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Consider a sequence of real data points X1, . . . ,Xn with underlying
means θ∗

1 , . . . , θ∗
n . This paper starts from studying the setting that θ∗

i is both
piecewise constant and monotone as a function of the index i. For this, we
establish the exact minimax rate of estimating such monotone functions, and
thus give a nontrivial answer to an open problem in the shape-constrained
analysis literature. The minimax rate under the loss of the sum of squared
errors involves an interesting iterated logarithmic dependence on the dimen-
sion, a phenomenon that is revealed through characterizing the interplay
between the isotonic shape constraint and model selection complexity. We
then develop a penalized least-squares procedure for estimating the vector
θ∗ = (θ∗

1 , . . . , θ∗
n )T. This estimator is shown to achieve the derived minimax

rate adaptively. For the proposed estimator, we further allow the model to be
misspecified and derive oracle inequalities with the optimal rates, and show
there exists a computationally efficient algorithm to compute the exact solu-
tion.

1. Introduction. Consider an observed vector X = (X1, . . . ,Xn)
T of independent en-

tries and an unknown underlying mean θ∗ = (θ∗
1 , . . . , θ∗

n )T. This paper starts from the prob-
lem of estimating such θ∗ that is isotonic piecewise constant. Specifically, for any k ∈ (0 : n],
we define the parameter space of interest as the set of all nondecreasing vectors with at most
k pieces,

�
↑
k = {

θ ∈ Rn : there exist {aj }kj=0 and {μj }kj=1 such that

0 = a0 ≤ a1 ≤ · · · ≤ ak = n,

μ1 ≤ μ2 ≤ · · · ≤ μk, and θi = μj for all i ∈ (aj−1 : aj ]}.
The notation (a : b] stands for the set of all integers i that satisfy a < i ≤ b. For any vec-
tor θ∗ ∈ �

↑
k , it is a piecewise constant signal with at most k steps that take different values.

When k = n, the space �
↑
k contains all vectors θ∗ that satisfy θ∗

1 ≤ θ∗
2 ≤ · · · ≤ θ∗

n . Estima-
tion of θ∗ under this condition is recognized as isotonic regression. It has been one of the
most popular and successful directions in the shape-constrained analysis literature. General
discussions on relevant methods and theory can be found in Robertson, Wright and Dykstra
(1988), Groeneboom and Wellner (1992), Silvapulle and Sen (2011), and Groeneboom and
Jongbloed (2014), to name just a few. However, in certain cases, isotonic regression may
overfit the data by producing a result with too many steps. This inspires research on fitting
isotonic regression with the restriction of the number of steps. According to Schell and Singh
(1997), the problem is termed as reduced isotonic regression. The parameter space �

↑
k pre-

cisely describes such regression functions.
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Despite its practical importance in changepoint and shape-constrained analyses, the fun-
damental limit of estimating θ∗ in the class �

↑
k is still unknown. We summarize the results

in the literature by assuming that X ∼ N(θ∗, σ 2In). In terms of upper bound, Chatterjee,
Guntuboyina and Sen (2015) show explicitly that

inf
θ̂

sup
θ∗∈�

↑
k

E
∥∥θ̂ − θ∗∥∥2 ≤ Cσ 2k log(en/k),

and the rate σ 2k log(en/k) can be adaptively achieved by isotonic regression. See Bellec
(2018) and Bellec and Tsybakov (2015) for results with the same rate. In terms of lower
bound, Bellec and Tsybakov (2015) show

inf
θ̂

sup
θ∗∈�

↑
k

E
∥∥θ̂ − θ∗∥∥2 ≥ cσ 2k.

We can see the above upper and lower bounds do not match, and it is unclear if either bound
is sharp.

In this paper, we settle a solution to this open problem by deriving the precise minimax
rate of the space �

↑
k . Thus, the gap between the upper and lower bounds in the literature is

closed. Surprisingly, neither the upper nor the lower bound in the literature is sharp. We prove
that for k ≥ 2, the minimax rate takes the form

inf
θ̂

sup
θ∗∈�

↑
k

E
∥∥θ̂ − θ∗∥∥2 � σ 2k log log(16n/k).

It is interesting that the minimax rate of the problem has an iterated logarithmic dependence
on n/k, an engaging feature of the space �

↑
k .

We show that the minimax rate can be achieved by solving a least-squares problem in
the space �

↑
k . This is exactly the procedure of reduced isotonic regression. In comparison,

the ordinary isotonic regression proves to achieve only a suboptimal rate σ 2k log(en/k).
Therefore, our results provide a theoretical justification that the reduced isotonic regression
can avoid overfitting the data and practically attain better performances over the ordinary
isotonic regression (cf. Schell and Singh (1997), Salanti and Ulm (2003), Haiminen, Gionis
and Laasonen (2008)).

The proof of the result is nontrivial. Our analysis involves repeatedly partitioning the stud-
ied sequence according to the nature of the reduced isotonic regression estimator. This allows
us to use martingale maximal inequalities by Levy and Doob, and gives us the sharp minimax
rate.

Besides understanding the fundamental challenge in estimating the piecewise monotone
functions, in practice, it is always the case that: (i) the number of steps or pieces k is un-
known; (ii) the model could be misspecified. In addition, practically we would love to have a
computationally feasible algorithm to compute the exact solution. Indeed, in this manuscript
we propose a penalized least-squares (reduced isotonic regression) estimator that achieves the
minimax rate without knowing k. We further allow the model to be misspecified and prove
oracle inequalities with the optimal rates. Moreover, by exploring a key property of reduced
isotonic regression and by leveraging the pool-adjacent-violators algorithm (PAVA) (Mair,
Hornik and de Leeuw (2009)), we develop a computationally efficient algorithm to compute
the k-piece least-squares estimator for all k and thus the penalized least-squares estimator.

This paper also obtains exact minimax rates under the �p loss with 1 ≤ p < 2. In contrast
to the case p = 2, the minimax rates are now parametric. Furthermore, we show that this rate
can be adaptively achieved by isotonic regression, but not by the reduced isotonic regression
procedure. In other words, the nature of the problem can be dramatically changed by using a
different loss function.
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The rest of the paper is organized as follows. In Section 2, we introduce the problem
setting and present the minimax rate. We then introduce an adaptive estimation procedure in
Section 3. The computational issues of the estimators are discussed in Section 4. We will also
put our results in a larger picture and discuss a few other related problems in Section 4. All
the proofs are relegated to Section 5 and the Supplementary Material (Gao, Han and Zhang
(2020)).

Notation. Let Z and R be the sets of integers and real numbers. For any positive integer
d , we use [d] to denote the set {1,2, . . . , d}. Let 1(·) denote the indicator function. For a real
number x, 	x
 is the smallest integer no smaller than x, �x� is the largest integer no larger
than x, x+ = x1(x ≥ 0) and x− = −x1(x < 0) are the positive and negative components of
x. For any a, b ∈ R, write a ∧ b = min{a, b} and a ∨ b = max{a, b}. For an arbitrary vector
θ = (θ1, . . . , θn)

T ∈ Rn and an index set J ⊂ [n], we denote θJ to be the subvector of θ with
entries indexed by J , and for any p ≥ 1,

‖θ‖p =
(

n∑
i=1

|θi |p
)1/p

, and ‖θ‖J,p =
(∑

i∈J

θ
p
i

)1/p

.

In particular, we denote ‖θ‖ = ‖θ‖2 and ‖θ‖J = ‖θ‖J,2. Let θJ = 1
|J |

∑
i∈J θi represent the

sample mean across the sequence θJ . For any real value a and positive integer n, define

{a}n = (a, a, . . . , a︸ ︷︷ ︸
n

)T.

For any sets of vectors �1 ⊂Rn1, . . . ,�m ⊂Rnm , denote
m×

�=1
�� = {

θ = (
θT
(1), . . . , θ

T
(m)

)T ∈R
∑m

i=1 ni : θ(�) ∈ ��

}
.

Throughout the paper, let c,C, c1,C1, c2,C2, . . . be generic universal positive constants
whose actual values may vary at different places. For any two positive data sequences
{an,n = 1,2, . . .} and {bn,n = 1,2, . . .}, we write an � bn or an = O(bn) if there exists a
constant C > 0 such that an ≤ Cbn for all n from natural numbers. The notation an � bn

means an � bn and bn � an. We use P and E to denote generic probability and expectation
operations whenever the distributions can be determined from the context.

2. Minimax rates. In this section, we present the minimax rate of the space �
↑
k with

respect to the squared �2 loss. We first consider the upper bound. Given the observation
X ∈ Rn, we define the constrained least-squares estimator as

(1) θ̂
(
�

↑
k

)= argmin
θ∈�

↑
k

‖X − θ‖2.

Computational issues related to this estimator will be discussed in Section 4.1. Note that if
X ∼ N(θ∗, σ 2In), θ̂ (�

↑
k ) is simply the maximum likelihood estimator (MLE) restricted onto

the parameter space �
↑
k . However, we do not need to assume a Gaussian error for the risk

bound presented below. In detail, consider the observation

X = θ∗ + Z,

where we assume the error variables {Zi}ni=1 are independent with zero mean and satisfy one
of the following conditions:

(2)

⎧⎨⎩ max
1≤i≤n

E|Zi/σ |2+ε ≤ C1 not identically distributed Zi’s,

E
(
Z2

1/σ 2) log
(
e + Z2

1/σ 2)≤ C1 identically distributed Zi’s,
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for some number σ > 0, an arbitrarily small universal constant ε ∈ (0,1), and some universal
constant C1 > 0. It is easy to see that the Gaussian error Z ∼ N(0, σ 2In) is a special case.

THEOREM 2.1. Consider X = θ∗ + Z with any θ∗ ∈ Rn and Z satisfying (2). Then, we
have

E
∥∥θ̂(�↑

k

)− θ∗∥∥2 ≤ C
[

inf
θ∈�

↑
k

∥∥θ − θ∗∥∥2 + σ 2 + σ 2k log log(16n/k)1{k ≥ 2}
]

for all k ∈ [n] with some universal constant C > 0.

Note that Theorem 2.1 is an oracle inequality without any assumption on the true mean
vector θ∗. Besides the trivial bound C(inf

θ∈�
↑
1
‖θ − θ∗‖2 + σ 2) for k = 1, it is interesting

that the stochastic error scales as σ 2k log log(16n/k) for k ≥ 2. This iterated logarithmic
term appears due to the isotonic constraint of the solution θ̂ (�

↑
k ) as well as the properties of

partial sum processes. More technical discussions on this point will be given in Section 4.2,
which discusses the importance of the isotonic constraint in more details.

If the condition θ∗ ∈ �
↑
k holds, then we immediately obtain the following corollary:

sup
θ∗∈�

↑
k

E
∥∥θ̂(�↑

k

)− θ∗∥∥2 ≤ Cσ 2k log log(16n/k),

when k ≥ 2. This improves previous risk bounds for the space θ∗ ∈ �
↑
k in the literature. For

example, for the ordinary isotonic regression estimator

(3) θ̂ (iso) = θ̂
(
�↑

n

)= argmin
θ :θ1≤θ2≤···≤θn

‖X − θ‖2,

Theorem 2.1 of Zhang (2002) gives

n2∑
i=n1+1

∣∣θ̂ (iso)
i − θ∗

i

∣∣2 ≤
∫ n2−n1

0

Cσ 2

1 ∨ x
dx,

whenever 0 ≤ n1 < n2 ≤ n and θ∗
n2

= θ∗
n1+1 for a nondecreasing θ∗. Thus, as explicitly de-

rived in Chatterjee, Guntuboyina and Sen (2015),

sup
θ∗∈�

↑
k

E
∥∥θ̂ (iso) − θ∗∥∥2 ≤ Cσ 2k log(en/k).

Our result shows that the logarithmic error term in the above bound can be improved by
restricting the least-squares optimization to the space θ∗ ∈ �

↑
k . This modification of the esti-

mator is necessary, as shown below.

PROPOSITION 2.1. There exists a universal constant c > 0, such that

sup
θ∗∈�

↑
k

E
∥∥θ̂ (iso) − θ∗∥∥2 ≥ cσ 2k log(en/k).

Next, we show that the rate obtained by Theorem 2.1 is optimal by giving a matching
minimax lower bound. To this end, we consider the Gaussian distribution X ∼ N(θ∗, σ 2In).
In the following a lower bound construction for k = 2 is provided, with the generalization to
k ≥ 2 briefly sketched.
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By Fano’s inequality (Proposition 5.1), we need to find some subset T ⊂ �
↑
2 such that the

ratio

maxθ,θ ′∈T ‖θ − θ ′‖2/(2σ 2)

logM(ε, T ,‖ · ‖)
is bounded by a sufficiently small constant. Here, M(ε, T ,‖ · ‖) stands for the packing num-
ber of T with radius ε and distance ‖ · ‖. We will take ε2 � log log(16n). Since the minimax
rate is simply σ 2 if n is bounded by a constant, we only need to construct T with a suffi-
ciently large n. For each � ∈ {1,2, . . . , 	log2 n
}, construct the vector θ� ∈ Rn by filling the

last 	n2−�
 entires with
√

ασ 22� log log2 n/n and the remaining entries 0. It is easy to see

that θ� ∈ �
↑
2 for all � ∈ {1,2, . . . , 	log2 n
}. For any j < �, we have

‖θ� − θj‖2 ≥ ⌈
n2−�⌉(√ασ 22� log log2 n

n
−
√

ασ 22j log log2 n

n

)2

≥ ασ 2 log log2 n
(
1 − 2

j−�
2
)2

≥ ασ 2

20
log log2 n.

Therefore,

(4) logM
(√

ασ 2

20
log log2 n,T ,‖·‖

)
≥ log log2 n,

where T = {θ� : � = 1,2, . . . , 	log2 n
}. Moreover, since ‖θ�‖2 ≤ 3ασ 2 log log2 n for all �,
we have

(5) max
θ,θ ′∈T

1

2σ 2

∥∥θ − θ ′∥∥2 ≤ 6α log log2 n.

Hence, by (4) and (5), we can choose a very small α > 0 to ensure the ratio
maxθ,θ ′∈T ‖θ−θ ′‖2/(2σ 2)

logM(ε,T ,‖·‖) to be small. This leads to the minimax lower bound

inf
θ̂

sup
θ∗∈�

↑
2

E‖θ̂ − θ‖2 ≥ cσ 2 log log(16n),

for k = 2.
For a general k > 2, the idea is to divide the integer set [n] into 	k/2
 − 1 consecutive

intervals with length approximately �2n/k�. Then, we can apply the above construction to
each of the 	k/2
−1 interval. For each interval, a lower bound cσ 2 log log(2n/k) is obtained.
Summing up these lower bounds over all the k/2 intervals, we get the desired rate. Details
of this argument will be given in Section 5.3, and the according minimax lower bound is
presented as follows.

THEOREM 2.2. There exists some universal constant c > 0, such that

inf
θ̂

sup
θ∗∈�

↑
k

E
∥∥θ̂ − θ∗∥∥2 ≥

{
cσ 2, k = 1,

cσ 2k log log(16n/k), k ≥ 2,

where the infimum is taken over all measurable functions of X and the expectation is taken
under which X ∼ N(θ∗, σ 2In).
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Combining the results of Theorem 2.1 and Theorem 2.2, we obtain the minimax rate of
the problem

inf
θ̂

sup
θ∗∈�

↑
k

E
∥∥θ̂ − θ∗∥∥2 �

{
σ 2, k = 1,

σ 2k log log(16n/k), 2 ≤ k ≤ n.

The minimax rate implies that the iterated logarithmic dependence on n is an essential feature
of the space �

↑
k .

3. Adaptive estimation. The estimator (1) that achieves the minimax rate requires the
knowledge of k. This section proposes an adaptive estimator that can also achieve the mini-
max rate without knowing the value of k. Recalling the notation θ̂ (�

↑
k ) = argmin

θ∈�
↑
k

‖X −
θ‖2, we propose an adaptive estimator θ̂ = θ̂ (�

↑
k̂
) with a data-driven k̂. The data-driven k̂ is

defined through the following penalized least-squares optimization. That is,

(6) k̂ = argmin
k∈[n]

{∥∥X − θ̂
(
�

↑
k

)∥∥2 + penτ (k)
}
.

Inspired by the minimax rate, the penalty function is defined by

(7) penτ (k) =
{
τ, k = 1,

τk log log(16n/k), 2 ≤ k ≤ n.

The estimator θ̂ enjoys the following adaptive oracle inequality.

THEOREM 3.1. Consider X = θ∗ +Z with any θ∗ ∈ Rn and Z satisfying (2). We use the
estimator θ̂ = θ̂ (�

↑
k̂
) with k̂ defined in (6). The tuning parameter is chosen as τ = C′σ 2 for

some sufficiently large universal constant C′ > 0. Then, we have

E
∥∥θ̂ − θ∗∥∥2 ≤ C min

1≤k≤n

{
inf

θ∈�
↑
k

∥∥θ − θ∗∥∥2 + penτ (k)
}

with some universal constant C > 0.

REMARK 3.1. Unlike in isotonic regression, an implicit assumption of Theorem 3.1 is
that we need to know the order of the variance σ 2. When Zi ∼ N(0, σ 2), the unknown σ can
be estimated by the following robust procedure:

σ̂ = Median(|Xi+1 − Xi |,1 ≤ i < n)√
2 Median(|N(0,1)|) .

As |{i : |E[Xi+1 −Xi]| > ε0σ }| is bounded by k−1 when θ∗ has k pieces and by ‖θ∗‖1/(ε0σ)

in general, the above σ̂ is consistent when min(k,‖θ∗‖1/σ) = o(n) and is of the order σ

when min(k,‖θ∗‖1/σ) ≤ c0n for some fixed small enough constant c0 > 0. On the other
hand, estimation of σ 2, or even just its order, is impossible when θ∗ is arbitrary. In this case,
whether it is still possible to achieve the oracle inequality in Theorem 3.1 is an interesting
open problem.

Theorem 3.1 can be viewed as an adaptive version of Theorem 2.1. The oracle inequality
automatically selects the best k that achieves the optimal bias-variance tradeoff. When the
true mean vector θ∗ does belong to the space �

↑
k , we have E‖θ̂ − θ∗‖2 � penτ (k), and thus

the minimax rate is achieved without the knowledge of k.
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When θ∗ ∈ �
↑
n so that it is isotonic, the above oracle inequality can be further improved.

By Meyer and Woodroofe (2000) and Zhang (2002), as θ∗ is isotonic, the estimator θ̂ (iso) =
θ̂ (�

↑
n) satisfies the risk bound

(8) E
∥∥θ̂ (iso) − θ∗∥∥2 � σ 2{log(en) + n1/3(V (

θ∗)/σ )2/3}
,

where V (θ∗) = θ∗
n − θ∗

1 is the total variation of the vector θ∗. This risk bound can be sig-
nificantly smaller than penτ (k) when V (θ∗)/σ is small and k is large. This motivates us to
modify the value of penτ (n) to achieve the better rate between (8) and (7). A direct choice
of the modified penalty is just the bound on the right-hand side of (8). However, this option
depends on the value of V (θ∗), which may not be available in practice. Inspired by the risk
analysis in Zhang (2002), we consider

τ

{
log(en) + ∑

{�≥0:2�≤n/3}

l̂τ (2�+1) − l̂τ (2�)

2�+1

}
,(9)

where

l̂τ (m) := min
{
n,3m + m

√
m + 1(X[n−m:n−m/2) − X(1+m/2:1+m])/

√
τ
}
.

Note that (9) is a data-driven estimate of the risk of θ̂ (iso). Then, we have a well-defined
penalty function on [n] by combining (7) and (9). The modified penalty function in summary
is

p̃enτ (k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
τ, k = 1,

τ penτ (k), 2 ≤ k ≤ n − 1,

τ

{
log(en) + ∑

{�≥0:2�≤n/3}

l̂τ (2�+1) − l̂τ (2�)

2�+1

}
, k = n.

With some appropriate choice of τ , the performance of θ̂ = θ̂ (�
↑
k̂
) is given by the following

theorem.

THEOREM 3.2. Consider X = θ∗ + Z with any θ∗ ∈ �
↑
n and Z satisfying

max1≤i≤nE|Zi/σ |2+ε ≤ C1. We use the estimator θ̂ = θ̂ (�
↑
k̂
) with k̂ selected by the modified

penalty function p̃enτ (k). The tuning parameter is chosen as τ = C′σ 2 for some sufficiently
large universal constant C′ > 0. Then, we have

E
∥∥θ̂ − θ∗∥∥2 ≤ C min

1≤k≤n

{
inf

θ∈�
↑
k

∥∥θ − θ∗∥∥2 + isoerrk
(
θ∗)},

for some universal constant C > 0. The stochastic error term isoerrk(θ∗) is defined by

isoerrk
(
θ∗)=

⎧⎪⎨⎪⎩
σ 2, k = 1,

σ 2 min
{
k log log

(
16n

k

)
, log(en) + n1/3

(
V (θ∗)

σ

)2/3}
, k ≥ 2.

We remark that the rate in the above theorem is always no greater than that of Theorem 3.1.
If we further impose the condition that V (θ∗)/σ ≤ n1−δ for some universal constant δ ∈
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(0,1), the rate given by Theorem 3.2 can be summarized into three phases:

isoerrk
(
θ∗)�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2, k = 1,

σ 2k log log(16n),

2 ≤ k ≤ log(en) + n1/3(V (θ∗)/σ )2/3

log log(16n)
,

σ 2{log(en) + n1/3(V (
θ∗)/σ )2/3}

,

k >
log(en) + n1/3(V (θ∗)/σ )2/3

log log(16n)
.

In other words, the adaptive estimator with the modified penalty can achieve both the mini-
max rates of the class �

↑
k derived in this paper and the rate of isotonic regression in Meyer

and Woodroofe (2000) and Zhang (2002).
An interesting open problem is whether it is possible to obtain sharp oracle inequalities

with the constant before the approximation error to be exactly one. The counter example
constructed by Rigollet and Tsybakov (2012) in a sparse linear regression setting seems to
suggest that this task may be impossible for the penalized least-squares procedure considered
in this paper.

4. Discussion.

4.1. Computational issues. The optimization problem (1) is recognized as reduced iso-
tonic regression in the literature (Schell and Singh (1997)), and related �0 optimization prob-
lems have been studied in literature (see, e.g., Friedrich et al. (2008) and Jewell and Witten
(2018) among many others). As k = n, the solution to the isotonic regression problem, θ̂ (�

↑
n),

can be computed efficiently in O(n) time using the pool-adjacent-violators algorithm (PAVA)
(Mair, Hornik and de Leeuw (2009)). Computation of θ̂ (�

↑
k ) for k = 1,2, . . . , n − 1 may

seem to be combinatorial, but by taking advantage of the PAVA solution, it can be reduced to
a simple dynamic programming.

In detail, denote the set of knots (change points) of θ̂ (�
↑
k ) by Âk . The following two

properties are immediate from Lemma 5.1 (that will be stated in Section 5.1):

1. For any k ∈ [n], we have Âk ⊂ Ân;
2. For any k ∈ [n], θ̂ (�

↑
k ) is a piecewise constant function with knots in Âk . Moreover,

each piece is a sample average of the Xi’s in that block.

The first property asserts that the knots of θ̂ (�
↑
k ) are always contained in the solution of

PAVA. The second property implies that θ̂ (�
↑
k ) can be obtained by averaging consecutive

entries of θ̂ (�
↑
n). Since θ̂ (�

↑
n) is already isotonic, one does not need to worry about the

isotonic constraint anymore, and the only task is to find the best change points among Ân

that minimize the squared error loss. Therefore, one can first run PAVA and obtain a set
of potential knots Ân = {tj }n̂j=1. Then, the search for the knots of θ̂ (�

↑
k ) in {tj }n̂j=1 can be

implemented efficiently through dynamic programming. Note that Âk = Ân for all k ≥ n̂, and
we only need to find Âk for k < n̂. Details of implementation are given in Algorithm 1 for
completedness.

Since Algorithm 1 computes θ̂ (�
↑
k ) for all k, one can directly use the results to obtain the

adaptive estimator θ̂ = θ̂ (�
↑
k̂
) via (6). By Friedrich et al. (2008), the complexity of Algorithm

1 is O(n̂3) after PAVA. Therefore, the overall complexity of (6) is O(n + n̂3). This leads to a
worst-case complexity bound O(n3). However, since n̂ enjoys the rate σ 2{V/σ + log(en) +
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Algorithm 1: Computation of Âk for all k < n̂

Input : {Xi}ni=1, t0 = 0, knots t1 < · · · < tn̂ = n from PAVA
Output: Âk and the corresponding piecewise average for all k < n̂

1 For j in 1 : n̂, compute the partial sums of Xi and X2
i ,

S(j) ←∑
0<i≤tj

Xi, SS(j) ←∑
0<i≤tj

X2
i .

2 For all (�, j) such that 0 ≤ � < j ≤ n̂, compute the loss for fitting by mean in (t� : tj ],
Loss(�, j) ← SS(j) − SS(�) − (S(j) − S(�))2/(aj − a�).

3 For j in 1 : n̂, copy the loss for fitting by mean in (0 : tj ],
T.Loss(1, j) ← Loss(0, j).

4 For k in 2 : n̂ − 1
For j in k : n̂, compute the minimal loss for k-piece monotone fit in (0 : tj ],

left.knot(k, j) ← argmin1≤�<j {T.Loss(k − 1, �) + Loss(�, j)},
T.Loss(k, j) ← T.Loss(k − 1, left.knot(k, j)) + Loss(left.knot(k, j), j).

knots(k, k) = n̂.
For j in (k − 1) : 1, compute Âk ,

knots(k, j) ← left.knot(j + 1,knots(k, j + 1)).

n1/3(V/σ)2/3} by Theorem 1 of Meyer and Woodroofe (2000), with high probability the
isotonic regression (or PAVA) yields an n̂ of order O(n1/3) when V/σ = O(1). This leads to
a linear complexity O(n).

4.2. Comparison with piecewise constant models. A closely related problem to estimat-
ing isotonic piecewise constant functions is the estimation of piecewise constant signals with-
out the monotone condition. We define the space of piecewise constant models as

�k = {
θ ∈Rn : there exist {aj }kj=0 and {μj }kj=1 such that

(10)
0 = a0 ≤ a1 ≤ · · · ≤ ak = n, and θi = μj for all i ∈ (aj−1 : aj ]}.

This section shows that �
↑
k and �k have different error behaviors.

THEOREM 4.1. For any k ∈ [n], the minimax rate for the space �k is given by

inf
θ̂

sup
θ∗∈�k

E
∥∥θ̂ − θ∗∥∥2 �

⎧⎪⎪⎨⎪⎪⎩
σ 2, k = 1,

σ 2 log log(16n), k = 2,

σ 2k log(en/k), k ≥ 3,

where the expectation is taken over the distribution X ∼ N(θ∗, σ 2In).

The upper bound in Theorem 4.1 can be achieved by the least-squares estimator θ̂ (�k) =
argminθ∈�k

‖X − θ∗‖2 when k is known, or achieved by its penalized version when k is
unknown. The penalty can be chosen proportional to the minimax rate, following the classic
approach in, for example, Birgé and Massart (1993) and Birgé and Massart (2001). These
estimators can be computed efficiently via dynamic programming (Friedrich et al. (2008)).

We emphasize that the results for k ≥ 3 are well known in the literature (Birgé and Massart
(2001), Boysen et al. (2009), Donoho and Johnstone (1994), Li, Munk and Sieling (2016),
Raskutti, Wainwright and Yu (2011)) and we claim no originality there. Instead, our stress is
on comparing �

↑
k and �k . First, it can be seen that the main difference between these two

spaces is that the minimax rate of the former scales as σ 2k log log(16n/k), while that of the
latter scales as σ 2k log(en/k), for k ≥ 3. The case k = 2 is special, and both spaces have
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minimax rates log log(16n). This is because the signals in �2 are either nondecreasing or
nonincreasing.

Second, we emphasize that the minimax rate of �k is only for the Gaussian observations
X ∼ N(θ∗, σ 2In). With regard to the upper bound, the assumption of Gaussian errors can
be easily relaxed to sub-Gaussian errors. However, the sub-Gaussianity cannot be further
relaxed, as illustrated below. Consider the observation X = θ∗ + Z ∈ Rn. Assume i.i.d. error
variables Z1, . . . ,Zn ∼ pγ , where the density function is specified as

(11) pγ (x) ∝ exp
(−|x|γ ),

for some γ ∈ (0,2]. When γ = 2, we recover the Gaussian-like (sub-Gaussian) error. For
γ ∈ (0,2), we get a heavier tail than the Gaussian one. The following proposition shows that
the sub-Gaussian assumption cannot be relaxed.

PROPOSITION 4.1. Consider the error distribution (11) for some γ ∈ (0,2]. For the
space �3, we have the lower bound,

inf
θ̂

sup
θ∗∈�3

E
∥∥θ̂ − θ∗∥∥2 ≥ c

{
log(en)

}2/γ
,

for some universal constant c > 0.

Since the desired minimax rate for �3 is σ 2 log(en), Proposition 4.1 implies that the min-
imax rate under the Gaussian assumption cannot be achieved unless γ = 2. In other words,
unlike Theorem 2.1, a sub-Gaussian tail is necessary for the result of Theorem 4.1, the second
important difference between the two spaces �

↑
k and �k .

We end this section with a relatively technical discussion of the difference between models
�k and �

↑
k . Denoting the estimated change points of θ̂ (�

↑
k ) as {âj }. Consider the case where

θ∗
i = μ for a ≤ i ≤ b and a ≤ âj−1 < âj ≤ b. The error for âj−1 ≤ i ≤ âj is |X(âj−1 :̂aj ] −μ|2.

For simplicity of discussion, let us suppose âj − âj−1 is of order n/k. Without isotonic
constraint, few additional structures are exploitable between âj−1 and âj , and the optimal fit
is shown to suffer an extra logarithmic factor. With isotonic constraint, on the other hand, the
two change points âj−1 and âj have an additional constraint:

|X(âj−1 :̂aj ] − μ|2 ≤ |X(a :̂aj ] − μ|2 ∨ |X(âj−1:b] − μ|2.
Now for each term on the right-hand side above, one end point is random and the other is
fixed. Therefore, both |X(a :̂aj ] − μ|2 and |X(âj−1:b] − μ|2 are of order k log log(16n/k)/n,
implied by the asymptotics of partial sum processes (cf. Lemma 5.3).

4.3. Implications for changepoint detection. The lower bound result in the paper is
strongly related to the problem of determining the “region of detectability” (ROD) in the
changepoint detection literature. On one hand, when there are multiple changepoints, the
ROD has been established in Arias-Castro, Donoho and Huo (2005), where these authors
show that in various settings a signal strength of the order at least

√
log(en)/n is necessary

for consistent detection. A gap exists when there is only one changepoint.
The result of Theorem 2.2 helps close this gap. As a matter of fact, by a slight modification

of the proof of Theorem 2.2 for the case k = 2, it is straightforward to prove the following
proposition. The result shows that it is impossible to differentiate the one-step function from
a two-step function when the signal gap is of order smaller than

√
log log(16n)/n. On the

other hand, consistent detection of a signal when the gap is of a comparable order has already
been established (see, e.g., Chapter 1.5 in Csörgő and Horváth (1997)).
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PROPOSITION 4.2. Let Eθ stand for the expectation induced by N(θ,σ 2In). Define the
following parameter space:

�2(c) := {
θ ∈ �2 : (μ2 − μ1)

2 · (a1 ∧ (n − a1)
)
> cσ 2 log log(16n)

}
,

where μ1, μ2, a1 are defined in (10). We then have, for some small enough universal constant
c > 0,

inf
0≤φ≤1

{
sup
θ∈�1

Eθφ + sup
θ∈�2(c)

Eθ (1 − φ)
}

≥ c1,

where c1 is another universal constant in (0,1).

Proposition 4.2 complements Theorem 2.3 in Arias-Castro, Donoho and Huo (2005), and
both results together give a clear picture of the ROD when one or multiple changepoints are
present.

4.4. Minimax rates for unimodal piecewise constant functions. The class of unimodal
functions is widely studied in the literature (Bickel and Fan (1996), Birgé (1997), Shoung
and Zhang (2001), Köllmann, Bornkamp and Ickstadt (2014)). It is often studied side by side
with the isotonic functions (Boyarshinov and Magdon-Ismail (2006), Stout (2008)). In this
section, we show that the techniques developed in this paper also lead to the derivation of the
minimax rate of the class of unimodal piecewise constant functions. We define the parameter
space of interest as follow,

�∧
k = {

θ ∈Rn : there exist {aj }kj=0 and {μj }kj=1 such that

0 = a0 ≤ a1 ≤ · · · ≤ ak = n,μ1 ≤ · · · ≤ μ�−1 ≤ μ� ≥ μ�+1 ≥ · · · ≥ μk,

and θi = μj for all i ∈ (aj−1 : aj ]}.
This class has been studied by Chatterjee and Lafferty (2019), who provide an upper bound
of order σ 2k log(en). It is interesting to note the relation

�
↑
k ⊂ �∧

k ⊂ �k,

which indicates that the minimax rate of �k is between those of �
↑
k and �k . The following

theorem gives the exact minimax rate.

THEOREM 4.2. For any k ∈ [n], the minimax rate for the space �∧
k is given by

inf
θ̂

sup
θ∈�∧

k

E
∥∥θ̂ − θ∗∥∥2 �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ 2, k = 1,

σ 2 log log(16n), k = 2,

σ 2 log(en), 3 ≤ k ≤ log(en)

log log(16n)
,

σ 2k log log(16n/k), k >
log(en)

log log(16n)
,

where the expectation is taken over the distribution X ∼ N(θ∗, σ 2In).

Interestingly, we observe that the minimax rates have four phases, and can have either
a logarithmic behavior or an iterated logarithmic behavior, depending on the regime of k.
When k = 2, the minimax rate is driven by the isotonic structure. When 3 ≤ k ≤ log(en)

log log(16n)
,

the rate σ 2 log(en) results from the uncertainty of the mode of the function. Finally, the
σ 2k log log(16n/k) rate for a large k is again driven by the isotonic structure of a unimodal
function.



640 C. GAO, F. HAN AND C.-H. ZHANG

4.5. Minimax rates under �p loss with 1 ≤ p < 2. Section 2 gives the minimax rate of

the space �
↑
k with respect to the squared �2 loss. In particular, Theorems 2.1 and 2.2 show

that the minimax rate involves an interesting iterated logarithmic term. This is in contrast
with the original isotonic regression estimator θ̂ (�

↑
n), which is of an additional logarithmic

term in view of Proposition 2.1.
In this section we present an interesting phenomenon that a reversed argument applies to

an �p loss with 1 ≤ p < 2. For this, we first reveal that the difference between the minimax

risk of �
↑
k and the rate of θ̂ (�

↑
n) will vanish when we consider an �p loss with 1 ≤ p < 2.

PROPOSITION 4.3. Consider X = θ∗ + Z with Z1, . . . ,Zn independent, mean zero, and
satisfying E|Zi/σ |2 ≤ C1 for some universal constant C1 > 0. We then have, for any k ∈ [n]
and 1 ≤ p < 2,

sup
θ∗∈�

↑
k

E
∥∥θ̂(�↑

n

)− θ∗∥∥p
p ≤ Cσpn(k/n)p/2

for some universal constant C > 0. On the other hand, there exists some universal constant
c > 0 such that, for any 1 ≤ p < 2,

inf
θ̂

sup
θ∗∈�

↑
k

E
∥∥θ̂ − θ∗∥∥p

p ≥ cσpn(k/n)p/2,

where the infimum is taken over all measurable functions of X and the expectation is taken
under which X ∼ N(θ∗, σ 2In).

Second we show that, quite interestingly, the reduced isotonic regression estimator cannot
recover the above minimax risk under an �p loss with 1 ≤ p < 2, even if it is the maximum
likelihood estimator of the truth.

PROPOSITION 4.4. Consider X = θ∗ +Z with Z ∼ N(0, σ 2In). Then, for any 1 ≤ p ≤ 2
and 2 ≤ k ≤ n, we have

sup
θ∗∈�

↑
k

E
∥∥θ̂(�↑

k

)− θ∗∥∥p
p � σpn

{
k log log(16n/k)/n

}p/2
.

Unlike the estimator θ̂ (�
↑
n), for θ̂ (�

↑
k ), the iterated logarithmic term does not disappear

when an �p loss with 1 ≤ p < 2 is considered. Since Proposition 4.4 gives both upper and

lower bounds for the �p risk, the reduced isotonic regression estimator θ̂ (�
↑
k ) is not optimal

for the class �
↑
k when 1 ≤ p < 2, compared with the minimax rate given in Proposition 4.3.

This indicates that, compared to the classical isotonic regression estimator, the performance
of the reduced isotonic regression estimator hinges more on its definition, that is, minimiz-
ing the squared �2 risk. This interesting phenomenon is summarized in Table 1. The rates
displayed are for the normalized �p loss ‖θ̂ − θ∗‖p

p/(nσp).

5. Proofs. This section contains the proofs of the main results in Sections 2 and 3, with
the remaining proofs and auxiliary lemmas relegated to the Supplementary Material (Gao,
Han and Zhang (2020)). In the sequel, by convention the summation over an empty set is set
to be 0.
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TABLE 1
The minimax rates and the rates of convergence of θ̂ (�

↑
k ) and θ̂ (�

↑
n) for the class �

↑
k under the normalized �p

loss ‖θ̂ − θ∗‖p
p/(nσp)

minimax rate θ̂ (�
↑
k ) θ̂(�

↑
n)

1 ≤ p < 2
(

k
n

)p/2 (
k log log(16n/k)

n

)p/2 (
k
n

)p/2

p = 2 k log log(16n/k)
n

k log log(16n/k)
n

k log(en/k)
n

5.1. A critical lemma. Before stating the proofs of all theorems in the paper, we first
present a very important lemma that characterizes the solution θ̂ (�

↑
k ) of the reduced isotonic

regression (1). Below, we use the notation θ̂ (k) for θ̂ (�
↑
k ), and recall the set of knots of

θ̂ (k) = {âj } is denoted as Âk .

LEMMA 5.1. The following properties of estimator θ̂ (k) = θ̂ (�
↑
k ) hold.

1. For each j , θ̂
(k)
i = X(âj−1 :̂aj ] for all i ∈ (âj−1 : âj ].

2. For each j , we have X(s :̂aj ] <
θ̂

(k)
âj

+θ̂
(k)
âj+1

2 < X(âj :t] for all 0 ≤ s < âj < t ≤ n. As a

consequence, θ̂
(n)
âj

<
θ̂

(k)
âj

+θ̂
(k)
âj+1

2 < θ̂
(n)
âj+1.

3. The set of knots satisfies Âk ⊂ Ân.

These three results in Lemma 5.1 are all deterministic consequences of the optimization
problem (1). The first conclusion asserts that given the set of knots Âk , the value of θ̂

(k)
i is a

simple average of X in each block (âj−1 : âj ]. The second conclusion is due to the isotonic
constraint in (1), and is also the reason why we can apply a nonasymptotic law of iterated
logarithm bound for the risk (see the Proof of Theorem 2.1). Finally, the last conclusion
Âk ⊂ Ân leads to the efficient computational strategy we discuss in Section 4.1. The proof of
the lemma is given below.

PROOF OF LEMMA 5.1. For notational simplicity, we use θ̂ for θ̂ (k) = θ̂ (�
↑
k ) in the

proof. We first show that θ̂i = X(âj−1 :̂aj ] for all i ∈ (âj−1 : âj ]. By the definition of �
↑
k , the

optimization min
θ∈�

↑
k

‖X − θ‖2 can be equivalently written as

min
a0≤···≤ak

min
μ1≤···≤μk

k∑
j=1

aj∑
i=aj−1+1

(Xi − μj)
2

= min
a0≤···≤ak

{
k∑

j=1

aj∑
i=aj−1+1

(Xi − X(aj−1:aj ])2

+ min
μ1≤···≤μk

k∑
j=1

(aj − aj−1)(μj − X(aj−1:aj ])2

}
.

The optimization problem

min
μ1≤···≤μk

k∑
j=1

(aj − aj−1)(μj − X(aj−1:aj ])2
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is in the form of weighted isotonic regression. Therefore, its solution can be represented as

(12) μ̂j = min
v≥j

max
u≤j

X(au−1:av].

This fact can be derived using the same proof of the minimax formula of isotonic regression
(cf. Proposition 2.4.2 in Silvapulle and Sen (2011)). Now suppose (ã0, . . . , ãk) is a minimizer,
then the solution has the form θ̂i = minv≥j maxu≤j X(ãu−1 :̃av] for all i ∈ (ãj−1 : ãj ]. Note that
the values in the k intervals satisfy μ̂1 ≤ · · · ≤ μ̂k . We can combine any two adjacent interval
if μ̂j−1 = μ̂j . Then, by the formula (12), there exist {âj } such that θ̂i = X(âj−1 :̂aj ] for all
i ∈ (âj−1 : âj ].

Now we prove the second point. By symmetry, it is sufficient to prove (θ̂âj
+ θ̂âj+1)/2 <

X(âj :t]. Moreover, as θ̂i is nondecreasing in i, it suffices to consider âj < t < âj+1. There are
three possible cases.

Case 1. X(t :̂aj+1] �= θ̂âj+1 and X(t :̂aj+1] ≥ θ̂âj
. By the optimality of θ̂ (�

↑
k ), assigning θ̂âj

to
θ̂i for all i ∈ (âj : t] does not provide a better fit,

t∑
i=âj+1

(Xi − θ̂âj+1)
2 +

âj+1∑
i=t+1

(Xi − θ̂âj+1)
2

≤
t∑

i=âj+1

(Xi − θ̂âj
)2 +

âj+1∑
i=t+1

(Xi − X(t :̂aj+1])2.

It follows that

(t − âj )(X(âj :t] − θ̂âj+1)
2 + (âj+1 − t)(X(t :̂aj+1] − θ̂âj+1)

2

≤ (t − âj )(X(âj :t] − θ̂âj
)2.

This leads to |X(âj :t] − θ̂âj+1 | < |X(âj :t] − θ̂âj
|, which further implies X(âj :t] > (θ̂âj

+
θ̂âj+1)/2.

Case 2. X(t :̂aj+1] = θ̂âj+1 . Since θ̂âj+1 = X(âj :̂aj+1] is a weighted average of X(t :̂aj+1] and
X(âj :t], we have X(âj :t] = θ̂âj+1 > θ̂âj

. Thus, we still have X(âj :t] > (θ̂âj
+ θ̂âj+1)/2.

Case 3. X(t :̂aj+1] < θ̂âj
. By the definition of {âj }, we have θ̂âj+1 > θ̂âj

. Moreover, since
θ̂âj+1 = X(âj :̂aj+1] is a weighted average of X(t :̂aj+1] and X(âj :t], we must have X(âj :t] > θ̂âj+1

and X(âj :t] > θ̂âj
, which also leads to X(âj :t] > (θ̂âj

+ θ̂âj+1)/2.
Finally, we have

θ̂
(n)
âj+1 = min

b≥âj+1
max

a≤âj+1
X[a:b] ≥ min

b>âj

X(âj :b] > (θ̂âj
+ θ̂âj+1)/2.

By symmetry, we also have θ̂
(n)
âj

< (θ̂âj
+ θ̂âj+1)/2, and therefore θ̂

(n)
âj

< θ̂
(n)
âj+1, meaning that

âj is also a change point for θ̂ (n), which immediately implies the last conclusion Âk ⊂ Ân.
�

5.2. Proofs of upper bounds. In this section, we state the proofs of Theorems 2.1 and
3.1.

PROOF OF THEOREM 2.1. We first introduce notation that is needed in the proof. We
shorthand θ̂ (�

↑
k ) by θ̂ . The set of knots of θ̂ is denoted by Âk = {âh}. Define the oracle

(13) θ(k) = argmin
θ∈�

↑
k

∥∥θ − θ∗∥∥2
.
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The set of knots of θ(k) is denoted by Ak = {aj } where we allow overlaps within a1, . . . , ak .
For the error vector Z = X − θ∗ and two integers 1 ≤ a ≤ b ≤ n, define random variables

ξ+(a, b, �) = 2� max
{|Z(a:t]|2 : a + 2�−1 ≤ t ≤ b ∧ (

a + 2� − 1
)}

,(14)

δ+(a, b, �) = max{h:a<âh≤b}1
{
a + 2�−1 ≤ âh ≤ b ∧ (

a + 2� − 1
)}

,(15)

ξ−(a, b, �) = 2� max
{|Z(t :b]|2 : a ∨ (

b + 2 − 2�)≤ t ≤ b + 1 − 2�−1},(16)

δ−(a, b, �) = max{h:a<âh≤b}1
{
a ∨ (

b + 2 − 2�)≤ âh ≤ b + 1 − 2�−1}.(17)

We adopt the convention that maximum over an empty set is zero. The random variables
defined above satisfy the following lemma, which will be proved in Section A3 in the Sup-
plementary Material (Gao, Han and Zhang (2020)).

LEMMA 5.2. There exists a universal constant C > 0, such that for any integer f ≥ 0,
k∑

j=1

∑
{�≥1:aj−1+2�−1≤aj }

Eδ+(aj−1, aj , � + f )ξ+(aj−1, aj , �)

≤ Cσ 2k log log(16n/k),

k∑
j=1

∑
{�≥1:aj−1≤aj−2�−1}

Eδ−(aj−1, aj , � + f )ξ−(aj−1, aj , �)

≤ Cσ 2k log log(16n/k).

We also need the following lemma to facilitate the proof. Its proof will also be given in
Section A3 in the Supplementary Material (Gao, Han and Zhang (2020)).

LEMMA 5.3. There exists a universal constant C > 0, such that
k∑

j=1

E max
aj−1<a≤aj

(a − aj−1)Z
2
(aj−1:a] ≤ Cσ 2k log log(16n/k),

k∑
j=1

E max
aj−1≤a≤aj

(aj − a)Z
2
(a:aj ] ≤ Cσ 2k log log(16n/k).

The proof of Theorem 2.1 starts with the basic inequality ‖X− θ̂‖2 ≤ ‖X−θ(k)‖2, a direct
consequence of the definition of θ̂ . Since

‖X − θ̂‖2 = ∥∥X − θ∗∥∥2 + ∥∥θ∗ − θ̂
∥∥2 + 2

〈
X − θ∗, θ∗ − θ̂

〉
,(18) ∥∥X − θ(k)

∥∥2 = ∥∥X − θ∗∥∥2 + ∥∥θ∗ − θ(k)
∥∥2 + 2

〈
X − θ∗, θ∗ − θ(k)〉,(19)

we have

(20)
∥∥θ̂ − θ∗∥∥2 ≤ ∥∥θ(k) − θ∗∥∥2 + 2

〈
X − θ∗, θ̂ − θ(k)〉.

For each j , define hj = max{h : âh ≤ aj }. It is easy to see that âhj
≤ aj−1 if and only if θ̂ is

a constant in the interval (aj−1 : aj ]. Then, the inner product term above is

2
〈
X − θ∗, θ̂ − θ(k)〉
= 2

k∑
j=1

1{âhj
≤ aj−1}

∑
i∈(aj−1:aj ]

(
Xi − θ∗

i

)(
θ̂i − θ

(k)
i

)
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+ 2
k∑

j=1

1{âhj
> aj−1}

∑
i∈(aj−1:aj ]

(
Xi − θ∗

i

)(
θ̂i − θ

(k)
i

)
= 2

∑
{j∈[k]:̂ahj

≤aj−1}
(aj − aj−1)Z(aj−1:aj ]

(
θ̂aj

− θ(k)
aj

)
+ 2

∑
{j∈[k]:̂ahj

>aj−1}
(aj − âhj

)Z(âhj
:aj ]

(
θ̂aj

− θ(k)
aj

)
(21)

+ 2
∑

{j∈[k]:̂ahj
>aj−1}

(âhj−1+1 − aj−1)

× Z(aj−1 :̂ahj−1+1]
(
θ̂âhj−1+1 − θ

(k)
âhj−1+1

)
+ 2

∑
{j∈[k]:̂ahj

>aj−1}

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

× (âh − âh−1)Z(âh−1 :̂ah]
(
θ̂âh

− θ
(k)
âh

)
.

The summation over an empty set is understood as zero. The inner product 2〈X−θ∗, θ̂ −θ(k)〉
is bounded by four terms. For the first three terms, we can use Cauchy–Schwarz and, for any
η ∈ (0,1), get the bound

3η
∥∥θ̂ − θ(k)

∥∥2 + η−1
k∑

j=1

(aj − aj−1)Z
2
(aj−1:aj ]

+ η−1
k∑

j=1

(aj − âhj
)Z

2
(âhj

:aj ](22)

+ η−1
k∑

j=1

(âhj−1+1 − aj−1)Z
2
(aj−1 :̂ahj−1+1].

Bounding the fourth term (21) is involved. We need some extra notation. For each h such
that (âh−1 : âh] ⊂ (aj−1 : aj ], define

a′
h−1 =

⌊
aj−1 + âh

2

⌋
, b′

h−1 = âh−1 ∧ a′
h−1,

a′′
h =

⌈
âh−1 + aj

2

⌉
, b′′

h = âh ∨ a′′
h.

Given any integers 1 ≤ a ≤ b ≤ n, define the random variables

Z
′
(a:b] = max

b′∈(a:b]
b′ − a

b − a
|Z(a:b′]|,

Z
′′
(a:b] = max

a′∈[a:b)

b − a′

b − a
|Z(a′:b]|.

By Lemma 5.1, we have θ̂âh
≤ X(âh:b′′

h]. Since X(âh−1:b′′
h] is a weighted average of θ̂âh

=
X(âh−1 :̂ah] and X(âh:b′′

h], we get θ̂âh
≤ X(âh−1:b′′

h]. With this bound, we have

θ̂âh
− θ

(k)
âh

≤ X(âh−1:b′′
h] − θ

∗
(âh−1:b′′

h] + θ
∗
(âh−1:b′′

h] − θ
(k)
âh
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= Z(âh−1:b′′
h] + θ

∗
(âh−1:b′′

h] − θ
(k)
âh

= aj − âh−1

b′′
h − âh−1

Z(âh−1:aj ] − aj − b′′
h

b′′
h − âh−1

Z(b′′
h:aj ] + θ

∗
(âh−1:b′′

h] − θ
(k)
âh

≤ 4Z
′′
(âh−1:aj ] + ∣∣θ∗

(âh−1:b′′
h] − θ

(k)
âh

∣∣.
A symmetric argument also gives

θ̂âh
− θ

(k)
âh

≥ −4Z
′
(aj−1 :̂ah] − ∣∣θ∗

(b′
h−1 :̂ah] − θ

(k)
âh

∣∣.
Therefore, we have the inequality∣∣θ̂âh

− θ
(k)
âh

∣∣≤ 4
(
Z

′
(aj−1 :̂ah] ∨ Z

′′
(âh−1:aj ]

)
+ ∣∣θ∗

(âh−1:b′′
h] − θ

(k)
âh

∣∣∨ ∣∣θ∗
(b′

h−1 :̂ah] − θ
(k)
âh

∣∣.(23)

Since (21) is a sum of k terms, we can bound each of the term separately.
For each j ∈ [k], recalling Z(âh−1 :̂ah] = θ̂âh

− θ
∗
(âh−1 :̂ah],∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}
(âh − âh−1)Z(âh−1 :̂ah]

(
θ̂âh

− θ
(k)
âh

)
= ∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}
(âh − âh−1)

(
θ̂âh

− θ
(k)
âh

)2
+ ∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}
(âh − âh−1)

(
θ

(k)
âh

− θ
∗
(âh−1 :̂ah]

)(
θ̂âh

− θ
(k)
âh

)
≤ 32

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′

(aj−1 :̂ah]
∣∣2

+ 32
∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}
(âh − âh−1)

∣∣Z′′
(âh−1:aj ]

∣∣2
+ 2

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣θ∗

(âh−1:b′′
h] − θ

(k)
âh

∣∣2(24)

+ 2
∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}
(âh − âh−1)

∣∣θ∗
(b′

h−1 :̂ah] − θ
(k)
âh

∣∣2(25)

+ η

2

∥∥θ̂ − θ(k)
∥∥2
(aj−1:aj ] + 1

2η

∥∥θ(k) − θ∗∥∥2
(aj−1:aj ].

Among the terms in the above bound, we need to further analyze (24) and (25). We have∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣θ∗

(âh−1:b′′
h] − θ

(k)
âh

∣∣2
≤ ∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}
(âh − âh−1)

∣∣θ∗
(âh−1 :̂ah] − θ

(k)
âh

∣∣2
+ ∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}
(âh − âh−1)

∣∣θ∗
(âh−1:a′′

h] − θ
(k)
âh

∣∣2
≤ ∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

∥∥θ(k) − θ∗∥∥2
(âh−1 :̂ah]
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+ ∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

âh − âh−1

a′′
h − âh−1

∑
i∈(âh−1:a′′

h]

(
θ∗
i − θ

(k)
i

)2
≤ ∥∥θ(k) − θ∗∥∥2

(aj−1:aj ]

+ ∑
i∈(aj−1:aj ]

(
θ∗
i − θ

(k)
i

)2 ∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

âh − âh−1

a′′
h − âh−1

1
{
âh−1 < i ≤ a′′

h

}
,

where ∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

âh − âh−1

a′′
h − âh−1

1
{
âh−1 < i ≤ a′′

h

}

≤ 2
∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

âh − âh−1

aj − âh−1
1
{
âh−1 < i ≤ a′′

h

}

≤ 2
∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

âh − âh−1

aj − i + 1
1
{
âh−1 < i ≤ a′′

h

}
(26)

≤ 2
∑

{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

âh − âh−1

aj − i + 1
1
{
aj − âh−1 ≤ 2(aj − i + 1)

}

≤ 2 max
{

aj − ât

aj − i + 1
: aj − ât ≤ 2(aj − i + 1)

}
≤ 4.

The inequality (26) above is due to the fact that i ≤ a′′
h ≤ âh−1+aj+1

2 implies

2(aj − i + 1) ≥ 2aj + 2 − (âh−1 + aj + 1) = aj − âh−1 + 1.

Therefore, we obtain∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣θ∗

(âh−1:b′′
h] − θ

(k)
âh

∣∣2 ≤ 5
∥∥θ(k) − θ∗∥∥2

(aj−1:aj ],

which leads to a bound for (24). A symmetric argument gives∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣θ∗

(b′
h−1 :̂ah] − θ

(k)
âh

∣∣2 ≤ 5
∥∥θ(k) − θ∗∥∥2

(aj−1:aj ],

which leads to a bound for (25). Summing over j ∈ [k], a bound for (21) is given by

64
k∑

j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′

(aj−1 :̂ah]
∣∣2

+ 64
k∑

j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′′

(âh−1:aj ]
∣∣2

+ (
40 + η−1)∥∥θ(k) − θ∗∥∥2 + η

∥∥θ̂ − θ(k)
∥∥2

.

We can plug the above bound and (22) into (20), and we get∥∥θ̂ − θ∗∥∥2 ≤ (
41 + η−1)∥∥θ(k) − θ∗∥∥2 + 4η

∥∥θ̂ − θ(k)
∥∥2

+ η−1
k∑

j=1

(aj − aj−1)Z
2
(aj−1:aj ] + η−1

k∑
j=1

(aj − âhj
)Z

2
(âhj

:aj ]
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+ η−1
k∑

j=1

(âhj−1+1 − aj−1)Z
2
(aj−1 :̂ahj−1+1]

+ 64
k∑

j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′

(aj−1 :̂ah]
∣∣2

+ 64
k∑

j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′′

(âh−1:aj ]
∣∣2.

Use the inequality ‖θ̂ − θ(k)‖2 ≤ 2‖θ̂ − θ∗‖2 + 2‖θ(k) − θ∗‖2, set η = 1/16, and some rear-
rangement of the above bound gives

∥∥θ̂ − θ∗∥∥2 ≤ C
∥∥θ(k) − θ∗∥∥2 + C

k∑
j=1

(aj − aj−1)Z
2
(aj−1:aj ]

+ C

k∑
j=1

(âhj−1+1 − aj−1)Z
2
(aj−1 :̂ahj−1+1] + C

k∑
j=1

(aj − âhj
)Z

2
(âhj

:aj ]

+ C

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′

(aj−1 :̂ah]
∣∣2

+ C

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′′

(âh−1:aj ]
∣∣2,

where C > 0 is some universal constant. Note that

E

k∑
j=1

(aj − aj−1)Z
2
(aj−1:aj ] = kσ 2 � σ 2k log log(16n/k).

By Lemma 5.2, we have

E

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′

(aj−1 :̂ah]
∣∣2

= E

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)

× max
b∈(aj−1 :̂ah]

(b − aj−1)
2

(âh − aj−1)2 |Z(aj−1:b]|2

≤ E

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

∑
{�≥1:aj−1+2�−1≤aj }

1
{
aj−1 + 2�−1

≤ âh < aj−1 + 2�}
× (âh − âh−1) max

b∈(aj−1 :̂ah]
(b − aj−1)

2

(âh − aj−1)2 |Z(aj−1:b]|2

≤ E

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

∑
{�≥1:aj−1+2�−1≤aj }

1
{
aj−1 + 2�−1
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≤ âh < aj−1 + 2�}
× (âh − âh−1) max

b∈(aj−1:aj∧(aj−1+2�−1)]
(b − aj−1)

2

(2�−1)2 |Z(aj−1:b]|2

≤ E

k∑
j=1

∑
{�≥1:aj−1+2�−1≤aj }

δ+(aj−1, aj , �)2
�

× max
b∈(aj−1:aj∧(aj−1+2�−1)]

(b − aj−1)
2

(2�−1)2 |Z(aj−1:b]|2

≤ 4E
k∑

j=1

∑
{�≥1:aj−1+2�−1≤aj }

δ+(aj−1, aj , �)2
−�

× max
b∈(aj−1:aj∧(aj−1+2�−1)]

(b − aj−1)
2|Z(aj−1:b]|2

≤ 4E
k∑

j=1

∑
{�≥1:aj−1+2�−1≤aj }

δ+(aj−1, aj , �)2
−�

�∑
f =1

2f ξ+(aj−1, aj , f )

≤ 4E
k∑

j=1

∑
f ≥0

2−f
∑

{�≥1:aj−1+2�−1≤aj }
δ+(aj−1, aj , � + f )ξ+(aj−1, aj , �),

which leads to the conclusion

E

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′

(aj−1 :̂ah]
∣∣2

= 4
∑
f ≥0

2−f
k∑

j=1

∑
{�≥1:aj−1+2�−1≤aj }

Eδ+(aj−1, aj , � + f )ξ+(aj−1, aj , �)(27)

� σ 2k log log(16n/k).

Similarly, we also have

E

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′′

(âh−1:aj ]
∣∣2 � σ 2k log log(16n/k).

Finally, by Lemma 5.3, we have

E

k∑
j=1

(âhj−1+1 − aj−1)Z
2
(aj−1 :̂ahj−1+1] +E

k∑
j=1

(aj − âhj
)Z

2
(âhj

:aj ]

� σ 2k log log(16n/k).

Combining the above bounds, we obtain the desired oracle inequality as long as k ≥ 2.
To complete the proof, we also give the argument for k = 1. In this case θ̂i = X and

θ
(1)
i = θ

∗
for all i ∈ [n]. Therefore, E‖θ̂ −θ(1)‖2 = σ 2, which leads to E‖θ̂ −θ∗‖2 ≤ 2‖θ(1) −

θ∗‖2 + 2σ 2. �
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PROOF OF THEOREM 3.1. We use the same notation in the proof of Theorem 2.1, except
that θ̂ is now for θ̂ (�

↑
k̂
) and Âk̂ = {âh}. By the definition of θ̂ , we have

‖X − θ̂‖2 + penτ (k̂) ≤ ∥∥X − θ̂
(
�

↑
k

)∥∥2 + penτ (k) ≤ ∥∥X − θ(k)
∥∥2 + penτ (k).

By (18) and (19), we obtain the following inequality:

(28)
∥∥θ̂ − θ∗∥∥2 + penτ (k̂) ≤ ∥∥θ(k) − θ∗∥∥2 + 2

〈
X − θ∗, θ̂ − θ(k)〉+ penτ (k).

After bounding 2〈X − θ∗, θ̂ − θ(k)〉 by the same argument in the proof of Theorem 2.1, we
obtain ∥∥θ̂ − θ∗∥∥2 + 2 penτ (k̂) − 2 penτ (k)

≤ C
∥∥θ(k) − θ∗∥∥2 + C

k∑
j=1

(aj − aj−1)Z
2
(aj−1:aj ](29)

+ C

k∑
j=1

(âhj−1+1 − aj−1)Z
2
(aj−1 :̂ahj−1+1] + C

k∑
j=1

(aj − âhj
)Z

2
(âhj

:aj ](30)

+ C

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′

(aj−1 :̂ah]
∣∣2(31)

+ C

k∑
j=1

∑
{h:(âh−1 :̂ah]⊂(aj−1:aj ]}

(âh − âh−1)
∣∣Z′′

(âh−1:aj ]
∣∣2,(32)

where C > 0 is some universal constant. Take expectation on both sides of the inequality,
and then the right-hand side can all be bounded similarly as in the proof of Theorem 2.1
except for (31) and (32). In fact, (31) and (32) can be bounded by the same argument that
leads to (27). The only difference is that now the {âh} in the definitions of δ+(aj−1, aj , �)

and δ−(aj−1, aj , �) are from Âk̂ instead of Âk . Therefore, we need the following lemma,
whose proof will be given in Section A3 in the Supplementary Material (Gao, Han and Zhang
(2020)).

LEMMA 5.4. There exists a universal constant C > 0, such that

max

{∑
f ≥0

2−f
k∑

j=1

∑
{�≥1:aj−1+2�−1≤aj }

Eδ+(aj−1, aj , � + f )ξ+(aj−1, aj , �),

∑
f ≥0

2−f
k∑

j=1

∑
{�≥1:aj−1≤aj−2�−1}

Eδ−(aj−1, aj , � + f )ξ−(aj−1, aj , �)

}

≤ C

{
σ 2k log log

(
16n

k

)
+ σ 2Ek̂ log log

(
16n

k̂

)}
,

where the {âh} in the definitions of δ+(aj−1, aj , �) and δ−(aj−1, aj , �) are from Âk̂ instead
of Âk .

Then, for some (possibly different) universal constant C > 0, we have

E
∥∥θ̂ − θ∗∥∥2 + 2Epenτ (k̂)

≤ C
∥∥θ(k) − θ∗∥∥2 + 2 penτ (k)

+ C

{
σ 2k log log

(
16n

k

)
+ σ 2Ek̂ log log

(
16n

k̂

)}
.
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Choosing τ = C1σ
2 with a sufficiently large constant C1 > 0, we get

E
∥∥θ̂ − θ∗∥∥2 �

∥∥θ(k) − θ∗∥∥2 + σ 2k log log
(

16n

k

)
,

which is the desired results for k ≥ 2.
To complete the proof, we also need to give the analysis for k = 1. It is easy to see

that in this case the bounds in Lemma 5.3 and Lemma 5.4 can be improved to Cσ 2 and
Cσ 2 + Cσ 2Ek̂ log log(16n

k̂
)1{k̂ ≥ 2}, respectively. Therefore, the choice τ = C1σ

2 with a
large constant C1 > 0 leads to

(33) E
∥∥θ̂ − θ∗∥∥2 �

∥∥θ(1) − θ∗∥∥2 + σ 2.

The proof is thus complete. �

5.3. Proofs of lower bounds. This section is devoted to proving the lower bounds in
Section 2.

PROOF OF PROPOSITION 2.1. Without loss of generality, consider the case when n/k

is an integer. Then, [n] = ⋃k
j=1 Cj , where Cj is the j th consecutive interval with cardinality

n/k. Then, we take θ∗ ∈ �
↑
k with θ∗

i = μj if i ∈ Cj . Use the notation Hn = {θ ∈ Rn : θ1 ≤
· · · ≤ θn}. Then, as long as μ1, . . . ,μk are sufficiently separated,

min
θ∈Hn

n∑
i=1

(Xi − θi)
2 =

k∑
j=1

min
θ∈Hn/k

∑
i∈Cj

(Xi − θi)
2,

with high probability. This high-probability event is denoted as E. We take μj = κj for some
κ > 0. Then, as κ → ∞, P(Ec) converges to 0. In other words, P(Ec) is arbitrarily small for
sufficiently large κ . We have

E
∥∥θ̂ − θ∗∥∥2 ≥

k∑
j=1

E
∥∥θ̂Cj

− θ∗
Cj

∥∥2 −E
∥∥θ̂ − θ∗∥∥21Ec .

Since E‖θ̂ − θ∗‖21Ec ≤
√
E‖θ̂ − θ∗‖4

√
P(Ec) is arbitrarily small for sufficiently large κ , the

term E‖θ̂ −θ∗‖21Ec can be neglected. It is sufficient to give a lower bound for
∑k

j=1 E‖θ̂Cj
−

θ∗
Cj

‖2. Note that

k∑
j=1

E
∥∥θ̂Cj

− θ∗
Cj

∥∥2 =
k∑

j=1

E‖�Hn/k
ZCj

‖2,

where �Hn/k
is the projection operator onto the space Hn/k . By Amelunxen et al. (2014),

‖�Hn/k
ZCj

‖2 ≥ C log(en/k), leading to the desired result. �

We continue to state the proofs of other results. The main tool we will use is Fano’s lemma.
For any probability measures P, Q, define the Kullback–Leibler divergence to be

D
(
P‖Q)=

∫ (
log

dP

dQ

)
dP.

The Fano’s lemma is stated as follows. See Ibragimov and Has’ Minskii (2013) and Tsybakov
(2009) for references.
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PROPOSITION 5.1. Let (�,ρ) be a metric space and {Pθ : θ ∈ �} be a collection of
probability measures. For any totally bounded T ⊂ �, define the Kullback–Leibler diameter
by

dKL(T ) = sup
θ,θ ′∈T

D
(
Pθ‖Pθ ′

)
.

Then

(34) inf
θ̂

sup
θ∈�

Pθ

[
ρ2{θ̂ (X), θ

}≥ ε2

4

]
≥ 1 − dKL(T ) + log 2

logM(ε, T ,ρ)
,

for any ε > 0, where M(ε, T ,ρ) stands for the packing number of T with radius ε with
respect to the metric ρ.

PROOF OF THEOREM 2.2. We only need to deal with the case when n > C for a suffi-
ciently large constant, since when n ≤ C, the rate is a constant and the conclusion automati-
cally holds.

When k = 1, the standard lower bound argument for the one-dimensional normal mean
problem (Lehmann and Casella (1998)) applies here, and we get the desired rate.

The case k = 2 is studied in Section 2. Combining (34), (4), and (5) gives

inf
θ̂

sup
θ∈�2

P

(
‖θ̂ − θ‖2 ≥ ασ 2

80
log log2 n

)
≥ 1 − 6α log log2 n + log 2

log log2 n
≥ c

with α = 1/60 and a sufficiently small value c > 0. Thus, with an application of Markov’s
inequality, we obtain the desired minimax lower bound in expectation.

Now we derive the lower bound for k ≥ 3.
We first consider the case n > C, k > C and n/k > C for some sufficiently large constant

C > 0. Define the space �
↑
2 (ñ, a, b) ⊂ Rñ to be the class of vectors of length ñ that have

two nondecreasing pieces taking values between a and b respectively. Then, construct the
following space:

T̃ =
	 k

2 
×
�=1

T̃�,

where for 1 ≤ � ≤ 	 k
2
 − 1, we define

T̃� = �
↑
2

{⌊
2n

k

⌋
, (2� − 2)

√
2ασ 2 log log2 n, (2� − 1)

√
2ασ 2 log log2 n

}
and

T̃	 k
2 
 = {

k

√
2ασ 2 log log2 n

}n−� 2n
k

�(	 k
2 
−1)

.

Observe that T̃ ⊂ �
↑
k . Thus,

inf
θ̂

sup
θ∈�

↑
k

E‖θ̂ − θ‖2 ≥ inf
θ̂

sup
θ∈T̃

E‖θ̂ − θ‖2

= inf
θ̂=(η̂1,...,η̂	k/2
)

	 k
2 
∑

�=1

sup
η�∈T̃�

E‖η̂� − η�‖2(35)

≥
	 k

2 
−1∑
�=1

inf
η̂�

sup
η�∈T̃�

E‖η̂� − η�‖2
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≥ c1

(⌈
k

2

⌉
− 1

)
log log

⌊
2n

k

⌋
(36)

≥ c2k log log
(

16n

k

)
,

where the equality (35) is by taking advantage of the separable structure and a sufficiency
argument, and the inequality (36) is by the same argument that we use to derive the lower
bound for the case k = 2.

Second, we consider the rest of settings. When n ≤ C, the rate is a constant and the result
automatically holds. When 3 ≤ k ≤ C, the rate log log 16n is immediately a lower bound by
the fact that �

↑
2 ⊂ �

↑
k . When n/k ≤ C, we have �

↑
n/C ⊂ �

↑
k . Therefore,

inf
θ̂

sup
θ∈�

↑
k

E‖θ̂ − θ‖2 ≥ inf
θ̂

sup
θ∈�

↑
n/C

E‖θ̂ − θ‖2 ≥ c3n.

Hence, the proof is complete. �
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SUPPLEMENTARY MATERIAL

Supplement to “On estimation of isotonic piecewise constant signals” (DOI: 10.1214/
18-AOS1792SUPP; .pdf). This supplement contains proofs of remaining results in Section 4,
as well as some auxiliary lemmas.
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