelling has been used to accelerate ABC inference, and strate-
gies have been proposed for selecting which parameter to simulate next, little work has
focused on trying to quantify the amount of uncertainty in the estimator of the ABC
posterior density under the chosen modelling assumptions. This uncertainty is due to
a finite computational budget to perform the inference and could be thus also called
as “computational uncertainty”. Consequently, little has been done to design strategies
that directly aim to minimise this uncertainty. To our knowledge, only Kandasamy et al.
(2015) have used the uncertainty in the likelihood function to propose new simulation
locations in a query-efficient way, but they assumed that the likelihood can be evalu-
ated, although with high a computational cost. Also, Wilkinson (2014) modelled the
uncertainty in the likelihood to rule out regions with negligible posterior probability.
Rasmussen (2003) used GP regression to accelerate Hybrid Monte Carlo but did not
consider the setting of ABC. Osborne et al. (2012) developed an active learning scheme
to select evaluations to estimate integrals such as the model evidence under GP mod-
elling assumptions, however, their approach is designed for estimating this particular
scalar value. Finally, Gutmann and Corander (2016) proposed Bayesian optimisation
to efficiently select new evaluation locations. While the BO strategies they used to il-
lustrate the framework worked reasonably, their approach does not directly address the
goal of ABC, that is to learn the posterior accurately.

In this article we propose an acquisition function for selecting the next evaluation
location tailored specifically for ABC. The acquisition function measures the expected
uncertainty in the estimate of the (unnormalised) ABC posterior density function over
a future evaluation of the simulation model, and proposes the next simulation loca-
tion so that this expected uncertainty is minimised. We also consider some variants of
this strategy. More specifically, in Section 2 we formulate our probabilistic approach
on a general level. In Section 3 we propose a particular algorithm, based on modelling
the discrepancy with a GP. Section 4 contains experiments. Some additional details of
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our algorithms are discussed in Section 5 and Section 6 concludes the article. Tech-
nical details and additional experiments are presented in the supplementary material
(Järvenpää et al., 2018).

2 Problem formulation

We start by presenting the main idea of the probabilistic framework for query-efficient
ABC inference. Suppose we have training dataD1:t = {(xi,θi)}ti=1 of simulation outputs
xi ∈ X that were generated by simulating the model with parameters θi. Suppose
also that we have a Bayesian model that describes our uncertainty about the future
simulation output x∗ ∈ X with parameter θ∗ conditional on the training data D1:t.
This uncertainty is represented by a probability measure Π(dx∗ |θ∗, D1:t)

2. Instead of
modelling the full data x∗ ∈ X , we note that in practice it is reasonable to model only
some summary statistics s(x∗) ∈ S ⊂ R

r. Alternatively, the discrepancy between the
observed data and simulator output can be modelled as is done later in this article.
Importantly, our estimate for the ABC posterior probability density function πABC

actually depends on the training data if e.g. (3) is used, and can therefore also be
considered a random quantity. Given the training data D1:t, we assume that, using our
Bayesian model, we can represent the uncertainty in πABC using a probability measure
Π(dπABC |D1:t) over the space of (suitable smooth) density functions πABC : Θ → R+,
where the probability measure Π now describes the uncertainty in the ABC posterior.

If the amount of available simulations is limited due to a high computational cost, we
may have considerable uncertainty of the ABC posterior πABC. Let LπABC(D1:t) denote
the loss due to our uncertainty about the ABC posterior density. This loss function
could, for example, measure overall uncertainty in the probability density πABC or the
uncertainty of a particular point estimate of interest such as the posterior mean. In
the latter case, for a scalar θ, we could choose LπABC(D1:t) = V(

∫
Θ
θπABC(θ) dθ |D1:t),

where the variance (assuming it exists) is taken with respect to the probability measure
Π(dπABC |D1:t).

We consider the sequential setting where, at each iteration, we need to decide the
next evaluation location. After each iteration, we can compute the uncertainty in the
ABC posterior and the corresponding loss function, and fit a model that predicts the
next simulation output, given all data available at the time. Our aim is to choose the
next evaluation location θ∗ = θt+1 such that the expected loss, after having simulated
the model at this location, is minimised. That is, we want to minimise

Ex∗ | θ∗,D1:t
(LπABC(D1:t ∪ {x∗,θ∗})) =

∫
LπABC(D1:t ∪ {x∗,θ∗})Π(dx∗ |θ∗, D1:t) (4)

with respect to θ∗, where we need to average over unknown simulator output x∗=xt+1

at parameter θ∗ using the model for the new simulator output Π(dx∗ |θ∗, D1:t). If the
loss function measures the uncertainty of the ABC posterior density, then this approach

2We use Π(·) to denote the probability measure of a random quantity that can be interpreted from
the argument. Similarly, π(·) denotes a probability density function whenever the corresponding random
vector is assumed to be absolutely continuous.
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is, by construction, a one step-ahead Bayes optimal solution to a decision problem
of minimising the expected uncertainty and offers thus a query-efficient approach to
determine the next evaluation location.

This approach resembles the entropy search (ES) method (Hennig and Schuler, 2012;
Hernández-Lobato et al., 2014). Other related approaches have been proposed by Wang
et al. (2016); Bijl et al. (2016); Wang and Jegelka (2017). Different from these ap-
proaches, our main goal is to select the parameter for a future run of the costly simulation
model so that the uncertainty in the approximate posterior is minimised. ES, in con-
trast, is designed for query-efficient global optimisation and it aims to find a parameter
value that maximises the objective function, and to minimise the uncertainty related to
this maximiser. We note that the rationale of our approach is essentially the same as in
probabilistic numerics literature (see e.g. Hennig et al. (2015)) or in sequential Bayesian
experimental design (see Ryan et al. (2016) for a recent survey). However, different from
these approaches, our interest is to design the evaluations to minimise the uncertainty in
a quantity that itself describes the uncertainty of the parameters of a costly simulation
model. The uncertainty in the former is due to a limited budget for model simulations
that we can control, while the uncertainty in the latter is caused by noisy observations
that have already been provided to us and are considered here as fixed.

The framework outlined above requires some modelling choices and can lead to
computational challenges as the selection of the future evaluation location itself can
require costly evaluations (as is the case of ES). In the following section we propose
an efficient algorithm based on a loss function that measures the uncertainty in the
(unnormalised) ABC posterior over the parameter space and a GP surrogate model. We
also consider some alternative strategies that are more heuristic but easier to evaluate.
While our approach can be extended to a batch setting where multiple acquisitions are
computed in parallel, in this article we restrict our discussion to the sequential case. We
note that the outlined strategy is “myopic”, meaning that the expected uncertainty after
the next evaluation is considered only, and the number of simulations left in a limited
budget is not taken into account, see e.g. González et al. (2016) for some discussion in
BO context; non-myopic strategies are also beyond the scope of this work.

Details of our approach appear in the next section, but the main idea is illustrated in
Figure 1. We model the discrepancy Δθ = Δ(xobs,xθ) with GP regression (Figure 1a).
The ABC posterior is proportional to the prior times the probability of obtaining a
discrepancy realisation that is below the threshold when the model is simulated. How-
ever, because the GP is fitted with limited training data, this probability cannot be
estimated exactly, causing uncertainty in the ABC posterior density function (Figure
1b). We propose an acquisition function that selects the next evaluation location to
minimise the expected variance of the (unnormalised) ABC posterior density over the
parameter space.

3 Nonparametric modelling and parameter acquisition

This section contains the details of our algorithms. Section 3.1 describes the GP model
for the discrepancy, which permits closed-form equations for many of the required quan-
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Figure 1: (a) The estimated and true discrepancy distributions are compared. Most of
the evaluations are successfully chosen on the modal area of the posterior, leading to
a good approximation there. (b) The red curve shows the mean of the unnormalised
posterior density function and the grey area its 95% pointwise credible interval.

tities to estimate the posterior, which are derived in Section 3.2. In Sections 3.3 and
3.4 we formulate the proposed acquisition functions, and handling uncertainty in GP
hyperparameters is briefly discussed in Section 3.5.

3.1 GP model for the discrepancy

We consider the discrepancy Δθ a stochastic process indexed by θ i.e. a random function
of the parameter θ. We assume that the discrepancy can be modelled by a Gaussian
distribution3, that is Δθ ∼ N (f(θ), σ2

n) for some unknown suitably smooth function
f : Θ → R and variance σ2

n ∈ R+ both of which need to be estimated. We place a
Gaussian process prior on f so that f ∼ GP(μ(θ), k(θ,θ′)). While other choices are
also possible, in this paper we consider μ(θ) = 0, and use the squared exponential
covariance function k(θ,θ′) = σ2

f exp(−
∑p

i=1(θi − θ′i)
2/(2l2i )). There are thus p + 2

hyperparameters to infer, denoted by φ = (σ2
f , l1, . . . , lp, σ

2
n).

Conditioned on the obtained training data D1:t = {(Δi,θi)}ti=1, which consists
of realised discrepancy-parameter pairs, and the GP hyperparameters φ, our knowl-
edge of the function f evaluated at an arbitrary point θ ∈ Θ can be shown to be

3Alternatively, we could model some transformation of the discrepancy such as logΔθ . In that case,
the following analysis goes similarly.
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f(θ) |D1:t,θ,φ ∼ N (m1:t(θ), v
2
1:t(θ)), where

m1:t(θ) = k(θ,θ1:t)K(θ1:t)
−1Δ1:t, (5)

v21:t(θ) = k(θ,θ)− k(θ,θ1:t)K
−1(θ1:t)k(θ1:t,θ) (6)

andK(θ1:t) = k(θ1:t,θ1:t)+σ2
nI. Above we defined k(θ,θ1:t) = (k(θ,θ1), . . . , k(θ,θt))

T ,
k(θ1:t,θ1:t)ij = k(θi,θj) for i, j = 1, . . . , t and similarly for k(θ1:t,θ). We have also used
Δ1:t = (Δ1, . . . ,Δt)

T . A comprehensive presentation of GP regression can be found in
Rasmussen and Williams (2006).

3.2 Quantifying the uncertainty of the ABC posterior estimate

As in Gutmann and Corander (2016), one can compute the posterior predictive den-
sity for a new discrepancy value at θ using Δθ |D1:t,θ,φ ∼ N (m1:t(θ), v

2
1:t(θ) + σ2

n)
and obtain a model-based estimate for the acceptance probability given the modelling
assumptions and training data D1:t, as

P(Δθ ≤ ε |D1:t,θ,φ) = Φ

(
(ε−m1:t(θ))/

√
σ2
n + v21:t(θ)

)
, (7)

where Φ(z) =
∫ z

−∞ exp(−t2/2) dt/(2π) is the cdf of the standard normal distribution.
This probability is approximately proportional to the likelihood and yields a useful point
estimate of the likelihood function. We here take a different approach and explicitly
exploit the fact that part of the probability mass of Δθ is due to our uncertainty in
the latent function f and GP hyperparameters φ. For simplicity, we first assume that
the GP hyperparameters φ are known and discuss relaxing this assumption in a later
section. Indeed, if we knew f , the (unnormalised) ABC posterior π̃ABC

ε (θ) and the
acceptance probability pε(θ)

4 could be computed as

π̃ABC
ε (θ) = π(θ)pε(θ), pε(θ) = Φ

(
ε− f(θ)

σn

)
. (8)

With a limited number of discrepancy–parameter pairs in D1:t there is uncertainty
in the values of the function f (and in GP hyperparameters φ) which we propose to
quantify and attempt to minimise in order to accurately estimate the ABC posterior.
The following result (whose proof is found in the supplementary material) allows us to
compute the expectation and the variance of the unnormalised ABC posterior.

Lemma 1. Under the GP model described in Section 3.1, the pointwise expectation and
variance of π̃ABC

ε with respect to Π(df |D1:t) are

E(π̃ABC
ε (θ) |D1:t) = π(θ) Φ

(
ε−m1:t(θ)√
σ2
n + v21:t(θ)

)
, (9)

4This notation should not be confused with a probability distribution function which is always
denoted with π(·).



602 Efficient Acquisition Rules for Model-Based ABC

V(π̃ABC
ε (θ) |D1:t) = π2(θ)

[
Φ

(
ε−m1:t(θ)√
σ2
n + v21:t(θ)

)
Φ

(
m1:t(θ)− ε√
σ2
n + v21:t(θ)

)

− 2T

(
ε−m1:t(θ)√
σ2
n + v21:t(θ)

,
σn√

σ2
n + 2v21:t(θ)

) ]
,

(10)

where m1:t(θ) and v21:t(θ) are given by (5) and (6), respectively, and T (·, ·) is Owen’s
t-function which satisfies

T (h, a) =
1

2π

∫ a

0

e−h2(1+x2)/2

1 + x2
dx, (11)

for h, a ∈ R.

We note that (9) equals the product of the prior density π(θ) and the point esti-
mate of the likelihood shown in 7 which was used in Gutmann and Corander (2016).
The variance of the unnormalised ABC posterior in (10) depends on Owen’s t-function
that needs to be computed numerically. However, there exists an efficient algorithm to
evaluate its values by Patefield and Tandy (2000).

It is of interest to examine when the variance in (10) is large. If a parameter θ
satisfies m1:t(θ) = ε, then the first term of (10) is maximised, and in this case the
second term is maximised for θ values where the posterior variance v21:t(θ) is large.
On the other hand, if m1:t(θ) 	 ε but v1:t(θ) 	 |m1:t(θ) − ε|, the first term in (10)
is approximately maximised and the second term is also close to its maximum value,
especially if also v1:t(θ) 	 σn. Because the ABC threshold ε is usually chosen very
small, we thus conclude that the variance in (10) tends to be high in regions where
the mean of the discrepancy m1:t(θ) is small and/or the variance of the latent function
v21:t(θ) is large relative to the mean function.

Some further insight to (10) is obtained by using the approximation
Vf(θ) |D1:t

(π̃ABC
ε (θ)) ≈ ((π̃ABC

ε )′(Ef(θ) |D1:t
(f(θ))))2Vf(θ) |D1:t

(f(θ)), where the for-
mula (π̃ABC

ε )′(Ef(θ) |D1:t
(f(θ))) denotes the derivative of π̃ABC

ε with respect to f(θ)
evaluated at Ef(θ) |D1:t

(f(θ)). This approximation, also known as the delta method,
produces

−logVf(θ) |D1:t
(π̃ABC

ε (θ)) ≈ (ε−m1:t(θ))
2

σ2
n

−log(v21:t(θ))−2 log π(θ)+log(2πσ2
n), (12)

where the last term is constant and can be dropped. This equation has some similarity
with the lower confidence bound (LCB) criteria used in bandit problems and Bayesian
optimisation

LCB(θ) = m1:t(θ)− βt

√
v21:t(θ), (13)

where βt is a tradeoff parameter. Both equations produce small values if the mean
of the discrepancy m1:t(θ) is small (assuming also that ε ≤ m1:t(θ)) or the variance
v21:t(θ) is large relative to the mean m1:t(θ). However, the LCB tradeoff parameter βt

typically depends on the iteration t and the dimension of the parameter space (see
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Srinivas et al. (2010) for theoretical analysis) while in the posterior variance (12) this
tradeoff is determined automatically in a nonlinear fashion and, unlike for LCB, the
variance formula depends also on the prior density π(θ).

Other useful facts for π̃ABC
ε can also be obtained. Some of these formulas are not

required to apply our methodology and are thus included as supplementary material.
For instance, if π(θ) > 0 then the cdf for π̃ABC

ε (θ) is

Fπ̃ABC
ε (θ)(z) = Φ

(
σnΦ

−1(z/π(θ)) +m1:t(θ)− ε

v1:t(θ)

)
, (14)

if z ∈ (0, π(θ)), zero if z ≤ 0, and 1 if z ≥ π(θ). This formula enables the computation of
quantiles which can be used for assessing the uncertainty via credible intervals. Setting
α = Fπ̃ABC

ε (θ)(z), where α ∈ (0, 1) and solving for z yields the α-quantile that was
already used in Figure 1b,

zα = π(θ)Φ

(
v1:t(θ)Φ

−1(α)−m1:t(θ) + ε

σn

)
. (15)

From the above equation we see, e.g., that the median is given by π(θ)Φ((ε−m1:t(θ))/
σn).

Above we assumed that the GP hyperparameters φ are known but in practice these
need to be estimated. One can use the MAP-estimate in the place of the fixed values in
the previous formulae. The MAP-estimate is computed by maximising the logarithm of
the marginal posterior

φMAP
1:t = argmax

φ

(
log π(φ)− 1

2
ΔT

1:tK
−1(θ1:t)Δ1:t −

1

2
log det(K(θ1:t))

)
, (16)

where π(φ) is the prior density for GP hyperparameters and where the covariance
function in K(θ1:t) = k(θ1:t,θ1:t)+σ2

nI depends naturally also on φ. For the rest of the
paper, we assume that the MAP estimate is used for GP hyperparameters, however, we
also briefly discuss how one could integrate over them in Section 3.5.

3.3 Efficient parameter acquisition

We define our loss function LπABC
ε

for model-based ABC inference as

LπABC
ε

(D1:t) =

∫
Θ

V(π̃ABC
ε (θ) |D1:t) dθ =

∫
Θ

π2(θ)V(pε(θ) |D1:t) dθ, (17)

where π̃ABC
ε (θ) = π(θ)pε(θ) is the unnormalised ABC posterior and the variance is

taken with respect to the unknown latent function f conditioned on the training data
D1:t. We call the function in (17) as the integrated variance loss function. It measures
the uncertainty in the unnormalised ABC posterior density averaged over the parameter
space Θ. The loss function is defined in terms of the unnormalised ABC posterior
because we are here interested in minimising the uncertainty in the posterior shape.
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Also, this choice allows tractable computations unlike some other potential choices such
as defining the integrated variance over the normalised ABC posterior density function.
However, in principle, other loss functions, suitable for particular problem at hand,
could be defined.

We obtain the following formula for computing the expected integrated variance
loss function L1:t(θ

∗) (abbreviated as “expintvar”) when the new candidate evaluation
location is θ∗. The proof is rather technical and can be found in the supplementary.

Proposition 1. Under the GP model described in Section 3.1, the expected integrated
variance after running the simulation model with parameter θ∗ is given by

L1:t(θ
∗) = EΔ∗ | θ∗,D1:t

∫
Θ

π2(θ)V(pε(θ) |Δ∗,θ∗, D1:t) dθ (18)

= 2

∫
Θ

π2(θ)

[
T

(
ε−m1:t(θ)√
σ2
n + v21:t(θ)

,

√
σ2
n + v21:t(θ)− τ21:t(θ,θ

∗)

σ2
n + v21:t(θ) + τ21:t(θ,θ

∗)

)

− T

(
ε−m1:t(θ)√
σ2
n + v21:t(θ)

,
σn√

σ2
n + 2v21:t(θ))

) ]
dθ,

(19)

where the variance of pε(θ) is taken with respect to Π(df |Δ∗,θ∗, D1:t), the function
T (·, ·) is the Owen’s t-function as in (11) and

τ21:t(θ,θ
∗) =

cov21:t(θ,θ
∗)

σ2
n + v21:t(θ

∗)
, (20)

where cov1:t(θ,θ
∗) = k(θ,θ∗)−k(θ,θ1:t)K

−1(θ1:t)k(θ1:t,θ
∗) is the posterior covariance

between the evaluation point θ and the candidate location for the next evaluation θ∗.

A future evaluation at θ∗ causes a deterministic reduction of the GP variance that
is given by (20). However, the variance of the unnormalised ABC posterior depends
on the realisation of the discrepancy Δ∗ and we need to average over π(Δ∗ |θ∗, D1:t).
It is easy to see that if τ21:t(θ,θ

∗) → v21:t(θ), then the integrand at the corresponding
parameter θ approaches zero. It can also be shown (using Owen (1980, Eq. 2.3)) that
if τ21:t(θ,θ

∗) = 0, then the integrand in (19) equals the current variance given by (10).

While some of the derivations could be done analytically, computing the expected
integrated variance requires integration over the parameter space Θ. This can be done
with Monte Carlo or quasi-Monte Carlo methods; here we use importance sampling (IS)
to approximate the integral when p > 2. Using the IS estimator (Robert and Casella,
2004, Eq. 3.10, p. 95), we obtain

L1:t(θ
∗) = 2

∫
Θ

π2(θ)g1:t+1(θ,θ
∗) dθ ≈ 2

s∑
i=1

ω(i)π2(θ(i))g1:t+1(θ
(i),θ∗), (21)

where g1:t+1(θ,θ
∗) is the term inside the square brackets in (19) and the importance

weights are given by

ω(i) =
1

π2(θ(i))V(pε(θ
(i)) |D1:t)

/
s∑

j=1

1

π2(θ(j))V(pε(θ
(j)) |D1:t)

, (22)
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and θ(i) ∼ πq(·) for i = 1, . . . , s. The importance distribution πq(θ) is proportional
to the prior squared times the current variance of the unnormalised ABC posterior
i.e. πq(θ) ∝ π2(θ)V(pε(θ) |D1:t). This importance distribution is a reasonable choice,
because one evaluation is unlikely to change the variance surface much and the expected
variance thus has similar shape as the current variance surface. It is easy to see that if the
prior is bounded and proper i.e. π(θ) < ∞ and

∫
Θ
π(θ) dθ = 1, then πq defines a valid

probability density function (up to normalisation). Because the normalising constant of
πq is unavailable, we need to normalise the weights in (22). Generating samples from the
importance distribution πq is not straightforward but can be done using (e.g. adaptive)
Metropolis algorithm or using sequential Monte Carlo methods.

As outlined in Section 2, the new evaluation location is chosen to minimise the
expected loss, that is

θt+1 ∈ {θ ∈ Θ : θ = arg min
θ∗∈Θ

L1:t(θ
∗)}, (23)

where the right hand side is a set of parameters because the minimiser may not be
unique. We call this new strategy ‘an acquisition rule’ according to the nomenclature in
the Bayesian optimisation literature. Unlike in BO, however, our aim is not to optimise
the discrepancy but to minimise our uncertainty in the ABC posterior approximation.
The second term in (19) does not depend on θ∗ and its value can be computed just once
(or omitted completely) and the normalisation of the prior density π(θ) does not affect
the solution of (23) as it only scales the objective function. Gradient-based optimisation
with multiple starting points can be used for solving (23) and the gradient is derived in
the supplementary material. The resulting algorithm for estimating the ABC posterior
is outlined as Algorithm 1.

3.4 Alternative acquisition rules

We briefly discuss some alternative acquisition rules for ABC inference. Their deriva-
tions follow directly from our previous analysis and we include these strategies in our
experiments in Section 4. One such alternative to the expected integrated variance strat-
egy is to evaluate where the current uncertainty of the unnormalised ABC posterior is
highest. This approach is similar to Kandasamy et al. (2015). This strategy is a rea-
sonable heuristic in the sense that the next evaluation location is where improvement
in estimation accuracy is needed most, although it does not account for how large an
improvement can be expected at the location, or overall. This approach requires solving
the optimisation problem

θt+1 ∈ {θ ∈ Θ : θ = arg max
θ∗∈Θ

π2(θ∗)V(pε(θ
∗) |D1:t)} (24)

=

{
θ ∈ Θ : θ = arg max

θ∗∈Θ

(
log π(θ∗) + log

√
V(pε(θ

∗) |D1:t)

)}
, (25)

where the current variance V(pε(θ) |D1:t)) is given by (10) and is taken with respect to
Π(df |D1:t). We call this method the “maxvar” acquisition rule. The gradient of this
acquisition function is derived in the supplementary material.
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Algorithm 1 GP-based ABC inference using the expected integrated variance acqui-
sition function.
1: Generate initial training locations θ1:t0 ∼ π(·)
2: for t = 1 : t0 do
3: Simulate xt ∼ π(· |θt)
4: Compute Δt ← Δ(xobs,xt)
5: end for
6: for t = t0 : tmax − 1 do
7: Estimate GP hyperparameters φMAP

1:t using D1:t and (16)
8: Precompute Cholesky factorisation for the GP prediction
9: Simulate evaluation points θ(i) and weights ω(i) for i = 1, . . . , s by sampling

from πq(·)
10: Precompute the second term in (19)
11: Obtain θt+1 by solving the optimisation problem in (23)
12: Simulate xt+1 ∼ π(· |θt+1)
13: Compute Δt+1 ← Δ(xobs,xt+1)
14: Update the training data D1:t+1 ← D1:t ∪ {(Δt+1,θt+1)}
15: end for
16: Estimate GP hyperparameters φMAP

1:tmax
using D1:tmax and (16)

17: Simulate samples ϑ(1:n) from the density defined by (9)

18: return ϑ(1:n) as a sample from the approximate posterior density

To encourage further exploration, similarly to Gutmann and Corander (2016), we
also consider a stochastic variant of the maxvar acquisition rule in (25). Specifically,
we generate the evaluation point randomly according to the variance surface πq(θ) ∝
π2(θ)V(pε(θ) |D1:t) which we also use as an importance distribution for the expected
integrated variance acquisition function as discussed earlier. That is, instead of finding
the maximiser, we generate θt+1 ∼ πq(θ). This strategy requires generating random
samples from πq(θ) but sampling (and optimising) the variance function can be done
fast compared to the time required to run the simulation model. We call this method
“rand maxvar”.

The stochastic acquisition rule is reminiscent of Thompson sampling, but it is actu-
ally quite different. In our method, acquisitions are drawn at random from the proba-
bility distribution which is proportional to the (point-wise) variance of the approximate
posterior density. In Thompson sampling, instead, one generates a posterior density
realisation from the model, and chooses the next point as the maximiser of this realisa-
tion.

The maxvar and rand maxvar strategies avoid the integration over the parameter
space that is necessary for the expintvar method. However, one could replace the inte-
gration in expintvar by only a single evaluation at the candidate point. In other words,
this method chooses a location with the highest expected reduction in the uncertainty
of the unnormalised ABC posterior in that particular location. We call this variant the
“expdiffvar” from now on.
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A comparison of the acquisition functions in a one-dimensional toy problem is shown
in Figure 2. A simulation model has been run eight times and the acquisition functions
for selecting the ninth evaluation location (shown with triangles) are plotted for com-
parison. The current variance surface (maxvar) and the expected integrated variance
(expintvar) function are plotted with three values of the threshold ε. Unlike the current
variance surface, the expected integrated variance appears insensitive to the value of the
threshold. Figure 2b shows also that using the MAP-estimate for the GP hyperparam-
eters causes underestimation of the variance of the unnormalised ABC posterior. In the
next section we show how the uncertainty in GP hyperparameters is (approximately)
taken into account.

Figure 2: (a) The discrepancy observations (black stars) and the estimate of the ABC
posterior density based on eight training data points (with ε = 0.1) as compared to
the true posterior. (b) The variance of the unnormalised ABC posterior is computed
using the MAP estimate (maxvar (MAP)) or CCD integration (maxvar (CCD)) for GP
hyperparameters and for three values of the threshold ε. Details of the CCD integration
are in Section 3.5. (c) Expected integrated variance (expintvar) acquisition function.
(d) Expected improvement (EI) and lower confidence bound (LCB) criteria (scaled to
fit the same figure). Note that the scales of the variance function (b) and acquisition
functions computed with different thresholds, (c) and (d), are not comparable.
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3.5 Uncertainty in hyperparameters

Above we assumed that either the GP hyperparameters φ are known or MAP estimates
are used. Here we briefly discuss how the uncertainty in the GP hyperparameters could
also be taken into account. Integrating over the uncertainty in the GP hyperparameters
requires Monte Carlo sampling as in Murray and Adams (2010). An alternative approach
is to use central composite design (Rue et al., 2009; Vanhatalo et al., 2010). Briefly,
in central composite design (CCD) certain design points φi are chosen and each of
them is given a weight ωi ∝ π(φi |D1:t)γ

i ∝ π(D1:t |φi)π(φi)γi, where γi is a design
weight. This approach has the advantage that the amount of design points grows only
moderately with increased dimension and has been shown to yield good accuracy in
practice. Further details on choosing the design points and their weights are given in
Vanhatalo et al. (2010).

Integrating over the uncertainty in the GP hyperparameters φ in Lemma 1 leads to
the following calculations. Using the law of total expectation yields

E(pε(θ)) = EφEf |φ(pε(θ)) ≈
∑
i

ωi
Ef |φ=φi(pε(θ)) =

∑
i

ωi Φ
(
a(θ,φi)

)
, (26)

where the grid points and the corresponding weights are φi and ωi, respectively, and

where a(θ,φi) = (ε−m1:t(θ |φi))/
√

(σ2
n)

i + v21:t(θ |φi). If Monte Carlo sampling is

used, then ωi = 1/s for all i = 1, . . . , s, where s is the number of samples. Similarly, for
the variance we obtain

V(pε(θ)) = E(pε(θ)
2)− [E(pε(θ))]

2

= EφEf |φ(pε(θ)
2)− [EφEf |φ(pε(θ))]

2

≈
∑
i

ωi
[
Φ(a(θ,φi))− 2T (a(θ,φi), b(θ,φi))

]
−

[∑
i

ωi Φ(a(θ,φi))

]2

, (27)

where b(θ,φi) = (σn)
i/

√
(σ2

n)
i + 2v21:t(θ |φi). This formula with CCD integration was

already used in Figure 2b.

One can also take into account the uncertainty in GP hyperparameters in the ex-
pected integrated variance acquisition function. The posterior predictive distribution for
a future simulation is then approximated by a Gaussian mixture and one can make the
simplification by (incorrectly) assuming that the future evaluation will not affect the
GP hyperparameters but only the latent function f . Evaluating the resulting acquisition
function requires a large number of calls to Owen’s t-function and GP formulas and is
computationally more costly and thus possibly impractical. Alternatively, one can define
an integrated5 acquisition function as in Snoek et al. (2012); Hernández-Lobato et al.
(2014); Wang and Jegelka (2017) which only requires computing (19) for each sampled
GP hyperparameter φi. The integrated acquisition function is then averaged over these
values. Alternatively, one could simply use the posterior mean of the hyperparameters
in the place of the MAP estimate. However, we leave a detailed analysis for future work.

5Note that the term “integrated” here refers to integrating over GP hyperparameters φ and not for
integrating over the parameter space Θ as in (19).
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4 Experiments

We compare the proposed expected integrated variance acquisition rule (expintvar) to
commonly used BO strategies: expected improvement (EI) and lower confidence bound
(LCB) criterion, see e.g. Shahriari et al. (2015). We use the same trade-off parameter for
LCB as Gutmann and Corander (2016), but unlike them, we consider the deterministic
LCB rule. As a simple baseline, we also draw points sequentially from the uniform
distribution, abbreviated as “unif”. We also included the probability of improvement
(PI) strategy in preliminary experiments, but it resulted in poor estimates and was
therefore excluded from the comparisons.

In addition to expintvar, we also include the maxvar, rand maxvar and expdiffvar
strategies, which were briefly described in Section 3.4, to our list of methods to be com-
pared. The MAP estimate for the GP hyperparameters φ is used in all the experiments.
We use MATLAB and GPstuff 4.6 (Vanhatalo et al., 2013) for GP fitting. For fast and
accurate computation of Owen’s t-function, we use a C-implementation of the algorithm
by Patefield and Tandy (2000). The algorithms in this article are also made available in
the ELFI (engine for likelihood-free inference) Python software package by Lintusaari
et al. (2018).

The total variation (TV) distance is used for assessing the accuracy of the posterior
approximation. It is defined as TV = 1/2

∫
Θ
|π̂ABC

ε (θ)−πtrue(θ)| dθ, where π̂ABC
ε is the

estimated ABC posterior and πtrue is the reference distribution. As the reference we
use the exact ABC posterior with the same threshold as used for the approximations
but in some scenarios, however, the reference distribution is the exact posterior for
computational convenience and to see the overall approximation quality. The point
estimate of the ABC posterior density function for the comparisons is always computed
using (9). We demonstrate our approach with multiple toy models as well as two realistic
models. While the likelihood is actually available for the toy models, we restrict our
comparison to the model-based ABC methods, the focus of this work, at the same time
acknowledging that in practice with likelihood available the standard methods, such as
MCMC, are expected to outperform the likelihood-free alternatives. An overview of the
results is given in Table 1 and discussed in detail in the following sections.

4.1 Synthetic 2D simulation models

To compare the different acquisition strategies first without the need to actually handle
different simulation models, we construct “synthetic” discrepancies by adding Gaussian
noise to certain parametric curves, and use these to simulate the discrepancy realisa-
tions directly. The exact ABC posterior that is used as a reference distribution here is
computed using the posterior density given by (8) with a small predefined threshold ε.
As test cases we consider 1) a unimodal density with two correlated variables, 2) a bi-
modal density, 3) a density where the first parameter is (almost) unidentifiable, and 4)
a banana shaped density. For all cases, a uniform prior was assumed. The resulting
exact ABC posterior densities are illustrated in Figure 3. (See supplementary material
for additional details). The integration and sampling steps required by expintvar and
rand maxvar strategies are performed in a 2D grid of 502 evaluation locations. The ini-



610 Efficient Acquisition Rules for Model-Based ABC

expintvar expdiffvar maxvar rand maxvar LCB EI unif

unimodal∗ 1.00 1.39 1.52 1.23 1.27 2.54 0.97
bimodal∗ 1.00 1.23 1.24 1.03 1.04 1.51 1.13
unidentifiable∗ 1.00 1.11 1.21 1.12 1.01 1.58 1.49
banana∗ 1.00 1.12 1.23 1.09 1.08 1.67 1.47

Gaussian (strong prior) 1.00 1.13 1.18 1.24 1.68 2.68 1.02
Gaussian (weak prior) 1.00 1.20 1.16 1.07 1.10 1.59 1.83

Gaussian 3d 1.00 1.26 1.16 0.94 1.26 1.67 2.24
Gaussian 6d 1.00 1.06 1.08 0.98 1.14 1.42 1.94
Gaussian 10d 1.00 1.08 1.08 1.17 1.21 1.51 1.45

Lotka-Volterra 1.00 1.20 1.37 1.10 1.15 1.85 1.62

Table 1: Results for the test problems. The numbers in the table represent the median
of the area under the TV curve (TV values as a function of iteration) scaled so that
the proposed expintvar method obtains value one. Smaller values mean better average
performance. In the first four test problems (marked with ∗), the reference distribution is
the exact ABC posterior obtained using the same threshold as the model-based estimate.
In the other cases, TV distance is computed with respect to the ‘true’ posterior. For the
Gaussian 3d–10d examples, the TV represents the average TV of marginal densities.

Figure 3: Exact ABC posterior densities for the synthetic 2d test problems.

tial training set size is t0 = 10 and the initial training sets for the repeated experiments
are generated randomly from the uniform prior as is done in the other test cases as well.

The threshold is fixed so that differences in approximation quality between the acqui-
sition methods are solely caused by the selection of the evaluation locations. However,
because selecting a reasonable threshold can be challenging in practice, we also exam-
ine how updating this value adaptively during the acquisitions affects the results. In
the supplementary we show results when the threshold is constantly updated so that it
matches either the 0.01th or the 0.05th quantile of the realised discrepancies.

The results in Figure 4 indicate that the expintvar is the best method overall but
also rand maxvar produces good results. Of the common alternatives, LCB is clearly
the best and produces results with similar accuracy as rand maxvar. The performance
of the EI strategy is poor because it tends to focus evaluations greedily around the mode
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Figure 4: Median of the TV distance between the estimated ABC posterior and the
corresponding exact ABC posterior over 100 experiments. Vertical lines show the 95%
confidence interval of the median computed using the bootstrap.

and samples insufficiently in the tail areas which often results in poor estimates to the
ABC posterior density and high variability between different experiments. Interestingly,
the uniform strategy produces the best estimates in the case of the unimodal example.
Most of the acquisitions are not focused on the modal region but because the modelling
assumptions hold everywhere and the parameter space is rather small, the extrapolation
seems to work well in this case.

4.2 Gaussian simulation model

A simple Gaussian simulation model is used to study the effect of prior strength and the
dimension of the parameter space. Data points are generated independently from xi ∼
N (· |θ,Σ), i = 1, . . . , n, where θ ∈ Θ = [0, 8]p needs to be estimated and the covariance
matrix Σ is known. If θ ∼ N (a,B) truncated to Θ, the true posterior is N (θ |a�,B�)
truncated to Θ, where a� = B�(B−1a+nΣ−1x̄obs), B

� = (B−1 +nΣ−1)−1 and x̄obs =
n−1

∑n
i=1 xi is the sample mean. As discrepancy, we use the Mahalanobis distance

Δθ = ((x̄obs − x̄θ)
TΣ−1(x̄obs − x̄θ))

1/2. The true posterior is used for comparisons in
all the following experiments with the Gaussian model.

Strength of the prior

In the first experiment we set p = 2, n = 5, Σii = 1, and Σij = 0.5 for i �= j. The initial
training set size is t0 = 10 and the threshold is fixed to ε = 0.1. Integration and sampling
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for expintvar and rand maxvar are done as in Section 4.1. The true data mean of θ is
[2, 2]T . The mean of the (truncated) Gaussian prior is a = [5, 5]T and the covariance
matrix is B = b2I. We vary b, allowing us to study the impact of prior strength relative
to the likelihood. Figure 5 shows the results, and we see that the proposed acquisition
rules perform consistently well regardless the strength of prior, and focus the evaluations
on the posterior modal region. On the other hand, LCB samples where the discrepancies
are small, i.e. in areas of high likelihood, leading to sub-optimal posterior estimation
whenever the prior is also informative. Comparing Figures 5a and 5b shows that using
the expintvar strategy also avoids unnecessary evaluations on the boundary, which is
often undesired also in the Bayesian optimisation methods, see Siivola et al. (2017)
for a discussion. Curiously, the uniform sampling (unif rule) works well when prior
information is strong.

Figure 5: Acquired training data locations (black dots) for (a) LCB, (b) expintvar af-
ter 70 acquisitions. As discussed in Gutmann and Corander (2016), the LCB strategy
ignores prior information which here leads to suboptimal selection of evaluation lo-
cations. (c) Median TV between the estimated ABC posterior and the corresponding
true posterior as a function of the standard deviation (stdev) of the Gaussian prior
over 100 experiments and after 200 evaluations (small stdev corresponds to strong prior
information).

High-dimensional test cases

Next we investigate the effect of the dimension p of the parameter space. The settings
are as before, except that now we use uniform priors supported on Θ = [0, 8]p and the
threshold is set adaptively to the 0.01th quantile as described in Section 4.1. Further,
n = 15, and the initial training set sizes are t0 = 20 (3d) and t0 = 30 (6d and 10d).
Adaptive MCMC (with multiple chains) is used to sample from the model-based ABC
posterior estimates required in the line 17 of Algorithm 1 and, in the case of expintvar
and rand maxvar, from the probability density πq(θ). For expintvar we use s = 500
importance samples in 3d and s = 200 in 6d and 10d. Unlike in the other test problems,
the TV distance measures here the average of TVs between all the marginal densities.

Figure 6 shows the results. With p ≤ 6, the rand maxvar is the most accurate
and slightly better than expintvar strategy. However, in 10d it suffers from instability
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in MCMC convergence. Detailed examination shows that the method often produces
multimodal posterior estimates which makes the sampling difficult. Such densities are
likely a result of the random acquisitions. Namely, even if the uncertainty is high in some
region, it can happen that no evaluations occur there during the available iterations, due
to the randomness and the curse of dimensionality. EI also tends to produce multimodal
difficult-to-sample posterior estimates but similar issues were only rarely observed with
other strategies. The results suggest that in high dimensions the strategies that select
the acquisition locations deterministically should be preferred over the stochastic ones.

Figure 6: Median of the average marginal TVs between the estimated ABC posterior and
the corresponding true posterior over 100 experiments in the 3d, 6d and 10d Gaussian
toy simulation model.

4.3 Realistic simulation models

We consider the Lotka-Volterra model and a model of bacterial infections in day care
centers to illustrate the proposed acquisition methods in practical modelling situations.

Lotka-Volterra model

The Lotka-Volterra (LV) model (Toni et al., 2009) is described by differential equations
x′
1(t) = θ1x1(t) − x1(t)x2(t) and x′

2(t) = θ2x1(t)x2(t) − x2(t), where x1(t) and x2(t)
describe the evolution of prey and predator populations as a function of time t, respec-
tively, and θ = (θ1, θ2) is the unknown parameter to be estimated. We use a similar
experiment design as in Toni et al. (2009) but with discrepancy Δθ = log

∑
ij(x

obs
j (ti)−

xmod
j (ti,θ))

2, where xobs
j (ti) for j ∈ {1, 2}, i ∈ {1, . . . , 8} denote the noisy observations

at times ti, and xmod
j (ti,θ) are the corresponding predictions. Up to the log transforma-

tion, this is the same as used by Toni et al. (2009). We also experimented with another
discrepancy, where the squared differences were replaced by absolute differences; how-
ever, the results were similar. In comparisons we use the uniform prior with support on
[0, 5]2, and the reference is the exact posterior distribution that can be computed analyt-
ically. We set t0 = 10. The threshold is set to match the smallest observed discrepancy
realisations and the integration and sampling required by expintvar and rand maxvar
are done as in Section 4.1.
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Figure 7: Median of the mean absolute error in the (a) ABC posterior mean, and (b)
ABC posterior variance as compared to the true posterior over 100 experiments in the
Lotka-Volterra model. Panel (c) shows the TV distance between the estimated ABC
posterior and the true posterior.

The results are presented in Figure 7. We see that the expintvar strategy produces the
best posterior mean estimates (Figure 7a), while the best posterior variance estimates
are obtained by LCB and rand maxvar (Figure 7b). However, the expintvar strategy
clearly produces the most accurate posterior approximations in terms of TV distance
followed by rand maxvar and the LCB strategy (Figure 7c).

Bacterial infections model

Finally, we show the promise of our method using a simulation model that describes
transmission dynamics of bacterial infections in day care centers. The model has three
parameters: an internal infection parameter β ∈ [0, 11], an external infection parameter
Λ ∈ [0, 2] and a co-infection parameter θ ∈ [0, 1]. Full details of the model and data
are described in Numminen et al. (2013). The true posterior is not available and thus
an ABC posterior computed using the ABC version of the population Monte Carlo
algorithm (ABC-PMC), which required over two million simulations, is used as the
reference distribution (Numminen et al., 2013). We use the same experimental setup and
discrepancy as Gutmann and Corander (2016), who used the model to illustrate their
approach. Specifically, the initial training data size is t0 = 20 and the uniform prior is
used. Adaptive MCMC is again used to sample from the model-based posterior estimates
and from the probability density πq(θ). For expintvar we use s = 500 importance
samples.

Figure 8 shows the results. Unlike in the other test cases, expintvar and rand maxvar
tend to produce slightly wider credible intervals for the marginal ABC posterior dis-
tributions than the other methods. Similarly, Gutmann and Corander (2016) obtained
conservative estimates of these credible intervals with their stochastic variant of the
LCB acquisition rule. To explain this, we investigated the GP modelling assumptions
in more detail. Running a high number of additional bacterial model simulations in-
dicates that the discrepancy is well approximated with a Gaussian in the modal area.
On the other hand, the variance of the discrepancy, represented by the noise parameter
σ2
n in the GP model, is not exactly constant as assumed in the GP but grows towards
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Figure 8: Comparison of the 95% credible interval estimates in the bacterial model. The
black dashed lines show the corresponding credible interval estimates (computed using
over 2 million model simulations with ABC-PMC algorithm) by Numminen et al. (2013)
and the vertical lines show the 75% interval of the realisations over 100 experiments.
The x-axis shows the iterations t on the log-scale.

the tail areas. This explains why the expintvar and rand maxvar strategies, that tend
to include more evaluations in the tails than the other methods, have a tendency to
over-estimate the value of σ2

n. This further causes slightly overestimated credible in-
tervals for the marginal ABC posterior distribution, as illustrated by Järvenpää et al.
(2017). We can also see that the expintvar strategy is more stable than the other meth-
ods in the sense that its results are more consistent over the 100 different realisations
of the initial training data sets and simulator outputs than those of the other meth-
ods.

The maxvar and (deterministic) LCB produce credible interval estimates that are
overall closest to the ABC posterior computed in Numminen et al. (2013). However,
the credible region for the parameter Λ is often underestimated possibly due to ex-
cess exploitation producing too small variance estimates σ2

n. Using input-dependent GP
model as in Järvenpää et al. (2017) would likely improve the approximation quality
but we do not investigate this possibility here. While the EI strategy appears to work
well on average in this example, it actually has high variability and occasionally pro-
duces too narrow posterior estimates and thus performs poorly overall. Comparing our
posterior approximations using both the proposed acquisition methods as well as the
(deterministic) LCB strategy to those in Gutmann and Corander (2016) shows that
our estimates, both expintvar and (deterministic) LCB, are more accurate than the
experiment reported in their paper.

In summary, despite some violations of the GP model assumptions, we were able to
obtain posterior estimates that were very similar to those presented in Numminen et al.
(2013) with only a fraction of simulations (500 vs 2,000,000), and without a need to use
a computer cluster. We also showed that the proposed methods, especially expintvar,
work consistently over different simulation model realisations, which is important with
any realistic model where extensive running times may prohibit proper assessment of
stochastic variability.
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5 Discussion

In this section we offer guidelines for potential users and discuss some additional details
of our algorithms. While the developed methods worked well, it may not be clear for
an end user which method to use in practice. First of all, if the likelihood can be
evaluated, there is usually no reason to consider ABC. Furthermore, if this is not the
case but the simulation is fast, e.g. less than a second, standard ABC techniques may
suffice. If the simulation is slow then the techniques in this paper become useful. Our
technique with the expintvar strategy has a sound Bayesian decision theoretic basis and
it performed the best overall, producing consistent approximation quality in different
scenarios. We thus recommend this strategy. However, expintvar required up to 1 minute
of computation time for selecting the next evaluation location in our 6d Gaussian test
problem while this optimisation step took up to 4s for UCB and EI, and at most 8s for
maxvar. The corresponding time for rand maxvar was 30s. In our 2d Gaussian case, the
expintvar strategy required at most 10s and all the other methods less than a second.
These values are, however, descriptive since the computational time depends on various
settings and the amount of training data. All these times are in any case negligible
compared to the run time of many realistic simulation models which can be hours or
days. In the supplementary material we provide further analysis of computation time
using Big O notation and we further consider an alternative approach where a non-
uniform acceptance threshold is used which allows for slightly faster computations.
However, in high dimensions, when p � 10, we recommend maxvar because we expect
the estimated ABC posterior uncertainty to be inflated then anyway.

While not designed for ABC, the LCB criterion still worked surprisingly well overall
and offers another reasonable choice in practice. However, standard LCB is not suitable
if the prior is informative and its accuracy deteriorated in the high-dimensional experi-
ment. EI (and PI) performed poorly and we see little reason to use them unless the goal
is to learn only the maximiser of the discrepancy. Furthermore, unlike the standard BO
strategies such as LCB (with the exception of Shahriari et al., 2016), the developed ac-
quisition rules do not necessarily require a box-constrained domain. Namely, if the prior
is a bounded and proper density (to ensure that the acquisition functions are bounded
and the ABC posterior defines a valid pdf), the requirement of the bounded support
can be relaxed.

In addition to the acquisition strategy, the posterior approximation quality also
depends on the GP model and some other choices. For example, the proposed acquisition
strategies and the final posterior estimate depend on the threshold. We either assumed
this value to be known or used a heuristic approach and set the threshold to the 0.01th
quantile of the realised discrepancies. We also considered other choices but this approach
worked well. In principle, the strategy for selecting the threshold could also vary during
the iterations. While some ABC methods bypass selecting the threshold, they may not
be applicable when the budget for simulations is very small. Our framework is also
applicable for model-based ABC methods that do not require the threshold.

We used the zero mean GP model in our experiments. While Wilkinson (2014);
Drovandi et al. (2015); Gutmann and Corander (2016) considered certain paramet-
ric mean functions which might help focusing the simulations on the modal area, our
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choice is a safe option. Namely, if there is a large region containing no simulations, the
discrepancy tends to zero there. Thus, the uncertainty will be high in the region, at-
tracting future simulations. Futhermore, even though in some studies (e.g. Snoek et al.,
2012), the Matern kernel has been empirically shown to perform slightly better than the
squared exponential, we expect the discrepancy in many ABC modelling applications
to be smooth and, consequently, used the squared exponential kernel.

To demonstrate the framework, we chose to model the discrepancy with a GP. How-
ever, this approach may not be optimal if the Gaussianity assumption is violated (Gut-
mann and Corander, 2016; Järvenpää et al., 2017). Non-Gaussian measurement models
can be used but the acquisition criteria in (10) or (19) may become costly to evaluate.
One could also model the log-likelihood directly with a GP and select the evaluations
at the maximiser of the variance of the likelihood function (Kandasamy et al., 2015),
which is similar to our maxvar criterion. One could also model the individual summaries
with independent GPs as in Jabot et al. (2014); Meeds and Welling (2014). In both of
these cases the evaluation locations could be chosen based on the ideas in Section 2.

An alternative to the proposed stochastic acquisition rule is to sample new evaluation
locations from the current ABC posterior estimate. This approach seems to work well in
some scenarios but no systematic comparison was done. However, the posterior estimate
could get stuck to a poor region due to an “unlucky” discrepancy realisation, after which
new evaluations would be focused on this seemingly good region and the method has
little chance to escape from the local optimum.

While our approach is designed for fitting costly simulation models, we note that it
can be useful even when the simulation model is relatively cheap to run. For example, for
a developer of a simulation model, it may be useful to first obtain rough estimates for the
model parameters before using costly computations for final and accurate results. Our
derivations are also applicable for estimating the tail probabilities of Gaussian processes
over some parameter domain. An approach similar to ours has also been applied to the
problem of estimating an excursion set by Chevalier et al. (2014). However, the objective
of their work is to identify the set of points that are below a fixed threshold instead of
learning the corresponding tail probability under GP surrogate model assumptions.

6 Conclusions

We considered the challenging problem of performing Bayesian inference when the like-
lihood function cannot be evaluated and simulating data from the statistical model is
costly. We proposed to use another instance of Bayesian inference to quantify the un-
certainty in the approximate posterior due to the limited budget of simulations and
to design the simulations to minimise the expected uncertainty in the posterior ap-
proximation. Such computations can be costly themselves but we chose a loss function
that measures such uncertainty and allowed developing a tractable and practical algo-
rithm for selecting the next evaluation location to run the simulation model. Notably,
compared to many realistic simulation models, the run time of which can be hours
or days, the computational overhead introduced by our approach is negligible. Experi-
ments demonstrated that the proposed method performs better than or similarly to the
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commonly used Bayesian optimisation strategies and other, more heuristic approaches
obtained as a by-product of our derivations. Our approach also takes prior density into
account, does not require box-constrained parameter spaces and has a sound decision-
theoretic basis that extends to other ABC surrogate modelling scenarios beyond those
considered in this article.

As future work, other surrogate models and principled approaches for selecting the
threshold could be investigated. We here focused on single acquisitions but our approach
in principle extends to batch acquisitions as well. This enables parallelised inference,
which is particularly useful when computationally very costly simulation models need
to be fitted.

Supplementary Material

Supplementary material of “Efficient acquisition rules for model-based approximate
Bayesian computation” (DOI: 10.1214/18-BA1121SUPP; .pdf). The supplementary ma-
terial contains proofs and derivations. Additional experimental results are also pre-
sented.
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