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We study the asymptotic behavior of predictions from partial least
squares (PLS) regression as the sample size and number of predictors diverge
in various alignments. We show that there is a range of regression scenarios
where PLS predictions have the usual root-n convergence rate, even when the
sample size is substantially smaller than the number of predictors, and an even
wider range where the rate is slower but may still produce practically use-
ful results. We show also that PLS predictions achieve their best asymptotic
behavior in abundant regressions where many predictors contribute informa-
tion about the response. Their asymptotic behavior tends to be undesirable
in sparse regressions where few predictors contribute information about the
response.

1. Introduction. Partial least squares (PLS) regression is one of the first
methods for prediction in high-dimensional linear regressions in which sample
size n may not be large relative to the number of predictors p. It was set in mo-
tion by Wold, Martens and Wold [35]. Since then the development of PLS regres-
sion has taken place mainly within the Chemometrics community where empirical
prediction is the main issue and PLS regression is now a core method. Chemo-
metricians tended not to address population models or regression coefficients, but
instead dealt directly with predictions resulting from PLS algorithms. This cus-
tom of forgoing population considerations, asymptotic approximations and other
widely accepted statistical constructs placed PLS at odds with statistical tradition,
with the consequence that it has been slow to be recognized within the statistics
community. There is now vast Chemometrics literature on PLS regression, some of
it refining and extending the methodology and some of it affirming basic method-
ology [4]. Martens and Næs’ 1992 book [28] is a classical reference for PLS within
the Chemometrics community.

Studies of PLS regression have appeared in mainline statistics literature from
time to time. Helland [21] was perhaps the first to define a PLS regression model,
and a first attempt at maximum likelihood estimation was made by Helland [22];
see also [23, 29]. Frank and Friedman [18] gave an informative discussion of PLS
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regression from various statistical views, and Garthiwate [19] attempted a statis-
tical interpretation of PLS algorithms. Naik and Tsai [30] demonstrated that PLS
regression provides a consistent estimator of the central subspace [7, 8] when the
distribution of the response given the predictors follows a single-index model and
n → ∞ with p fixed. Delaigle and Hall [16] extended it to functional data. Cook,
Helland and Su [12] established a population connection between PLS regression
and envelopes [14] in the context of multivariate linear regression, provided the
first firm PLS model and showed that envelope estimation leads to root-n consis-
tent estimators whose performance dominates that of PLS in traditional fixed p

contexts.
PLS regression also has a substantial following outside of the Chemometrics

and Statistics communities. Boulesteix and Strimmer [3] studied the advantages
of PLS regression for the analysis of high-dimensional genomic data, and Nguyen
and Rocke [31, 32] proposed it for microarray-based classification. Worsley [36]
considered PLS regression for the analysis of data from PET and fMRI studies. Ap-
plication of PLS for the analysis of spatiotemporal data was proposed by Lobaugh
et al. [27], and Schwartz et al. [33] used PLS in image analysis. Because of these
and many other applications, it seems clear that PLS regression is widely used
across the applied sciences. All subsequent references to PLS in this article should
be understood to mean PLS regression.

In view of the apparent success that PLS has had in Chemometrics and else-
where, we might anticipate that it has reasonable statistical properties in high-
dimensional regression. However, the algorithmic nature of PLS evidently made it
difficult to study using traditional statistical measures, with the consequence that
PLS was long regarded as a technique that is useful, but whose core statistical
properties are elusive. Chun and Keleş [6] provided a piece of the puzzle by show-
ing that, within a certain modeling framework, the PLS estimator of the coefficient
vector in linear regression is inconsistent unless p/n → 0. They then used this as
motivation for their development of a sparse version of PLS. The Chun–Keleş re-
sult poses a little dilemma. On the one hand, decades of experience support PLS as
a useful method, but its inconsistency when p/n → c > 0 casts doubt on its use-
fulness in high-dimensional regression, which is one of the contexts in which PLS
undeniably stands out by virtue of its widespread application. There are several
possible explanations for this conflict, including (a) consistency does not always
signal the value of a method in practice, (b) the Chemometrics literature is largely
wrong about the value of PLS and (c) the modeling construct used by Chun and
Keleş does not reflect the range of applications in which PLS is employed.

Cook and Forzani [9] studied single-component PLS regressions and found that
in some reasonable settings PLS predictions can converge at the root-n rate as
n,p → ∞, regardless of the alignment between n and p, a result that stands in
contrast to the finding of Chun and Keleş [6]. Single-component regressions do
occur in practice, but our impression is that multiple-component regressions are the
rule. Recent studies that used multiple PLS components include studies of seasonal
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streamflow forecasting [1], Italian craft beer [2], the metabolomics of meat exudate
[5], the prediction of biogas yield [24], quantification in bioprocesses [25] and the
Japanese honeysuckle [26].

In this article we follow the general setup of Cook and Forzani [9] and use
traditional (n,p)-asymptotic arguments to provide insights into PLS predictions
in multiple-component regressions. We also give bounds on the rates of conver-
gence for PLS predictions as n,p → ∞ and in doing so we conjecture about the
value of PLS in various regression scenarios. Section 2 contains a review of PLS
regression, along with comments on its connection to envelopes and sufficient di-
mension reduction. The specific objective of our study is described in Section 3. In
Section 4, we introduce and provide intuition for various quantities that influence
the (n,p)-asymptotic behavior of PLS predictions. Our main results are given as
two theorems in Section 5. There we also describe connections with the results
of Cook and Forzani [9] for single-component regressions and offer a different
view of the Chun–Keleş result [6]. Supporting simulations and an illustrative data
analysis are given in Section 6. We focus solely on predictive consistency until
Section 7.1 where we address estimative consistency. Proofs and other supporting
material are given in an online supplement to this article [10].

Our results show that there is a range of regression scenarios where PLS predic-
tions have the usual root-n convergence rate, even when n � p, and an even wider
range where the rate is slower but may still produce practically useful results, the
Chun–Keleş result notwithstanding.

2. PLS review. There are several different PLS algorithms for the multivariate
(multi-response) linear regression of r responses on p predictors. These algorithms
may not be presented as model-based, but instead are often regarded as methods for
prediction. It is known they give the same result for univariate responses but give
distinct sample results for multivariate responses. We restrict attention to univariate
regression so that the methodology is clear. See Section 7.2 for further discussion
related to this choice.

The context for our study is the typical linear regression model with univariate
response y and random predictor vector X ∈ R

p ,

(2.1) y = μ + βT (
X − E(X)

) + ε,

where the regression coefficients β ∈ R
p are unknown, and the error ε has mean

0, variance τ 2 and is independent of X. We assume that (y,X) follows a non-
singular multivariate normal distribution and that the data (yi,Xi), i = 1, . . . , n,
arise as independent copies of (y,X). We use the normality assumption to facili-
tate asymptotic calculations and to connect with the results of Chun and Keleş [6];
nevertheless, simulations and experience in practice indicate that it is not essen-
tial for the methodology itself. Further discussion of this assumption is given in
Section 7.4. To avoid trivial cases, we assume throughout that β �= 0.
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Continuing with notation, let Y = (y1, . . . , yn)
T and let F denote the p × n

matrix with columns (Xi − X̄), i = 1, . . . , n. Then the model for the full sample
can be represented also in vector form as

Y = α1n + FT β + ε,

where 1n represents the n × 1 vector of ones, α = E(y) and ε = (εi). Let � =
var(X) > 0 and σ = cov(X,y). We use Wq(	) to denote the Wishart distribution
with q degrees of freedom and scale matrix 	. Let PA(
) denote the projection
in the 
 > 0 inner product onto span(A) if A is a matrix or onto A itself if it is
a subspace. We use PA := PA(I) to denote projections in the usual inner product
and QA = I − PA. The Euclidean norm is denoted as ‖ · ‖. Turning to notation
for a sample, let σ̂ = n−1FY and �̂ = n−1FFT ≥ 0 denote the usual moment
estimators of σ and � using n for the divisor. With W = FFT ∼ Wn−1(�), we
can represent �̂ = W/n, σ̂ = n−1(Wβ + Fε).

The PLS estimator of β hinges fundamentally on the notion that we can identify
a dimension reduction subspace H ⊆R

p so that y ⊥⊥ X | PHX and d := dim(H) <

p (and hopefully d � p). This driving condition is the same as that encountered
in the literature on sufficient dimension reduction (see [8] for an introduction), but
PLS operates in the context of model (2.1), while sufficient dimension reduction
is largely model free. We assume that d is known in all technical results stated in
this article. In Chemometrics and elsewhere, d is often chosen by using predictive
cross validation or a holdout sample. See Section 7.3 for discussion on the choice
of d .

Assume momentarily that a basis matrix H ∈ R
p×d of H is known and that

�̂ > 0. Let B = �̂−1σ̂ denote the ordinary least squares estimator of β . Then
following the reduction X �→ HT X, ordinary least squares is used to estimate
the coefficient vector βy|HT X for the regression of y on HT X, giving estimated

coefficient matrix β̃y|HT X = (HT �̂H)−1HT σ̂ . The known-H estimator β̃H of β

is then

(2.2) β̃H = Hβ̃y|HT X = PH(�̂)
B.

Equation (2.2) describes β̃H as a projection of B onto H and shows that β̃H de-
pends on H only via H. It also shows that β̃H requires HT �̂H > 0, but does not
actually require �̂ > 0. This is essentially how PLS handles n < p regressions: by
reducing the predictors to HT X while requiring n 
 d , PLS is able to deal with
high-dimensional regressions in a relatively straightforward manner. The unique
and essential ingredient supplied by PLS is an algorithm for estimating H.

The following is the population statement developed by Cook et al. [12] of the
SIMPLS algorithm [15] for estimating H in univariate regressions. Set w0 = 0 and
W0 = w0. For k = 0, . . . , d − 1, set

Sk = span(�Wk),
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wk+1 = QSk
σ/

(
σT QSk

σ
)1/2

,

Wk+1 = (w0, . . . ,wk,wk+1).

At termination, span(Wd) is a dimension reduction subspace H. Since d is as-
sumed to be known and effectively fixed, SIMPLS depends on only two population
quantities—σ and �—that must be estimated. The sample version of SIMPLS is
constructed by replacing σ and � by their sample counterparts and terminating af-
ter d steps, even if �̂ is singular. In particular, SIMPLS does not make use of �̂−1

and so does not require �̂ to be nonsingular, but it does require d ≤ min(p,n− 1).
If d = p, then span(Wp) = R

p and PLS reduces to the ordinary least squares
estimator. Let G = (σ,�σ, . . . ,�d−1σ) and Ĝ = (σ̂ , �̂σ̂ , . . . , �̂d−1σ̂ ) denote
population and sample Krylov matrices. Helland [21] showed that span(G) =
span(Wd), giving a closed-form expression for a basis of the population PLS sub-
space, and that the sample version of the SIMPLS algorithm gives span(Ĝ).

PLS can be seen as an envelope method as follows [12]. A subspace R ⊆ R
p is

a reducing subspace of � if R decomposes � = PR�PR+QR�QR and then we
say that R reduces �. The intersection of all reducing subspaces of � that contain
a specified subspace S ⊆R

p is called the �-envelope of S and denoted as E�(S).
Let Pk denote the projection onto the kth eigenspace of �, k = 1, . . . , q ≤ p. Then
the �-envelope of S can be constructed by projecting onto the eigenspaces of �

[14]: E�(S) = ∑q
i=1 PkS . Cook et al. [12] showed that the population SIMPLS

algorithm produces E�(B), the �-envelope of B := span(β), so H = span(Wd) =
span(G) = E�(B).

From this point, we use H ∈ R
p×d to denote any semi-orthogonal basis matrix

for E�(B) and let (H,H0) ∈ R
p×p denote an orthogonal matrix. The connection

with envelopes led Cook et al. [12] to the following envelope model for PLS:

y = μ + βT
y|HT X

HT (
X − E(X)

) + ε,

� = H�HHT + H0�H0H
T
0 ,

(2.3)

where

�H = var
(
HT X

) = HT �H ∈R
d×d,

�H0 = var
(
HT

0 X
) = HT

0 �H0 ∈R
(p−d)×(p−d),

and βy|HT X can be interpreted as the coordinates of β relative to basis H . In terms
of the parameters in model (2.1), this model makes use of the basis H of E�(B)

to achieve a parsimonious re-parameterization of β and �: � is as given in the
model and

(2.4) β = PH(�)β = Hβy|HT X = H
(
HT �H

)−1
HT σ = G

(
GT �G

)−1
GT σ,

where the last step follows because, as noted previously, E�(B) = span(H) =
span(G). This re-parameterization has no impact on the predictors or the error
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and in consequence we still have that X is independent of ε as assumed for model
(2.1).

Beginning with model (2.3), Cook et al. [12] developed likelihood-based es-
timators whose performance dominates that of the SIMPLS in the traditional
fixed p context. It follows from (2.3) that y ⊥⊥ X | HT X and HT X ⊥⊥ HT

0 X,
which together imply that (y,HT X) ⊥⊥ HT

0 X. Model (2.3) and the condition
HT X ⊥⊥ HT

0 X are what sets the PLS framework apart from that of sufficient di-
mension reduction. As a consequence of this structure, the distribution of y can
respond to changes in HT X, but changes in HT

0 X affect neither the distribution
of y nor the distribution of HT X. For this reason, we refer to HT

0 X as the noise
in X. As will be seen later, the predictive success of PLS depends crucially on the
relative sizes of �H0 , the variability of the noise in X and �H the variability in the
part of X that affects y.

3. Objective. Let β̂ denote the estimator of β produced by the SIMPLS algo-
rithm: from (2.4)

β = G
(
GT �G

)−1
GT σ,

β̂ = Ĝ
(
ĜT �̂Ĝ

)−1
ĜT σ̂ ,

where Ĝ = (σ̂ , �̂σ̂ , . . . , �̂d−1σ̂ ), as defined previously. Our interest lies in study-
ing the predictive performance of β̂ as n and p grow in various alignments.
Let yN = μ + βT (XN − E(X)) + εN denote a new observation on y at a new
independent observation XN of X. The PLS predicted value of yN at XN is
ŷN = ȳ + β̂T (XN − X̄), giving a difference of

ŷN − yN = ȳ − μ + (β̂ − β)T
(
XN − E(X)

) − (β̂ − β)T
(
X̄ − E(X)

)
− βT (

X̄ − E(X)
) + εN .

The first term ȳ − μ = Op(n−1/2). Since var(y) = βT �β + τ 2 must remain con-
stant as p grows, β �= 0 and � > 0, we see that βT �β � 1 as p → ∞, where “ak �
bk” means that, as k → ∞, ak = O(bk) and bk = O(ak). Thus the fourth term
βT (X̄ − E(X)) = Op(n−1/2) by Chebyschev’s inequality: var(βT (X̄ − E(X))) =
βT �β/n → 0 as n,p → ∞. The term (β̂ − β)T (X̄ − E(X)) must have order
smaller than or equal to the order of (β̂ −β)T (XN −E(X)), which will be at least
Op(n−1/2).

Consequently, we have the essential asymptotic representation

ŷN − yN = Op

{
(β̂ − β)T

(
XN − E(X)

)} + εN as n,p → ∞.

Since εN is the intrinsic error in the new observation, the n,p-asymptotic behavior
of the prediction ŷN is governed by the estimative performance of β̂ as measured
by

(3.1) DN := (β̂ − β)T ωN = (
σ̂ T Ĝ

(
ĜT �̂Ĝ

)−1
ĜT − σT G

(
GT �G

)−1
GT )

ωN,
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where ωN = XN − E(X) ∼ N(0,�). Our goal now is to determine asymptotic
properties of DN as n,p → ∞. Because var(DN | β̂) = (β̂ −β)T �(β̂ −β), results
for DN also tell us about the asymptotic behavior of β̂ in the � inner product.
Consistency of β̂ is discussed in Section 7.1. Until then, we focus exclusively on
predictions via DN .

4. Overarching considerations. In this section we introduce and discuss var-
ious population constructs that play key roles in the asymptotic results of Section 5.

4.1. Dimension d of E�(B). As mentioned in Section 2, we assume through-
out this article that the dimension d = dim{E�(B)} is known and constant for all
finite p ≥ d . Technically, this dimension may increase for a time with p (e.g.,
while p < d), but we assume that it remains constant after a certain point.

4.2. Signal and noise in X. Although we are pursuing asymptotic properties
of PLS predictions via (3.1), the envelope model (2.3) guides aspects of the study.
Under this envelope construction, B ⊆ E�(B) and, for any nonnegative integer k,

(4.1) �k = H�k
HHT + H0�

k
H0

HT
0 .

Our asymptotic results depend fundamentally on the sizes of �H and �H0 . Define
η(p) : R �→R and κ(p) : R �→R as

tr(�H ) � η(p) ≥ 1,(4.2)

tr(�H0) � κ(p),(4.3)

where we imposed the condition η(p) ≥ 1 without loss of generality. In what fol-
lows, we will typically suppress the argument and refer to η(p) and κ(p) as η

and κ . If finitely many of the eigenvalues of �H0 are O(p) and the rest are all
bounded away from 0 and ∞, then we could take κ = p. Otherwise, it is tech-
nically possible that p = o(κ), although we would not normally expect that in
practice.

To gain intuition about η(p), let λi denote the ith eigenvalue of �H , i =
1, . . . , d , and assume without loss of generality that the columns of H =
(h1, . . . , hd) are orthogonal eigenvectors of �. Then using (4.1) and the facts that
σ = PHσ and �H = diag(λ1, . . . , λd),

βT �β = σT �−1σ = σT H�−1
H HT σ

= ‖σ‖2
(

σT H�−1
H HT σ

σT PHσ

)
(4.4)

=
d∑

i=1

wi

(‖σ‖2/λi

)
,
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where the weights wi = σT Phi
σ/σT PHσ , Phi

denotes the projection onto
span(hi) and

∑d
i=1 wi = 1. Consequently, if the wi are bounded away from 0

and if many predictors are correlated with y so that ‖σ‖2 → ∞, then the eigenval-
ues of �H must diverge to ensure that βT �β remains bounded. We could in this
case take η(p) = ‖σ‖2.

Suppose that the first k eigenvalues λi , i = 1, . . . , k, diverge with p, that λi �
λj , i, j = 1, . . . , k, and that the remaining d − k eigenvalues are a lower order,
λj = o(λi), i = 1, . . . , k, j = k + 1, . . . , d . Then if ‖σ‖2 � λi , i = 1, . . . , k, we
must have wi → 0 for i = k + 1, . . . , d for βT �β to remain bounded.

It is possible also that the eigenvalues λi are bounded. This happens in sparse
regressions when only d predictors are relevant. For instance, if H = (Id,0)T then
�H is the dth order leading principal submatrix of �, and thus it is fixed with
bounded eigenvalues. Bounded eigenvalues are possible also when many predic-
tors are related weakly with the response so ‖σ‖ is bounded. If the eigenvalues λi

are bounded, then η � 1.
From the discussion so far, we see that κ , being the trace of a p − d × p − d

positive definite matrix, would normally be at least the order of p, but might have
a larger order. η, being the trace of a d × d matrix, will in practice have order at
most p and can achieve that order in abundant regressions where ‖σ‖2 � p. We
can contrive cases where p = o(η), but they seem impractical. For these reasons,
we limit our consideration to regressions in which η = O(κ).

The measures κ and η are frequently joined naturally in our asymptotic expan-
sions into the combined measure

(4.5) φ(n,p) = κ(p)

nη(p)
.

As will be seen later, a good scenario for prediction occurs when φ(n,p) → 0 as
n,p → ∞. This implies a synergy between the signal η and the sample size n,
with the product nη being required to dominate the variation of the noise in X

as measured by κ . This is similar to the signal rate found by Cook, Forzani and
Rothman [11] in their study of abundant high-dimensional linear regression. We
typically drop the arguments (n,p) when referring to φ(n,p).

4.3. Coefficients βy|HT X . The coefficients for the regression of y on the re-
duced predictors HT X can be represented as βy|HT X = �−1

H σH , where σH =
HT σ ∈ R

d×1. Population predictions based on the reduced predictor involve the
product βT

y|HT X
HT X. If var(HT X) = �H diverges along certain directions, then

we must have corresponding parts of βy|HT X converge to 0 to balance the increases
in HT X or otherwise the form βT

y|HT X
HT X will not make sense asymptotically.

This essential behavior can be seen also from

var
(
βT

y|HT X
HT X

) = βT
y|HT X

�Hβy|HT X = σT
H�−1

H σH = βT �β.
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Since βT �β is bounded, if �H diverges along certain directions then σH must
correspondingly increase to compensate for the convergence of �−1

H to 0 in those
same directions. By construction, var(HT X/η1/2) = �H/η → V ≥ 0. Also, nor-
malizing �H by η forces a corresponding normalization of σH by η1/2.

4.4. Error variance τ 2. The quadratic form βT �β is a monotonically increas-
ing function of p. Since var(y) = βT �β + τ 2 is constant, as βT �β increases with
p, τ 2 must correspondingly decrease with p. Although it is technically possible
to have τ → 0, we assume throughout that τ is bounded away from 0 as p → ∞
since this is likely relevant in nearly all applications.

4.5. Asymptotic dependence. In the envelope model (2.3), H represents a
semi-orthogonal basis matrix for E�(B). However, the SIMPLS method for es-
timating E�(B) involves Ĝ. While span(G) = E�(B), G is not semi-orthogonal,
and thus we need to keep track of any asymptotic linear dependencies among the
reduced variables GT X ∈ R

d . Let

C = diag−1/2(
GT �G

)
GT �Gdiag−1/2(

GT �G
) ∈ R

d×d

denote the correlation matrix for GT X, and define the function ρ(p) so that as
p → ∞
(4.6) tr

(
C−1) � ρ(p).

As with other constructions, we typically drop the argument and refer to ρ(p)

as ρ. Let R2
i denote the squared multiple correlation coefficient from the linear

regression of the ith coordinate of GT X onto the rest. Then tr(C−1) = ∑d
i=1(1 −

R2
i )

−1, so ρ basically describes the rate of increase in the sum of variance inflation
factors. It may be appropriate for many applications to assume that ρ is bounded,
but it turns out that we might still obtain useful results then ρ → ∞ if its rate of
increase is sufficiently slow and in particular slower than

√
n.

In high-dimensional regressions, the eigenvalues of � are often assumed to be
bounded away from 0 and ∞ as p → ∞, which rules out any exact asymptotic
dependence among the predictors. In the context of PLS, y ⊥⊥ X | GT X and so the
variables GT X are the only ones that are relevant to the regression. We use ρ to
measure asymptotic dependencies among the variables in GT X. For instance, it
will be seen in the two theorems of Section 5 that the sample size required for con-
sistency when ρ → ∞ can be much larger than that required when ρ is bounded.
Our context allows for exact asymptotic dependencies in the complementary set of
variables HT

0 X, so our conclusions stand even if the smallest eigenvalue of �H0

converges to zero. Since the eigenvalues of �H0 are also eigenvalues of �, the
smallest eigenvalue of � may converge to 0 without impacting our results.

The following proposition gives necessary and sufficient conditions for tr(C−1)

to be bounded. In preparation, consider the regression of y on the reduced and
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scaled predictors HT X/
√

η, where the scaling is as discussed in Section 4.3. The
Krylov matrix for this regression is

GH =
{

σH√
η
,
�H

η

σH√
η
,

(
�H

η

)2 σH√
η
, . . . ,

(
�H

η

)d−1 σH√
η

}
.

Let aH = limp→∞ σH/
√

η. Then the limiting form of GH can be expressed as

G∞ = lim
p→∞GH = (

aH ,V aH ,V 2aH , . . . , V d−1aH

) ∈ R
d×d,

where V = limp→∞ �H/η, as defined in Section 4.3. By construction rank(GH ) =
d for all finite p, but rank(G∞) could be less than d if, for example, V is singular
or some of its eigenvalues are equal.

PROPOSITION 1. V > 0 and rank(G∞) = d if and only if tr(C−1) is bounded
as p → ∞.

The next two corollaries describe related implications.

COROLLARY 1. If V > 0 with distinct eigenvalues, then rank(G∞) = d if and
only if EV (span(aH )) = R

d .

This corollary, which follows from Cook, Li and Chiaromonte ([13], Theo-
rem 1), says in effect that rank(G∞) = d if and only if aH has a nonzero projection
onto each of the d eigenspaces of V . If V > 0, but has fewer than d eigenspaces,
then rank(G∞) < d . This partly explains the need for the two conditions of Propo-
sition 1.

COROLLARY 2. Assume that V > 0. Then:

(i) rank(G∞) = d implies that V has distinct eigenvalues and that

EV

(
span(aH )

) = R
d .

(ii) EV (span(aH )) =R
d implies that V has distinct eigenvalues and that

rank(G∞) = d.

The next corollary describes what happens when the eigenvalues of � are
bounded away from 0 and ∞ as p → ∞.

COROLLARY 3. If the eigenvalues of � are bounded away from 0 and
∞ as p → ∞, then V > 0. Additionally, tr(C−1) is bounded if and only if
rank(G∞) = d .
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4.6. Compound symmetry. To help fix ideas, consider a regression in which
� > 0 has compound symmetry with diagonal elements all 1 and constant off
diagonal element ψ ∈ (0,1),

(4.7) � = (1 − ψ + pψ)P1 + (1 − ψ)Q1,

where P1 is the projection onto the p × 1 vector of ones 1p . In this case, � has
two eigenspaces and the performance of PLS depends on where β falls relative to
these spaces.

4.6.1. Constant covariances with y. Suppose σ = 1p . Then β = (1 − ψ +
pψ)−11p , H = 1p/

√
p, �H = (1 − ψ + pψ), �H0 = (1 − ψ)Ip−d , η � p, and

κ � p. Additionally, d = 1, w1 = 1, ‖σ‖2 = p, C = 1, λ1 = (1 − ψ + pψ),

βT �β =
d∑

i=1

wi

(‖σ‖2/λi

) = p

1 − ψ + pψ
→ ψ−1,

and G∞ = limp→∞(HT σ/
√

η) = 1 with η = p.

4.6.2. Contrasts. Suppose that 1T
pσ = 0. Then β = (1 −ψ)−1σ , H = σ/‖σ‖,

�H = (1 − ψ), �H0 = (1 − ψ + pψ)P1 + (1 − ψ)Q1,σ , κ � p and η � 1. Also,
d = 1, w1 = 1, λ1 = (1 − ψ) and

βT �β =
d∑

i=1

wi

(‖σ‖2/λi

) = ‖σ‖2

1 − ψ
,

so ‖σ‖ must be bounded. Additionally, G∞ = ‖σ‖ with η = 1.

4.6.3. Arbitrary σ . Decompose σ = P1σ + Q1σ = σ̄1p + cp , where σ̄ =
1T
pσ/p is assumed to be bounded away from 0 and cp = σ − 1pσ̄ is a residual

vector, 1T
p cp = 0. Then β = σ̄ (1 − ψ + pψ)−11p + (1 − ψ)−1cp ,

H = (h1, h2) =
(

1p√
p

,
cp

‖cp‖
)
,

�H = diag{(1 − ψ + pψ), (1 − ψ)}, �H0 = (1 − ψ)Q1,cp , κ � p and η � p.
Further, d = 2,

‖σ‖2 = σT HHT σ = σT P T
h1

σ + σT P T
h2

σ = σ̄ 2p + ‖cp‖2,

w1 = σ̄ 2p/
(
σ̄ 2p + ‖cp‖2)

,

w2 = ‖cp‖2/
(
σ̄ 2p + ‖cp‖2)

,

βT �β = σ̄ 2{
p/(1 − ψ + pψ)

} + (1 − ψ)−1‖cp‖2.
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We see as a consequence of this structure that both σ̄ and ‖cp‖ must be bounded
and that w1 → 1 and w2 → 0. Additionally, with η = p and σ̄∞ = limp→∞ σ̄ ,

aH = lim
p→∞

(√
pσ̄/

√
η,‖cp‖/√η

)T = (σ̄∞,0)T ,

V = lim
p→∞ diag

{
(1 − ψ + pψ), (1 − ψ)

}
/p = diag(ψ,0),

G∞ =
(
σ̄∞ ψσ̄∞
0 0

)
.

In this case, V and G∞ both have rank 1, and so by Proposition 1 tr(C−1) is
unbounded as p → ∞.

To find an order for tr(C−1), we have

�σ = σ̄ b(p,ψ)1p + (1 − ψ)cp,

G = (
σ̄1p + cp, σ̄ b(p,ψ)1p + (1 − ψ)cp

)
,

GT �G =
(

σ̄ 2pb(p,ψ) + (1 − ψ)‖cp‖2 σ̄ 2pb2(p,ψ) + (1 − ψ)2‖cp‖2

σ̄ 2pb2(p,ψ) + (1 − ψ)2‖cp‖2 σ̄ 2pb3(p,ψ)3 + (1 − ψ)3‖cp‖2

)
,

where b(p,ψ) = 1 − ψ + pψ . From this, it can be verified that tr(C−1) � p2,
so ρ = p2. The behavior of tr(C−1) in this example is due to the different orders
of magnitude of the eigenvalues of �H , λ1 � p and λ2 � 1. As will be seen later
in Theorems 1 and 2, a consequence of this structure is that we would need sam-
ple size n 
 p4 to keep the direction in span(1) from swamping the direction in
span⊥(1).

4.7. Universal conditions. Before discussing asymptotic results in the next
section, we summarize the conditions that we assume through this article. We re-
quire that:

C1. Model (2.1) holds, where (y,X) follows a nonsingular multivariate normal
distribution and that the data (yi,Xi), i = 1, . . . , n, arise as independent copies
of (y,X). To avoid the trivial case, we assume that the coefficient vector β �= 0,
which implies that the dimension of the envelope d ≥ 1. We also assume that the
error standard deviation τ is bounded away from 0 as p → ∞.

C2. φ and ρ/
√

n → 0 as n,p → ∞, where φ and ρ are defined at (4.5) and
(4.6).

C3. η = O(κ) as p → ∞, where η ≥ 1, and η and κ are defined at (4.2) and
(4.3).

C4. The dimension d of the envelope is known and constant for all finite p.
C5. � > 0 for all finite p. This restriction allows �̂ to be singular, which is a

scenario PLS was designed to handle. We do not require as a universal condition
that the eigenvalues of � are bounded as p → ∞.

Additional conditions will be needed for various results.
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5. Asymptotic results. Depending on properties of the regression, the asymp-
totic behavior of PLS predictions can depend crucially on all of the quantities
described in Section 4: n, d , η, κ and ρ. In this section we summarize our main
results along with a few special scenarios that may provide useful intuition in prac-
tice. Additional results along with proofs for those given here are available in the
Supplementary Material [10]. All of the asymptotic results in this section should
be understood to hold as n,p → ∞.

5.1. Orders of DN . The results of Theorem 1 are the most general, requiring
for potentially good results in practice only that C1–C5 hold and that the terms
characterizing the orders go to zero as n,p → ∞. In particular, the eigenvalues of
� need not be bounded. Its proof is given as Supplement Theorem S1.

THEOREM 1. As n,p → ∞,

DN = Op(ρ/
√

n) + Op

{
ρ1/2n−1/2(κ/η)d

}
.

In particular,

I. If ρ � 1, then DN = Op{n−1/2(κ/η)d}.
II. If κ � η, then DN = Op(ρ/

√
n).

III. If d = 1, then DN = Op(
√

nφ).

We see from this that the asymptotic behavior of PLS depends crucially on the
relative sizes of signal η and noise κ in X. It follows from the general result that if
κ � p, as likely occurs in Chemometrics applications, and η � p, so the regression
is abundant, then DN = Op(ρ/

√
n). This may be one of the reasons for the success

of PLS in spectrometric prediction in Chemometrics.
On the other hand, if the signal in X is small relative to the noise in X, so η =

o(κ), then it may take a very large sample size for PLS prediction to be consistent.
For instance, suppose that the regression is sparse so only d predictors matter,
and thus η � 1. Then it follows reasonably that ρ � 1 and, from part I, DN =
Op{n−1/2κd}. If, in addition, κ � p then DN = Op{pdn−1/2}. Clearly, if d is not
small, then it could take a huge sample size for PLS prediction to be consistent.

Cook and Forzani [9] showed using the same setup as employed here that for
single-component regressions (d = 1)

(5.1) D∗
N = Op

(
n−1/2 + tr1/2(�2

H0
)√

n‖σ‖2 + tr(�H0)

n‖σ‖2 + tr1/2(�3
H0

)

n‖σ‖3

)
,

where the superscript ∗ is meant as a reminder that this order of DN for d = 1 is
from Cook and Forzani [9]. To connect (5.1) with Theorem 1.III, first substitute
the bound tr(�j

H0
) ≤ κj into (5.1) to obtain

D∗
N = Op

(
n−1/2 + κ√

n‖σ‖2 + κ√
n‖σ‖2

(
κ

n‖σ‖2

)1/2)
.
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Next, it follows immediately from (4.4) that, when d = 1, η � ‖σ‖2 and so

D∗
N = Op

(
n−1/2 + √

nφ + √
nφ3/2) = Op(

√
nφ).

Consequently, D∗
N as given in (5.1) provides a sharper result than that given in

Theorem 1.III. We used the bound tr(�j
H0

) ≤ κj consistently when deriving the
conclusions of Theorem 1 because otherwise the conclusions are complicated to
the point that extracting a useful message is problematic. In some cases, (5.1)
and Theorem 1.III agree. For instance, consider the compound symmetry example
of Section 4.6 with σ = 1p . Then d = 1, �H0 = (1 − ψ)Ip−d , κ � p, η � p,
D∗

N = Op(1/
√

n) and, from part III of Theorem 1, DN = Op(1/
√

n).
Theorem 1 places no constraints on the rate of increase in the eigenvalues of

�H0 . In some regressions, it may be reasonable to assume that the eigenvalues of
�H0 are bounded so that tr(�h

H0
) � p as p → ∞. This is what happens in the

compound symmetry example. In the next theorem, we describe the asymptotic
behavior of PLS predictions when tr(�h

H0
) = O(κ). Its proof follows from Sup-

plement Theorems S2 and S3.

THEOREM 2. If tr(�h
H0

) = O(κ), h = 1, . . . ,4d − 1, then

DN = Op(ρ/
√

n) + Op(
√

ρφ).

In particular,

I. If ρ � 1, then DN = Op(
√

φ).
II. If η � κ , then DN = Op(ρ/

√
n).

III. If d = 1, then DN = Op(
√

φ).

The order of DN now depends on a balance between the sample size n, the
variance inflation factors as measured through ρ and the noise to signal ratio in φ,
but it no longer depends on the dimension d . Contrasting the results of Theorems
1 and 2, we see a much better rate for case I in Theorem 2, and the same rates for
case II. The rate for case III in Theorem 2 is no worse that in Theorem 1 since√

φ = O(
√

nφ).
In the next two sections, we discuss the asymptotic behaviors of PLS under

models for X that may be plausible for some data. We connect with the results of
Chun and Keleş [6] in Section 5.2.

5.2. Isotropic predictor variation. The compound symmetry example of Sec-
tion 4.6 was used primarily to help fix ideas as the theory was developed. In that
example, we specified a particular eigenstructure for � and then discussed out-
comes depending on where σ fell relative to that eigenstructure. We next discuss
an alternate way of structuring � that takes y into account and that may be more
reflective of Chemometrics applications of PLS.
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We suppose that X can be modeled as

(5.2) X = μX + �ν + ω,

where ν ∈ R
d is a vector of latent variables that is normally distributed with mean

0 and variance Id , � ∈ R
p×d has rank d ≤ p, ω ∈ R

p is normally distributed
with mean 0 and variance π2Ip , and ω ⊥⊥ (ν, y). Since � is unknown and uncon-
strained, there is no loss of generality in the restriction that var(ν) = Id .

We further assume that cov(ν, y) has no 0 elements so the dependence between
X and y arises fully via ν. It follows as a consequence of this model that X ⊥⊥ ν |
�T X, and thus d linear combinations �T X carry all of the information that X has
about y. The variance of X can be expressed as

� = ��T + π2Ip = H
(
�T � + π2Id

)
HT + π2QH,

where H = �(�T �)−1/2 is a semi-orthogonal basis matrix for span(�). Since
σ = � cov(ν, y) and cov(ν, y) has no nonzero elements, it follows that E�(B) =
span(�) = H, �H = �T � + π2Id and �H0 = π2Ip−d . We can now appeal to
Theorems 1 and 2 to gain information about the asymptotic behavior of PLS under
(5.2).

Since the eigenvalues of �H0 are bounded, κ � p. The signal in X is measured
by

tr(�H ) = tr
(
�T �

) + π2d �
p∑

i=1

‖θi‖2,

where θT
i is the ith row of �. If the signal is sparse, so for example only d rows of

� are nonzero, then tr(�H ) is bounded, η � 1 and V = limp→∞ �T �+π2Id > 0.
On the other extreme, if the signal is abundant so many rows of � are nonzero
and tr(�H ) diverges, we can take η = tr(�T �) and reasonably assume V =
limp→∞ �T �/η > 0. For instance, in spectroscopy data it seems entirely plau-
sible that notable signal comes from many wavelengths, not just a few.

It remains to address ρ. Since V > 0 with a sparse signal, and we assume V > 0
with an abundant signal, it follows from Proposition 1 that ρ � 1 if and only if
rank(G∞) = d . To evaluate the rank of G∞, we need aH = V 1/2 cov(ν, y), V and
EV (span(aH )) = EV (span(cov(ν, y)). Then, by Corollaries 1 and 2, rank(G∞) = d

if and only if V has distinct eigenvalues and cov(ν, y) has a nonzero projection
onto every eigenspace of V . Although we might contrive cases where rank(V ) < d

or where rank(V ) = d and cov(ν, y) is orthogonal to an eigenspace of V , those
would seem to be unusual in practice, and consequently it may be reasonable to
assume that rank(G∞) = d , and thus that ρ � 1.

With this background, we next turn to application of Theorems 1 and 2 with κ �
p and ρ � 1. Under conclusion II of Theorem 1, if η � p then DN = Op(n−1/2)

and we expect reasonable performance from PLS predictions. From the general
conclusion of Theorem 2, DN = Op(

√
φ). If in addition η � p, then again DN =
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Op(n−1/2), and DN = Op(p1/4/n1/2) if η � √
p. These rates suggest again that

PLS predictions could be useful in high-dimensional regressions.
The predictor model employed by Chun and Keleş ([6], Assumption 1) in their

treatment of PLS is the same as (5.2) with the added constraint that the columns
of � are orthogonal with bounded norms that converge as sequences. As a re-
sult �T � is a convergent diagonal matrix, which effectively imposes sparsity and
several additional simplifying consequences:

1. The eigenvalues of �H0 must be bounded away from 0 and ∞, which implies
that κ � p.

2. The eigenvalues of the now diagonal matrix V = limp→∞ �T �+π2Id must
be distinct [6], Condition 1, and bounded away from 0 and ∞, so the signal is
bounded and η � 1.

3. Since cov(ν, y) has no zero elements, EV (span(cov(ν, y)) = R
d , and thus

ρ � 1 by Corollaries 2 and 3. This means that ρ will not appear in the conclusions
of Theorems 1 and 2.

Our results for the setting considered by Chun and Keleş can be found by setting
φ = p/n and ρ = 1 in the main conclusion of Theorem 2, which gives DN =
Op((p/n)1/2). Since this requires p/n → 0, it agrees with the Chun–Keleş result.
By asking that the eigenvalues of � be bounded, Chun and Keleş in effect assumed
sparsity to motivate a sparse solution and their requirement that the columns of �

be orthogonal effectively forced ρ � 1. In contrast, as seen in Theorems 1 and 2,
PLS can in some settings achieve a convergence rate that is near

√
n.

5.3. Anisotropic predictor variation. Model (5.2) is restrictive because it pos-
tulates that the elements of X − μX − �ν are independent and identically dis-
tributed. In effect, all of the extrinsic anisotropic variation in X is due to its
association with y. One extension of (5.2) allows for anisotropic variation in
(X − μX − �ν), so its elements can be correlated:

(5.3) X = μX + �ν + 
1/2ω,

where 
 ∈R
p×p is positive definite, the elements of ω are independent copies of a

standard normal random variable and all other quantities are as defined for (5.2), so
again the elements of cov(ν, y) are all nonzero. Under this model in combination
with (2.1), it can be verified that � = ��T + 
, σ = � cov(ν, y) and

E�(B) = E�

(
span(σ )

) = E�

(
span(�)

) = E


(
span(�)

)
.

Let u = dim(E�(B)), let H ∈ R
p×u denote a semi-orthogonal basis matrix for

E�(B), let (H,H0) ∈ R
p×p denote an orthogonal matrix. Then for some posi-

tive definite matrices 	 ∈ R
u×u and 	0 ∈ R

(p−u)×(p−u), we have 
 = H	HT +
H0	0H

T
0 , � = HU , where U ∈ R

u×d has rank d , �H = UUT + 	, �H0 = 	0

and, as before, � = H�HHT + H0�H0H
T
0 . We are now in a position to consider

application of Theorems 1–2.
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5.3.1. span(�) reduces 
. If span(�) reduces 
, then

E�(B) = E


(
span(�)

) = span(�),

u = d , U = (�T �)1/2, �H = �T �+	 and � = H(�T �+	)HT +H0	0H
T
0 .

Except for 	 and 	0, the structure that follows from this setup is just like that
associated with (5.2). In particular, if 
 has bounded eigenvalues, which may be a
reasonable assumption when y accounts substantially for the extrinsic variation in
X, then all of the essential asymptotic results of Section 5.2 hold.

5.3.2. span(�) does not reduce 
. The situation becomes more complicated
when span(�) does not reduce 
. Suppose that the eigenvalues of 
 are bounded
and that η is unbounded. Then, as in previous cases, κ � p. But, since the eigen-
values of 	 are bounded, limp→∞ �H/η = limp→∞ UUT /η must be singular.
This means that ρ is unbounded and so it may still have an important impact
on the conclusions of Theorems 1 and 2. On the other hand, if the eigenvalues
of 	0 are bounded, but the eigenvalues of 	 are unbounded, then we may still
have κ � p and η � p. Going further, if ρ is bounded then we will again have
DN = Op(1/

√
n).

6. Simulations and data analysis.

6.1. Simulations. In this section we give simulation results in support of our
asymptotic conclusions. We use the isotropic model (5.2) and compound symmetry
(4.7) as the basis for our simulation models.

6.1.1. Isotropic model (5.2). Our simulations for the isotropic model were
all conducted with μX = 0, d = 2, π2 = 1 and (y, νT ) ∼ N3(0,U), where the
elements of U were U11 = 4, U12 = U13 = 0.8, U22 = U33 = 1 and U23 = 0.
The columns of � were constructed to be orthogonal with the diagonal elements
diag(�T �) = (t1(p), t2(p)) of �T � being increasing functions of p, and al-
ways V > 0. If V has distinct eigenvalues, then we know from the discussion
of Section 5.2 that ρ � 1. To provide more details on ρ, we next give tr(C−1).
Let R1(p) = (t2(p) + π2)/(t1(p) + π2), R2(p) = t2(p)/t1(p) and cov(y, ν) =
(v1, v2). Then

tr
(
C−1) = 2

(v2
1 + v2

2R1R2)(v
2
1 + v2

2R3
1R2)

v2
1v2

2R1(R1 − 1)2R2
.

Both v1 and v2 are nonzero and do not depend on n or p. Consequently, the asymp-
totic behavior of tr(C−1) depends only on R1 and R2, which both converge to finite
nonzero constants by construction. However, if R1 → 1 then tr(C−1) will diverge
which may have a serious impact on the rate of convergence.

Figure 1 shows results from data generated under this setup with diag(�T �) =
(4pa,pa), 0 < a ≤ 1, and diag(�T �) = (4c, c) where c is constant. Consequently,
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FIG. 1. Simulation results from the isotropic model (5.2): Listing from the top at log2(p) = 6 the
lines correspond to η equal to a constant, p1/2, p3/4 and p.

for each � we can take the corresponding η = pa , 0 ≤ a ≤ 1. It follows from
the discussion of Section 5.2 and from the above calculations that ρ � 1. Since
κ � p, the asymptotic behavior of the simulation is governed by Theorem 2.I,
giving DN = Op(

√
φ) with φ = p/nη. A data set of size n = p/2 was obtained

by using n independently generated observations on (y, νT ) and ω in model (5.2)
to obtain n independent observations on X. Then n additional observations on X

were generated and D2
N was computed for each and averaged. The vertical axis

D̂2 of Figure 1 is the average over 100 replications of this whole process. Reading
from the top to bottom at log2(p) = 6, the lines in Figure 1 correspond to η equal to
a constant, p1/2, p3/4 and p. Since n = p/2, we have φ = 2/η. Thus, in reference
to Figure 1, our theoretical results predict convergence of the curves for η equal to
p1/2, p3/4 and p, but no convergence for η equal to a constant. The curves shown
in Figure 1 seem to support this prediction, with the best results being achieved for
η = p, followed by η = p3/4 and η = p1/2.

Figure 2 was constructed like Figure 1, except diag(�T �) = (pa,pa), 0 < a ≤
1, and diag(�T �) = (c, c) where c is constant. This seemingly small change has
the potential to have a big impact on the results because now the eigenvalues of V

are no longer distinct and R1 = 1, with the consequence that ρ may slow the rate
of convergence as indicated in Theorem 2. Indeed, the results in Figure 2 seem
uniformly worse than those in Figure 1. While it seems clear that the curve for
η = p is convergent, it is not clear if the curves for η = p1/2 or η = p3/4 are so.

The influence of U on the results of this example is controlled largely by the
correlations cyν = cov(y, ν)/var1/2(y) between y and the elements of ν. The con-
dition var(ν) = I2 was imposed without loss of generality since we can always
achieve it by rescaling. In Figures 1 and 2, cyν = (0.4,0.4). If we had set the cor-
relations to be larger, say cyν = (0.8,0.8), D̂2 would have decreased faster as a
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FIG. 2. Simulation results from the isotropic model (5.2): Listing from the top at log2(p) = 12 the
lines correspond to η equal to a constant, p1/2, p3/4 and p.

function of p. If we had set the correlations to be weaker, say cyν = (0.2,0.2),
D̂2 would have decreased slower. Although in either case the general conclusions
from Figures 1 and 2 would still be discernible. We selected correlations of 0.4
because we felt that they represent modest correlations that illustrate the theory
nicely without giving an optimistic impression, as might happen if we had used
large correlations.

6.1.2. Compound symmetry (4.7). For this simulation, we used model (2.1)
with the compound symmetry structure (4.7) for � constructed with σ = 1p +
cp , σ = 1p + 0.5cp and σ = 1p and in each case ψ = 0.8. With σ , ψ and p

set, we generated a single observation on X ∼ Np(0,�) and then generated the
corresponding y according to model (2.1) with error standard deviation τ = 1.
This process was repeated n = p/2 times to get β̂ . Then n additional observations
on X were generated and D2

N was computed for each and averaged. The vertical
axis D̂2 of Figure 3 is the average over 100 replications of this whole process.

In this simulation, we have κ � p, η � κ and tr(�h
H0

) � κ . It follows that The-
orem 2.II is applicable for σ = 1p + cp and σ = 1p + 0.5cp giving, from the dis-
cussion in Section 4.6, DN = p2/

√
n. Since we used n = p/2, we do not expect

convergence, which seems consistent with the results shown in Figure 3. Theo-
rem 2.III applies for σ = 1p since then d = 1. In that case, DN = Op(p−1/2),
which again seems consistent with the results of Figure 3.

6.2. Tetracycline data. Goicoechea and Olivieri [20] used PLS to develop a
predictor of tetracycline concentration in human blood. The 50 training samples
were constructed by spiking blank sera with various amounts of tetracycline in the
range 0–4 μg mL−1. A validation set of 57 samples was constructed in the same
way. For each sample, the values of the predictors were determined by measuring
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FIG. 3. Simulation results using compound symmetry (4.7). Reading from top to bottom the lines
correspond to σ = 1p + cp , σ = 1p + 0.5cp and σ = 1p .

fluorescence intensity at p = 101 equally spaced points in the range 450–550 nm.
The authors determined using leave-one-out cross validation that the best predic-
tions of the training data were obtained with d = 4 linear combinations of the
original 101 predictors.

We use these data to illustrate the behavior of PLS predictions in Chemometrics
as the number of predictors increases. We used PLS with d = 4 to predict the
validation data based on p equally spaced spectra, with p ranging between 10
and 101. The root mean squared error (MSE) is shown in Figure 4 for five values
of p. PLS fits were determined by using library{pls} in R. We see a relatively
steep drop in MSE for small p, say less than 30, and a slow but steady decrease

FIG. 4. Tetracycline data: Validation MSE from 10, 20, 33, 50 and 101 equally spaced spectra.
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in MSE thereafter. Since we are dealing with actual prediction, the root-MSE will
not converge to 0 with increasing p as it seems to do in some of the simulations.

7. Discussion. In this section we give results on the convergence of β̂ and
describe our rationale for some of the restrictions that we imposed.

7.1. Convergence of β̂ . The focus of this article has been on the rate of con-
vergence of predictions as measured by DN . In this section we consider for com-
pleteness the rate of convergence of β̂ in the � inner product. Let

Vn,p = var1/2(DN | β̂) = {
(β̂ − β)T �(β̂ − β)

}1/2
.

Then, as shown in Appendix Section S8, Vn,p and DN have the same order as
n,p → ∞. To be clear, we state this in the following theorem.

THEOREM 3. As n,p → ∞,

I. Under the conditions of Theorem 1,

Vn,p = Op(ρ/
√

n) + Op

{
ρ1/2n−1/2(κ/η)d

}
.

II. Under the conditions of Theorem 2,

Vn,p = Op(ρ/
√

n) + Op(
√

ρφ).

It follows from this theorem that the special cases of Theorems 1 and 2 and the
subsequent discussions apply to Vn,p as well. In particular, estimative convergence
as measured in the � inner product will be at or near the root-n rate under the same
conditions as predictive convergence.

7.2. Multivariate Y . Recall that we confined our study to regressions with a
univariate response. An extension to multivariate Y ∈ R

r seems elusive because
there are numerous PLS algorithms for multivariate Y and they can all produce dif-
ferent results. The two most common algorithms NIPLS and SIMPLS are known
to produce different results when r > 1 but give the same results when r = 1 [12,
15, 34]. The multivariate version of the Krylov construction Ĝ provides another
PLS algorithm. Some prefer to standardize the elements of Y to have sample vari-
ance equal to 1, while others do not standardize. Some PLS algorithms reduce
Y and X simultaneously, while others reduce X alone. These various algorithms
can produce different results when r > 1 but also produce the same or equivalent
results when r = 1. It seems to us that any extension to allow for a multivariate
response would first need to address the multiplicity of methods, which is outside
the scope of this report.
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7.3. Choice of the dimension, d . We assumed through this article that the di-
mension d of the envelope is effectively fixed and known, as did Chun and Keleş
[6]. In practice, d will not normally be known so a data-dependent estimate dn,p

will often be used in its stead. If dn,p > d , the (nonasymptotic) results of a PLS
analysis will still be based on a true model, albeit one with more variation than
necessary. If dn,p < d , then PLS will incur some bias in estimation. The bias can
be sizable if dn,p is substantially less than d , an event that we judge to be unlikely
because the far values of dn,p should be ruled out by standard PLS methodology.

Extensions of the asymptotic results of this article that allow for using dn,p in-
stead of d will depend on the rate at which dn,p converges to d . If that rate is
sufficiently fast, then the results of this article will still hold. Otherwise, the rates
presented here will be optimistic. We chose to assume d known so that the results
might reflect the core behavior of PLS while keeping an important link with the
work of Chun and Keleş [6]. This view avoided the task of studying selection meth-
ods, which is outside the scope of this article but still an important next step. Eck
and Cook [17] proposed an estimator of β as a weighted average of the envelope
estimators over the possible dimensions of the envelope, the weights being func-
tions of the Bayes information criterion for each envelope model. This weighted
estimator avoids the need to estimate the dimension and might be adaptable for
asymptotic studies of PLS.

Another desirable extension is to allow d → ∞ as p → ∞. In such a case,
we expect PLS to still yield consistent results provided d grows at a rate that is
sufficiently slow relative to p.

7.4. Importance of normality. As mentioned previously, simulations and our
experience in practice suggest that normality is not an essential assumption in prac-
tice, particularly if a holdout sample is used to assess performance of the final pre-
dictive model. Theoretically, we expect that our asymptotic results are indicative
for sub-normal variables, but may not be so for sur-normals, depending on the tail
behavior. We relied extensively on the behavior of higher order moments of nor-
mals. Extending these results to classes of distributions would require bounds that
would likely be quite loose for normals. Assuming normality allowed us to get rel-
atively sharp bounds, which we feel is useful for a first look at PLS asymptotics.
The same normality was used also by Naik and Tsai [30] in their asymptotic study
of the fixed p case and by Chun and Keleş [6] for the case in which p and n both
diverge.

7.5. Impact of the results. Our asymptotic results are intended to provide a
qualitative understanding of various plausible PLS scenarios. For instance, if it is
thought that nearly all predictors contribute information about the response, so η �
p, then we may have DN = Op(n−1/2) without regard to the relationship between
n and p. On the other extreme, if the regression is viewed as likely sparse, so η � 1,
then we may have DN = Op((p/n)1/2) and we now need n to be large relative
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to p. Increasing p in the context of Chemometrics applications was illustrated in
the example of Section 6.2 where we observed a steady decrease in mean squared
error, suggesting that the regression is abundant so η � p.

Our results also serve to place the findings by Chun and Keleş [6] in a broader
context by demonstrating that it is possible in some scenarios for PLS to have
root-n or near root-n convergence rates as n and p diverge.
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SUPPLEMENTARY MATERIAL

Supplement to “Partial least squares prediction in high-dimensional re-
gression” (DOI: 10.1214/18-AOS1681SUPP; .pdf). Proofs for all lemmas, propo-
sitions and theorems are provided in the online supplement to this article.
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