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RANDOMIZED INCOMPLETE U -STATISTICS IN HIGH
DIMENSIONS2

BY XIAOHUI CHEN1 AND KENGO KATO

University of Illinois at Urbana-Champaign and Cornell University

This paper studies inference for the mean vector of a high-dimensional
U -statistic. In the era of big data, the dimension d of the U -statistic and the
sample size n of the observations tend to be both large, and the computa-
tion of the U -statistic is prohibitively demanding. Data-dependent inferen-
tial procedures such as the empirical bootstrap for U -statistics is even more
computationally expensive. To overcome such a computational bottleneck,
incomplete U -statistics obtained by sampling fewer terms of the U -statistic
are attractive alternatives. In this paper, we introduce randomized incomplete
U -statistics with sparse weights whose computational cost can be made inde-
pendent of the order of the U -statistic. We derive nonasymptotic Gaussian ap-
proximation error bounds for the randomized incomplete U -statistics in high
dimensions, namely in cases where the dimension d is possibly much larger
than the sample size n, for both nondegenerate and degenerate kernels. In ad-
dition, we propose generic bootstrap methods for the incomplete U -statistics
that are computationally much less demanding than existing bootstrap meth-
ods, and establish finite sample validity of the proposed bootstrap methods.
Our methods are illustrated on the application to nonparametric testing for the
pairwise independence of a high-dimensional random vector under weaker
assumptions than those appearing in the literature.

1. Introduction. Let X1, . . . ,Xn be independent and identically distributed
(i.i.d.) random variables taking values in a measurable space (S,S) with com-
mon distribution P . Let r ≥ 2 and d ≥ 1 be given positive integers, and let
h = (h1, . . . , hd)T : Sr → R

d be a fixed and jointly measurable function that is
symmetric in its arguments, that is, h(x1, . . . , xr) = h(xi1, . . . , xir ) for every per-
mutation i1, . . . , ir of 1, . . . , r . Suppose that E[|hj (X1, . . . ,Xr)|] < ∞ for all
j = 1, . . . , d , and consider inference on the mean vector θ = (θ1, . . . , θd)T =
E[h(X1, . . . ,Xr)]. To this end, a commonly used statistic is the U -statistic with
kernel h, that is, the sample average of h(Xi1, . . . ,Xir ) over all distinct r-tuples
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(i1, . . . , ir ) from {1, . . . , n}

(1.1) Un := U(r)
n (h) := 1

|In,r |
∑

(i1,...,ir )∈In,r

h(Xi1, . . . ,Xir ),

where In,r = {(i1, . . . , ir ) : 1 ≤ i1 < · · · < ir ≤ n} and |In,r | = n!/{r!(n − r)!} de-
notes the cardinality of In,r .

U -statistics are an important and general class of statistics, and applied in a
wide variety of statistical problems; we refer to [27] as an excellent monograph
on U -statistics. For univariate U -statistics (d = 1), the asymptotic distributions
are derived in the seminal paper [20] for the nondegenerate case and in [34] for
the degenerate case. There is also a large literature on bootstrap methods for uni-
variate U -statistics [1, 4, 6, 14, 23, 24, 39]. A more recent interest lies in the
high-dimensional case where d is much larger than n. Chen [8] develops Gaussian
and bootstrap approximations for nondegenerate U -statistics of order two in high
dimensions, which extends the work [11, 12] from sample averages to U -statistics;
see also [17].

However, a major obstacle of inference using the complete U -statistic (1.1) is its
computational intractability. Namely, the computation of the complete U -statistic
(1.1) requires O(nrd) operations, and its computational cost can be prohibitively
demanding even when n and d are moderately large, especially when the order
of the U -statistic r ≥ 3. For instance, the computation of a complete U -statistic
with order 3 and dimension d = 5000 when the sample size is n = 1000 requires(n
3

)×d ≈ 0.8 ·1012 (0.8 trillion) operations. In addition, the naive application of the
empirical bootstrap for the U -statistic (1.1) requires even more operations, namely,
O(Bnrd) operations, where B is the number of bootstrap repetitions.

This motivates us to study inference using randomized incomplete U -statistics
with sparse weights instead of complete U -statistics. Specifically, we consider the
Bernoulli sampling and sampling with replacement to construct random weights
in Section 2. For a prespecified computational budget parameter N ≤ |In,r |, these
sampling schemes randomly choose (on average) N indices from In,r , and the
resulting incomplete U -statistics U ′

n,N are defined as the sample averages of
h(Xi1, . . . ,Xir ) taken over the subset of chosen indices (i1, . . . , ir ). Hence the
computational cost of the incomplete U -statistics is reduced to O(Nd), which can
be much smaller than nrd as long as N 	 nr and can be made independent of the
order of the U -statistic provided that N does not depend on r .

The goal of this paper is to develop computationally scalable and statistically
correct inferential methods for the incomplete U -statistics with high-dimensional
kernels and massive data, where d is possibly much larger than n but n can be
also large. Specifically, we study distributional approximations to the randomized
incomplete U -statistics in high dimensions. Our first main contribution is to derive
Gaussian approximation error bounds for the incomplete U -statistics on the hyper-
rectangles in R

d for both nondegenerate and degenerate kernels. In Section 3, we
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show that the derived Gaussian approximation results display an interesting com-
putational and statistical trade-off for nondegenerate kernels (see Remark 3.1), and
reveal a fundamental difference between complete and randomized incomplete U -
statistics for degenerate kernels (see Remark 3.2). The mathematical insight of
introducing the random weights is to create the (conditional) independence for
the terms in the U -statistic sum in order to obtain a Gaussian limit. The Gaus-
sian approximation results are, however, often not directly applicable since the
covariance matrices of the approximating Gaussian distributions depend on the
underlying distribution P that is unknown in practice. Our second contribution
is to propose fully data-dependent bootstrap methods for incomplete U -statistics
that are computationally (much) less demanding than existing bootstrap methods
for U -statistics [1, 8, 9]. Specifically, we introduce generic bootstraps for incom-
plete U -statistics in Section 4.1. Our generic bootstrap constructions are flexible
enough to cover both nondegenerate and degenerate kernels, and meanwhile they
take the computational concern into account for estimating the associated (and un-
observed) Hájek projection in the nondegenerate case. In particular, we propose
two concrete estimation procedures for the Hájek projection: one is a determin-
istic construction based on the divide-and-conquer algorithm (Section 4.2), and
another is a random construction based on a second randomization independent
of everything else (Section 4.3). For both constructions, the overall computational
complexity of the bootstrap methods can be made independent of the U -statistic
order r .

As a leading example to illustrate the usefulness of the inferential methods de-
veloped in the present paper, we consider testing for the pairwise independence of
a high-dimensional random vector X = (X(1), . . . ,X(p))T , that is, testing for the
hypothesis that

(1.2) H0 : X(1), . . . ,X(p) are pairwise independent.

Let X1, . . . ,Xn be i.i.d. copies of X. Several dependence measures are proposed in
the literature, including: Kendall’s τ , Spearman’s ρ, Hoeffding’s D [21], Bergsma
and Dassios’ t∗ [2] and the distance covariance [36, 40], all of which can be es-
timated by U -statistics. So various nonparametric tests for H0 can be constructed
based on those U -statistics. To compute the test statistics, we have to compute
U -statistics with dimension d = p(p − 1)/2, which corresponds to the number of
upper triangular entries in the p × p dependence matrix and can be quite large. In
addition, the orders of the U -statistics are at least 3 (except for Kendall’s τ which
is of order 2). So the computation of the test statistics is prohibitively demand-
ing, not to mention the empirical bootstrap or subsampling for those U -statistics.
It should be noted that there are efficient algorithms to reduce the computational
costs for computing some of those U -statistics (cf. [28], Section 6.1), but such
computational simplifications are case-by-case and not generically applicable, and
more importantly they do not yield computationally tractable methods to approx-
imate or estimate the sampling distributions of the U -statistics. The Gaussian and
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bootstrap approximation theorems developed in the present paper can be applica-
ble to calibrating critical values for test statistics based upon incomplete versions
of those U -statistics. Detailed comparisons and discussions of nonparametric pair-
wise independence test statistics are presented in Section 5. In addition to pairwise
independence testing, values of the dependence measures are also interesting per
se in some applications. For instance, Spearman’s ρ is related to the copula correla-
tion if the marginal distributions are continuous ([15], Chapter 8) and our bootstrap
methods can be used to construct simultaneous confidence intervals for the copula
correlations uniformly over many pairs of variables.

To verify the finite sample performance of the proposed bootstrap meth-
ods for randomized incomplete U -statistics, we conduct simulation experiments
in Section 5 on the leading example for nonparametric testing for the pair-
wise independence hypothesis in (1.2). Specifically, we consider to approxi-
mate the null distributions of the incomplete versions of the (leading term of)
Spearman ρ and Bergsma–Dassios’ t∗-test statistics, and examine the cases
where n = 300,500,1000 and p = 30,50,100 (and hence d = p(p − 1)/2 =
435,1225,4950). Statistically, we observe that the Gaussian approximation of the
test statistics is quite accurate and the empirical rejection probability of the null hy-
pothesis with the critical values calibrated by our bootstrap methods is very close
to the nominal size for (almost) all setups. Computationally, we find that the (log-)
running time for our bootstrap methods scales linearly with the (log-)sample size,
and in addition, the slope coefficient matches very well with the computational
complexity of the bootstrap methods. Therefore, the simulation results demon-
strate a promising agreement between the empirical evidences and our theoretical
analysis.

1.1. Existing literature. Incomplete U -statistics are first considered in [5], and
the asymptotic distributions of incomplete U -statistics (for fixed d) are derived in
[7] and [25]; see also Section 4.3 in [27] for a review on incomplete U -statistics.
Closely related to the present paper is [25], which establishes the asymptotic prop-
erties of univariate incomplete U -statistics based on sampling with and without
replacement and Bernoulli sampling. To the best of our knowledge, the present pa-
per is the first paper that establishes approximation theorems for the distributions
of randomized incomplete U -statistics in high dimensions. See also Remark 3.4
for more detailed comparisons with [25]. Incomplete U -statistics can be viewed
as a special case of weighted U -statistics, and there is a large literature on limit
theorems for weighted U -statistics; see [19, 22, 29, 32, 33, 35] and references
therein. These references focus on the univariate case and do not cover the high-
dimensional case. There are few references that study data-dependent inferential
procedures for incomplete U -statistics that take computational considerations into
account. An exception is [3], which proposes several inferential methods for uni-
variate (generalized) incomplete U -statistics, but do not develop formal asymptotic



RANDOMIZED INCOMPLETE U -STATISTICS IN HIGH DIMENSIONS 3131

justifications for these methods. It is also interesting to note that incomplete U -
statistics have gained renewed interests in the recent statistics and machine learn-
ing literatures [13, 30], although the focuses of these references are substantially
different from ours.

From a technical point of view, this paper builds on recent development of
Gaussian and bootstrap approximation theorems for averages of independent high-
dimensional random vectors [11, 12] and for high-dimensional U -statistics of or-
der two [8]. Importantly, however, developing Gaussian approximations for the
randomized incomplete U -statistics in high dimensions requires a novel proof-
strategy that combines iterative conditioning arguments and applications of Berry–
Esseen-type bounds, and extends some of results in [8] to cover general order
incomplete U -statistics. In addition, these references do not consider bootstrap
methods for incomplete U -statistics that take computational considerations into
account.

1.2. Organization. The rest of the paper is organized as follows. In Section 2,
we introduce randomized incomplete U -statistics with sparse weights generated
from the Bernoulli sampling and sampling with replacement. In Section 3, we
derive nonasymptotic Gaussian approximation error bounds for the randomized
incomplete U -statistics in high dimensions for both nondegenerate and degenerate
kernels. In Section 4, we first propose generic bootstrap methods for the incom-
plete U -statistics and then incorporate the computational budget constraint by two
concrete estimates of the Hájek projection: one deterministic estimate by the di-
vide and conquer, and one randomized estimate by incomplete U -statistics of a
lower order. Simulation examples are provided in Section 5 and in the Supple-
mentary Material (SM) [10]. All the technical proofs are gathered in Appendix C
in the SM. We conclude the paper in Section 6 with a brief discussion on some
extensions.

1.3. Notation. For a hyperrectangle R = ∏d
j=1[aj , bj ] in R

d , a constant

c > 0, and a vector y = (y1, . . . , yd)T ∈ R
d , we use the notation [cR + y] =∏d

j=1[caj + yj , cbj + yj ]. For vectors y = (y1, . . . , yd)T , z = (z1, . . . , zd)T ∈ R
d ,

the notation y ≤ z means that yj ≤ zj for all j = 1, . . . , d . For a, b ∈ R, let
a ∨ b = max{a, b} and a ∧ b = min{a, b}. For a finite set J , |J | denotes the car-
dinality of J . Let | · |∞ denote the max-norm for vectors and matrices, that is, for
a matrix A = (aij ), |A|∞ = maxi,j |aij |. “Constants” refer to finite, positive and
nonrandom numbers.

For 0 < β < ∞, let ψβ be the function on [0,∞) defined by ψβ(x) =
exβ − 1, and for a real-valued random variable ξ , define ‖ξ‖ψβ = inf{C > 0 :
E[ψβ(|ξ |/C)] ≤ 1}. For β ∈ [1,∞), ‖ ·‖ψβ is an Orlicz norm, while for β ∈ (0,1),
‖ · ‖ψβ is not a norm but a quasi-norm, that is, there exists a constant Cβ depending
only on β such that ‖ξ1 + ξ2‖ψβ ≤ Cβ(‖ξ1‖ψβ + ‖ξ2‖ψβ ). (Indeed, there is a norm
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equivalent to ‖ · ‖ψβ obtained by linearizing ψβ in a neighborhood of the origin;
cf. Lemma C.2 in the SM.)

For a generic random variable Y , let P|Y (·) and E|Y [·] denote the conditional
probability and expectation given Y , respectively. For a given probability space
(X ,A,Q) and a measurable function f on X , we use the notation Qf = ∫

f dQ

whenever the latter integral is well defined. For a jointly measurable symmetric
function f on Sr and k = 1, . . . , r , let P r−kf denote the function on Sk defined
by

P r−kf (x1, . . . , xk) =
∫

· · ·
∫

f (x1, . . . , xk, xk+1, . . . , xr) dP (xk+1) · · · dP (xr)

whenever the integral exists and is finite for every (x1, . . . , xk) ∈ Sk . For given
1 ≤ k ≤ � ≤ n, we use the notation X�

k = (Xk, . . . ,X�). Throughout the paper, we
assume that n ≥ 4 ∨ r and d ≥ 3.

2. Randomized incomplete U -statistics. In this paper, to construct sparsely
weighted U -statistics, we shall use random sparse weights. For ι = (i1, . . . , ir ) ∈
In,r , let us write Xι = (Xi1, . . . ,Xir ), and observe that the complete U -statistic
(1.1) can be written as

Un = 1

|In,r |
∑

ι∈In,r

h(Xι).

Now, let N := Nn be an integer such that 0 < N ≤ |In,r |, and let pn = N/|In,r |.
Instead of taking the average over all possible ι in In,r , we will take the average
over a subset of about N indices chosen randomly from In,r . In the present paper,
we study Bernoulli sampling and sampling with replacement.

2.1. Bernoulli sampling. Generate i.i.d. Ber(pn) random variables {Zι : ι ∈
In,r} with success probability pn, that is, Zι, ι ∈ In,r are i.i.d. with P(Zι = 1) =
1 − P(Zι = 0) = pn. Consider the following weighted U -statistic with random
weights:

(2.1) U ′
n,N = 1

N̂

∑
ι∈In,r

Zιh(Xι),

where N̂ = ∑
ι∈In,r

Zι is the number of nonzero weights. We call U ′
n,N the random-

ized incomplete U -statistic based on the Bernoulli sampling. The variable N̂ fol-
lows Bin(|In,r |,pn), the binomial distribution with parameters (|In,r |,pn). Hence
E[N̂] = |In,r |pn = N and the computation of the incomplete U -statistic (2.1) only
requires O(Nd) operations on average. In addition, by Bernstein’s inequality (cf.
Lemma 2.2.9 in [38]),

(2.2) P
(|N̂/N − 1| >

√
2t/N + 2t/(3N)

) ≤ 2e−t
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for every t > 0, and hence N̂ concentrates around its mean N . Therefore, we can
view N as a computational budget parameter and pn as a sparsity design param-
eter for the incomplete U -statistic.

The reader may wonder that generating |In,r | ≈ nr Bernoulli random variables
is computationally demanding, but there is no need to do so. In fact, we can equiv-
alently compute the randomized incomplete U -statistic in (2.1) as follows:

1. Generate N̂ ∼ Bin(|In,r |,pn).
2. Choose indices ι1, . . . , ιN̂ randomly without replacement from In,r .

3. Compute U ′
n,N = N̂−1 ∑N̂

j=1 h(Xιj ).

In fact, define Zι = 1 if ι is one of ι1, . . . , ιN̂ , and Zι = 0 otherwise; then it is not
difficult to see that {Zι : ι ∈ In,r} are i.i.d. Ber(pn) random variables. So, we can
think of the Bernoulli sampling as a sampling without replacement with a random
sample size.

REMARK 2.1 (Comments on the random normalization). Interestingly, chang-
ing the normalization in (2.1) does affect approximating distributions to the re-
sulting incomplete U -statistic. Namely, if we change N̂ to N in that is, Ŭ ′

n,N =
N−1 ∑

ι∈In,r
Zιh(Xι), then we have different approximating distributions unless

θ = 0. In general, changing N̂ to N in (2.1) results in the approximating Gaussian
distributions with larger covariance matrices, and hence it is recommended to use
U ′

n,N rather than Ŭ ′
n,N . See also Remark 3.3 ahead.

2.2. Sampling with replacement. Conditionally on Xn
1 = (X1, . . . ,Xn), let

X∗
ιj

, j = 1, . . . ,N be i.i.d. draws from the empirical distribution |In,r |−1 ×∑
ι∈In,r

δXι (δXι denotes the point mass at Xι). Let

(2.3) U ′
n,N = 1

N

N∑
j=1

h
(
X∗

ιj

)

be the incomplete U -statistic obtained by sampling with replacement. We call
U ′

n,N the randomized incomplete U -statistic based on sampling with replacement.
Observe that U ′

n,N in (2.3) can be efficiently computed by sampling r distinct terms
from {X1, . . . ,Xn} independently for N times. The statistic U ′

n,N can be written as
a weighted U -statistic. Indeed, for each ι ∈ In,r , let Zι denote the number of times
that Xι is redrawn in the sample {X∗

ι1
, . . . ,X∗

ιN
}. Then the vector Z = (Zι)ι∈In,r (or-

dered in an arbitrary way) follows a multinomial distribution with parameters N

and probabilities 1/|In,r |, . . . ,1/|In,r | independent of Xn
1 , and U ′

n,N can be written
as

(2.4) U ′
n,N = 1

N

∑
ι∈In,r

Zιh(Xι).
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Hence we can think of U ′
n,N as a statistic of X1, . . . ,Xn and Zι, ι ∈ In,r , but we

will use both representations (2.3) and (2.4) interchangeably in the subsequent
analysis.

REMARK 2.2. All the theoretical results presented below apply to incomplete
U -statistics based on either the Bernoulli sampling or sampling with replacement.
Both sampling schemes will be covered in a unified way.

3. Gaussian approximations. In this section, we will derive Gaussian ap-
proximation results for the incomplete U -statistics (2.1) and (2.3) on the hyperrect-
angles in R

d . Let R denote the class of (closed) hyperrectangles in R
d , that is, R

consists sets of the form
∏d

j=1[aj , bj ] where −∞ ≤ aj ≤ bj ≤ ∞ for j = 1, . . . , d

with the convention that [aj , bj ] = (−∞, bj ] for aj = −∞ and [aj , bj ] = [aj ,∞)

for bj = ∞. For the expository purpose, we mainly focus on the nondegenerate
case where min1≤j≤d Var(E[hj (X1, . . . ,Xr) | X1]) is bounded away from zero in
the following discussion. However, our Gaussian approximation results also cover
the degenerate case (cf. Theorem 3.3). The intuition behind and the proof sketch
for the Gaussian approximation results are given in Section C.2 in the SM.

To state the formal Gaussian approximation results, we assume the follow-
ing conditions. Let σ > 0 and Dn ≥ 1 be given constants, and define g :=
(g1, . . . , gd)T := P r−1h. Suppose that:

(C1) P r |hj |2+k ≤ Dk
n for all j = 1, . . . , d and k = 1,2.

(C2) ‖hj (X
r
1)‖ψ1 ≤ Dn for all j = 1, . . . , d .

In addition, suppose that either one of the following conditions holds:

(C3-ND) P(gj − θj )
2 ≥ σ 2 for all j = 1, . . . , d .

(C3-D) P r(hj − θj )
2 ≥ σ 2 for all j = 1, . . . , d .

Conditions (C1) and (C2) are adapted from [12] and [8]. Condition (C2) as-
sumes the kernel h to be subexponential, which in particular covers bounded
kernels. In principle, it is possible to extend our analysis under milder moment
conditions on the kernel h, but this would result in more involved error bounds.
For the sake of clear presentation, we mainly work with Condition (C2) and
point out the differences when the kernel satisfies a polynomial moment condi-
tion in Remark 3.5. By Jensen’s inequality, Conditions (C1) and (C2) imply that
P |gj |2+k ≤ Dk

n for all j and for k = 1,2, and ‖gj (X1)‖ψ1 ≤ Dn for all j . Here, we
allow the exponential moment bound Dn to depend on n since the distribution P

may depend on n in the high-dimensional setting. In addition, Condition (C1) im-
plies that P rh2

j ≤ 1 + P |hj |3 ≤ 1 + Dn for all j . Condition (C3-ND) implies that
the kernel h is nondegenerate. In the degenerate case, we will require Condition
(C3-D) to derive Gaussian approximations.

In all what follows, we assume that

pn = N/|In,r | ≤ 1/2
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without further mentioning. The value 1/2 has no special meaning; we can allow
pn ≤ c for any constant c ∈ (0,1), and in that case, the constants appearing in the
following theorems depend in addition on c. Since we are using randomization for
the purpose of computational reduction, we are mainly interested in the case where
N 	 |In,r |, and the assumption that pn is bounded away from 1 is immaterial.

The following theorem derives bounds on the Gaussian approximation to the
randomized incomplete U -statistics on the hyperrectangles in the case where
the kernel h is nondegenerate. Recall that αn = n/N,pn = N/|In,r |, θ = P rh =
Pg,
g = P(g − θ)(g − θ)T , and 
h = P r(h − θ)(h − θ)T .

THEOREM 3.1 (Gaussian approximation under nondegeneracy). Suppose that
Conditions (C1), (C2) and (C3-ND) hold. Then there exists a constant C depend-
ing only on σ and r such that

(3.1)

sup
R∈R

∣∣P{√
n
(
U ′

n,N − θ
) ∈ R

} − P(Y ∈ R)
∣∣

= sup
R∈R

∣∣P{√
N

(
U ′

n,N − θ
) ∈ R

} − P
(
α−1/2

n Y ∈ R
)∣∣

≤ C

(
D2

n log7(dn)

n ∧ N

)1/6
,

where Y ∼ N(0, r2
g + αn
h).

Theorem 3.1 shows that the distribution of
√

n(U ′
n,N − θ) can be approximated

by the Gaussian distribution N(0, r2
g + αn
h) on the hyperrectangles provided
that D2

n log7(dn) 	 n∧N , from which we deduce that the Gaussian approximation
on the hyperrectangles holds for U ′

n,N even when d � n. Asymptotically, if, for
example, Dn is bounded in n and N ≥ n, then as n → ∞,

sup
R∈R

∣∣P{√
n
(
U ′

n,N − θ
) ∈ R

} − P(Y ∈ R)
∣∣ → 0

whenever d = dn satisfies that logd = o(n1/7), so that the high-dimensional CLT
on the hyperrectangles holds for the incomplete U -statistics even in ultrahigh-
dimensional cases where d is much larger than n. Similar comments apply to all
the other results we will derive.

For complete and nondegenerate U -statistics (a special case of incomplete U -
statistics with the complete design and N = |In,r |), it has been argued in [12] (r =
1) and [8] (r = 2) that the rate of convergence in Theorem 3.1 is nearly optimal in
the regime where d grows subexponentially fast in n. On the other hand, the rate of
convergence can be improved to n−1/4 (up to logarithmic factors) if d = O(n1/7),
namely if the dimension increases at most polynomially fast with the sample size.

In the cases where N � n (i.e., αn 	 1) and N 	 n (i.e., αn � 1), the approxi-
mating distribution can be simplified to N(0, r2
g) and N(0,
h), respectively.
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COROLLARY 3.2. Suppose that Conditions (C1), (C2) and (C3-ND) hold.
Then there exists a constant C depending only on σ and r such that

sup
R∈R

∣∣P{√
n
(
U ′

n,N − θ
) ∈ R

} − γA(R)
∣∣

≤ C

{(
nDn log2 d

N

)1/3
+

(
D2

n log7(dn)

n ∧ N

)1/6}
,

where γA = N(0, r2
g), and

sup
R∈R

∣∣P{√
N

(
U ′

n,N − θ
) ∈ R

} − γB(R)
∣∣

≤ C

{(
NDn log2 d

n

)1/3
+

(
D2

n log7 d

n ∧ N

)1/6}
,

where γB = N(0,
h).

REMARK 3.1 (Comments on the computational and statistical trade-off for the
randomized incomplete U -statistics with nondegenerate kernels). Theorem 3.1
and Corollary 3.2 reveal an interesting phase transition phenomenon between the
computational complexity and the statistical efficiency for the randomized incom-
plete U -statistics. Suppose that n∧N � D2

n log7(dn) and σ is bounded away from
zero. First, if the computational budget parameter N is superlinear in the sample
size n (i.e., N � nDn log2 d), then both the incomplete U -statistic

√
n(U ′

n,N − θ)

and its complete version
√

n(Un − θ) can be approximated by the same Gaussian
distribution γA = N(0, r2
g) (cf. [8] for r = 2 case). Second, if N is of the same
order as n, then the scaling factor of U ′

n,N remains the same as for Un, namely,√
n. However, the approximating Gaussian distribution for

√
n(U ′

n,N − θ) has co-
variance matrix r2
g + αn
h, which is larger than the the corresponding covari-
ance matrix r2
g for

√
n(Un − θ) in the sense that their difference αn
h is posi-

tive semidefinite. In this case, we sacrifice the statistical efficiency for the sake of
keeping the computational cost linear in n. Third, if we further reduce the compu-
tational budget parameter N to be sublinear in n (i.e., N 	 n/(Dn log2 d)), then
the scaling factor of U ′

n,N changes from
√

n to
√

N , and the distribution of U ′
n,N

is approximated by N(θ,N−1
h) on the hyperrectangles. Hence, the decay rate
of the covariance matrix of the approximating Gaussian distribution is now N−1,
which is slower than the n−1 rate for the previous two cases.

Next, we consider the case where the kernel h is degenerate, that is, P(gj −
θj )

2 = 0 for all j = 1, . . . , d . We consider the case where the kernel h is degenerate
of order k − 1 for some k = 2, . . . , r , that is, P r−k+1h(x1, . . . , xk−1) = P rh for all
(x1, . . . , xk−1) ∈ Sk−1. Even in such cases, a Gaussian approximation holds for√

N(U ′
n,N − θ) on the hyperrectangles provided that N 	 nk up to logarithmic

factors. More precisely, we obtain the following theorem.
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THEOREM 3.3 (Gaussian approximation under degeneracy). Suppose the ker-
nel h is degenerate of order k − 1 for some k = 2, . . . , r . In addition, suppose that
Conditions (C1), (C2) and (C3-D) hold. Then there exists a constant C depending
only on σ and r such that

(3.2)

sup
R∈R

∣∣P{√
N

(
U ′

n,N − θ
) ∈ R

} − γB(R)
∣∣

≤ C

{(
ND2

n logk+3 d

nk

)1/4
+

(
D2

n(logn) log5(dn)

n

)1/6

+
(

D2
n log7(dn)

N

)1/6}
,

where γB = N(0,
h).

REMARK 3.2 (Comments on the Gaussian approximation under degeneracy).
In the degenerate case, for the Gaussian approximation to hold, we must have
N 	 nk (more precisely, N 	 nk/(D2

n logk+3 d)), which is an indispensable con-
dition even for the d = 1 case. To see this, consider the Bernoulli sampling case
(similar arguments apply to the sampling with replacement case) and observe that√

N(U ′
n,N − θ) = (N/N̂) · √

NWn = (N/N̂)(
√

NAn + √
N(1 − pn)Bn), where

An = Un − θ and Bn = U ′
n,N − Un. According to Theorem 12.10 in [37], nk/2An

converges in distribution to a Gaussian chaos of order k. Hence, in order to ap-
proximate

√
N(U ′

n,N − θ) ≈ √
NWn by a Gaussian distribution, it is necessary

that
√

NAn is stochastically vanishing, which leads to the condition N 	 nk .
It is worth noting that Theorem 3.3 reveals a fundamental difference between

complete and randomized incomplete U -statistics with the degenerate kernel.
Namely, in the degenerate case, the complete U -statistic nk/2(Un − θ) is known
to have a non-Gaussian limiting distribution when d is fixed, while thanks to the
randomizations, our incomplete U -statistics

√
N(U ′

n,N − θ) can be approximated
by the Gaussian distribution, and in addition the Gaussian approximation can hold
even when d � n. On one hand, the rate of convergence of the incomplete U -
statistics is N−1/2 and is slower than that of the complete U -statistic, namely,
n−k/2. So in that sense we are sacrificing the rate of convergence by using the in-
complete U -statistics instead of the complete U -statistic, although the rate N−1/2

can be arbitrarily close to n−k/2 up to logarithmic factors. On the other hand, the
approximating Gaussian distribution for the incomplete U -statistics is easy to es-
timate by using a multiplier bootstrap developed in Section 4. The multiplier boot-
strap developed in Section 4 is computationally much less demanding than, for
example, the empirical bootstraps for complete (degenerate) U -statistics (cf. [1,
6]), and can consistently estimate the approximating Gaussian distribution γB on
the hyperrectangles even when d � n; see Theorem 4.1. To the best of our knowl-
edge, there is no existing work that formally derives Gaussian chaos approxima-
tions to degenerate U -statistics in high dimensions where d � n, and in addition
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such non-Gaussian approximating distributions appear to be more difficult to es-
timate in high dimensions. Hence, in the degenerate case, the randomizations not
only reduce the computational cost but also provide more tractable alternatives to
make statistical inference on θ in high dimensions.

REMARK 3.3 (Effect of deterministic normalization in the Bernoulli sam-
pling case). In the Bernoulli sampling case, consider the deterministic normal-
ization, that is, Ŭ ′

n,N = N−1 ∑
ι∈In,r

Zιh(Xι), instead of the random one, that is,

U ′
n,N = N̂−1 ∑

ι∈In,r
Zιh(Xι). Then, in the nondegenerate case, the distribution of√

n(Ŭ ′
n,N − θ) can be approximated by N(0, r2
g +αnP

rhhT ), and in the degen-

erate case,
√

N(Ŭ ′
n,N − θ) can be approximated by N(0,P rhhT ) (provided that

N 	 nk for the degenerate case). To see this, observe that Ŭ ′
n,N − θ = (Un − θ) +

N−1 ∑
ι∈In,r

(Zι − pn)h(Xι), and the distribution of N−1 ∑
ι∈In,r

(Zι − pn)h(Xι)

can be approximated by N(0, (1 − pn)P
rhhT ). Since P rhhT is larger than 
h

unless θ = 0 (in the sense that P rhhT − 
h = θθT is positive semidefinite), the
approximating Gaussian distributions have larger covariance matrices for Ŭ ′

n,N

than those for U ′
n,N , and hence it is in general recommended to use the random

normalization rather than the deterministic one. A numerical comparison between
these normalizations can be found in Section E of the SM.

REMARK 3.4 (Comparisons with [25] for d = 1). The Gaussian approxima-
tion results established in Theorems 3.1, 3.3 and Corollary 3.2 can be considered
as (partial) extensions of Theorem 1 and Corollary 1 in [25] to high dimensions.
Janson [25] focuses on the univariate case (d = 1) and derives the asymptotic
distributions of randomized incomplete U -statistics based on sampling without
replacement, sampling with replacement and Bernoulli sampling ([25] considers
the deterministic normalization for the Bernoulli sampling case). For the illustra-
tive purpose, consider sampling with replacement. Suppose that pn → p ∈ [0,1]
and the kernel h is degenerate of order k − 1 for some k = 1, . . . , r (the k = 1
case corresponds to a nondegenerate kernel). Then Theorem 1 in [25] shows that

(nk/2(Un − θ),N1/2(U ′
n,N − Un))

d→ (V ,W), where V is a Gaussian chaos of or-
der k (in particular, V ∼ N(0, r2P(g − θ)2) if k = 1) and W ∼ N(0,P r(h − θ)2)

such that V and W are independent. Hence, provided that nk/N → α ∈ [0,∞],
nk/2(U ′

n,N − θ)
d→ V + αW if α < ∞ and

√
N(U ′

n,N − θ)
d→ W if α = ∞.

The present paper focuses on the cases where the approximating distributions are
Gaussian (i.e., the cases where k = 1 and α is finite, or k ≥ 2 and α = ∞), but
covers high-dimensional kernels and derives explicit and nonasymptotic Gaussian
approximation error bounds that are not obtained in [25]. In addition, the proof
strategy of our Gaussian approximation results differs substantially from that of
[25]. Janson [25] shows the convergence of the joint characteristic function of
(nk/2(Un − θ),N1/2(U ′

n,N − Un)) to obtain his Theorem 1, but the characteristic
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function approach is not very useful to derive explicit error bounds on distribu-
tional approximations in high dimensions. Instead, our proofs iteratively use con-
ditioning arguments combined with Berry–Esseen-type bounds.

Finally, we expect that the results of the present paper can be extended to the
case where k ≥ 2 and α is finite; in that case, the approximating distribution to
nk/2(U ′

n,N − θ) will be non-Gaussian and the technical analysis will be more in-
volved in high dimensions. We leave the analysis of this case as a future research
topic.

REMARK 3.5 (Relaxation of subexponential moment Condition (C2)). It is
possible to relax the subexponential moment Condition (C2) to a polynomial mo-
ment condition. Suppose that

(C2′) (P r |h|q∞)1/q ≤ Dn for some q ∈ [4,∞).

Condition (C2′) covers a kernel with bounded polynomial moment of a finite de-
gree q .

THEOREM 3.4 (Gaussian approximation under polynomial moment condition).
(i) If Conditions (C1), (C2′) and (C3-ND) hold, then there exists a constant C

depending only on σ , r and q such that

(3.3)

sup
R∈R

∣∣P{√
n
(
U ′

n,N − θ
) ∈ R

} − P(Y ∈ R)
∣∣

≤ C

{(
D2

n log7(dn)

n ∧ N

)1/6
+

(
D2

nn
2r/q log3(dn)

(n ∧ N)1−2/q

)1/3}
,

where Y ∼ N(0, r2
g + αn
h).
(ii) Suppose the kernel h is degenerate of order k − 1 for some k = 2, . . . , r . If

Conditions (C1), (C2′) and (C3-D) hold, then there exists a constant C depending
only on σ , r and q such that

(3.4)

sup
R∈R

∣∣P{√
N

(
U ′

n,N − θ
) ∈ R

} − γB(R)
∣∣

≤ C

{(
ND2

n logk+3 d

nk

)1/4
+

(
D2

n log5(dn)

n

)1/6

+
(

D2
n log7 d

N

)1/6
+

(
D2

nn
2r/q log3 d

(n ∧ N)1−2/q

)1/3}
,

where γB = N(0,
h).

Comparing Theorem 3.4 with Theorems 3.1 and 3.3, we see that the same ap-
proximating Gaussian distributions under the subexponential moment condition
(C2) are valid under the polynomial moment condition (C2′) as well. The rates
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of convergence to the Gaussian distributions under (C2′) involve an extra Nagaev-
type term similar to the sample average and complete U -statistic cases (cf. [8, 12]),
and so the rates may be slower than those obtained under the subexponential mo-
ment condition (C2). In particular, the rates in (3.3) and (3.4) now depend on the
order r through the term n2r/q . Still, the leading orders in (3.3) and (3.4) coincide
with those under the subexponential moment condition (C2) as long as q is suf-
ficiently large compared with r . For example, if Dn is bounded in n, N ≥ n, and
q ≥ 4(r + 1), then the leading order of (3.3) is (n−1 log7(dn))1/6, which coincides
with that in the subexponential case.

4. Bootstrap approximations. The Gaussian approximation results devel-
oped in the previous section are often not directly applicable in statistical appli-
cations since the covariance matrix of the approximating Gaussian distribution,
r2
g + αn
h (or 
h in the degenerate case), is unknown to us. In this sec-
tion, we develop data-dependent procedures to further approximate or estimate
the N(0, r2
g + αn
h) distribution (or the N(0,
h) distribution in the degener-
ate case) that are computationally (much) less-demanding than existing bootstrap
methods for U -statistics such as the empirical bootstrap.

4.1. Generic bootstraps for incomplete U -statistics. Let Dn = {X1, . . . ,Xn}∪
{Zι : ι ∈ In,r}. For the illustrative purpose, consider to estimate the N(0, r2
 +
αn
h) distribution and let Y ∼ N(0, r2
g +αn
h). The basic idea of our approach

is as follows. Since Y
d= YA +α

1/2
n YB where YA ∼ N(0, r2
g) and YB ∼ N(0,
h)

are independent, to approximate the distribution of Y , it is enough to construct
data-dependent random vectors U

�
n,A and U

�
n,B such that, conditionally on Dn,

(i) U
�
n,A and U

�
n,B are independent, and (ii) the conditional distributions of U

�
n,A

and U
�
n,B are computable and “close” enough to N(0, r2
g) and N(0,
h), respec-

tively. Then the conditional distribution of U
�
n = U

�
n,A + α

1/2
n U

�
n,B should be close

to N(0, r2
g + αn
h), and hence to the distribution of
√

n(U ′
n,N − θ). Of course,

if the target distribution is N(0, r2
g) or N(0,
h), then it is enough to simulate

the conditional distribution of U
�
n,A or U

�
n,B alone, respectively.

Construction of U
�
n,B is straightforward; in fact, it is enough to apply the (Gaus-

sian) multiplier bootstrap to
√

Zιh(Xι), ι ∈ In,r .
Construction of U

�
n,B .

1. Generate i.i.d. N(0,1) variables {ξ ′
ι : ι ∈ In,r} independent of the data Dn.

2. Construct

U
�
n,B = 1√

N̂

∑
ι∈In,r

ξ ′
ι

√
Zι

{
h(Xι) − U ′

n,N

}
,

where N̂ is replaced by N for the sampling with replacement case.
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In the Bernoulli sampling case, U
�
n,B reduces to U

�
n,B = N̂−1/2 ∑N̂

j=1 ξ ′
ιj

×
{h(Xιj ) − U ′

n,N }, while in the sampling with replacement case, simulating U
�
n,B

can be equivalently implemented by simulating U
�
n,B = N−1/2 ∑N

j=1 ηj {h(X∗
ιj
) −

U ′
n,N } for η1, . . . , ηN ∼ N(0,1) i.i.d. independent of X∗

ι1
, . . . ,X∗

ιN
; in fact, the dis-

tribution of U
�
n,B in the latter definition (conditionally on X∗

ι1
, . . . ,X∗

ιN
) is Gaus-

sian with mean zero and covariance matrix N−1 ∑N
j=1{h(X∗

ιj
) − U ′

n,N }{h(X∗
ιj
) −

U ′
n,N }T , which is identical to the conditional distribution of U

�
n,B in the original

definition. In either case, in practice, we only need to generate (on average) N

multiplier variables. The following theorem establishes conditions under which
the conditional distribution of U

�
n,B is able to consistently estimate the N(0,
h)

(= γB ) distribution on the hyperrectangles with polynomial error rates.

THEOREM 4.1 (Validity of U
�
n,B ). Suppose that (C1), (C2) and (C3-D) hold.

If

(4.1)
D2

n(log2 n) log5(dn)

n ∧ N
≤ C1n

−ζ

for some constants 0 < C1 < ∞ and ζ ∈ (0,1), then there exists a constant C

depending only on σ , r , and C1 such that

(4.2) sup
R∈R

∣∣P|Dn

(
U

�
n,B ∈ R

) − γB(R)
∣∣ ≤ Cn−ζ/6

with probability at least 1 − Cn−1.

REMARK 4.1 (Bootstrap validity under the polynomial moment condition).
Analogous bootstrap validity results for U

�
n,B in Theorem 4.1, as well as those

for U
�
n and U

�
n,A in Theorem 4.2, 4.3 and Proposition 4.4, 4.5 ahead, can be ob-

tained under the polynomial moment Condition (C2′). Due to the space concern,
detailed results can be found in Section B of the SM.

In the degenerate case, the approximating distribution is γB = N(0,
h). So,
in that case, we can approximate the distribution of

√
N(U ′

n,N − θ) on the hy-

perrectangles by the conditional distribution of U
�
n,B , which can be simulated by

drawing multiplier variables many times. We call the simulation of U
�
n,B the mul-

tiplier bootstrap under degeneracy (MB-DG). On average, the computational cost
of the MB-DG is O(BNd) (where B denotes the number of bootstrap iterations),
which can be independent of the order of the U -statistic provided that N is so. In
the remainder of this section, we will focus on the nondegenerate case.

In contrast to U
�
n,B , construction of U

�
n,A is more involved. We might be tempted

to apply the multiplier bootstrap to the Hájek projection, rn−1 ∑n
i1=1 g(Xi1), but
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the function g = P r−1h is unknown so the direct application of the multiplier
bootstrap to the Hájek projection is infeasible. Instead, we shall construct estimates
of g(Xi1) for i1 ∈ {1, . . . , n} or a subset of {1, . . . , n}, and then apply the multiplier
bootstrap to the estimated Hájek projection. Generically, construction of U

�
n,A is

as follows:
Generic construction of U

�
n,A.

1. Choose a subset S1 of {1, . . . , n} and generate i.i.d. N(0,1) variables {ξi1 :
i1 ∈ S1} independent of the data Dn and {ξ ′

ι : ι ∈ In,r}. Let n1 = |S1|.
2. For each i1 ∈ S1, construct an estimate ĝ(i1) of g based on Xn

1 .
3. Construct

U
�
n,A = r√

n1

∑
i1∈S1

ξi1

{
ĝ(i1)(Xi1) − ğ

}
,

where ğ = n−1
1

∑
i1∈S1

ĝ(i1)(Xi1).

Step 1 chooses a subset S1 to reduce the computational cost of the resulting
bootstrap. Construction of estimates ĝ(i1), i1 ∈ S1 can be flexible. For instance,
the estimates ĝ(i1), i1 ∈ S1 may depend on another randomization independent of
everything else. In Sections 4.2 and 4.3, we will consider deterministic and random
constructions of ĝ(i1), i1 ∈ S1, respectively.

It is worth noting that the jackknife multiplier bootstrap (JMB) developed in [8]
(for the r = 2 case) and [9] (for the general r case) is a special case of U

�
n,A where

S1 = {1, . . . , n} and ĝ(i1)(Xi1) is realized by its jackknife estimate, that is, by the
U -statistic with kernel (x2, . . . , xr) �→ h(Xi1, x2, . . . , xr) for the sample without
the i1-th observation. Nevertheless, the bottleneck is that the computation of the
jackknife estimates of g(Xi1), i1 = 1, . . . , n requires O(nrd) operations, and hence
implementing the JMB can be computationally demanding.

Now, consider U
�
n = U

�
n,A + α

1/2
n U

�
n,B . We call the simulation of U

�
n the mul-

tiplier bootstrap under nondegeneracy (MB-NDG). The following theorem estab-
lishes conditions under which the conditional distribution of U

�
n is able to con-

sistently estimate the N(0, r2
g + αn
h) distribution on the hyperrectangles with
polynomial error rates. Define

�̂A,1 := max
1≤j≤d

1

n1

∑
i1∈S1

{
ĝ

(i1)
j (Xi1) − gj (Xi1)

}2
,

which quantifies the errors of the estimates ĝ(i1), i1 ∈ S1. In addition, let σg :=
max1≤j≤d

√
P(gj − θj )2.

THEOREM 4.2 (Generic bootstrap validity under nondegeneracy). Let U
�
n =

U
�
n,A +α

1/2
n U

�
n,B . Suppose that Conditions (C1), (C2) and (C3-ND) hold. In addi-



RANDOMIZED INCOMPLETE U -STATISTICS IN HIGH DIMENSIONS 3143

tion, suppose that

D2
n(log2 n) log5(dn)

n1 ∧ N
≤ C1n

−ζ1 and

P
(
σ 2

g�̂A,1 log4 d > C1n
−ζ2

) ≤ C1n
−1

(4.3)

for some constants 0 < C1 < ∞ and ζ1, ζ2 ∈ (0,1). Then there exists a constant C

depending only on σ , r and C1 such that

(4.4) sup
R∈R

∣∣P|Dn

(
U�

n ∈ R
) − P(Y ∈ R)

∣∣ ≤ Cn−(ζ1∧ζ2)/6

with probability at least 1−Cn−1, where Y ∼ N(0, r2
g +αn
h). If the estimates
g(i1), i1 ∈ S1 depend on an additional randomization independent of Dn, {ξi1 : i1 ∈
S1}, and {ξ ′

ι : ι ∈ In,r}, then the result (4.4), with Dn replaced by the augmentation
of Dn with variables used in the additional randomization, holds with probability
at least 1 − Cn−1.

The second part of Condition (4.3) is a high-level condition on the estimation
accuracy of ĝ(i1), i1 ∈ S1. In Sections 4.2 and 4.3, we will verify the second part of
Condition (4.3) for deterministic and random constructions of ĝ(i1), i1 ∈ S1. The
bootstrap distribution is taken with respect to the multiplier variables {ξi1 : i1 ∈ S1}
and {ξ ′

ι : ι ∈ In,r}, and so if the estimation step for g depends on an additional
randomization, then the variables used in the additional randomization have to be
generated outside the bootstrap iterations.

When the approximating distribution can be simplified to γA = N(0, r2
g),

then it suffices to estimate N(0, r2
g) by the conditional distribution of U
�
n,A.

COROLLARY 4.3 (Validity of U
�
n,A). Suppose that all the conditions in Theo-

rem 4.2 hold. Then there exists a constant C depending only on σ, r and C1 such
that

(4.5) sup
R∈R

∣∣P|Dn

(
U

�
n,A ∈ R

) − γA(R)
∣∣ ≤ Cn−(ζ1∧ζ2)/6

with probability at least 1 − Cn−1. If the estimates g(i1), i1 ∈ S1 depend on an
additional randomization independent of Dn, {ξi1 : i1 ∈ S1}, and {ξ ′

ι : ι ∈ In,r}, then
the result (4.5), with Dn replaced by the augmentation of Dn with variables used
in the additional randomization, holds with probability at least 1 − Cn−1.

REMARK 4.2 (Comments on the partial bootstrap simplification under nonde-
generacy). When the approximating distribution of

√
N(U ′

n,N − θ) can be sim-

plified to γB = N(0,
B), it is also possible to use the partial bootstrap U
�
n,B to

estimate N(0,
B). In this case, we must take N to be sublinear in n (i.e., N 	
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n/(Dn log2 d)) to ensure the Gaussian approximation validity (cf. Remark 3.1).
However, we do not recommend this simplification because the decay rate of the
covariance matrix of the approximating Gaussian distribution N(θ,N−1
B) to
U ′

n,N is N−1, which is slower than the n−1 rate for the linear and superlinear
cases. In particular, this implies a power loss in the testing problems if the critical
values are calibrated by U

�
n,B .

The rest of this section is devoted to concrete constructions of the estimates
ĝ(i1), i1 ∈ S1.

4.2. Divide-and-conquer estimation. We first propose a deterministic con-
struction of ĝ(i1), i1 ∈ S1 via the divide-and-conquer (DC) algorithm (cf. [41]).

1. For each i1 ∈ S1, choose K disjoint subsets S
(i1)
2,k , k = 1, . . . ,K with common

size L ≥ r − 1 from {1, . . . , n} \ {i1}.
2. For each i1 ∈ S1, estimate g by computing U -statistics with kernel (x2, . . . ,

xr) �→ h(x, x2, . . . , xr) applied to the subsamples {Xi : i ∈ S
(i1)
2,k }, k = 1, . . . ,K ,

and taking the average of those U -statistics of order r − 1, that is,

ĝ(i1)(x) = 1

K

K∑
k=1

1

|IL,r−1|
∑

i2,...,ir∈S
(i1)

2,k

i2<···<ir

h(x,Xi2, . . . ,Xir ).

The DC algorithm can be viewed as an estimation procedure for g via incom-
plete U -statistics of order r − 1 with a block diagonal sampling scheme (up to a
permutation on the indices). We call the simulation of U

�
n with the DC algorithm

the MB-NDG-DC. In Section 4.3, we will propose a different estimation procedure
for g via randomized incomplete U -statistics of order r − 1 based on an additional
Bernoulli sampling. As a practical guidance to implement the DC algorithm, we
suggest to choose S1 = {1, . . . , n},L = r − 1 and K = �(n − 1)/L� consecutive
blocks, which are the parameter values used in our simulation examples in Sec-
tion 5. In this case, the DC algorithm turns out to be calculating Hoeffding’s aver-
ages of the U -statistics of order r − 1, which requires O(nd) operations for each
i1. In contrast, the JMB constructs ĝ(i1) by complete U -statistics of order r − 1,
which requires O(nr−1d) operations for each i1. Since the estimation step for g

can be done outside the bootstrap iterations, the overall computational cost of the
MB-NDG-DC is O((BN + n1KL + Bn1)d) = O(n2d + B(N + n)d) (where B

denotes the number of bootstrap iterations), which is independent of the order of
the U -statistic. In addition, if we choose to only simulate U

�
n,A, then the com-

putational cost is O(n2d + Bnd), since the O(BNd) computations come from
simulating U

�
n,B . We can certainly make the computational cost even smaller by

taking n1 and K smaller than n. For instance, if we choose n1 and K in such a way
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that n1K = O(n) and L = r − 1, then the overall computational cost is reduced to
O(nd + B(N + n)d) = O(B(N + n)d) (or O(Bnd) if we only simulate U

�
n,A). In

general, choosing smaller n1 and K would sacrifice the statistical accuracy of the
resulting bootstrap, but if O(n2d) computations are difficult to implement, then
choosing smaller n1 and K would be a reasonable option.

Our MB-NDG-DC substantially differs from the the Bag of Little Bootstraps
(BLB) proposed in [26], which is another generically scalable bootstrap method
for large data sets based on the DC algorithm. Due to the space concern, we defer
the comparison of our MB-NDG-DC with the BLB in Section A.1 of the SM.

The following proposition provides conditions for the validity of the multiplier
bootstrap equipped with the DC estimation (MB-NDG-DC).

PROPOSITION 4.4 (Validity of bootstrap with DC estimation). Suppose that
Conditions (C1), (C2) and (C3-ND) hold. In addition, suppose that

(4.6)
D2

n(log2 n) log5(dn)

n1 ∧ N
∨

{
σ 2

gD
2
n log7 d

KL

(
1 + log2 d

K1−1/ν

)}
≤ C1n

−ζ

for some constants 0 < C1 < ∞, ζ ∈ (0,1) and ν ∈ (1/ζ,∞). Then there exists a
constant C depending only on σ, r, ν and C1 such that each of the results (4.4) and
(4.5) with (ζ1, ζ2) = (ζ, ζ − 1/ν) holds with probability at least 1 − Cn−1.

For instance, consider to take N = n,S1 = {1, . . . , n},L = r − 1, and K =
�(n − 1)/L�, and suppose that D2

n log7(dn) ≤ n1−ζ for some ζ ∈ (0,1). Then, by
Theorem 3.1 and Proposition 4.4, for arbitrarily large ν ∈ (1/ζ,∞), there exists a
constant C depending only on σg, σ , r and ν such that

(4.7) sup
R∈R

∣∣P(√
n
(
U ′

n,N − θ
) ∈ R

) − P|Dn

(
U�

n ∈ R
)∣∣ ≤ Cn−(ζ−1/ν)/6

with probability at least 1 − Cn−1. Hence, the conditional distribution of the MB-
NDG-DC approaches uniformly on the hyperrectangles in R

d to the distribution
of the randomized incomplete U -statistic at a polynomial rate in the sample size.

4.3. Random sampling estimation. Next, we propose a random construction
of ĝ(i1), i1 ∈ S1 based on an additional Bernoulli sampling. For each i1 = 1, . . . , n,
let In−1,r−1(i1) = {(i2, . . . , ir ) : 1 ≤ i2 < · · · < ir ≤ n, ij �= i1 ∀j �= 1}. In ad-
dition, define σi1 : {1, . . . , n − 1} → {1, . . . , n} \ {i1} as follows: if {1, . . . , n} \
{i1} = {j1, . . . , jn−1} with j1 < · · · < jn−1, then σi1(�) = j� for � = 1, . . . , n − 1.
For notational convenience, for ι′ = (i2, . . . , ir ) ∈ In−1,r−1, we write σi1(ι

′) =
(σi1(i2), . . . , σi1(ir )) ∈ In−1,r−1(i1).

Now, consider the following randomized procedure to construct ĝ(i1), i1 ∈ S1:

1. Let 0 < M = Mn ≤ |In−1,r−1| be a positive integer, and generate i.i.d.
Ber(ϑn) random variables {Z′

ι′ : ι′ = (i2, . . . , ir ) ∈ In−1,r−1} independent of
Dn, {ξi1 : i1 ∈ S1}, and {ξ ′

ι : ι ∈ In,r}, where ϑn = M/|In−1,r−1|.
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2. For each i1 ∈ S1, construct ĝ(i1)(x) = M−1 ∑
ι′∈In−1,r−1

Z′
ι′h(x,Xσi1 (ι′)).

The resulting bootstrap method is called the multiplier bootstrap under nondegen-
eracy with random sampling (MB-NDG-RS). Equivalently, the above procedure
can be implemented as follows:

1. Generate M̂ ∼ Bin(|In−1,r−1|, ϑn).
2. Sample ι′1, . . . , ι′̂M randomly without replacement from In−1,r−1.

3. Construct ĝ(i1)(x) = M−1 ∑M̂
j=1 h(x,Xσi1 (ι′j )) for each i1 ∈ S1.

So, on average, the computational cost to construct ĝ(i1), i1 ∈ S1 by the random
sampling estimation is O(n1Md), and the overall computational cost of the MB-
NDG-RS is O(n1Md + B(N + n1)d) (or O(n1Md + Bn1d) if we only simulate
U

�
n,A). As a practical guidance to implement the random sampling estimation, we

suggest to choose S1 = {1, . . . , n} and M proportional to n − 1, which are the pa-
rameter values used in our simulation examples in Section 5. Then the overall com-
putational cost of the MB-NDG-RS is O(n2d + B(N + n)d) (or O(n2d + Bnd)

if we only simulate U
�
n,A), which is independent of the order of the U -statistic. In

addition, the computational cost can be made even smaller, for example, can be
reduced to O(B(N + n)d) by choosing n1 and M in such a way that n1M = O(n)

(or O(Bnd) if we only simulate U
�
n,A), which would be a reasonable option if

O(n2d) computations are difficult to implement.

PROPOSITION 4.5 (Validity of bootstrap with Bernoulli sampling estimation).
Suppose that Conditions (C1), (C2) and (C3-ND) hold. In addition, suppose that

(4.8)
D2

n(log2 n) log5(dn)

n1 ∧ N
∨ σ 2

gD
2
n log7(dn)

n ∧ M
≤ C1n

−ζ

for some constants 0 < C1 < ∞ and ζ ∈ (0,1). Then, for arbitrarily large ν ∈
(1/ζ,∞), there exists a constant C depending only on σ , r, ν and C1 such that
each of the results (4.4) and (4.5), with Dn replaced by D′

n = Dn ∪ {Z′
ι′ : ι′ ∈

In−1,r−1} and with (ζ1, ζ2) = (ζ, ζ − 1/ν), holds with probability at least 1 −
Cn−1.

For instance, consider to take N = n,S1 = {1, . . . , n}, and M proportional to
n − 1, and suppose that D2

n log7(dn) ≤ n1−ζ for some ζ ∈ (0,1). Then, by The-
orem 3.1 and Proposition 4.5, for arbitrarily large ν ∈ (1/ζ,∞), there exists a
constant C depending only on σg, σ , r , and ν such that the result (4.7) holds with
probability at least 1 − Cn−1.

REMARK 4.3 (Alternative options for random sampling estimation). In con-
struction of ĝ(i1), instead of normalization by M , we may use normalization by
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M̂ , namely, M̂−1 ∑M̂
j=1 h(x,Xσi1 (ι′j )) for ĝ(i1)(x). In view of the concentration in-

equality for M̂ (cf. equation (2.2)), it is not difficult to see that the same conclusion
of Proposition 4.5 holds for ĝ(i1)(x) = M̂−1 ∑M̂

j=1 h(x,Xσi1 (ι′j )).
Next, alternatively to the Bernoulli sampling, we may use sampling with re-

placement to construct ĝ(i1), which can be implemented as follows: (1) sample
ι′1, . . . , ι′M randomly with replacement from In−1,r−1 (independently of everything
else); and (2) construct ĝ(i1)(x) = M−1 ∑M

j=1 h(x,Xσi1 (ι′j )) for i1 ∈ S1. For each

i1 ∈ S1, conditionally on Xn
1 , Xσi1 (ι′j ), j = 1, . . . ,M are i.i.d. draws from the em-

pirical distribution |In−1,r−1|−1 ∑
ι′∈In−1,r−1(i1)

δXι′ . Mimicking the proof of Propo-
sition 4.5, it is not difficult to see that the conclusion of the proposition holds for
the estimation of g via sampling with replacement under the condition (4.8) (here,
Z′

ι′ is the number of times that ι′ is redrawn in the sample {ι′1, . . . , ι′M}, for which
ĝ(i1)(x) can be expressed as ĝ(i1)(x) = M−1 ∑

ι′∈In−1,r−1
Z′

ι′h(x,Xσi1 (ι′))).

5. Numerical examples. In this section, we provide some numerical exam-
ples to verify the validity of our Gaussian approximation results and the proposed
bootstrap algorithms (i.e., MB-DG, MB-NDG-DC, MB-NDG-RS) for approxi-
mating the distributions of incomplete U -statistics. In particular, we examine the
statistical accuracy and computational running time of the Gaussian approxima-
tion and bootstrap algorithms in the leading example of testing for the pairwise
independence of a high-dimensional vector.

5.1. Test statistics. In this section, we discuss several nonparametric statistics
in the literature for the testing problem of the pairwise independence.

EXAMPLE 5.1 (Spearman’s ρ). Let �r be the collection of all possible per-
mutations on {1, . . . , r}. Hoeffding [20] shows that Spearman’s rank correlation
coefficient matrix ρ can be written as

ρ = n − 2

n + 1
ρ̂ + 3

n + 1
τ,

where ρ̂ = U
(3)
n (hS) is the p × p matrix-valued U -statistic associated with the

kernel

hS(X1,X2,X3) = (
hS

j,k(X1,X2,X3)
)
1≤j,k≤p

= 1

2

∑
π∈�3

sign
{
(Xπ(1) − Xπ(2))(Xπ(1) − Xπ(3))

T }
,

and τ = (τj,k)1≤j,k≤p = U
(2)
n (hK) is the p × p Kendall τ matrix with the kernel

hK(X1,X2) = sign
{
(X1 − X2)(X1 − X2)

T }
.
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Here, for a matrix A = (aj,k)1≤j,k≤p , sign{A} is the matrix of the same size as
A whose (j, k)-th element is sign(aj,k) = 1(aj,k > 0) − 1(aj,k < 0). It is seen
that the leading term in Spearman’s ρ is ρ̂, and so it is reasonable to reject the
null hypothesis (1.2) if max1≤j<k≤p |ρ̂j,k| is large. Precisely speaking, this test is
testing for a weaker hypothesis that

H ′
0 : E[

sign
(
X

(j)
1 − X

(j)
2

)
sign

(
X

(k)
1 − X

(k)
3

)] = 0 for all 1 ≤ j < k ≤ p.

EXAMPLE 5.2 (Bergsma and Dassios’ t∗). [2] propose a U -statistic t∗ =
(t∗j,k)1≤j,k≤p = U

(4)
n (hBD) of order 4 with the kernel

hBD(X1, . . . ,X4) = 1

24

∑
π∈�4

φ(Xπ(1), . . . ,Xπ(4))φ(Xπ(1), . . . ,Xπ(4))
T ,

where φ(X1, . . . ,X4) = (φj (X1, . . . ,X4))
p
j=1 and

φj (X1, . . . ,X4)

= 1
(
X

(j)
1 ∨ X

(j)
3 < X

(j)
2 ∧ X

(j)
4

) + 1
(
X

(j)
1 ∧ X

(j)
3 > X

(j)
2 ∨ X

(j)
4

)
− 1

(
X

(j)
1 ∨ X

(j)
2 < X

(j)
3 ∧ X

(j)
4

) − 1
(
X

(j)
1 ∧ X

(j)
2 > X

(j)
3 ∨ X

(j)
4

)
.

Under the assumption that (X(j),X(k)) has a bivariate distribution that is discrete
or (absolutely) continuous, or a mixture of both, [2] show that E[t∗j,k] = 0 if and

only if X(j) and X(k) are independent, and so it is reasonable to reject the null
hypothesis (1.2) if max1≤j<k≤p |t∗j,k| is large (or max1≤j<k≤p t∗j,k is large, since in
general E[t∗j,k] ≥ 0).

EXAMPLE 5.3 (Hoeffding’s D). Hoeffding [20] proposes a U -statistic D =
(Dj,k)1≤j,k≤p = U

(5)
n (hD) of order 5 with the kernel

hD(X1, . . . ,X5) = 1

120

∑
π∈�5

φ(Xπ(1), . . . ,Xπ(5))φ(Xπ(1), . . . ,Xπ(5))
T ,

where φ(X1, . . . ,X5) = (φj (X1, . . . ,X5))
p
j=1 and φj (X1, . . . ,X5) = [1(X

(j)
1 ≥

X
(j)
2 ) − 1(X

(j)
1 ≥ X

(j)
3 )][1(X

(j)
1 ≥ X

(j)
4 ) − 1(X

(j)
1 ≥ X

(j)
5 )]/4. Under the assump-

tion that the joint distribution of (X(j),X(k)) has continuous joint and marginal
densities, [21] shows that E[Dj,k] = 0 if and only if X(j) and X(k) are indepen-
dent, and so it is reasonable to reject the null hypothesis (1.2) if max1≤j<k≤p |Dj,k|
is large (or max1≤j<k≤p Dj,k is large, since in general E[Dj,k] ≥ 0). It is worth
noting that Bergsma and Dassios’ t∗ is an improvement on Hoeffding’s D since
the former can characterize the pairwise independence under weaker assumptions
on the distribution of X than the latter.
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Here, hS is nondegenerate, while hBD and hD are degenerate of order 1 under
H0. The above testing problem is motivated from recent papers by [28] and [18],
which study testing for the null hypothesis

H ′′
0 : X(1), . . . ,X(p) are mutually independent,

and develop tests based on functions of the U -statistics appearing in Exam-
ples 5.1–5.3. Note that H ′′

0 is a stronger hypothesis than H0. Specifically, [28]
consider tests statistics such as, for example, Sρ̂ = ∑

1≤j<k≤p ρ̂2
j,k − 3μρ̂ with

μρ̂ = E[ρ̂2
1,2] under H ′′

0 and show that nSρ̂/(9pζ
ρ̂
1 )

d→ N(0,1) under H ′′
0 as

(n,p) → ∞ where ζ
ρ̂
1 = Var(E[hS

1,2(X1,X2,X3] | X1]). On the other hand, [18]
consider test statistics such as, for example, Ln = max1≤j<k≤p |ρ̂j,k| and show that
L2

n/Var(ρ̂1,2) − 4 logp + log logp converges in distribution to a Gumbel distribu-
tion as n → ∞ and p = pn → ∞ under H ′′

0 provided that logp = o(n1/3) (pre-
cisely speaking, [18] rule out degenerate kernels). Importantly, compared with the
tests developed in [28] and [18] based on analytical critical values, our bootstrap-
based tests can directly detect the pairwise dependence for some pair of coordi-
nates (or E[sign(X

(j)
1 − X

(j)
2 ) sign(X

(k)
1 − X

(k)
3 )] �= 0 for some 1 ≤ j < k ≤ p for

Spearman’s ρ) rather than the nonmutual independence and also work for noncon-
tinuous random vectors (see, e.g., [16] for interesting examples of pairwise inde-
pendent but jointly dependent random variables; in particular, their examples in-
clude continuous random variables). In contrast, the derivations of the asymptotic
null distributions in [28] and [18] critically depend on the mutual independence be-
tween the coordinates of X. In addition, they both assume that X is continuously
distributed so that there are no ties in X

(j)
1 , . . . ,X

(j)
n for each coordinate j , thereby

ruling out discrete components. It is worth noting that the U -statistics appearing
Examples 5.1–5.3 are rank-based, and so if X is continuous and H ′′

0 is true, then
those U -statistics are pivotal, that is, they have known (but difficult-to-compute)
distributions, which is also a critical factor in their analysis; however, that is not
the case under the weaker hypothesis of pairwise independence and without the
continuity assumption on X [31].

In our simulation studies, we consider two test statistics: Spearman’s ρ and
Bergsma–Dassios’ t∗. Under H0 in (1.2), the leading term ρ̂ of Spearman’s ρ

is nondegenerate while Bergsma–Dassios’ t∗ is degenerate of order 1, both hav-
ing zero mean. Slightly abusing notation, we will use ρ̂ as Spearman’s ρ statistic
throughout this section. We consider tests of the forms

max
1≤j<k≤p

∣∣ρ̂′
j,k

∣∣ > c ⇒ reject H0 and max
1≤j<k≤p

∣∣t∗′
j,k

∣∣ > c ⇒ reject H0,

where ρ̂′
j,k and t∗′

j,k are incomplete versions of ρ̂j,k and t∗j,k , respectively, and their
critical values are calibrated by the bootstrap methods. In particular, for any nom-
inal size α ∈ (0,1), the value of c := c(α) can be chosen as the (1 − α)-th quantile
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of an appropriate bootstrap conditional distribution given Dn. For Spearman’s ρ,
we use U

�
n for MB-NDG-DC and MB-NDG-RS. For Bergsma–Dassios’ t∗, we

use U
�
n,B for MB-DG. In addition, we also test the performance of the partial ver-

sions of MB-NDG-DC and MB-NDG-RS (i.e., U
�
n,A; cf. Corollary 4.3) for Spear-

man’s ρ statistic when its distribution can be approximated by γA = N(0, r2
g)

(cf. Corollary 3.2).

5.2. Simulation setup. We simulate i.i.d. data from the noncentral t-distribu-
tion with 3 degrees of freedom and noncentrality parameter 2. This data generating
process implies H0. We consider n = 300,500,1000 and p = 30,50,100 (so the
number of the free parameters is d = p(p − 1)/2 = 435,1225,4950). For each
setup (n,p), we fix the bootstrap sample size B = 200 and report the empirical
rejection probabilities of the bootstrap tests averaged over 2000 simulations. For
Spearman’s ρ, we apply the MB-NDG-DC and MB-NDG-RS (full version U

�
n)

and set the computational budget parameter value N = 2n. In addition, we imple-
ment the MB-NDG-DC with the parameter values suggested in Section 4.2 (i.e.,
S1 = {1, . . . , n},L = r − 1, and K = �(n− 1)/L�), and the MB-NDG-RS with the
parameter values suggested in Section 4.3 (i.e., S1 = {1, . . . , n} and M = 2(n−1)).
For Bergsma–Dassios’ t∗, we apply the MB-DG U

�
n,B with N = n4/3. Moreover,

we also apply the partial versions of MB-NDG-DC and MB-NDG-RS U
�
n,A with

N = 4n3/2. These computational budget parameter values are chosen to minimize
the rate in the error bounds of the corresponding Gaussian and bootstrap approxi-
mations. We only report the simulation results for the randomized incomplete U -
statistic with the Bernoulli sampling since the simulation results for the sampling
with replacement case are qualitatively similar.

5.3. Simulation results. We first examine the statistical accuracy of the boot-
strap tests in terms of size for U

�
n for the incomplete versions of Spearman’s ρ

and U
�
n,B for Bergsma–Dassios’ t∗. For each nominal size α ∈ (0,1), we denote

by R̂(α) the empirical rejection probability of the null hypothesis, where the crit-
ical values are calibrated by our bootstrap methods. The uniform errors-in-size on
α ∈ [0.01,0.10] of our bootstrap tests are summarized in Table 1. We observe that
the bootstrap approximations become more accurate as n increases, and they work
quite well for small values of α, which are relevant in the testing application. Due
to the space concern, we defer the empirical size graph {(α, R̂(α)) : α ∈ (0,1)} of
the bootstrap tests for MB-NDG-DC (Spearman’s ρ), MB-NDG-RS (Spearman’s
ρ) and MB-DG (Bergsma–Dassios’ t∗) to Appendix D in the SM. In addition, we
also report the simulation results of the partial bootstrap U

�
n,A for Spearman’s ρ in

Appendix D in the SM.
We also report the empirical performance of the Gaussian approximation for the

test statistics. The P-P plots for Spearman’s ρ (i.e.,
√

nU ′
n,N versus N(0, r2
g +
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TABLE 1
Uniform error-in-size supα∈[0.01.0.10] |R̂(α) − α| of the bootstrap tests, where α is the nominal size

Spearman’s ρ Spearman’s ρ Bergsma-Dassios’ t∗
Setup (MB-NDG-DC) (MB-NDG-RS) (MB-DG)

p = 30, n = 300 0.0080 0.0110 0.0280
p = 30, n = 500 0.0065 0.0130 0.0225
p = 30, n = 1000 0.0060 0.0055 0.0095
p = 50, n = 300 0.0250 0.0135 0.0385
p = 50, n = 500 0.0105 0.0035 0.0260
p = 50, n = 1000 0.0145 0.0095 0.0235
p = 100, n = 300 0.0180 0.0125 0.0660
p = 100, n = 500 0.0135 0.0100 0.0290
p = 100, n = 1000 0.0075 0.0020 0.0170

αn
h)) and Bergsma–Dassios’ t∗ (i.e.,
√

NU ′
n,N versus N(0,
h)) are shown in

Figures 1 and 2, respectively. Similarly as the bootstrap approximations, Gaussian
approximations become more accurate as n increases.

Next, we report the computer running time of the bootstrap tests. Figure 3 dis-
plays the computer running time versus the sample size, both on the log-scale.
It is observed that the (log-)running time for the bootstrap methods scales lin-
early with the (log-)sample size. We further fit a linear model of the (log-)running
time against the (log-)sample size (with the intercept term) for each p. For Spear-
man’s ρ, the slope coefficient for p = (30,50,100) is (1.820,1.863,1.819) in
the case MB-NDG-DC, and (1.987,1.874,1.918) in the case MB-NDG-RS. In
both cases, the slope coefficients are close to the theoretic value 2. Recall that
the computational complexity for MB-NDG-DC and MB-NDG-RS is the same
as O((n + B)nd) for the suggested parameter values. For n larger than B , the
computational cost is approximately quadratic in n for each p. For Bergsma–
Dassios’ t∗, the slope coefficient for p = (30,50,100) is (1.314,1.318,1.316),
which matches very well to the exponent 4/3 of the computational budget param-
eter value N = n4/3. In addition, the running time lines are in parallel with each
other. This also makes sense because the computational costs of all the bootstrap
methods are linear in d (and thus quadratic in p) and the increase of p only affects
the intercept on the log-scale.

6. Discussions. In this paper, we have derived the Gaussian and bootstrap ap-
proximation results for incomplete U -statistics with random and sparse weights
in high dimensions. Specifically, we have considered two sampling schemes:
Bernoulli sampling and sampling with replacement, both subject to a computa-
tional budget parameter to construct the random weights. On one hand, the sparsity
in the design makes the computation of the incomplete U -statistics tractable. On
the other hand, the randomness of the weights opens the possibility for us to obtain
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FIG. 1. P-P plots for the Gaussian approximation N(0, r2
g +αn
h) of
√

nU ′
n,N for Spearman’s

ρ test statistic with the Bernoulli sampling.

unified central limit theorem (CLT) type behaviors for both nondegenerate and de-
generate kernels, thus revealing the fundamental difference between complete and
randomized incomplete U -statistics. Building upon the Gaussian approximation
results, we have developed novel bootstrap methods for incomplete U -statistics
that take computational considerations into account, and established finite sample
error bounds for the proposed bootstrap methods. Additional discussions on two
extensions (extensions to normalized U -statistics and incomplete U -statistics with
increasing orders) can be found in Section A of the SM.
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FIG. 2. P-P plots for the Gaussian approximation N(0,
h) of
√

NU ′
n,N for Bergsma–Dassios’ t∗

test statistic with the Bernoulli sampling.

FIG. 3. Computer running time of the bootstrap versus the sample size on the log-scale. Left: boot-

strap U
�
n for Spearman’s ρ with the divide-and-conquer estimation (MB-NDG-DC). Middle: boot-

strap U
�
n for Spearman’s ρ with the random sampling estimation (MB-NDG-RS). Right: bootstrap

U
�
n,B for Bergsma–Dassios’ t∗ (MB-DG).
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SUPPLEMENTARY MATERIAL

Supplement to “Randomized incomplete U -statistics in high dimensions”.
(DOI: 10.1214/18-AOS1773SUPP; .pdf). The Supplementary Material contains
the proofs and additional discussions, simulation results and applications of the
main paper.

REFERENCES

[1] ARCONES, M. A. and GINÉ, E. (1992). On the bootstrap of U and V statistics. Ann. Statist.
20 655–674. MR1165586

[2] BERGSMA, W. and DASSIOS, A. (2014). A consistent test of independence based on a sign
covariance related to Kendall’s tau. Bernoulli 20 1006–1028. MR3178526

[3] BERTAIL, P. and TRESSOU, J. (2006). Incomplete generalized U -statistics for food risk as-
sessment. Biometrics 62 66–74, 315. MR2226558

[4] BICKEL, P. J. and FREEDMAN, D. A. (1981). Some asymptotic theory for the bootstrap. Ann.
Statist. 9 1196–1217. MR0630103

[5] BLOM, G. (1976). Some properties of incomplete U -statistics. Biometrika 63 573–580.
MR0474582

[6] BRETAGNOLLE, J. (1983). Lois limites du bootstrap de certaines fonctionnelles. Ann. Inst. H.
Poincaré Sect. B (N.S.) 19 281–296. MR0725561

[7] BROWN, B. M. and KILDEA, D. G. (1978). Reduced U -statistics and the Hodges–Lehmann
estimator. Ann. Statist. 6 828–835. MR0491556

[8] CHEN, X. (2018). Gaussian and bootstrap approximations for high-dimensional U-statistics
and their applications. Ann. Statist. 46 642–678. MR3782380

[9] CHEN, X. and KATO, K. (2017). Jackknife multiplier bootstrap: Finite sample approximations
to the U -process supremum with applications. Available at arXiv:1708.02705.

[10] CHEN, X. and KATO, K. (2019). Supplement to “Randomized incomplete U -statistics in high
dimensions.” DOI:10.1214/18-AOS1773SUPP.

[11] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2013). Gaussian approximations
and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann.
Statist. 41 2786–2819. MR3161448

[12] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2017). Central limit theorems and
bootstrap in high dimensions. Ann. Probab. 45 2309–2352. MR3693963

[13] CLÉMENÇON, S., COLIN, I. and BELLET, A. (2016). Scaling-up empirical risk minimiza-
tion: Optimization of incomplete U -statistics. J. Mach. Learn. Res. 17 Paper No. 76, 36.
MR3517099

[14] DEHLING, H. and MIKOSCH, T. (1994). Random quadratic forms and the bootstrap for U -
statistics. J. Multivariate Anal. 51 392–413. MR1321305

[15] EMBRECHTS, P., LINDSKOG, F. and MCNEIL, A. (2003). Modelling dependence with copu-
las and applications to risk management. In Handbook of Heavy Tailed Distributions in
Finance (S. T. Rachev, ed.) 8. North-Holland, Amsterdam.

[16] GEISSER, S. and MANTEL, N. (1962). Pairwise independence of jointly dependent variables.
Ann. Math. Statist. 33 290–291. MR0137188

[17] GU, Q., CAO, Y., NING, Y. and LIU, H. (2015). Local and global inference for high dimen-
sional nonparanormal graphical models. Available at arXiv:1502.02347.

[18] HAN, F., CHEN, S. and LIU, H. (2017). Distribution-free tests of independence in high dimen-
sions. Biometrika 104 813–828. MR3737306

[19] HAN, F. and QIAN, T. (2016). Asymptotics for asymmetric weighted U-statistics: Central limit
theorem and bootstrap under data heterogeneity. Preprint.

https://doi.org/10.1214/18-AOS1773SUPP
http://www.ams.org/mathscinet-getitem?mr=1165586
http://www.ams.org/mathscinet-getitem?mr=3178526
http://www.ams.org/mathscinet-getitem?mr=2226558
http://www.ams.org/mathscinet-getitem?mr=0630103
http://www.ams.org/mathscinet-getitem?mr=0474582
http://www.ams.org/mathscinet-getitem?mr=0725561
http://www.ams.org/mathscinet-getitem?mr=0491556
http://www.ams.org/mathscinet-getitem?mr=3782380
http://arxiv.org/abs/arXiv:1708.02705
https://doi.org/10.1214/18-AOS1773SUPP
http://www.ams.org/mathscinet-getitem?mr=3161448
http://www.ams.org/mathscinet-getitem?mr=3693963
http://www.ams.org/mathscinet-getitem?mr=3517099
http://www.ams.org/mathscinet-getitem?mr=1321305
http://www.ams.org/mathscinet-getitem?mr=0137188
http://arxiv.org/abs/arXiv:1502.02347
http://www.ams.org/mathscinet-getitem?mr=3737306


RANDOMIZED INCOMPLETE U -STATISTICS IN HIGH DIMENSIONS 3155

[20] HOEFFDING, W. (1948). A class of statistics with asymptotically normal distribution. Ann.
Math. Statistics 19 293–325. MR0026294

[21] HOEFFDING, W. (1948). A non-parametric test of independence. Ann. Math. Statistics 19 546–
557. MR0029139

[22] HSING, T. and WU, W. B. (2004). On weighted U -statistics for stationary processes. Ann.
Probab. 32 1600–1631. MR2060311

[23] HUŠKOVÁ, M. and JANSSEN, P. (1993). Consistency of the generalized bootstrap for degen-
erate U -statistics. Ann. Statist. 21 1811–1823. MR1245770

[24] HUŠKOVÁ, M. and JANSSEN, P. (1993). Generalized bootstrap for studentized U -statistics:
A rank statistic approach. Statist. Probab. Lett. 16 225–233. MR1208512

[25] JANSON, S. (1984). The asymptotic distributions of incomplete U -statistics. Z. Wahrsch. Verw.
Gebiete 66 495–505. MR0753810

[26] KLEINER, A., TALWALKAR, A., SARKAR, P. and JORDAN, M. I. (2014). A scalable bootstrap
for massive data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 795–816. MR3248677

[27] LEE, A. J. (1990). U -Statistics. Theory and Practice. Statistics: Textbooks and Monographs
110. Dekker, New York. MR1075417

[28] LEUNG, D. and DRTON, M. (2018). Testing independence in high dimensions with sums of
rank correlations. Ann. Statist. 46 280–307. MR3766953

[29] MAJOR, P. (1994). Asymptotic distributions for weighted U -statistics. Ann. Probab. 22 1514–
1535. MR1303652

[30] MENTCH, L. and HOOKER, G. (2016). Quantifying uncertainty in random forests via con-
fidence intervals and hypothesis tests. J. Mach. Learn. Res. 17 Paper No. 26, 41.
MR3491120

[31] NANDY, P., WEIHS, L. and DRTON, M. (2016). Large-sample theory for the Bergsma–Dassios
sign covariance. Electron. J. Stat. 10 2287–2311. MR3541972

[32] O’NEIL, K. A. and REDNER, R. A. (1993). Asymptotic distributions of weighted U -statistics
of degree 2. Ann. Probab. 21 1159–1169. MR1217584

[33] RIFI, M. and UTZET, F. (2000). On the asymptotic behavior of weighted U -statistics. J. Theo-
ret. Probab. 13 141–167. MR1744988

[34] RUBIN, H. and VITALE, R. A. (1980). Asymptotic distribution of symmetric statistics. Ann.
Statist. 8 165–170. MR0557561

[35] SHAPIRO, C. P. and HUBERT, L. (1979). Asymptotic normality of permutation statistics de-
rived from weighted sums of bivariate functions. Ann. Statist. 7 788–794. MR0532242

[36] SZÉKELY, G. J., RIZZO, M. L. and BAKIROV, N. K. (2007). Measuring and testing depen-
dence by correlation of distances. Ann. Statist. 35 2769–2794. MR2382665

[37] VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge. MR1652247

[38] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical
Processes. With Applications to Statistics. Springer Series in Statistics. Springer, New
York. MR1385671

[39] WANG, Q. and JING, B.-Y. (2004). Weighted bootstrap for U -statistics. J. Multivariate Anal.
91 177–198. MR2087842

[40] YAO, S., ZHANG, X. and SHAO, X. (2018). Testing mutual independence in high dimension
via distance covariance. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 455–480. MR3798874

[41] ZHANG, Y., DUCHI, J. and WAINWRIGHT, M. (2015). Divide and conquer kernel ridge re-
gression: A distributed algorithm with minimax optimal rates. J. Mach. Learn. Res. 16
3299–3340. MR3450540

http://www.ams.org/mathscinet-getitem?mr=0026294
http://www.ams.org/mathscinet-getitem?mr=0029139
http://www.ams.org/mathscinet-getitem?mr=2060311
http://www.ams.org/mathscinet-getitem?mr=1245770
http://www.ams.org/mathscinet-getitem?mr=1208512
http://www.ams.org/mathscinet-getitem?mr=0753810
http://www.ams.org/mathscinet-getitem?mr=3248677
http://www.ams.org/mathscinet-getitem?mr=1075417
http://www.ams.org/mathscinet-getitem?mr=3766953
http://www.ams.org/mathscinet-getitem?mr=1303652
http://www.ams.org/mathscinet-getitem?mr=3491120
http://www.ams.org/mathscinet-getitem?mr=3541972
http://www.ams.org/mathscinet-getitem?mr=1217584
http://www.ams.org/mathscinet-getitem?mr=1744988
http://www.ams.org/mathscinet-getitem?mr=0557561
http://www.ams.org/mathscinet-getitem?mr=0532242
http://www.ams.org/mathscinet-getitem?mr=2382665
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2087842
http://www.ams.org/mathscinet-getitem?mr=3798874
http://www.ams.org/mathscinet-getitem?mr=3450540


3156 X. CHEN AND K. KATO

DEPARTMENT OF STATISTICS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

725 S. WRIGHT STREET

CHAMPAIGN, ILLINOIS 61874
USA
E-MAIL: xhchen@illinois.edu

DEPARTMENT OF STATISTICAL SCIENCE

CORNELL UNIVERSITY

1194 COMSTOCK HALL

ITHACA, NEW YORK 14853
USA
E-MAIL: kk976@cornell.edu

mailto:xhchen@illinois.edu
mailto:kk976@cornell.edu

	Introduction
	Existing literature
	Organization
	Notation

	Randomized incomplete U-statistics
	Bernoulli sampling
	Sampling with replacement

	Gaussian approximations
	Bootstrap approximations
	Generic bootstraps for incomplete U-statistics
	Divide-and-conquer estimation
	Random sampling estimation

	Numerical examples
	Test statistics
	Simulation setup
	Simulation results

	Discussions
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

