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EIGENVALUE DISTRIBUTIONS OF VARIANCE COMPONENTS
ESTIMATORS IN HIGH-DIMENSIONAL

RANDOM EFFECTS MODELS

BY ZHOU FAN1 AND IAIN M. JOHNSTONE2

Yale University and Stanford University

We study the spectra of MANOVA estimators for variance component
covariance matrices in multivariate random effects models. When the di-
mensionality of the observations is large and comparable to the number of
realizations of each random effect, we show that the empirical spectra of
such estimators are well approximated by deterministic laws. The Stieltjes
transforms of these laws are characterized by systems of fixed-point equa-
tions, which are numerically solvable by a simple iterative procedure. Our
proof uses operator-valued free probability theory, and we establish a general
asymptotic freeness result for families of rectangular orthogonally invariant
random matrices, which is of independent interest. Our work is motivated in
part by the estimation of components of covariance between multiple pheno-
typic traits in quantitative genetics, and we specialize our results to common
experimental designs that arise in this application.

1. Introduction. High-dimensional data exhibit phenomena unexpected from
experience with a fixed number of variables. A well-studied example arises with n

independent and identically distributed (i.i.d.) samples from a p-variate distribu-
tion with mean μ and covariance �. If p increases proportionately with n, then
the eigenvalues of the sample covariance matrix are more dispersed than their
population counterparts. Notably, this extra spreading, described by the celebrated
Marcenko–Pastur equation (Marčenko and Pastur (1967), Silverstein (1995)), does
not disappear in the limit of large p and n. For example, if � = Id and p/n → γ <

1, then the limiting Marcenko–Pastur law is supported on [(1−√
γ )2, (1+√

γ )2].
This has many implications for statistical inference concerning � in high dimen-
sions, which we discuss below.

The i.i.d. assumption, however, connotes a single level of variation in the data.
In this paper, we begin study of high-dimensional data exhibiting several lev-
els of variation, or random effects. In a simple example with two levels, the p-

Received November 2017; revised August 2018.
1Supported by a Hertz Foundation Fellowship and NDSEG Fellowship (DoD, AFOSR 32 CFR

168a).
2Supported in part by NIH Grant R01 EB001988 and NSF Grant DMS-1407813.
MSC2010 subject classifications. 62E20.
Key words and phrases. Random matrix theory, free probability, deterministic equivalents, co-

variance estimation.

2855

http://www.imstat.org/aos/
https://doi.org/10.1214/18-AOS1767
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2856 Z. FAN AND I. M. JOHNSTONE

dimensional observations may take the form

(1.1) Yi,j = μ + αi + εi,j .

At the first level, there are i = 1, . . . , I groups with i.i.d. random effects αi ∼
(0,�1). The j = 1, . . . , Ji observations within group i have independent second
level effects εi,j ∼ (0,�2), but as they share a common first level effect αi , they
are (perhaps strongly) correlated. For example, Yang et al. (2002) discusses mul-
tivariate examination response data for n = ∑

Ji ∼ 50,000 students in I ∼ 2500
schools.

The goal of this paper is to describe analogs of the eigenvalue spreading phe-
nomenon for the traditional (MANOVA) estimators of the covariance matrices �1,
�2 and their multilevel extensions, Theorem 1.2. For k = 2 levels, the Marcenko–
Pastur implicit equation is replaced by a system of 2k = 4 equations. We show that
this system can be solved numerically by a natural iterative scheme, Theorem 1.5.
Our proof assumes that each random effect is Gaussian, although this assumption
is likely inessential for the result, as discussed in Remark 1.6 below.

More generally, we study the multivariate mixed effects model

(1.2) Y = Xβ +
k∑

r=1

Urαr, αr ∼N (0, IdIr ⊗�r),

the analogue of the univariate model studied in Rao (1971). Here, Y ∈ R
n×p rep-

resents n observations of p traits, modeled as a sum of fixed effects Xβ and k

random effects U1α1, . . . ,Ukαk . (We may incorporate a residual error term ε by
allowing Uk = Id and αk = ε.) The matrices X ∈R

n×m and Ur ∈ R
n×Ir are known

design and incidence matrices. Each αr ∈ R
Ir×p is an unobserved random matrix

with i.i.d. rows distributed as N (0,�r), representing Ir independent realizations
of the r th effect. The regression coefficients β ∈ R

m×p and variance components
�r ∈ R

p×p are unknown parameters.
We study estimators of �r that are quadratic in Y and invariant to β , that is,

estimators of the form

(1.3) �̂r = YT BrY (BrX = 0)

for symmetric matrices Br ∈ R
n×n. In particular, model (1.2) encompasses nested

and crossed classification designs, and (1.3) encompasses MANOVA estimators
and MINQUEs. We discuss examples in Section 2 and Appendix A. Our main
result shows that in a high-dimensional asymptotic regime, the spectra of these
estimators are well approximated by deterministic laws, characterized by a certain
generalization of the Marcenko–Pastur equation.
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1.1. Motivation from evolutionary genetics. A primary motivation for our
work comes from genetics, where it is common to decompose the population vari-
ance of phenotypic traits into its constituent components, for example, correspond-
ing to additive effects of genetic alleles, residual nonadditive genetic effects and
environmental effects (Lynch and Walsh (1998)). If natural or artificial selection
acts on a trait, then genetics theory indicates that the response to selection is gov-
erned by this first additive genetic component of variance. More precisely, if an
episode of selection changes the mean trait value by S, then the change in mean
trait value �μ inherited by the next generation is predicted by the “breeders’ equa-
tion”

�μ = σ 2
A

(
σ 2)−1

S,

where σ 2
A is the additive genetic component of the total variance σ 2 (Lush (1937)).

From a multivariate perspective, selection acting on one trait may induce an
evolutionary response in genetically correlated traits (Blows (2007), Lande and
Arnold (1983), Phillips and Arnold (1989)). Most of this correlation is likely due
to pleiotropy, the influence of a single gene on multiple traits, and there is evi-
dence that pleiotropic effects are widespread across the phenome (Barton (1990),
McGuigan et al. (2014), Walsh and Blows (2009)). If selection changes the mean
values of p traits by S ∈R

p , then the changes inherited by the next generation are
predicted by

(1.4) �μ = GP −1S,

where P ∈ R
p×p is the total phenotypic trait covariance and G ∈ R

p×p is its ad-
ditive genetic component (Lande (1979), Lande and Arnold (1983)).

Microarrays have enabled the measurements of thousands of quantitative phe-
notypes in a single study, providing an opportunity to better understand the extent
of pleiotropy and the effective dimensionality of possible evolutionary response in
the entire phenome of an organism (Blows et al. (2015), McGuigan et al. (2014)).
In these high-dimensional settings, it becomes natural to interpret the breeders’
equation (1.4) from a principal components perspective, where response to selec-
tion is understood via the principal eigenvectors of G and the alignment of the
“selection gradient” P −1S with these eigenvectors (Blows and McGuigan (2015),
Hine, McGuigan and Blows (2014), Kirkpatrick (2009), Walsh and Blows (2009)).

A central question is then how to perform inference on the spectral structure
of G, or of more general components of covariance, in high dimensions from
a limited sample of individuals. Linear mixed models (1.2) are commonly used
to estimate G and other components of variance, ranging from classical studies
where U1, . . . ,Uk encode known kinship between samples (Fisher (1918), Wright
(1935)) to modern genome-wide association studies where U1, . . . ,Uk encode
genotype information (Loh et al. (2015), Yang et al. (2011)). Recent work has
explored in simulation the behavior of principal components analyses for such
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estimates (Blows and McGuigan (2015)). We initiate here a theoretical study of
these questions, as a step toward developing new inferential procedures for this
application.

1.2. The Marcenko–Pastur equation and applications. As an analogy, we re-
view the Marcenko–Pastur equation describing sample eigenvalue dispersion in the
setting of i.i.d. samples, along with a few of its implications for statistical inference
in high dimensions. We refer the interested reader to Paul and Aue (2014) and the
recent textbook (Yao, Zheng and Bai (2015)) for additional statistical applications.

Given Y ∈ Rn×p consisting of n i.i.d. observations with distribution N (0,�),
consider the sample covariance matrix �̂ = n−1YT Y . Let μ

�̂
= p−1 ∑p

i=1 δ
λi(�̂)

denote the empirical spectral measure of �̂.

THEOREM 1.1 (Marčenko and Pastur (1967), Silverstein (1995)). Suppose
n,p → ∞ such that c < p/n < C and ‖�‖ < C for some constants C,c > 0. Then
for each z ∈ C

+, there exists a unique value m0(z) ∈ {m ∈ C : −(1 − p/n)z−1 +
(p/n)m ∈ C

+} satisfying

(1.5) m0(z) = 1

p
Tr

[((
1 − p

n
− p

n
zm0(z)

)
� − z Idp

)−1]
,

and m0 defines the Stieltjes transform of a (n,p,�-dependent) probability mea-
sure μ0 on R such that μ

�̂
− μ0 → 0 weakly almost surely.

Theorem 1.1 is usually stated assuming convergence of p/n to γ ∈ (0,∞) and
of the spectrum of � to a weak limit μ∗, in which case μ

�̂
converges to a limit

μ0 depending on γ and μ∗. The above statement is instead in a “deterministic
equivalent” form Couillet, Debbah and Silverstein (2011), Hachem, Loubaton and
Najim (2007), where μ0 is defined by the finite-sample quantities p/n and �. We
discuss this further in Remark 1.3.

The Marcenko–Pastur equation has many implications for statistical inference
regarding �. One implication is in estimating the principal “signal” eigenvalues
and eigenvectors of �. Sample eigenvalue dispersion leads to an upward bias
in the sample locations of principal eigenvalues, and a quantitative description
of this bias and of the error of the principal eigenvectors is closely connected to
the Marcenko–Pastur equation (Bai and Yao (2012), Baik, Ben Arous and Péché
(2005), Baik and Silverstein (2006), Benaych-Georges and Nadakuditi (2011),
Paul (2007)). These results allow for consistent and debiased estimation of the
principal eigenvalues and of low-dimensional projections of the eigenvectors, even
as n,p → ∞ proportionately.

A second application is in developing shrinkage estimates for the entire spec-
trum of � (Bai, Chen and Yao (2010), El Karoui (2008), Mestre (2008), Rao et al.
(2008)) and for � itself under various matrix losses (Ledoit and Péché (2011),
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Ledoit and Wolf (2012)). Approaches for the former use various strategies to “in-
vert” the mapping from � to μ0 in the Marcenko–Pastur equation. For the latter,
the Marcenko–Pastur equation plays a role in quantifying the risks of shrinkage
estimates and in deriving the forms of optimal shrinkage procedures.

A third line of work pertains to testing sphericity or other spectral hypothe-
ses regarding � (Dobriban (2017), Johnstone (2001), Onatski, Moreira and Hallin
(2014)). Popular tests have been proposed based on the largest sample eigenvalue
(Johnstone (2001), Soshnikov (2002)) or linear spectral statistics (Bai and Silver-
stein (2004)). The null distributions in such tests are related to the fluctuations
of the empirical spectral measure around the Marcenko–Pastur law in local and
global regimes.

Similar inferential questions are of interest pertaining to individual components
of variance in genetics applications, but inferential procedures are less well de-
veloped in this setting. Developing such procedures is an interesting avenue for
future work, and it will likely require an understanding of the bulk spectral law
which is the focus of our current paper. Some results in this direction in the partic-
ular case of isotropic population variance component matrices are reported in Fan
and Johnstone (2017), Fan, Johnstone and Sun (2018).

1.3. Main result. We consider asymptotics as n, I1, . . . , Ik grow proportion-
ately with p. For classification designs, this means that groups and subgroups of
individuals remain bounded in size. This regime is relevant for experiments that
estimate components of phenotypic covariance for reasons both of experimental
practicality and of optimal design (Robertson (1959a, 1959b)).

Consider �̂ = YT BY for symmetric B ∈ R
n×n satisfying BX = 0. Define I+ =∑k

r=1 Ir ,

U = (√
I1U1 | √

I2U2 | · · · | √
IkUk

) ∈ R
n×I+, F = UT BU ∈R

I+×I+ .

For any F ∈C
I+×I+ , let Trr F denote the trace of its (r, r) block in the k × k block

decomposition corresponding to C
I+ = C

I1 ⊕ · · · ⊕C
Ik . For a = (a1, . . . , ak) and

b = (b1, . . . , bk), define

D(a) = diag(a1 IdI1, . . . , ak IdIk
) ∈ C

I+×I+, b · � = b1�1 + · · · + bk�k.

THEOREM 1.2. Suppose n,p, I1, . . . , Ik → ∞ such that c < p/n < C, c <

Ir/n < C, n‖B‖ < C, ‖�r‖ < C, and ‖Ur‖ < C for each r = 1, . . . , k and some
constants C,c > 0. Then for each z ∈ C

+, there exist unique z-dependent values
a1, . . . , ak ∈C

+ ∪ {0} and b1, . . . , bk ∈ C+ that satisfy, for r = 1, . . . , k, the equa-
tions

ar = −I−1
r Tr

(
(z Idp +b · �)−1�r

)
,(1.6)

br = −I−1
r Trr

([
IdI+ +FD(a)

]−1
F

)
.(1.7)
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The function m0 :C+ →C
+ given by

(1.8) m0(z) = −p−1 Tr
(
(z Idp +b · �)−1)

defines the Stieltjes transform of a probability measure μ0 on R such that μ
�̂

−
μ0 → 0 weakly almost surely.

REMARK 1.3. Here, μ0 is a “deterministic equivalent” law defined directly
by �1, . . . ,�k and the model design for finite n and p. An asymptotic statement
where μ0 is a fixed limit would require not only that the spectral measures of
�1, . . . ,�k individually converge, but also that they convergence in a suitable joint
sense, for example, convergence of p−1 TrQ(�1, . . . ,�k) for each fixed polyno-
mial Q. A similar requirement would be needed for convergence of polynomials
in (UT

r BUs : r, s = 1, . . . , k), which depends on the sequence of model designs as
n,p → ∞. The deterministic equivalent form given above is simpler and arguably
closer to applications in finite samples.

REMARK 1.4. When Y has n i.i.d. rows, the sample covariance �̂ = n−1YT Y

corresponds to the special case of (1.2) with k = 1, U1 = Id, �1 = � and B =
n−1 Idn. In this case, equations (1.6)–(1.8) reduce to

a1 = −n−1 Tr
(
(z Idp +b1�)−1�

)
, b1 = −(1 + a1)

−1,(1.9)

m0(z) = −p−1 Tr
(
(z Idp +b1�)−1)

,(1.10)

which imply (by the identity A−1 − (A + B)−1 = A−1B(A + B)−1)

−1 − 1

b1
= a1 = − z

nb1
Tr

(
(z Idp)−1 − (z Idp +b1�)−1)

= − p

nb1
+ pzm0(z)

nb1
.

Hence b1 = −1 + (p/n) + (p/n)zm0(z). Together with the above expression for
m0(z), this recovers the Marcenko–Pastur equation (1.5).

In most cases, (1.6)–(1.8) do not admit a closed-form solution in a1, . . . , ak ,
b1, . . . , bk , and m0(z). However, these equations may be solved numerically.

THEOREM 1.5. For each z ∈ C
+, the values ar and br in Theorem 1.2

are the limits, as t → ∞, of the iterative procedure which arbitrarily initializes
b

(0)
1 , . . . , b

(0)
k ∈ C+ and iteratively computes (for t = 0,1,2, . . .) a

(t)
r from b

(t)
r us-

ing (1.6) and b
(t+1)
r from a

(t)
r using (1.7).

By the Stieltjes inversion formula, π−1�m0(x + iε) is the density of the con-
volution μ0 � Cauchy(0, ε). This may be computed by the above procedure to
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numerically approximate μ0; this is depicted in Figure 1, and a software imple-
mentation is available on the first author’s website. We leave to future work the
development of faster algorithms, such as in Dobriban (2015), for solving these
fixed-point equations.

Theorems 1.2 and 1.5 are inspired by the study of similar models for wireless
communication channels. In particular, Couillet, Debbah and Silverstein (2011)
establishes analogous results for the matrix

S +
k∑

r=1

�1/2
r G∗

rBrGr�
1/2
r ,

where Br ∈ C
nr×nr are positive semidefinite and diagonal. Earlier work of Zhang

((2006), Theorem 1.2.1) considers k = 1, S = 0, and arbitrary Hermitian B1. For
S = 0, this model is encompassed by our Theorem 4.1; however, we remark that
these works do not require Gaussian Gr . In Dupuy and Loubaton (2011) and the
earlier work of Moustakas and Simon (2007) using the replica method, the authors
study the model

k∑
r,s=1

�1/2
r G∗

r T
1/2
r T 1/2

s Gs�
1/2
s ,

where �r,Tr are positive semidefinite and Gr are complex Gaussian. This model
is similar to ours, and we recover their result in Theorem 4.1 using a different
proof. We note that Dupuy and Loubaton (2011) proves only mean convergence,
whereas we also control the variance and prove convergence a.s. We use a free
probability approach, which may be easier to generalize to other models.

1.4. Overview of proof. We use the tools of operator-valued free probabil-
ity theory, in particular rectangular probability spaces and their connection to
operator-valued freeness developed in Benaych-Georges (2009) and the free de-
terministic equivalents approach of Speicher and Vargas (2012).

Let us write αr in (1.2) as αr = Gr�
1/2
r , where Gr ∈ R

Ir×p has i.i.d. N (0,1)

entries. Then �̂ = YT BY takes the form

�̂ =
k∑

r,s=1

�1/2
r GT

r UT
r BUsGs�

1/2
s .

We observe the following: If O0,O1, . . . ,Ok ∈ R
p×p and Ok+r ∈ R

Ir×Ir for each
r = 1, . . . , k are real orthogonal matrices, then by rotational invariance of Gr , μ

�̂

remains invariant in law under the transformations

�1/2
r → Hr := OT

r �1/2
r O0, UT

r BUs → Frs := OT
k+rU

T
r BUsOk+s .
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Hence we may equivalently consider the matrix

(1.11) W =
k∑

r,s=1

HT
r GT

r FrsGsHs

for O0, . . . ,O2k independent and Haar-distributed. The families {Frs}, {Gr}, {Hr}
are independent of each other, with each family satisfying a certain joint orthogo-
nal invariance in law (formalized in Section 3).

Following Benaych-Georges (2009), we embed the matrices {Frs}, {Gr}, {Hr}
into a square matrix space C

N×N . We then consider deterministic elements {frs},
{gr}, {hr} in a von Neumann algebra A with tracial state τ , such that these ele-
ments model the embedded matrices, and {frs}, {gr} and {hr} are free with amal-
gamation over a diagonal subalgebra of projections in A. We follow the determin-
istic equivalents approach of Speicher and Vargas (2012) and allow (A, τ ) and
{frs}, {gr}, {hr} to also depend on n and p.

Our proof of Theorem 1.2 consists of two steps:

1. For independent, jointly orthogonally invariant families of random matrices,
we formalize the notion of a free deterministic equivalent and prove an asymptotic
freeness result establishing validity of this approximation.

2. For our specific model of interest, we show that the Stieltjes transform of
w := ∑

r,s h∗
r g

∗
r frsgshs in the free model satisfies equations (1.6)–(1.8).

We establish separately the existence and uniqueness of the fixed point to (1.6)–
(1.7) using a contractive mapping argument. Then the Stieltjes transform of w in
step 2 is uniquely determined by (1.6)–(1.8), which implies by step 1 that (1.6)–
(1.8) asymptotically determine the Stieltjes transform of W .

An advantage of this approach is that the approximation is separated from the
computation of the approximating measure μ0. The approximation in step 1 is
general—it may be applied to other matrix models such as the above, and it fol-
lows a line of work establishing asymptotic freeness of random matrices (Benaych-
Georges (2009), Collins (2003), Collins and Śniady (2006), Dykema (1993), Hiai
and Petz (2000), Speicher and Vargas (2012), Voiculescu (1991, 1998)). In the
computation in step 2, the Stieltjes transform of w is exactly (rather than approxi-
mately) described by (1.6)–(1.8). The computation is thus entirely algebraic, using
free cumulant tools of Nica, Shlyakhtenko and Speicher (2002), Speicher and Var-
gas (2012), and it does not require analytic approximation arguments or bounds.

REMARK 1.6. Our proof uses rotational invariance of {Gr}, which follows
from our Gaussian assumption on {αr}. Rotational invariance is a natural set-
ting that leads to asymptotic freeness (Collins (2003), Collins and Śniady (2006),
Hiai and Petz (2000)), but freeness may arise in other contexts; see, for example,
Dykema (1993) for an early example in non-Gaussian–Wigner models. We believe
that with additional work, our main result may be extended to general distributions
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of entries of {Gr} under mild moment assumptions, but we will not pursue this in
the current paper.

1.5. Outline of paper. Section 2 specializes Theorem 1.2 to the one-way de-
sign; other specializations are discussed in Appendix A. Section 3 reviews free
probability theory and states the asymptotic freeness result. Section 4 performs the
computation in the free model. The remainder of the proof and other details are
deferred to the supplementary Appendices (Fan and Johnstone (2019)).

Notation. ‖ · ‖ denotes the l2 norm for vectors and the l2 → l2 opera-
tor norm for matrices. MT , M∗ and TrM = ∑

i Mii denote the transpose,
conjugate-transpose and trace of M . Idn denotes the identity matrix of size n.
diag(A1, . . . ,Ak) denotes the block-diagonal matrix with blocks A1, . . . ,Ak .
C

+ = {z ∈ C : �z > 0} and C+ = {z ∈ C : �z ≥ 0} denote the open and closed
half-planes.

For a ∗-algebra A and elements (ai)i∈I of A, 〈ai : i ∈ I〉 denotes the sub-∗-
algebra generated by (ai)i∈I . We write 〈{ai}〉 if the index set I is clear from con-
text. If A is a von Neumann algebra, 〈{ai}〉W ∗ denotes the generated von Neumann
subalgebra, that is, the ultraweak closure of 〈{ai}〉, and ‖ai‖ denotes the C∗-norm.

2. Specialization to one-way classification. The form (1.3) encompasses
MANOVA estimators, which solve for �1, . . . ,�k in the system of equations
YT MrY = E[YT MrY ] for a certain choice of symmetric matrices M1, . . . ,Mk ∈
R

n×n (Searle, Casella and McCulloch (2006), Chapter 5.2). From (1.2), the iden-
tity E[αT

s Mαs] = (TrM)�s for any matrix M , and independence of αr , we get

E
[
YT MrY

] =
k∑

s=1

E
[
αT

s UT
s MrUsαs

] =
k∑

s=1

Tr
(
UT

s MrUs

)
�s.

Hence each MANOVA estimate �̂r takes the form (1.3), where Br is a linear
combination of M1, . . . ,Mk .

In classification designs, standard choices for M1, . . . ,Mk project onto sub-
spaces of Rn such that each YT MrY corresponds to a “sum-of-squares.” We may
simplify (1.7) in such settings by analytically computing the matrix inverse and
block trace. We discuss here the one-way (balanced) design as an example. Ap-
pendix A provides details in the context of a more general discussion, first of the
unbalanced one-way design, and second of balanced crossed and nested designs.
As specific examples of the second class, formulas are given for nested models,
Section A.2.1 and for the replicated crossed two-way layout, Section A.2.2.

For more general designs and models, M1, . . . ,Mk may be ad hoc, although
Theorem 1.2 still applies to such estimators. The theorem also applies to MIN-
QUEs (LaMotte (1973), Rao (1972)) in these settings, which prescribe a specific
form for B ∈ R

n×n based on a variance minimization criterion.
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In the one-way design, {Yi,j ∈ R
p : 1 ≤ i ≤ I,1 ≤ j ≤ Ji} represent obser-

vations of p traits across n = ∑I
i=1 Ji samples, belonging to I groups of sizes

J1, . . . , JI . The balanced case corresponds to J1 = · · · = JI = J . The data are
modeled as (1.1) where μ ∈ R

p is a vector of population mean values, αi ∼
N (0,�1) are i.i.d. random group effects, and εi,j ∼ N (0,�2) are i.i.d. residual
errors. In quantitative genetics, this is the model for the half-sib experimental de-
sign and also for the standard twin study, where groups correspond to half-siblings
or twin pairs (Lynch and Walsh (1998)).

Define the sums-of-squares

(2.1) SS1 = J

I∑
i=1

(Ȳi − Ȳ )(Ȳi − Ȳ )T , SS2 =
I∑

i=1

J∑
j=1

(Yi,j − Ȳi)(Yi,j − Ȳi)
T ,

where Ȳi ∈ R
p and Ȳ ∈ R

p denote the mean in the ith group and of all samples,
respectively. The standard MANOVA estimators are given (Searle, Casella and
McCulloch (2006), Chapter 3.6) by

(2.2) �̂1 = 1

J

(
1

I − 1
SS1 − 1

n − I
SS2

)
, �̂2 = 1

n − I
SS2.

Theorem 1.2 yields the following corollary.

COROLLARY 2.1. Assume p,n, I → ∞ such that c < p/n < C, c < J < C,
‖�1‖ < C and ‖�2‖ < C for some C,c > 0. Denote I1 = I and I2 = n. Then:

(a) For �̂1, μ
�̂1

− μ0 → 0 weakly a.s. where μ0 has Stieltjes transform m0(z)

determined by

as = −I−1
s Tr

(
(z Id+b1�1 + b2�2)

−1�s

)
for s = 1,2,

b1 = −(1 + a1 + a2)
−1, b2 = J−1(J − 1)(J − 1 − a2)

−1 + J−1b1,

m0(z) = −p−1 Tr
(
(z Id+b1�1 + b2�2)

−1)
.

(b) For �̂2, μ
�̂2

− μ0 → 0 weakly a.s. where μ0 has Stieltjes transform m0(z)

determined by

a2 = −n−1 Tr
(
(z Id+b2�2)

−1�2
)
, b2 = −(J − 1)(J − 1 + Ja2)

−1,

m0(z) = −p−1 Tr
(
(z Id+b2�2)

−1)
.

For each z ∈ C
+, these equations have a unique solution with as ∈ C

+ ∪ {0},
bs ∈ C+ and m0(z) ∈ C

+, which may be computed as in Theorem 1.5. Figure 1
displays the simulated spectrum of �̂1 and the result of this computation (for the
density of μ0 � Cauchy(0,10−4)) in various settings.

For �̂2 (but not �̂1), as in Remark 1.4, the three equations of Corollary 2.1(b)
may be simplified to the single Marcenko–Pastur equation for population covari-
ance �2. This also follows directly from the observation that �̂2 is equal in law
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FIG. 1. Simulated spectrum of �̂1 for the balanced one-way classification model, p = 500, with
theoretical predictions of Corollary 2.1 overlaid in black. Left: 400 groups of size 4. Right: 100
groups of size 8. Top: �1 = 0, �2 = Id. Bottom: �1 with equally spaced eigenvalues in [0,0.3],
�2 = Id.

to εT πε where ε ∈ R
n×p is the matrix of residual errors and π is a normalized

projection onto a space of dimensionality n− I . This phenomenon holds generally
for the MANOVA estimate of the residual error covariance in usual classification
designs.

3. Operator-valued free probability.

3.1. Background. We review definitions from operator-valued free probability
theory and its application to rectangular random matrices, drawn from Benaych-
Georges (2009), Voiculescu (1995), Voiculescu, Dykema and Nica (1992).

DEFINITION. A noncommutative probability space (A, τ ) is a unital ∗-
algebra A over C and a ∗-linear functional τ : A→C called the trace that satisfies,
for all a, b ∈ A and for 1A ∈ A the multiplicative unit

τ(1A) = 1, τ (ab) = τ(ba).
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In this paper, A will always be a von Neumann algebra having norm ‖·‖, and τ a
positive, faithful and normal trace. (These definitions are reviewed in Appendix D.)
In particular, τ will be norm-continuous with |τ(a)| ≤ ‖a‖.

Following Benaych-Georges (2009), we embed rectangular matrices into a
larger square space according to the following structure.

DEFINITION. Let (A, τ ) be a noncommutative probability space and d ≥ 1 a
positive integer. For p1, . . . , pd ∈A, (A, τ,p1, . . . , pd) is a rectangular probabil-
ity space if p1, . . . , pd are nonzero pairwise-orthogonal projections summing to 1,
that is, for all r �= s ∈ {1, . . . , d},

pr �= 0, pr = p∗
r = p2

r , prps = 0, p1 + · · · + pd = 1.

An element a ∈ A is simple, or (r, s)-simple, if praps = a for some r, s ∈
{1, . . . , d} (possibly r = s).

EXAMPLE 3.1. Let N1, . . . ,Nd ≥ 1 be positive integers and denote N = N1 +
· · · + Nd . Consider the ∗-algebra A = C

N×N , with the involution ∗ given by the
conjugate transpose map A → A∗. For A ∈ C

N×N , let τ(A) = N−1 TrA. Then
(A, τ ) = (CN×N,N−1 Tr) is a noncommutative probability space. Any A ∈C

N×N

may be written in block form as

A =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1d

A21 A22 · · · A2d

...
...

. . .
...

Ad1 Ad2 · · · Add

⎞
⎟⎟⎟⎠ ,

where Ast ∈ C
Ns×Nt . For each r = 1, . . . , d , denote by Pr the matrix with (r, r)

block equal to IdNr and (s, t) block equal to 0 for all other s, t . Then Pr is a
projection, and (CN×N,N−1 Tr,P1, . . . ,Pd) is a rectangular probability space.
A ∈ C

N×N is simple if Ast �= 0 for at most one block (s, t).

In a rectangular probability space, the projections p1, . . . , pd generate a sub-∗-
algebra

(3.1) D := 〈p1, . . . , pd〉 =
{

d∑
r=1

zrpr : zr ∈ C

}
.

We may define a ∗-linear map FD : A → D by

(3.2) FD(a) =
d∑

r=1

prτr(a), τr(a) = τ(prapr)/τ(pr),

which is a projection onto D in the sense FD(d) = d for all d ∈ D. In Example 3.1,
D consists of matrices A ∈ C

N×N for which Arr is a multiple of the identity for
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each r and Ars = 0 for each r �= s. In this example, τr(A) = N−1
r Trr A where

Trr A = TrArr , so FD encodes the trace of each diagonal block.
The tuple (A,D,FD) is an example of the following definition for an operator-

valued probability space.

DEFINITION. A B-valued probability space (A,B,FB) is a ∗-algebra A, a
sub-∗-algebra B ⊆ A containing 1A and a ∗-linear map FB : A → B called the
conditional expectation satisfying, for all b, b′ ∈ B and a ∈ A,

FB(
bab′) = bFB(a)b′, FB(b) = b.

We identify C ⊂ A as a subalgebra via the inclusion map z → z1A, and we
write 1 for 1A and z for z1A. Then a noncommutative probability space (A, τ ) is
also a C-valued probability space with B = C and FB = τ .

DEFINITION. Let (A, τ ) be a noncommutative probability space and FB :
A → B a conditional expectation onto a subalgebra B ⊂ A. FB is τ -invariant if
τ ◦ FB = τ .

It is verified that FD : A → D defined by (3.2) is τ -invariant. When B is a
von Neumann subalgebra of (a von Neumann algebra) A, there exists a unique
τ -invariant conditional expectation FB : A → B, which is norm-continuous and
satisfies ‖FB(a)‖ ≤ ‖a‖. If D ⊆ B ⊆ A are nested von Neumann subalgebras with
τ -invariant conditional expectations FD : A → D, FB : A → B, then we have the
analogue of the classical tower property,

(3.3) FD = FD ◦ FB.

We note that D in (3.1) is a von Neumann subalgebra of A, as it is finite-
dimensional.

In the space (A, τ ), a ∈ A may be thought of as an analogue of a bounded
random variable, τ(a) its expectation, and FB(a) its conditional expectation with
respect to a sub-sigma-field. The following definitions then provide an analogue
of the conditional distribution of a, and more generally of the conditional joint
distribution of a collection (ai)i∈I .

DEFINITION. Let B be a ∗-algebra and I be any set. A ∗-monomial in
the variables {xi : i ∈ I} with coefficients in B is an expression of the form
b1y1b2y2 . . . bl−1yl−1bl where l ≥ 1, b1, . . . , bl ∈ B, and y1, . . . , yl−1 ∈ {xi, x

∗
i :

i ∈ I}. A ∗-polynomial in {xi : i ∈ I} with coefficients in B is any finite sum of
such monomials.

We write Q(ai : i ∈ I) as the evaluation of a ∗-polynomial Q at xi = ai .
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DEFINITION 3.2. Let (A,B,FB) be a B-valued probability space, let (ai)i∈I
be elements of A and let Q denote the set of all ∗-polynomials in variables {xi : i ∈
I} with coefficients in B. The (joint) B-law of (ai)i∈I is the collection of values
in B

(3.4)
{
FB[

Q(ai : i ∈ I )
]}

Q∈Q.

In the scalar setting where B = C and FB = τ , a ∗-monomial takes the sim-
pler form zy1y2 . . . yl−1 for z ∈ C and y1, . . . , yl−1 ∈ {xi, x

∗
i : i ∈ I} (because C

commutes with A). Then the collection of values (3.4) is determined by the scalar-
valued moments τ(w) for all words w in the letters {xi, x

∗
i : i ∈ I}. This is the

analogue of the unconditional joint distribution of a family of bounded random
variables, as specified by the joint moments.

Finally, the following definition of operator-valued freeness, introduced in
Voiculescu (1995), has similarities to the notion of conditional independence of
sub-sigma-fields in the classical setting.

DEFINITION. Let (A,B,FB) be a B-valued probability space and (Ai )i∈I a
collection of sub-∗-algebras of A which contain B. (Ai )i∈I are B-free, or free
with amalgamation over B, if for all m ≥ 1, for all i1, . . . , im ∈ I with i1 �= i2, i2 �=
i3, . . . , im−1 �= im and for all a1 ∈ Ai1, . . . , am ∈ Aim , the following implication
holds:

FB(a1) = FB(a2) = · · · = FB(am) = 0 ⇒ FB(a1a2 . . . am) = 0.

Subsets (Si)i∈I of A are B-free if the sub-∗-algebras (〈Si,B〉)i∈I are.

In the classical setting, the joint law of (conditionally) independent random vari-
ables is determined by their marginal (conditional) laws. A similar statement holds
for freeness.

PROPOSITION 3.3. Suppose (A,B,FB) is a B-valued probability space, and
subsets (Si)i∈I of A are B-free. Then the B-law of

⋃
i∈I Si is determined by the

individual B-laws of the Si ’s.

PROOF. See Voiculescu (1995), Proposition 1.3. �

3.2. Free deterministic equivalents and asymptotic freeness. Free determinis-
tic equivalents were introduced in Speicher and Vargas (2012). Here, we formalize
a bit this definition for independent jointly orthogonally invariant families of matri-
ces, and we establish closeness of the random matrices and the free approximation
in a general setting.
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DEFINITION 3.4. For fixed d ≥ 1, consider two sequences of N -dependent
rectangular probability spaces (A, τ,p1, . . . , pd) and (A′, τ ′,p′

1, . . . , p
′
d) such

that for each r ∈ {1, . . . , d}, as N → ∞,∣∣τ(pr) − τ ′(p′
r

)∣∣ → 0.

For a common index set I , consider elements (ai)i∈I of A and (a′
i)i∈I of A′.

Then (ai)i∈I and (a′
i)i∈I are asymptotically equal in D-law if the following holds:

For any r ∈ {1, . . . , d} and any ∗-polynomial Q in the variables {xi : i ∈ I} with
coefficients in D = 〈p1, . . . , pd〉, denoting by Q′ the corresponding ∗-polynomial
with coefficients in D′ = 〈p1, . . . , pd〉, as N → ∞,

(3.5)
∣∣τr

[
Q(ai : i ∈ I)

] − τ ′
r

[
Q′(a′

i : i ∈ I
)]∣∣ → 0.

If (ai)i∈I and/or (a′
i )i∈I are random elements of A and/or A′, then they are asymp-

totically equal in D-law a.s. if the above holds almost surely for each individual
∗-polynomial Q.

In the above, τr and τ ′
r are defined by (3.2). “Corresponding” means that Q′ is

obtained by expressing each coefficient d ∈D of Q in the form (3.1) and replacing
p1, . . . , pd by p′

1, . . . , p
′
d .

We will apply Definition 3.4 by taking one of the two rectangular spaces to be
(CN×N,N−1 Tr) as in Example 3.1, containing random elements, and the other
to be an approximating deterministic model. (We will use “distribution” for ran-
dom matrices to mean their distribution as random elements of CN×N in the usual
sense, reserving the term “B-law” for Definition 3.2.) Freeness relations in the de-
terministic model will emerge from the following notion of rotational invariance
of the random matrices.

DEFINITION 3.5. Consider (CN×N,N−1 Tr,P1, . . . ,Pd) as in Example 3.1.
A family of random matrices (Hi)i∈I in C

N×N is block-orthogonally invari-
ant if, for any orthogonal matrices Or ∈ R

Nr×Nr for r = 1, . . . , d , denoting
O = diag(O1, . . . ,Od) ∈ R

N×N , the joint distribution of (Hi)i∈I is equal to that
of (OT HiO)i∈I .

Let us provide several examples. We discuss the constructions of the spaces
(A, τ,p1, . . . , pd) for these examples in Appendix D.

EXAMPLE 3.6. Fix r ∈ {1, . . . , d} and let G ∈ C
N×N be a simple random

matrix such that the diagonal block Grr ∈ C
Nr×Nr is distributed as the GUE or

GOE, scaled to have entries of variance 1/Nr . (Simple means Gst = 0 for all
other blocks (s, t).) Let (A, τ,p1, . . . , pd) be a rectangular space with τ(ps) =
Ns/N for each s = 1, . . . , d , such that A contains a self-adjoint simple element g

satisfying g = g∗ and prgpr = g, with moments given by the semicircle law:

τr

(
gl) =

∫ 2

−2

xl

2π

√
4 − x2 dx for all l ≥ 0.
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For any corresponding ∗-polynomials Q and q as in Definition 3.4, we may ver-
ify N−1

r Trr Q(G)− τr(q(g)) → 0 a.s. by the classical Wigner semicircle theorem
(Wigner (1955)). Then G and g are asymptotically equal in D-law a.s. Further-
more, G is block-orthogonally invariant.

EXAMPLE 3.7. Fix r1 �= r2 ∈ {1, . . . , d} and let G ∈ C
N×N be a simple ran-

dom matrix such that the block Gr1r2 has i.i.d. Gaussian or complex Gaussian
entries with variance 1/Nr1 . Let (A, τ,p1, . . . , pd) satisfy τ(ps) = Ns/N for each
s, such that A contains a simple element g satisfying pr1gpr2 = g, where g∗g has
moments given by the Marcenko–Pastur law:

τr2

((
g∗g

)l) =
∫

xlνNr2/Nr1
(x) dx for all l ≥ 0,

where νλ is the standard Marcenko–Pastur density

(3.6) νλ(x) = 1

2π

√
(λ+ − x)(x − λ−)

λx
1[λ−,λ+](x), λ± = (1 ± √

λ)2.

By definition of τr and the cyclic property of τ , we also have

τr1

((
gg∗)l) = (Nr2/Nr1)τr2

((
g∗g

)l)
.

For any corresponding ∗-polynomials Q and q as in Definition 3.4, we may verify
N−1

r2
Trr2 Q(G) − τr2(q(g)) → 0 and N−1

r1
Trr1 Q(G) − τr1(q(g)) → 0 a.s. by the

classical Marcenko–Pastur theorem (Marčenko and Pastur (1967)). Then G and g

are asymptotically equal in D-law a.s., and G is block-orthogonally invariant.

EXAMPLE 3.8. Let B1, . . . ,Bk ∈ C
N×N be deterministic simple matri-

ces, say with PriBiPsi = Bi for each i = 1, . . . , k and ri, si ∈ {1, . . . , d}. Let
O1 ∈ R

N1×N1, . . . ,Od ∈ R
Nd×Nd be independent Haar-distributed orthogonal

matrices, define O = diag(O1, . . . ,Od) ∈ R
N×N and let B̌i = OT BiO . Let

(A, τ,p1, . . . , pd) satisfy τ(ps) = Ns/N for each s, such that A contains sim-
ple elements b1, . . . , bk satisfying pri bipsi = bi for each i = 1, . . . , k and

(3.7) N−1
r Trr Q(B1, . . . ,Bk) = τr

(
q(b1, . . . , bk)

)
for any corresponding ∗-polynomials Q and q with coefficients in 〈P1, . . . ,Pd〉
and 〈p1, . . . , pd〉. As Trr Q(B1, . . . ,Bk) is invariant under Bi → OT BiO , (3.7)
holds also with B̌i in place of Bi . Then (B̌i)i∈{1,...,k} and (bi)i∈{1,...,k} are ex-
actly (and hence also asymptotically) equal in D-law, and (B̌i)i∈{1,...,k} is block-
orthogonally invariant by construction.

To study the interaction of several independent and block-orthogonally invariant
matrix families, we will take a deterministic model for each family, as in Exam-
ples 3.6, 3.7 and 3.8 above, and consider a combined model in which these families
are D-free.
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DEFINITION 3.9. Consider (CN×N,N−1 Tr,P1, . . . ,Pd) as in Example 3.1.
Suppose (Hi)i∈I1, . . . , (Hi)i∈IJ

are finite families of random matrices in C
N×N

such that:

• These families are independent from each other, and
• For each j = 1, . . . , J , (Hi)i∈Ij

is block-orthogonally invariant.

Then a free deterministic equivalent for (Hi)i∈I1, . . . , (Hi)i∈IJ
is any (N -

dependent) rectangular probability space (A, τ,p1, . . . , pd) and families (hi)i∈I1,

. . . , (hi)i∈IJ
of deterministic elements in A such that, as N → ∞:

• For each r = 1, . . . , d , |N−1 TrPr − τ(pr)| → 0,
• For each j = 1, . . . , J , (Hi)i∈Ij

and (hi)i∈Ij
are asymptotically equal in D-law

a.s., and
• (hi)i∈I1, . . . , (hi)i∈IJ

are free with amalgamation over D = 〈p1, . . . , pd〉.
The main result of this section is the following asymptotic freeness theorem,

which establishes the validity of this approximation.

THEOREM 3.10. In the space (CN×N,N−1 Tr,P1, . . . ,Pd) of Example 3.1,
suppose (Hi)i∈I1, . . . , (Hi)i∈IJ

are independent, block-orthogonally invariant
families of random matrices, and let (hi)i∈I1, . . . , (hi)i∈IJ

be any free determinis-
tic equivalent in (A, τ,p1, . . . , pd). If there exist constants C,c > 0 (independent
of N ) such that c < Nr/N for all r and ‖Hi‖ < C a.s. for all i ∈ Ij , all Ij , and all
large N , then (Hi)i∈Ij ,j∈{1,...,J } and (hi)i∈Ij ,j∈{1,...,J } are asymptotically equal in
D-law a.s.

More informally, if (hi)i∈Ij
asymptotically models the family (Hi)i∈Ij

for each
j , and these matrix families are independent and block-orthogonally invariant, then
a system in which (hi)i∈Ij

are D-free asymptotically models the matrices jointly
over j .

Theorem 3.10 is analogous to Benaych-Georges ((2009), Theorem 1.6) and
Speicher and Vargas ((2012), Theorem 2.7), which establish similar results for
complex unitary invariance. It permits multiple matrix families (where matrices
within each family are not independent), uses the almost-sure trace N−1 Tr rather
than E ◦ N−1 Tr, and imposes boundedness rather than joint convergence assump-
tions. This last point fully embraces the deterministic equivalents approach.

We will apply Theorem 3.10 in the form of the following corollary. Suppose that
w ∈A satisfies |τ(wl)| ≤ Cl for a constant C > 0 and all l ≥ 1. We may define its
Stieltjes transform by the convergent series

(3.8) mw(z) = τ
(
(w − z)−1) = −

∞∑
l≥0

z−(l+1)τ
(
wl)

for z ∈ C
+ with |z| > C, where we use the convention w0 = 1 for all w ∈ A.
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COROLLARY 3.11. Under the assumptions of Theorem 3.10, let Q be a self-
adjoint ∗-polynomial (with C-valued coefficients) in (xi)i∈Ij ,j∈{1,...,J }, and let

W = Q
(
Hi : i ∈ Ij , j ∈ {1, . . . , J }) ∈ C

N×N,

w = Q
(
hi : i ∈ Ij , j ∈ {1, . . . , J }) ∈ A.

Suppose |τ(wl)| ≤ Cl for all N, l ≥ 1 and some C > 0. Then for a sufficiently
large constant C0 > 0, letting D = {z ∈ C

+ : |z| > C0} and defining mW(z) =
N−1 Tr(W − z IdN)−1 and mw(z) = τ((w − z)−1),

mW(z) − mw(z) → 0

pointwise almost surely over z ∈ D.

Proofs of Theorem 3.10 and Corollary 3.11 are contained in Appendix B.

3.3. Computational tools. Our computations in the free model will use the
tools of free cumulants, R-transforms, and Cauchy transforms discussed in Nica,
Shlyakhtenko and Speicher (2002), Speicher (1998), Speicher and Vargas (2012).
We review some relevant concepts here.

Let (A,B,FB) be a B-valued probability space and FB : A → B a conditional
expectation. For l ≥ 1, the lth order free cumulant of FB is a map κB

l : Al → B de-
fined by FB and certain moment-cumulant relations over the noncrossing partition
lattice; we refer the reader to Speicher and Vargas (2012) and Speicher ((1998),
Chapters 2 and 3) for details. We will use the properties that κB

l is linear in each
argument and satisfy the relations

κB
l

(
ba1, a2, . . . , al−1, alb

′) = bκB
l (a1, . . . , al)b

′,(3.9)

κB
l (a1, . . . , aj−1, ajb, aj+1, . . . , al) = κB

l (a1, . . . , aj , baj+1, . . . , al)(3.10)

for any b, b′ ∈ B and a1, . . . , al ∈ A.
For a ∈ A, the B-valued R-transform of a is defined, for b ∈ B, as

(3.11) RB
a (b) := ∑

l≥1

κB
l (ab, . . . , ab, a).

The B-valued Cauchy transform of a is defined, for invertible b ∈ B, as

(3.12) GB
a (b) := FB(

(b − a)−1) = ∑
l≥0

FB(
b−1(

ab−1)l)
,

with the convention a0 = 1 for all a ∈ A. The moment-cumulant relations imply
that GB

a (b) and RB
a (b) + b−1 are inverses with respect to composition.
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PROPOSITION 3.12. Let (A,B,FB) be a B-valued probability space. For a ∈
A and invertible b ∈ B,

GB
a

(
b−1 +RB

a (b)
) = b,(3.13)

GB
a (b) = (

b −RB
a

(
GB

a (b)
))−1

.(3.14)

PROOF. See Voiculescu ((1995), Theorem 4.9) and also Speicher ((1998),
Theorem 4.1.12). �

REMARK. When A is a von Neumann algebra, the right-hand sides of (3.11)
and (3.12) may be understood as convergent series in A with respect to the norm
‖ · ‖, for sufficiently small ‖b‖ and ‖b−1‖, respectively. Indeed, (3.12) defines a
convergent series in B when ‖b−1‖ < 1/‖a‖, with

(3.15)
∥∥GB

a (b)
∥∥ ≤ ∑

l≥0

∥∥b−1∥∥l+1‖a‖l = ‖b−1‖
1 − ‖a‖‖b−1‖ .

Also, explicit inversion of the moment-cumulant relations for the noncrossing par-
tition lattice yields the cumulant bound

(3.16)
∥∥κB

l (a1, . . . , al)
∥∥ ≤ 16l

l∏
i=1

‖ai‖

(see Nica and Speicher (2006), Proposition 13.15), so (3.11) defines a convergent
series in B when 16‖b‖ < 1/‖a‖, with

∥∥RB
a (b)

∥∥ ≤ ∑
l≥1

16l‖a‖l‖b‖l−1 = 16‖a‖
1 − 16‖a‖‖b‖ .

The identities (3.13) and (3.14) hold as equalities of elements in B when ‖b‖ and
‖b−1‖ are sufficiently small, respectively.

Our computation will pass between R-transforms and Cauchy transforms with
respect to nested subalgebras of A. Central to this approach is the following re-
sult from Nica, Shlyakhtenko and Speicher (2002) (see also Speicher and Vargas
(2012)).

PROPOSITION 3.13. Let (A,D,FD) be a D-valued probability space, let
B,H ⊆ A be sub-∗-algebras containing D and let FB : A → B be a conditional
expectation such that FD ◦ FB = FD . Let κB

l and κD
l denote the free cumulants

for FB and FD . If B and H are D-free, then for all l ≥ 1, h1, . . . , hl ∈ H and
b1, . . . , bl−1 ∈ B,

κB
l (h1b1, . . . , hl−1bl−1, hl) = κD

l

(
h1FD(b1), . . . , hl−1FD(bl−1), hl

)
.
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PROOF. See Nica, Shlyakhtenko and Speicher (2002), Theorem 3.6. �

For subalgebras D ⊆ B ⊆ A and conditional expectations FD : A → D and
FB : A → B satisfying (3.3), we also have for any a ∈ A and invertible d ∈ D
(with sufficiently small ‖d−1‖), by (3.12),

(3.17) GD
a (d) = FD ◦ GB

a (d).

Finally, note that for B = C and FB = τ , the scalar-valued Cauchy transform
GC

a (z) is simply −ma(z) from (3.8). (The minus sign is a difference in sign con-
vention for the Cauchy–Stieltjes transform.)

4. Computation in the free model. We will prove analogues of Theo-
rems 1.2 and 1.5 for a slightly more general matrix model: Fix k ≥ 1, let
p,n1, . . . , nk,m1, . . . ,mk ∈ N and denote n+ = ∑k

r=1 nr . Let F ∈ C
n+×n+ be de-

terministic with F ∗ = F , and denote by Frs ∈ C
nr×ns its (r, s) submatrix. For

r = 1, . . . , k, let Hr ∈ C
mr×p be deterministic, and let Gr be independent random

matrices such that either Gr ∈ R
nr×mr with (Gr)ij

i.i.d.∼ N (0, n−1
r ) or Gr ∈C

nr×mr

with �(Gr)ij ,�(Gr)ij
i.i.d.∼ N (0, (2nr)

−1). Define

W :=
k∑

r,s=1

H ∗
r G∗

r FrsGsHs ∈ C
p×p,

with empirical spectral measure μW . Denote b · H ∗H = ∑k
s=1 bsH

∗
s Hs , and let

D(a) and Trr be as in Theorem 1.2.

THEOREM 4.1. Suppose p,n1, . . . , nk,m1, . . . ,mk → ∞, such that c <

nr/p < C, c < mr/p < C, ‖Hr‖ < C, and ‖Frs‖ < C for all r, s = 1, . . . , k and
some constants C,c > 0. Then:

(a) For each z ∈ C
+, there exist unique values a1, . . . , ak ∈ C

+ ∪ {0} and
b1, . . . , bk ∈ C+ that satisfy, for r = 1, . . . , k, the equations

ar = − 1

nr

Tr
((

z Idp +b · H ∗H
)−1

H ∗
r Hr

)
,(4.1)

br = − 1

nr

Trr
([

Idn+ +FD(a)
]−1

F
)
.(4.2)

(b) μW − μ0 → 0 weakly a.s. for a probability measure μ0 on R with Stieltjes
transform

(4.3) m0(z) := − 1

p
Tr

((
z Idp +b · H ∗H

)−1)
.

(c) For each z ∈ C
+, the values ar , br in (a) are the limits, as t → ∞, of a

(t)
r ,

b
(t)
r computed by iterating (4.1)–(4.2) in the manner of Theorem 1.5.
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Theorems 1.2 and 1.5 follow by specializing this result to F = UT BU and
mr = p, nr = Ir and Hr = �

1/2
r for each r = 1, . . . , k.

In this section, we carry out the bulk of the proof of Theorem 4.1 by:

1. Defining a free deterministic equivalent for this matrix model, and
2. Showing that the Stieltjes transform of the element w (modeling W ) satisfies

(4.1)–(4.3).

These steps correspond to the separation of approximation and computation dis-
cussed in Section 1.4.

For the reader’s convenience, in Appendix E we provide a simplified version of
these steps for the special case of Theorem 4.1 corresponding to Theorem 1.1 for
sample covariance matrices, which illustrates the main ideas.

4.1. Defining a free deterministic equivalent. Consider the transformations

Hr → OT
r HrO0, Frs → OT

k+rFrsOk+s

for independent Haar-distributed orthogonal matrices O0, . . . ,O2k of the appro-
priate sizes. As in Section 1.4, μW remains invariant in law under these transfor-
mations. Hence it suffices to prove Theorem 4.1 with Hr and Frs replaced by these
randomly rotated matrices, which (with a slight abuse of notation) we continue to
denote by Hr and Frs .

Let N = p + ∑k
r=1 mr + ∑k

r=1 nr , and embed the matrices W , Hr , Gr , Frs as
simple elements of CN×N in the following regions of the block-matrix decompo-
sition corresponding to C

N = C
p ⊕C

m1 ⊕ · · · ⊕C
mk ⊕C

n1 ⊕ · · · ⊕C
nk :

W H ∗
1 · · · H ∗

k

H1 G∗
1

...
. . .

Hk G∗
k

G1 F11 · · · F1k

. . .
...

. . .
...

Gk Fk1 · · · Fkk

Denote by P0, . . . ,P2k the diagonal projections corresponding to the above de-
composition, and by W̃ , F̃rs, G̃r , H̃r ∈ C

N×N the embedded matrices (i.e., P0 =
diag(Idp,0, . . . ,0), P1 = diag(0, Idm1, . . . ,0), etc. W̃ has upper-left block equal
to W and remaining blocks 0, etc.). Then W̃ , F̃rs , G̃r , H̃r are simple elements of
the rectangular space (CN×N,N−1 Tr,P0, . . . ,P2k), and the k + 2 families {F̃rs},
{H̃r}, G̃1, . . ., G̃k are independent of each other and are block-orthogonally invari-
ant.

For the approximating free model, consider a second (N -dependent) rectangular
space (A, τ,p0, . . . , p2k) with deterministic elements frs, gr, hr ∈ A, such that the
following hold:
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1. p0, . . . , p2k have traces

τ(p0) = p/N, τ(pr) = mr/N,

τ(pk+r ) = nr/N for all r = 1, . . . , k.

2. frs, gr , hr are simple elements such that for all r, s ∈ {1, . . . , k},
pk+rfrspk+s = frs, pk+rgrpr = gr, prhrp0 = hr .

3. {frs : 1 ≤ r, s ≤ k} has the same joint D-law as {F̃rs : 1 ≤ r, s ≤ k}, and
{hr : 1 ≤ r ≤ k} has the same joint D-law as {H̃r : 1 ≤ r ≤ k}. That is, for any
r ∈ {0, . . . ,2k} and any noncommutative ∗-polynomials Q1, Q2 with coefficients
in 〈P0, . . . ,P2k〉, letting q1, q2 denote the corresponding ∗-polynomials with coef-
ficients in 〈p0, . . . , p2k〉,

τr

[
q1

(
fst : s, t ∈ {1, . . . , k})] = N−1

r Trr Q1
(
F̃s,t : s, t ∈ {1, . . . , k}),(4.4)

τr

[
q2

(
hs : s ∈ {1, . . . , k})] = N−1

r Trr Q2
(
H̃s : s ∈ {1, . . . , k}).(4.5)

4. For each r , g∗
r gr has Marcenko–Pastur law with parameter λ = mr/nr . That

is, for νλ as in (3.6),

(4.6) τr

((
g∗

r gr

)l) =
∫

xlνmr/nr (x) dx for all l ≥ 0.

5. The k + 2 families {frs}, {hr}, g1, . . . , gk are free with amalgamation over
D = 〈p0, . . . , p2k〉.

The right-hand sides of (4.4) and (4.5) are deterministic, as they are invariant
to the random rotations of Frs and Hr . Also, (4.6) completely specifies τ(q(gr))

for any ∗-polynomial q with coefficients in D. Then these conditions 1–5 fully
specify the joint D-law of all elements frs, gr, hr ∈ A. These elements are a free
deterministic equivalent for F̃rs, G̃r , H̃r ∈ C

N×N in the sense of Definition 3.9.
The following lemma establishes existence of this model as a von Neumann

algebra; its proof is deferred to Appendix D.

LEMMA 4.2. Under the conditions of Theorem 4.1, there exists a (N -
dependent) rectangular probability space (A, τ,p0, . . . , p2k) such that:

(a) A is a von Neumann algebra and τ is a positive, faithful, normal trace.
(b) A contains elements frs, gr, hr for r, s ∈ {1, . . . , k} that satisfy the

above conditions. Furthermore, the von Neumann subalgebras 〈D, {frs}〉W ∗,
〈D, {hr}〉W ∗, 〈D, g1〉W ∗, . . . , 〈D, gk〉W ∗ are free over D.

(c) There exists a constant C > 0 such that ‖frs‖,‖hr‖,‖gr‖ ≤ C for all N

and all r , s.
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4.2. Computing the Stieltjes transform of w. We will use twice the following
intermediary lemma, whose proof follows ideas of Speicher and Vargas (2012) and
which we defer to Appendix D.

LEMMA 4.3. Let (A, τ, q0, q1, . . . , qk) be a rectangular probability space,
where A is von Neumann and τ is positive, faithful and normal. Let D =
〈q0, . . . , qk〉, let B,C ⊂ A be von Neumann subalgebras containing D that are
free over D and let FD : A → D and FC : A → C be the τ -invariant conditional
expectations.

Let brs ∈ B and cr ∈ C for 1 ≤ r, s ≤ k be such that qrbrsqs = brs , qrcr = cr ,
‖brs‖ ≤ C, and ‖cr‖ ≤ C for some constant C > 0. Define a = ∑k

r,s=1 c∗
r brscs and

b = ∑k
r,s=1 brs . Then, for e ∈ C with ‖e‖ sufficiently small,

RC
a(e) =

k∑
r=1

c∗
r crτr

(
RD

b

(
k∑

s=1

τs

(
csec

∗
s

)
qs

))
,

where RC
a and RD

b are the C-valued and D-valued R-transforms of a and b.

We now perform the desired computation of the Stieltjes transform of w.

LEMMA 4.4. Under the conditions of Theorem 4.1, let (A, τ,p0, . . . , p2k)

and frs, gr, hr be as in Lemma 4.2, and let w = ∑k
r,s=1 h∗

r g
∗
r frsgshs . Then for

a constant C0 > 0, defining D := {z ∈ C
+ : |z| > C0}, there exist analytic func-

tions a1, . . . , ak : D → C
+ ∪ {0} and b1, . . . , bk : D → C that satisfy, for every

z ∈ D and for m0(z) = τ0((w − z)−1), equations (4.1)–(4.3).

PROOF. If Hr = 0 for some r , then we may set ar ≡ 0, define br by (4.2) and
reduce to the case k − 1. Hence, it suffices to consider Hr �= 0 for all r .

Define the von Neumann subalgebras D = 〈pr : 0 ≤ r ≤ 2k〉, F = 〈D, {frs}〉W ∗ ,
G = 〈D, {gr}〉W ∗ , and H = 〈D, {hr}〉W ∗ . Denote by FD , RD , and GD the τ -
invariant conditional expectation onto D and the D-valued R-transform and
Cauchy transform, and similarly for F , G and H.

We first work algebraically (Steps 1–3), assuming that arguments b to Cauchy
transforms are invertible with ‖b−1‖ sufficiently small, arguments b to R-
transforms have ‖b‖ sufficiently small, and applying series expansions for (b −
a)−1. We will check that these assumptions hold and also establish the desired
analyticity properties in Step 4.

Step 1: We first relate the D-valued Cauchy transform of w to that of v :=∑k
r,s=1 g∗

r frsgs . We apply Lemma 4.3 with q0 = p0 + ∑2k
r=k+1 pr , qr = pr for

r = 1, . . . , k, C = H and B = 〈F,G〉. Then for c ∈ H,

(4.7) RH
w (c) =

k∑
r=1

h∗
r hrτr

(
RD

v

(
k∑

s=1

psτs

(
hsch

∗
s

)))
.
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To rewrite this using Cauchy transforms, for invertible d ∈ D and each r =
1, . . . , k, define

αr(d) := τr

(
hrG

H
w (d)h∗

r

)
,(4.8)

βr(d) := τr

(
RD

v

(
k∑

s=1

psαs(d)

))
.(4.9)

Then (3.14) and (4.7) with c = GH
w (d) imply

(4.10) GH
w (d) = (

d −RH
w

(
GH

w (d)
))−1 =

(
d −

k∑
r=1

h∗
r hrβr(d)

)−1

.

Projecting down to D using (3.17) yields

(4.11) GD
w(d) = FD

((
d −

k∑
r=1

h∗
r hrβr(d)

)−1)
.

Applying (4.10) to (4.8),

(4.12) αr(d) = τr

(
hr

(
d −

k∑
s=1

h∗
s hsβs(d)

)−1

h∗
r

)
.

Noting that (p1 + · · · + pk)v(p1 + · · · + pk) = v, (3.11) and (3.9) imply RD
v (d) ∈

〈p1, . . . , pk〉 for any d ∈ D, so we may write (4.9) as

RD
v

(
k∑

r=1

prαr(d)

)
=

k∑
r=1

prβr(d).

For r = 0 and r ∈ {k + 1, . . . ,2k}, set βr(d) = 0 and define αr(d) arbitrarily, say
by αr(d) = ‖d−1‖. Since vpr = prv = 0 if r = 0 or r ∈ {k + 1, . . . ,2k}, applying
(3.11) and multilinearity of κD

l , we may rewrite the above as

RD
v

( 2k∑
r=0

prαr(d)

)
=

2k∑
r=0

prβr(d).

Applying (3.13) with b = ∑2k
r=0 prαr(d), we get

(4.13) GD
v

( 2k∑
r=0

pr

(
1

αr(d)
+ βr(d)

))
=

2k∑
r=0

prαr(d).

The relation between GD
w and GD

v is given by (4.11), (4.12) and (4.13).

Step 2: Next, we relate the D-valued Cauchy transforms of v and u :=∑k
r,s=1 frs . We apply Lemma 4.3 with q0 = ∑k

r=0 pr , qr = pr+k for r = 1, . . . , k,
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C = G and B = F . Then for c ∈ G,

(4.14) RG
v (c) =

k∑
r=1

g∗
r grτr+k

(
RD

u

(
k∑

s=1

ps+kτs+k

(
gscg

∗
s

)))
.

To rewrite this using Cauchy transforms, for invertible d ∈ D and all r =
1, . . . , k, define

γr+k(d) = τr+k

(
grG

G
v (d)g∗

r

)
,(4.15)

δr+k(d) = τr+k

(
RD

u

(
k∑

s=1

ps+kγs+k(d)

))
.(4.16)

As in Step 1, for r = 0, . . . , k let us also define δr(d) = 0 and γr(d) = ‖d−1‖.
Then, noting (pk+1 + · · · + p2k)u(pk+1 + · · · + p2k) = u, the same arguments as
in Step 1 yield the analogous identities

GD
v (d) = FD

((
d −

k∑
s=1

g∗
s gsδs+k(d)

)−1)
,(4.17)

γr+k(d) = τr+k

(
gr

(
d −

k∑
s=1

g∗
s gsδs+k(d)

)−1

g∗
r

)
,(4.18)

GD
u

( 2k∑
r=0

pr

(
1

γr(d)
+ δr(d)

))
=

2k∑
r=0

prγr(d).(4.19)

As g∗
r gr has moments given by (4.6), we may write (4.17) and (4.18) explicitly:

Denote d = d0p0 + · · · + d2kp2k for d0, . . . , d2k ∈ C. As d is invertible, we have
d−1 = d−1

0 p0 + · · · + d−1
2k p2k . For any x ∈ A that commutes with D,

(d − x)−1 = ∑
l≥0

d−1(
xd−1)l = ∑

l≥0

xld−l−1.

So for r = 1, . . . , k, noting that pr = p2
r and that D commutes with itself,

τr

(
(d − x)−1) = N

mr

∑
l≥0

τ
(
prx

ld−l−1pr

)

= N

mr

∑
l≥0

τ
((

prx
lpr

)(
prd

−1pr

)l+1) = ∑
l≥0

τr(x
l)

dl+1
r

.
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Noting that g∗
s gs commutes with D, applying the above to (4.17) with x =∑k

s=1 g∗
s gsδs+k(d), and recalling (4.6),

τr

(
GD

v (d)
) = ∑

l≥0

τr((g
∗
r gr)

l)δr+k(d)l

dl+1
r

=
∫ ∑

l≥0

xlδr+k(d)l

dl+1
r

νmr/nr (x) dx

=
∫ 1

dr − xδr+k(d)
νmr/nr (x) dx

= 1

δr+k(d)
GC

νmr /nr

(
dr/δr+k(d)

)
,(4.20)

where GC
νmr /nr

is the Cauchy transform of the Marcenko–Pastur law νmr/nr .
Similarly, we may write (4.18) as

γr+k(d) = mr

nr

τr

((
d −

k∑
s=1

g∗
s gsδs+k(d)

)−1

g∗
r gr

)

= mr

nr

∫
x

dr − xδr+k(d)
νmr/nr (x) dx

= mr

nr

(
− 1

δr+k(d)
+ dr

δr+k(d)2 GC
νmr /nr

(
dr/δr+k(d)

))

= mr

nr

(
− 1

δr+k(d)
+ dr

δr+k(d)
τr

(
GD

v (d)
))

,(4.21)

where the first equality applies the cyclic property of τ and the definitions of τr+k

and τr , the second applies (4.6) upon passing to a power series and back as above,
the third applies the definition of the Cauchy transform and the last applies (4.20).
The relation between GD

v and GD
u is given by (4.20), (4.21) and (4.19).

Step 3: We compute m0(z) for z ∈ C
+ using (4.11), (4.12), (4.13), (4.20), (4.21)

and (4.19). Fixing z ∈ C
+, let us write

αr = αr(z), βr = βr(z), dr = 1

αr

+ βr, d =
2k∑

r=0

drpr,

γr = γr(d), δr = δr(d), er = 1

γr

+ δr , e =
2k∑

r=0

erpr .

Applying (4.11) and projecting down to C,

m0(z) = −τ0

((
z −

k∑
r=1

h∗
r hrβr

)−1)
.
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Note that h∗
r hr commutes with D and p0h

∗
r hrp0 = h∗

r hr for each r = 1, . . . , k.
Then, passing to a power series as in Step 2, and then applying (4.5) and the spec-
tral calculus,

m0(z) = −∑
l≥0

z−(l+1)τ0

((
k∑

r=1

h∗
r hrβr

)l)

= −∑
l≥0

z−(l+1) 1

p
Tr

((
k∑

r=1

βrH
∗
r Hr

)l)

= − 1

p
Tr

(
z Idp −

k∑
r=1

βrH
∗
r Hr

)−1

.(4.22)

Similarly, (4.12) implies for each r = 1, . . . , k

(4.23) αr = 1

mr

Tr

((
z Idp −

k∑
s=1

βsH
∗
s Hs

)−1

H ∗
r Hr

)
.

Now applying (4.20) and recalling (4.13) and the definition of dr , for each r =
1, . . . , k,

αr = τr

(
GD

v (d)
) = 1

δr+k

GC
νmr /nr

(
1

αrδr+k

+ βr

δr+k

)
.

Applying (3.14) and the Marcenko–Pastur R-transform RC
νλ

(z) = (1 − λz)−1, this
is rewritten as

(4.24)
βr

δr+k

=RC
νmr /nr

(αrδr+k) = nr

nr − mrαrδr+k

.

By (4.21) and (4.13),

(4.25) γr+k = mr

nr

αrβr

δr+k

.

We derive two consequences of (4.24) and (4.25). First, substituting for βr in (4.25)
using (4.24) and recalling the definition of er+k yields

(4.26) er+k = nr

mrαr

.

Second, rearranging (4.24), we get βr/δr+k = 1+mrαrβr/nr . Inserting into (4.25)
yields this time

(4.27) βr = nr

m2
rα

2
r

(nrγr+k − mrαr).

By (4.19), for each r = 1, . . . , k,

γr+k = τr+k

(
GD

u (e)
) = τr+k

(
(e − u)−1)

.
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Passing to a power series for (e − u)−1, applying (4.4) and passing back,

γr+k = 1

nr

Trr+k

(
diag(e0 Idp, . . . , e2k Idnk

) − F̃
)−1

= 1

nr

Trr
(
diag(ek+1 Idn1, . . . , e2k Idnk

) − F
)−1

= 1

nr

Trr
(
D−1 − F

)−1
,(4.28)

where the last line applies (4.26) and sets D = diag(D1 Idn1, . . . ,Dk Idnk
) for Dr =

mrαr/nr . Noting Trr D = mrαr , (4.27) yields

βr = 1

nrD2
r

Trr
[(

D−1 − F
)−1 − D

]

= 1

nr

Trr
[(

F−1 − D
)−1] = 1

nr

Trr
(
(Idn+ −FD)−1F

)
,(4.29)

where we used the Woodbury identity and Trr DAD = D2
r TrA. (These equal-

ities hold when F is invertible, and hence for all F by continuity.) Setting
ar = −mrαr/nr and br = −βr , we obtain (4.1), (4.2) and (4.3) from (4.22), (4.23)
and (4.29).

Step 4: Finally, we verify the validity of the preceding calculations when
z ∈D := {z ∈ C

+ : |z| > C0} and C0 > 0 is sufficiently large. Call a scalar quantity
u := u(N, z) “uniformly bounded” if |u| < C for all z ∈ D, all N and some con-
stants C0,C > 0. Call u “uniformly small” if for any constant c > 0 there exists
C0 > 0 such that |u| < c for all z ∈ D and all N .

As ‖w‖ ≤ C by Lemma 4.2(c), c = GH
w (z) is well defined by the convergent

series (3.12) for z ∈ D. Furthermore, by (3.15), ‖c‖ is uniformly small, so we may
apply (4.7). αr(z) as defined by (4.8) satisfies

αr(z) = τr

(
hr

∞∑
l=0

FH(
z−1(

wz−1)l)
h∗

r

)

=
∞∑
l=0

z−(l+1)τ (pr)
−1τ

(
hrFH(

wl)h∗
r

) =
∞∑
l=0

z−(l+1) N

mr

τ
(
wlh∗

r hr

)

for z ∈ D. Since |τ(wlh∗
r hr)| ≤ ‖w‖l‖hr‖2, αr defines an analytic function on

D such that αr(z) ∼ (zmr)
−1 Tr(H ∗

r Hr) as |z| → ∞. In particular, since Hr is
nonzero by our initial assumption, αr(z) �= 0 and �αr(z) < 0 for z ∈ D. This ver-
ifies that ar(z) = −mrαr(z)/nr ∈ C

+ and ar is analytic on D. Furthermore, αr is
uniformly small for each r . Then applying (3.11), multilinearity of κl and (3.16),
it is verified that βr(z) defined by (4.9) is uniformly bounded and analytic on D.
So br(z) = −βr(z) is analytic on D.
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As βr is uniformly bounded, the formal series leading to (4.22) and (4.23) are
convergent for z ∈ D. Furthermore, dr = 1/αr + βr is well defined as αr �= 0, and
‖d−1‖ is uniformly small. Then c = GG

v (d) is well defined by (3.12) and also uni-
formly small, so we may apply (4.14). By the same arguments as above, γr+k(d)

as defined by (4.15) is nonzero and uniformly small and δr+k(d) as defined by
(4.16) is uniformly bounded. Then the formal series leading to (4.20) and (4.21)
are convergent for z ∈ D. Furthermore, er = 1/γr + δr is well defined and ‖e−1‖
is uniformly small, so the formal series leading to (4.28) is convergent for z ∈ D.
This verifies the validity of the preceding calculations and concludes the proof.

�

To complete the proof of Theorem 4.1, we show using a contractive mapping
argument similar to Couillet, Debbah and Silverstein (2011), Dupuy and Loubaton
(2011) that (4.1)–(4.2) have a unique solution in the stated domains, which is the
limit of the procedure in Theorem 1.5. The result then follows from Lemma 4.4
and Corollary 3.11. These arguments are contained in Appendix C.
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Appendices contain a discussion of more general classification designs, proofs of
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