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Analysis of the Maximal a Posteriori Partition
in the Gaussian Dirichlet Process Mixture Model

�Lukasz Rajkowski∗

Abstract. Mixture models are a natural choice in many applications, but it can
be difficult to place an a priori upper bound on the number of components. To
circumvent this, investigators are turning increasingly to Dirichlet process mixture
models (DPMMs). It is therefore important to develop an understanding of the
strengths and weaknesses of this approach. This work considers the MAP (max-
imum a posteriori) clustering for the Gaussian DPMM (where the cluster means
have Gaussian distribution and, for each cluster, the observations within the clus-
ter have Gaussian distribution). Some desirable properties of the MAP partition
are proved: ‘almost disjointness’ of the convex hulls of clusters (they may have at
most one point in common) and (with natural assumptions) the comparability of
sizes of those clusters that intersect any fixed ball with the number of observa-
tions (as the latter goes to infinity). Consequently, the number of such clusters
remains bounded. Furthermore, if the data arises from independent identically
distributed sampling from a given distribution with bounded support then the
asymptotic MAP partition of the observation space maximises a function which
has a straightforward expression, which depends only on the within-group covari-
ance parameter. As the operator norm of this covariance parameter decreases, the
number of clusters in the MAP partition becomes arbitrarily large, which may
lead to the overestimation of the number of mixture components.

MSC 2010 subject classifications: 62F15.
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1 Introduction

1.1 Motivation and new contributions

Clustering is a central task in statistical data analysis. A Bayesian approach is to model
data as coming from a random mixture of distributions and derive the posterior distri-
bution on the space of possible divisions into clusters. When there is not a natural a
priori upper bound on the number of clusters, an increasingly popular technique to use
is Dirichlet Process Mixture Models (DPMMs). It is therefore important to develop an
understanding of the strengths and weaknesses of this approach.

Miller and Harrison (2014) restrict attention to the number of clusters produced by
such a procedure and are somewhat critical of the method. Their main result implies
that in a very general setting, the Bayesian posterior estimate of the number of clusters
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is not consistent, in the sense that for any t ∈ {1, 2, . . .} almost surely

lim sup
n→∞

P(Tn = t|X1, . . . , Xn) < 1,

where X1, X2, . . . is an i.i.d. sample from a mixture with t components and Tn denotes
the number of clusters to which the data are assigned. Here P is the probability in the
probability space on which X1, X2, . . . are defined.

The Miller and Harrison inconsistency result relates to estimation of the number of
clusters, not the classification itself. While they do not pursue this, they do provide
examples of the structure estimators, such as the MAP (maximal a posteriori) parti-
tion, which maximises the posterior probability and the mean partition, introduced in
Huelsenbeck and Andolfatto (2007), which minimises the sum of the squared distance
between the mean partition and all partitions sampled by the MCMC (Markov Chain
Monte Carlo) algorithm which they run, where the distance is the minimum number of
individuals that have to be deleted from both partitions to make them the same.

This article presents developments that concern the properties of the MAP estimator
in a Gaussian mixture model, where the cluster centres are generated according to a
Gaussian distribution and, conditioned on the cluster centre, the observations within
a cluster are generated by Gaussian distribution. The clusters are generated according
to a Dirichlet Process. Analysing the MAP partition seems to be a natural choice. It is
listed, for example, in Fritsch et al. (2009) as an established method. Of course, the set of
possible candidates for the maximiser has to be restricted, since the space of partitions is
too large for an exhaustive search. For example, Dahl (2006) suggests choosing the MAP
estimator from a sample from the posterior. He notes, however, a potential problem of
this approach; there may be only a small difference in the posterior probability between
two significantly different partitions. This may indicate that the classifier is giving the
wrong answer as a consequence of mis-specification of the within-cluster covariance
parameter. We investigate such instability in our examples.

The conclusions of our analysis may be summarised as follows:

1. The convex hulls of the clusters are pairwise ‘almost disjoint’ (they may have at
most one point in common, which must be a data point).

2. The clusters are of reasonable size; if ( 1n
∑n

j=1 ‖xj‖2)∞n=1 (the sequence of means

of squared Euclidean norms) is bounded, then lim infn→∞
m[r]

n

n > 0 for any r > 0,

where m
[r]
n denotes the number of observations in the smallest cluster (in the MAP

partition of the first n observations) with non-empty intersection with B(0, r) (the
ball of radius r, centred at the origin).

3. This implies that for any r > 0 the number of clusters in the n-th MAP partition
required to cover observations inside B(0, r) remains bounded as n → ∞.

4. When the data sequence comes from an i.i.d. sampling with bounded support
there is an elegant formula to describe the limit of the MAP clustering; it is the
partition of the observation space that maximises the function Δ given by (6).
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In general, though it is a hard problem to find the global maximiser for this
expression. Furthermore, the only parameter that this function depends on is the
within-group covariance parameter.

5. The negative finding of the paper is that the clustering is very sensitive to the
specification of the within-cluster variance and model mis-specification can lead
to very misleading clustering. For example, if the data is i.i.d. from an input
distribution which is uniform over a ball of radius r in R

2 and the within-cluster
variance parameter is σ2I, then for small σ, the classifier partitions the ball into
several, seemingly arbitrary, convex sets. This classifier therefore has to be treated
with caution.

1.2 Organisation of the article

We now present a brief overview of the structure of the paper. In Section 2 we give key
definitions and provide complete mathematical statements of the main results together
with intuitive explanations. Section 3 presents examples which illustrate the results
obtained in the article. These examples show the MAP clustering obtained in various
situations where the data comes from i.i.d. sampling. They indicate that this proce-
dure may fail to produce reasonable output. The examples are supported by numerical
simulations, which are described in Supplement B (Rajkowski, 2018). Section 4 con-
tains a detailed presentation of the asymptotic proposition together with some related
developments. In Section 5 we state the open problems and plans for future work.

2 Main results

2.1 The model

This section presents definitions of fundamental notions of our considerations together
with some of their basic properties and relevant formulas. We show how they can be
used to construct a statistical model in which we expect the data to be generated from
different sources of randomness, without an a priori upper bound on the number of
these sources a priori. We start with the definition of the Dirichlet Process, formally
introduced in Ferguson (1973).

Definition. Let Ω be a space and F a σ-field of its subsets. Let α > 0 and G0 be a
probability measure on (Ω,F). The Dirichlet Process on Ω with parameters α and G0

is a stochastic process (G(A))A∈F such that for every finite partition {A1, . . . , Ap} ⊆ F
of Ω the random vector (G(A1), . . . , G(Ap)) has Dirichlet distribution with parameters
αG0(A1), . . . , αG0(Ap). In this case we write G ∼ DP(α,G0).

As considered in Antoniak (1974), the Dirichlet Process can be used to construct a
mixture model in which the number of clusters is not known a priori. The details are
given in the following definition.

Definition. Let (Θ,F) be the parameter space and (X ,B) the observation space. Let
α > 0 andG0 be a probability measure on (X ,F). Let {Fθ}θ∈Θ be a family of probability
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distributions on (X ,B). The Dirichlet Process mixture model is defined by the following
scheme for generating a random sample from the space (X ,F)

G ∼ DP(α,G0)

θ = (θ1, . . . , θn) |G iid∼ G

xi |θ, G ∼ Fθi independently for i ≤ n.

(1)

In Blackwell and MacQueen (1973) it is shown that the first two stages of (1) may
be replaced by the following recursive procedure:

θ1 ∼ G0, θi | θ1, . . . , θi−1 ∼ α

α+ i− 1
G0 +

i−1∑
j=1

1

α+ i− 1
δθj , (2)

where δθ is the probability measure that assigns probability 1 to the singleton {θ}.
Of course, this procedure can be used to generate sequences of arbitrary length; the
distribution of the resulting infinite sequence (θi)

∞
i=1 produced in this way is called the

Hoppe urn scheme. Note that a realisation of this scheme defines a partition of N by a
natural equivalence relation (i ∼ j) ≡ (θi = θj). Restriction of this partition to sets [n]
for n ∈ N is called the Chinese Restaurant Process (the CRP, for short).

Definition. The Chinese Restaurant Process with parameter α is a sequence of random
partitions (Jn)n∈N, where Jn is a partition of [n] = {1, 2, . . . , n}, that satisfies

Jn+1 | Jn = {J1, . . . , Jk} ∼
{

{J1, . . . , Ji ∪ {n+ 1}, . . . , Jk} with probability |Ji|
n+α

{J1, . . . , Jk, {n+ 1}} with probability α
n+α

.

(3)
We write Jn ∼ CRP(α)n.

The Dirichlet Process mixture model for n observations is therefore equivalent to

J ∼ CRP(α)n

θ = (θJ)J∈J | J iid∼ G0

xJ = (xj)j∈J | J ,θ
iid∼ Fθ for J ∈ J .

(4)

We will refer to this formulation as the CRP-based model. In this paper we focus our
attention on the Gaussian case, in which Θ = R

d, X = R
d, F and B are σ-fields of Borel

sets, G0 = N (μ,T) and Fθ = N (θ,Σ) for θ ∈ Θ, where μ ∈ R
d and T,Σ ∈ R

d,d are the
parameters of the model. This will be called the CRP-based Gaussian model. We also
limit ourselves to the case where μ = 0, however it may be easily seen that this is not
a real restriction; the sampling from the zero-mean Gaussian model and transposing
the output by the vector μ is equivalent to sampling from the Gaussian model with
mean μ. Therefore all the clustering properties of the model can be investigated with
the assumption that μ = 0.

Remark 1. The conditional probability of partition J in the zero-mean Gaussian model,
given the observation vector x = (xj)

n
j=1, is proportional to
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C |J |
∏
J∈J

|J |!
|J |(d+2)/2 detR|J|

· exp
{1

2

∑
J∈J

|J | ·
∥∥R−1

|J|R
2xJ

∥∥2
}
=: Qx(J ), (5)

where C = α/
√
detT , R = Σ−1/2, Rm = (Σ−1 + T−1/m)1/2 for m ∈ N, ‖ · ‖ is the

standard Euclidean norm in R
d and xJ = 1

|J|
∑

j∈J xj.

Proof. See Supplement A (Rajkowski, 2018).

Having established the model we are now able to use it for inference about the
data structure. A natural choice is to choose the partition that maximises the posterior
probability given by (5). This leads to the notion of the MAP partition.

Definition. Themaximal a posteriori (MAP) partition of [n] with observed x = (xi)
n
i=1

is any partition of [n] that maximises Qx(·) (equivalently, the posterior probability). We
denote a maximiser by Ĵ (x) (note: a priori this may not be unique).

2.2 Results

The first result is Proposition 1 which states that the MAP partition divides the data
into clusters whose convex hulls are disjoint, with the possible exception of one datum.

Proposition 1. For every n ∈ N if J1, J2 ∈ Ĵ (x1, . . . , xn), J1 �= J2 and Ak is the
convex hull of the set {xi : i ∈ Jk} for k = 1, 2 then A1 ∩ A2 is an empty set or a
singleton {xi} for some i ≤ n.

Proof. See Supplement A.

Figure 1: Illustration of the convexity property of a partition of the data. Clusters are
indicated by the shape and colour of the points.

We say that a partition satisfying the property described by Proposition 1 is a
convex partition. As Figure 1 indicates, this is a rather desirable feature of a clustering
mechanism.
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The next development give information about the size and number of the clusters.
Proposition 2 states that when the sequence of sample ‘second moments’ is bounded
then the size of the smallest cluster in the MAP partition among those that intersect a
ball of given radius is comparable with the sample size.

Proposition 2. If supn
1
n

∑n
i=1 ‖xn‖2 < ∞ then

lim inf
n→∞

min{|J | : J ∈ Ĵ (x1, . . . , xn), ∃j∈J‖xj‖ < r}/n > 0

for every r > 0.

Proof. See Supplement A.

Figure 2: Illustration of Proposition 2 and Corollary 2. The red circle is arbitrarily
fixed and the clusters it intersects are coloured. The number of observations in each
coloured cluster is proportional to n and the number of these clusters remains bounded
as n → ∞.

The assumption supn
1
n

∑n
i=1 ‖xn‖2 < ∞ allows the data sequence to be unbounded

but it does ensure that it does not grow too quickly. It is easy to see that an assumption
of this kind is necessary, otherwise it would be possible for each new observation to be
large enough to create a new singleton cluster.

A simple consequence of Proposition 2 is that under these assumptions the number
of components in the MAP partition that intersect a given ball is almost surely bounded.

Corollary 2. If ( 1n
∑n

i=1 ‖xi‖2)∞n=1 is bounded then for every r > 0 the number of
clusters that intersect B(0, r) is bounded, i.e.

lim sup
n→∞

|{J ∈ Ĵ (x1, . . . , xn) : ∃j∈J‖xj‖ < r}| < ∞.

Proof. The proof follows easily from the fact that the size of the smallest cluster that
intersects B(0, r) is bounded from above by the number of observations divided by the
number of clusters intersecting the ball.
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In order to formulate the central result of the paper we need to introduce several
notions. Let P be a probability distribution on R

d and X a random variable with
distribution P . Let Δ be the function on the space of finite families of measurable sets
defined by the following formula

Δ(G) = 1

2

∑
G∈G

P (G)
∥∥RE (X |X ∈ G)

∥∥2
+

∑
G∈G

P (G) lnP (G), (6)

where R2 is the inverse of the within-cluster covariance matrix Σ and E (X |X ∈ G) is
the expected value of X conditioned on X ∈ G.

We consider the symmetric distance metric over P -measurable sets, which is defined
by dP (A,B) = P ((A \ B) ∪ (B \ A)). This can be easily extended to a metric dP over
finite families of measurable subsets of Rd (details are given in Section 4.3). Also we say
that a family of measurable sets A is a P -partition if P (

⋃
A∈A A) = 1 and P (A∩B) = 0

for all A,B ∈ A, A �= B. Let MΔ denote the set of finite P -partitions that maximise
the function Δ.

Consider X1, X2, . . .
iid∼ P and let Ân be the family of the convex hulls of clusters of

observations in Ĵ (X1, . . . , Xn).

Proposition 3. Assume that P has bounded support and is continuous with respect to
Lebesgue measure. Then MΔ �= ∅ and almost surely infM∈MΔ dP (Ân,M) → 0.

Proof. The proof follows from Theorem 14. See Supplement A for details.

The function Δ does not depend on the concentration parameter α or the between-
groups covariance parameter. It therefore follows, somewhat surprisingly, that in the
limit the shape of the MAP partition does not depend on these two parameters.

It can be shown that as the norm of the within group covariance matrix tends to 0,
the variance of the conditional expected value gains larger importance in maximising
the function Δ in formula (6) and this variance increases as the number of clusters
increases. Therefore by manipulating the within group covariance parameter, when the
input distribution is bounded it is possible to obtain an arbitrarily large (but fixed)
number of clusters in the MAP partition as n → ∞, as Proposition 4 states. This is also
an indication of the inconsistency of the procedure used since it implies that when the
input comes from a finite mixture of distributions with bounded support, then setting
the Σ parameter too small leads to an overestimation of the number of clusters.

Proposition 4. Assume that P has bounded support and is continuous with respect to
Lebesgue measure. Then for every K ∈ N there exists an ε > 0 such that if ‖Σ‖ < ε
then |Ĵn| > K for sufficiently large n.

Proof. See Supplement A.

It is worth pointing out that Proposition 1 and Proposition 2 hold also for finite
Gaussian mixture models with Dirichlet prior on the probabilities of belonging to a
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given cluster. Proposition 3 also remains true with MΔ replaced by MK
Δ – the set of

P -partitions with at most K clusters that maximise the function Δ, where K is the
number of clusters assumed by the model. The details are left for Supplement A.

3 Examples

This section presents some examples which illustrate the main propositions of the article.
In Section 3.1 we compute the convex partition that maximises Δ when P is a uniform
distribution on the interval [−1, 1]. Section 3.2 gives an example of a distribution with
well-defined moments, for which the maximiser of Δ necessarily has infinitely many
clusters, although for any r < ∞, the number of clusters that intersect a ball of radius
r is finite. This example illustrates the content of Theorem 6, where it is shown that
with appropriate choice of model parameters, if the input distribution is exponential
then the number of clusters in the sequence of MAP partitions becomes arbitrarily
large. Section 3.3 investigates Gaussian mixture models; the MAP partition does not
properly identify the two clusters when the mixture distribution is bi-modal. Finally,
in Section 3.4 we consider the uniform distribution on the unit disc in R

2. The parti-
tion maximising the function Δ cannot be obtained by analytical methods, but it may
be approximated. The results approximate the optimal partition of the unit disc and
illustrate the convexity of Proposition 1. All examples are substantiated with computer
simulations, presented in the main text or in Supplement B.

3.1 Uniform distribution on an interval

We find the convex partition that maximises Δ if P is a uniform distribution on [−1, 1].
Firstly we find an optimal partition with fixed number of clusters K. Since it is con-
vex, it is defined by the lengths of K consecutive subintervals of [−1, 1]. Let those be
2p1, . . . , 2pn. Computations in Supplement A show that with K fixed the optimal divi-
sion is p1 = p2 = . . . = pK = 1/K. Using this, it is computed that the optimal number
of clusters is K = �R/

√
3� or K = �R/

√
3�, where �x� and �x� are the largest integer

not greater than x and the smallest integer not less than x, respectively. It is worth
noting that the variance of the data within a segment of length 2R/

√
3 is equal to R,

so in this case the MAP clustering splits the data in a way that adjusts the empirical
within-group covariance to the model assumptions.

It should be underlined that in this example, if Σ is small, the MAP partition has
more than one cluster. The clustering is therefore misleading, since in this case there is
exactly one population (which is uniform [−1, 1]). The number of clusters in the MAP
partition becomes arbitrarily large as Σ goes to 0, as Proposition 4 states.

This would suggest that, in general, a sensible choice of Σ should be made a priori.
The sample variance would give an upper bound on Σ (since the data variance is the
sum of between-group and within-group variances), but there is no natural lower bound
for this parameter. In this example the partitioning mechanism itself is clearly far from
satisfactory when it produces more than two clusters; the divisions seem very arbitrary.
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3.2 Exponential distribution

When the input distribution is exponential with parameter 1, then for a relevant choice
of model parameters (e.g. α = T = 1, Σ = 4) there is no finite partition that maximises
Δ; the value of the function Δ for a given convex partition can be increased by taking
any interval of length larger than 3 and dividing it into two equally probable parts. See
Supplement A for the proof.

Since the exponential distribution does not have bounded support, our considera-
tions regarding the relation between the function Δ and the MAP clustering cannot be
applied directly. However, by using similar methods we can establish that for exponen-
tial input the MAP procedure creates an arbitrarily large number of clusters. This is
stated in Theorem 6, whose proof is presented in Supplement A.

3.3 Mixture of two normals

Let the input distribution be a mixture of two normals (P = 1
2 (ν−1.01 + ν1.01)), where

νm is the normal distribution with mean m and variance 1). It can be proved that this
distribution is bi-modal (however slightly; see Supplement A). Choose the model param-
eters consistent with the input distribution, i.e. d = α = Σ = T = 1. It can be computed
numerically that Δ({(−∞, 0], (0,∞)}) ≈ −0.0046 < 0 = Δ({R}). An intuitive partition
of the data into positive and negative is induced by the partition {(−∞, 0], (0,∞)} and
hence, by Corollary 8, for sufficiently large data input the posterior score for the two
clusters partition is smaller than the posterior score for a single cluster. This may be
taken as an indication of inconsistency of the MAP estimator in this setting.

3.4 Uniform distribution on a disc

This gives an example of non-uniqueness of the optimal partition, since the family of
optimal partitions is clearly invariant under rotation around (0, 0). Let P be uniform
distribution on B(0, 1). It can be easily seen that Δ(B(0, 1)) = 0. Let R be the identity
matrix and let B+

1 (B−
1 ) be a subset of B(0, 1) with non-negative (negative) first coor-

dinate. Then Δ({B+
r , B−

r }) = 2r2/9− ln 2. Therefore, for sufficiently large r, a partition
of B(0, 1) into halves is better than a single cluster, hence the optimal convex partition
E is not a single cluster. Since a single cluster is the only convex partition of B(0, 1)
that is rotationally invariant about the origin, it follows that the optimal partition is
not unique.

The simulation in this case also give a nice illustration of the convexity of the MAP
partition, proved in Proposition 1 and show the arbitrary nature of the partitioning
when r is large.

3.5 The MAP clustering properties

This short simulation study presents the performance of the MAP estimator when
the input distribution is a mixture of uniform distributions on three pairwise disjoint
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Figure 3: Clustering in the MAP partition of the first k = 100, 500, 1000, 1500, 2000
observations (in columns) in the i.i.d. sample from the uniform distribution of disc
B(0, 1). Different clusters are denoted by different colours.

ellipses. The output is shown on Figure 4. It shows that the MAP clustering detects
the mixture components or at least the clusters it creates are the sub-groups of the
true mixture components (all depending on the within-group covariance parameter Σ).
It also provides a nice illustration for two properties of the MAP partition: firstly the
convexity property (Proposition 1) and secondly – the fact that when the within-group
covariance parameter is decreasing, the number of cluster in the MAP partition grows,
as stated in Proposition 4.

4 Detailed presentation of Proposition 3

4.1 Classification of randomly generated data

Let P be a probability distribution on (Rd,B) and let (Xn)
∞
n=1 be a sequence of inde-

pendent copies of a random variable X with distribution P . Then Ĵn = Ĵ (X1, . . . , Xn)
goes a random partition of [n]. Note that if E ‖X‖4 < ∞ (here and subsequently, E
denotes the expected value) then by the strong law of large numbers almost surely
1
n

∑n
i=1 ‖Xi‖2 → E ‖X‖2 < ∞ and therefore the assumptions of Proposition 2 are

satisfied almost surely. Useful corollaries of this observation are listed below.

Corollary 3. If E ‖X‖4 < ∞ then for every r > 0

(a) lim infn→∞ min{|J | : J ∈ Ĵn, ∃j∈J‖Xj‖ < r}/n > 0 almost surely.

(b) the number of clusters in Ĵn that intersect B(0, r) is bounded.
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Figure 4: Clustering in the MAP partition of the first k = 50, 100, 200, 500 observations
(in columns) in the i.i.d. sample from the mixture of three uniform distributions on
a disjoint ellipses. The MAP clustering was constructed for α = 1, T = I and Σ =
σ2I where σ2 ∈ {1, .1, .01, .0025} (in rows). Different clusters are denoted by different
colours, the convex hulls of the clusters are also marked. It is clear that some of the
partitions presented are not convex, particularly for large σ2. This is due to the fact
that the method is less than perfect. As σ2 increases, the likelihood component of the
formula for the posterior is less significant and hence partitions with the same prior
(where clusters are of the same size) have similar posterior score. Therefore, with high
probability, sampling from the posterior will not choose the MAP partition, or even a
partition that reasonably resembles the MAP clustering. We mentioned this instability
in Section 1.1.
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An easy consequence of Corollary 3 is

Corollary 4. If the support of P is bounded then

(a) lim infn→∞ min{|J | : J ∈ Ĵn}/n > 0 almost surely.

(b) |Ĵn| is almost surely bounded.

Proof. If the support of P is bounded then E ‖X4‖ < ∞. Therefore we can use Corol-
lary 3 where we take r sufficiently large so that B(0, r) contains the support of P .

The assumptions of Corollary 4 cannot be relaxed to those of Corollary 3. It turns
out that there exists a probability distribution P with a countable number of atoms
sufficiently far apart, whose probabilities are chosen so that E ‖X‖4 < ∞ and almost
surely the most recent observation creates a singleton in the sequence of MAP partitions
infinitely often, i.e. there exists a sequence (nk)

∞
k=1 such that {xnk

} ∈ Ĵnk
. This violates

part (a) of Corollary 4. On the other hand, for appropriate parameter choice, sampling
from the exponential distribution leads to the number of clusters in the MAP partition
tending to infinity, which contradicts part (b) of Corollary 4. Proofs of these facts are left
for Supplement A. These facts are now formally stated in the following two theorems:

Theorem 5. If d = 1 and α = T = Σ = 1 then for P =
∑∞

m=0 q(1 − q)mδ18m , where

q = (2 · 18)−1, almost surely lim infn→∞ m(Ĵn) = 1.

Theorem 6. If P = Exp(1) and the CRP model parameters are α = T = 1, Σ <
(32 ln 2)−1 then the number of clusters in the sequence of MAP partitions almost surely
goes to infinity.

4.2 The induced partition

Instead of searching for the MAP clustering, one may choose a simpler (and more
arbitrary) way to partition the data. The idea is to choose a partition of the observation
space in advance and then divide the sample assigning each datum to the element of
this partition which contains it. We call this decision rule an induced partition. In this
section we give a formal definition and investigate how it behaves when the input is
identically distributed and how it relates to the formula for the posterior probability
given by (5).

Definition. Let A be a fixed partition of Rd. Let JA
n = {i ≤ n : Xi ∈ A } for n ∈ N

and A ∈ A and define a random partition of [n] by JA
n = {JA

n �= ∅ : A ∈ A}. We say
that this partition of [n] is induced by A.

In the following part of the text, for two sequences (an)
∞
n=1 and (bn)

∞
n=1 of nonzero

real numbers, we use the notation an ≈ bn to denote limn→∞ an/bn = 1.

Lemma 7. Let A be a finite P -partition of Rd consisting of Borel sets with positive P
measure. Then almost surely n

√
QX1:n(JA) ≈ n

e exp{Δ(A)}, where Δ is the function
defined by (6).
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Proof. See Supplement A.

Corollary 8. If A, B are two finite P -partitions of R such that Δ(A) > Δ(B) then
almost surely QX1:n(JA

n ) > QX1:n(J B
n ) for sufficiently large n.

Proof. The proof is straightforward and therefore omitted.

Corollary 8 implies that if we look for the optimal, finite induced partition, it will
be a partition of the data induced by the finite partition of the observation space that
maximises the function Δ. This formulation suggests a strong relationship between the
MAP partition and the finite maximisers of Δ, which will be investigated further in
Section 4.3, in the case where P has bounded support. The case where P does not have
bounded support is beyond the scope of this work, for reasons presented in Section 5.
This is a goal for future research.

At the end of this Section, let us provide an interpretation of the function Δ. Let
A be a finite partition and ZA = E (X|1A(X) : A ∈ A) be the conditional expected
value of X given the indicators 1A(X) for A ∈ A. Then ZA is a discrete random
variable which is equal to E (X |X ∈ A) with probability P (A). This implies that
Δ(A) = 1

2E ‖RZA‖2 −H(ZA), where the function H assigns to a random variable its
entropy. Moreover

E ‖RZA‖2 = tr
(
V(RZA)

)
+ ‖ERZA‖2 = tr

(
RV(ZA)R

t
)
+ ‖REZA‖2

in which tr(·) is the trace function and V(·) is the covariance matrix of a given random
vector. Since EZA = EX we obtain that

Δ(A) =
1

2
tr

(
RV(ZA)R

t
)
−H(ZA) +

1

2
‖REX‖2. (7)

Equation (7) justifies the following description of the function Δ: up to a constant,
it may be treated as a difference between the variance and the entropy of the condi-
tional expected value of a linearly transformed, P -distributed random variable given its
affiliation to one of the sets in the partition.

4.3 Convergence of the MAP partitions

Corollary 8 gives us a convenient characterisation of the partitions of Rd that in the
limit induce the best possible partitions of sets [n]. At this stage however we do not
know yet if the best induced partitions relate to overall best partitions, namely the MAP
partitions. A natural question is if the behaviour of the MAP partition resembles the
induced classification introduced in Section 4.2, as the sample size goes to infinity, and
under what conditions. This section presents partial answers in this regard; it should be
stressed however that all the developments presented here are limited to the case when
the input distribution has bounded support. The reasons for such limitation are briefly
described in Section 5.
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As we already know that clusters in the MAP partition create disjoint convex sets,
the analysis of the approximate behaviour of these partitions would be easier if a form
of ‘uniform law of large numbers’ with respect to the family of convex sets were true.
More precisely if we let Pn = 1

n

∑n
i=1 δXi we need the following to hold:

lim
n→∞

sup
C convex

∣∣Pn(C)− P (C)
∣∣ = 0 almost surely. (∗)

In other words we require that the class of convex sets is a Glivenko–Cantelli class with
respect to P . A convenient condition for this to hold is given in Elker et al. (1979),
Example 14:

Lemma 9. If for each convex set C the boundary ∂C can be covered by countably many
hyperplanes plus a set of P -measure zero, then (∗) holds for P .

In particular, it can easily be seen that the assumptions of Lemma 9 are satisfied if P
has a density with respect to Lebesgue measure λd on R

d (since in this case the Lebesgue
measure λd of the boundary of any convex set is 0, and hence is also P measure 0).

We can now formulate a functional relation between the posterior probability of the
MAP partition and the value of the function Δ on the family of convex hulls of the sets
in the MAP partition.

Lemma 10. Assume that P has bounded support and satisfies (∗). Let Ân be the family
of the convex hulls of the clusters in the MAP partition, i.e. Ân = {conv{Xj : j ∈
J} : J ∈ Ĵ }. Then almost surely

n

√
QX1:n(Ĵn) ≈

n

e
exp{Δ(Ân)}.

Proof. See Supplement A.

Now we investigate the convergence of the sequence Ân defined in Lemma 10. In
order to do so we need a topology on relevant subspaces of 2R. We begin by recalling
two standard metrics used in this context.

Definition. Let D be a class of closed subsets of Rd. Then the function 
H : D2 → R

defined by

H(A,B) = inf{ε > 0: A ⊆ (B)ε, B ⊆ (A)ε},

where (X)ε = {x ∈ R
d : dist(x,X) < ε}, is a metric on D. It is called the Hausdorff

distance. The fact that it is a metric follows from 1.2.1 in Moszyńska (2005).

Definition. Let M be a σ-field on R
d and μ be a measure on (Rd,M). Then the

function dμ : M2 → R defined by dμ(A,B) = μ((A \ B) ∪ (B \ A)) is a pseudometric
on M, which by definition means that it is symmetric, nonnegative and satisfies the
triangle inequality. It is called the symmetric difference metric. The fact that it is a
pseudometric is explained in the beginning of Section 13, Chapter III of Doob (1994).
Note that since dμ(A,B) = 0 does not imply A = B, formally dμ is not a metric on M.
Although for our consideration the difference of measure 0 is of no importance, we keep
on using the proper pseudometric term in this context.
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The two following theorems are crucial for establishing the limits of maximisers.
Theorem 11 is Theorem 3.2.14 in Moszyńska (2005); it ensures the existence of dH -
converging subsequence in every bounded sequence of convex sets. Theorem 12 is a
straightforward consequence of Theorem 12.7 in Valentine (1964) (in the latter P is
taken to be the Lebesgue measure). It states that when P has a density with respect
to the Lebesgue measure then the Hausdorff metric restricted to K is stronger than the
symmetric difference metric.

Theorem 11. The space (K, 
H) is finitely compact (i.e. every bounded sequence has
a convergent subsequence).

Theorem 12. If P is continuous with respect to the Lebesgue measure then convergence
in 
H implies convergence in dP in the space K.

Note that the Hausdorff and symmetric difference metrics are defined on sets. How-
ever we are interested in MAP partitions, which are families of sets. Therefore it is
convenient to extend the definitions of these metrics to families of sets, as presented
below. Remark 13 ensures that the desirable properties of compactness are preserved
by such extension.

Definition. Let d be a pseudometric on the family of sets F . For K ∈ N we define
FK(F) to be the space of finite subfamilies of F that have at mostK elements. Moreover
A = {A(1), . . . , A(k)} ∈ FK(F) and B = {B(1), . . . , B(l)} ∈ FK(F) we define

d̄(A,B) = min
σ∈ΣK

max
i≤K

d(A(i), B(σ(i))), (8)

where ΣK is the set of all permutations of [K] and we assume A(i) = ∅ and B(j) = ∅
for i > k or j > l respectively.

Remark 13. If (F , d) is a pseudometric space then (FK(F), d̄) is also a pseudometric
space. Moreover, if (F , d) is finitely compact then (FK(F), d̄) is also finitely compact.

Proof. The proof is straightforward. See Supplement A for details.

Now assume that P has bounded support. Then by Theorem 11 and Remark 13 it
follows that (Ân)

∞
n=1 has convergent subsequences which have a limit under dH (note

that as the support of P is bounded, sets Â are also bounded in the dH metric). Let us
denote the (random) set of their limits by E. Note that by the properties of dH distance
each family in E consists of convex, closed sets. If we assume that P is continuous
with respect to the Lebesgue measure then it follows from Lemma 10 together with
Theorem 12 that E consists of finite P -partitions that maximise the function Δ.

Theorem 14. Assume that P has bounded support and is continuous with respect to
Lebesgue measure. Then every partition in E is a finite P -partition that maximises Δ.

Proof. See Supplement A.

Now Proposition 3 is a straightforward, topological consequence of Theorem 14. This
is shown in Supplement A.
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5 Discussion

It should be clearly stated that the scope of the paper is limited in two ways. Firstly,
only the Gaussian model is considered. It is natural to ask if the methods used here can
be applied for other combinations of base measure and component distributions. The
author is sceptical in this regard. The proofs of the key Proposition 1 and Proposition 2
rely strongly on the formula (5). It is difficult to find a computationally feasible choice
of the base and component measures so that the resulting formula for the posterior
probabilities has similar properties.

Secondly, the limiting results contained in Section 4.3 are proved in the case where
the support of the input distribution is bounded. In this case the model is clearly
misspecified. A significant effort was put in order to extend the results from Section 4.3
at least to the case where P is Gaussian. Unfortunately, there are some technical hurdles
which the author was not able to overcome, which we now outline. The first result in
which the boundedness of the input distribution is used is Lemma 10 – here we use
both parts of Corollary 4 which, as shown by Theorem 5 and Theorem 6, cannot be
easily generalised. A natural approach is to fix large r > 0 and use Corollary 3 – then
the product of those factors in (5) which come from the clusters that intersect B(0, r)
may be well approximated using Lemma 9, since by Corollary 3 there are finitely many
clusters intersecting B(0, r) and the number of observations in the cluster is comparable
with n for each cluster. Unfortunately in this way there is no control over the impact
of the clusters outside B(0, r) as there are no lower bounds on their size and upper
bounds on their number. However the author believes that these obstacles are possible
to overcome and this remains subject for the future work.

It should be also underlined the setting of our analysis was not the usual one for
the consistency analysis. Indeed, in our formulation of the CRP model our parameter
space is the space of partitions of [n], which is changing with n. To perform a classical
consistency analysis we need the parameter space to be fixed regardless of the number
of observations. On the other hand, if we consider the DPMM formulation, in which
the parameter space is the space of all possible realisations of the Dirichlet Process
(i.e. the space of discrete measures on R

d with infinitely many atoms) then again our
input should come from an infinite mixture of normals, which was not the case in our
examples.

However some of our results from Section 4 can be applied when the input sequence
is a realisation of the DPMM. Indeed, the convexity result of Proposition 1 does not have
any assumptions on the data sequence. As for Proposition 2, it requires the sequence of
mean squared norms to be bounded. It is easy to prove (see Supplement A) that for a
realisation of the DPMM this assumption holds almost surely and hence for every r > 0
the clusters intersecting B(0, r) in the sequence of the MAP partitions constructed on
the sample from DPMM are of size comparable with the number of observation and
their number is bounded. However, some fundamental questions remain unanswered in
this case (e.g. does the number of clusters in the MAP partition tend to infinity in this
case?) and they are open for further investigation.

Note that the machinery presented can be used for a different task. The P -partitions
that maximise the function Δ seem to be interesting objects in their own right. Note
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that for dimension greater than 1 it seems to be extremely difficult to derive the max-
imisers simply by analytical means. Remark 13 and Proposition 3 give us a convenient
tool to examine those maximisers as they may be approximated by performing sam-
pling from the posterior. This cannot be done faithfully as the normalizing constant
in the formula (5) cannot be computed explicitly, however there are standard MCMC
techniques that can be applied there (e.g. Neal (2000)). Further examination of the
maximisers of the function Δ is left for future research.

Supplementary Material

Supplementary Material to “Analysis of the Maximal a Posteriori Partition in the Gaus-
sian Dirichlet Process Mixture Model” (DOI: 10.1214/18-BA1114SUPP; .zip). Supple-
ment A: This supplementary material contains proofs that were left for the appendix.
Supplement B: This supplementary material contains results of computer simulations.
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