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DENSITY OF THE SET OF PROBABILITY MEASURES WITH THE
MARTINGALE REPRESENTATION PROPERTY

BY DMITRY KRAMKOV∗ AND SERGIO PULIDO1,†

Carnegie Mellon University∗ and Université Paris-Saclay†

Let ψ be a multidimensional random variable. We show that the set

of probability measures Q such that the Q-martingale S
Q
t = EQ[ψ |Ft ] has

the Martingale Representation Property (MRP) is either empty or dense in
L∞-norm. The proof is based on a related result involving analytic fields of
terminal conditions (ψ(x))x∈U and probability measures (Q(x))x∈U over
an open set U . Namely, we show that the set of points x ∈ U such that
St (x) = EQ(x)[ψ(x)|Ft ] does not have the MRP, either coincides with U

or has Lebesgue measure zero. Our study is motivated by the problem of
endogenous completeness in financial economics.

1. Introduction. Let (�,F, (Ft ),P) be a filtered probability space, Q be an
equivalent probability measure and S = (Si

t ) be a multidimensional martingale un-
der Q. It is often important to know whether S has the Martingale Representation
Property (MRP), that is, whether every local martingale under Q is a stochastic
integral with respect to S. For instance, in mathematical finance such MRP corre-
sponds to the completeness of the market with stock prices S. By Jacod’s theorem,
S has the MRP if and only if Q is its only equivalent martingale measure.

In many applications, S is defined in a forward form, as a solution of an SDE,
and the verification of the MRP is quite straightforward. Suppose, for example,
that S is a d-dimensional Itô process such that

dSt = σt (αt dt + dBt),

where B is a d-dimensional Brownian motion, α = (αt ) is a d-dimensional market
price of risk process and σ = (σt ) is a d × d-dimensional volatility process. Let us
assume that the local martingale

Zt = exp
(
−

∫ t

0
αs dBs − 1

2

∫ t

0
|αs |2 ds

)
, t ≥ 0,

is uniformly integrable; this fact can usually be verified by Novikov’s or Kaza-
maki’s conditions. By Girsanov’s theorem, Z is the density process of an equiva-
lent martingale measure Q for S. If the filtration is generated by B , then S has the
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MRP (equivalently, Q is its only equivalent martingale measure) if and only if the
matrix-valued volatility process σ = (σt ) has full rank dP× dt almost surely.

We are interested in the situation where both S and Z are described in a back-
ward form through their terminal values:

Z∞ = dQ

dP
= ζ

E[ζ ] ,

St = EQ[ψ |Ft ], t ≥ 0,

(1)

where ζ > 0 and ψ = (ψi) are given random variables. Such setup naturally arises
in the problem of endogenous completeness of financial economics, where the
random variable ψ represents the terminal values of the traded securities and Q

defines an equilibrium pricing measure. The term “endogenous” indicates that the
stock prices S = (Si) are computed by (1) as part of the solution. The examples
include the construction of Radner equilibrium [1, 4, 6, 10] and the verification of
the completeness property for a market with options [2, 11].

The main focus of the existing literature has been on the case when the random
variables ζ and ψ are defined in terms of a Markov diffusion in a form consistent
with Feynman–Kac formula. The proofs have relied on PDE methods and, in par-
ticular, on the theory of analytic semigroups [7]. A key role has been played by the
assumption that time-dependencies are analytic.

In this paper, we do not impose any conditions on the form of the random vari-
ables ζ and ψ . Our main results are stated as Theorems 2.3 and 3.1. In Theo-
rem 2.3, we show that the set

Q(ψ) �
{
Q∼ P : SQ

t � EQ[
ψ |Ft

]
has the MRP

}
is either empty or L∞-dense in the set of all equivalent probability measures. In
Theorem 3.1, we consider analytic fields of probability measures (Q(x))x∈U and
terminal conditions (ψ(x))x∈U over an open set U . We prove that the exception
set

I �
{
x ∈ U : St (x) � EQ(x)[ψ(x)|Ft

]
does not have the MRP

}
either coincides with U or has Lebesgue measure zero.

We expect the results of this paper to be useful in problems of financial eco-
nomics involving the endogenous completeness property. One such application, to
the problem of optimal investment under price impact, is discussed in Remark 2.5.

2. Density of the set of probability measures with the MRP. We work on
a filtered probability space (�,F, (Ft )t≥0,P) satisfying the usual conditions of
completeness and right-continuity; the initial σ -algebra F0 is trivial and F = F∞.
We denote by L1 = L1(Rd) and L∞ = L∞(Rd) the Banach spaces of (equiva-
lence classes of) d-dimensional random variables ξ with the norms ‖ξ‖L1 � E[|ξ |]
and ‖ξ‖L∞ � inf{c > 0 : P[|ξ | ≤ c] = 1}. We use the same notation L1 for the
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isometric Banach space of uniformly integrable martingales M with the norm
‖M‖L1 � ‖M∞‖L1 .

For a matrix A = (Aij ), we denote its transpose by A∗ and define its norm as

|A| � √
trAA∗ =

√∑
i,j

∣∣Aij
∣∣2.

If X is a m-dimensional semimartingale and γ is a m × n-dimensional X-
integrable predictable process, then γ · X = ∫

γ ∗ dX denotes the n-dimensional
stochastic integral of γ with respect to X. We recall that a n × k-dimensional pre-
dictable process ζ is (γ · X)-integrable if and only if γ ζ is X-integrable. In this
case, ζ · (γ · X) = (γ ζ ) · X is a k-dimensional semimartingale.

DEFINITION 2.1. Let Q be an equivalent probability measure (Q ∼ P) and S

be a d-dimensional local martingale under Q. We say that S has the Martingale
Representation Property (MRP) if every local martingale M under Q is a stochastic
integral with respect to S, that is, there is a predictable S-integrable process γ with
values in Rd such that

M = M0 + γ · S.

REMARK 2.2. Jacod’s theorem in [5], Section XI.1(a), states that S has the
MRP if and only if there is only one Q ∼ P such that S is a local martingale under
Q. Thus, there is no need to mention Q in the definition of the MRP.

Let ψ = (ψi)i=1,...,d be a d-dimensional random variable. We denote by Q(ψ)

the family of probability measures Q ∼ P such that EQ[|ψ |] < ∞ and the Q-
martingale

S
Q
t = EQ[

ψ |Ft

]
, t ≥ 0,

has the MRP.
This is our first main result.

THEOREM 2.3. Suppose that ψ ∈ L1(Rd) and Q(ψ) 
= ∅. Then for every
ε > 0 there is Q ∈ Q(ψ) such that∥∥∥∥dQ

dP
− 1

∥∥∥∥
L∞

≤ ε.

The proof is based on Theorem 3.1 from Section 3 and on the following ele-
mentary lemma. We recall the definition of an analytic function with values in a
Banach space at the beginning of Section 3.

LEMMA 2.4. Let ζ be a nonnegative random variable. Then the map x �→
e−xζ from (0,∞) to L∞ is analytic.
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PROOF. Fix y > 0. For every ω ∈ � the function x �→ e−xζ(ω) has a Taylor’s
expansion

(2) e−xζ(ω) =
∞∑

n=0

An(y)(ω)(x − y)n, x ∈ R,

where

An(y) = 1

n!
dn

dxn

(
e−xζ )∣∣∣

x=y
= 1

n!(−1)nζ ne−yζ .

We deduce that∥∥An(y)
∥∥
L∞ ≤ 1

n! max
t≥0

(
tne−yt ) = 1

n!
(

n

ey

)n

≤ K
1√
n

(
1

y

)n

,

where the existence of a constant K > 0 follows from Stirling’s formula:

lim
n→∞

√
2πn

n!
(

n

e

)n

= 1.

It follows that the series in (2) converges in L∞ provided that |x − y| < y. �

PROOF OF THEOREM 2.3. We take R ∈ Q(ψ), denote ζ � dR
dP

, and for x > 0
define the random variables

ζ(x) � 1 − e−xζ

x
+ x

1 + x
,

ξ(x) � ζ(x)ψ,

and a probability measure Q(x) such that

dQ(x)

dP
= ζ(x)

E[ζ(x)] .

We set ζ(0) � ζ , ξ(0) � ζψ , and Q(0) � R and observe that for every ω ∈ �

the functions x �→ ζ(x)(ω) and x �→ ξ(x)(ω) on [0,∞) are continuous. Since

∣∣ζ(x)
∣∣ ≤ ζ sup

t≥0

1 − e−t

t
+ x

1 + x
≤ ζ + 1,

the dominated convergence theorem yields that x �→ ζ(x) and x �→ ξ(x) are con-
tinuous maps from [0,∞) to L1. By Lemma 2.4, x �→ ζ(x) is an analytic map from
(0,∞) to L∞ and thus x �→ ζ(x) and x �→ ξ(x) are analytic maps from (0,∞) to
L1. Theorem 3.1 then implies that the exception set

I �
{
x > 0 :Q(x) /∈ Q(ψ)

}
is at most countable.
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Choose now any ε > 0. Since

− 1

1 + x
≤ ζ(x) − 1 ≤ 1

x
− 1

1 + x
,

there is x0 = x0(ε) such that the assertion of the theorem holds for every Q(x) with
x ≥ x0 and x /∈ I . �

REMARK 2.5. Theorem 2.3 plays a key role in our work, in progress, on the
problem of optimal investment in a “backward” model of price impact [3, 8]. There
are a large investor with utility function U = U(x) and initial capital X0 and a
market maker with exponential utility function

V (y) = 1

a

(
1 − e−ay)

, y ∈ R,

where a > 0 is the absolute risk-aversion coefficient. The investor looks for a pre-
dictable process γ = (γt ) of the numbers of stocks that maximizes the expected
utility:

u(X0) = sup
γ

E
[
U

(
X0 + γ · S(γ )T

)]
.

While the terminal stock prices are fixed to random dividends ψ ,

ST (γ ) = ψ,

their intermediate values are set so that the opposite position to the demand γ is
optimal for the market maker,

−γ = arg max
ζ

E
[
V

(
ζ · S(γ )T

)]
.

The standard first-order conditions in optimal investment lead to the expression for
prices S(γ ) in a backward form:

St (γ ) = EQ(γ )[ψ |Ft

]
,

where

dQ(γ )

dP
= V ′(−γ · S(γ )T )

E[V ′(−γ · S(γ )T )] = exp(aγ · S(γ )T )

E[exp(aγ · S(γ )T )] .

Theorem 2.3 allows us to relax this apparently complex stochastic control prob-
lem into a simple static framework. More precisely, we show that

u(X0) = max
ξ∈C E

[
U(X0 + ξ)

]
,

where C is the family of random variables given by

C �
{
ξ : E[

ξV ′(−ξ)
] = 0

} = {
ξ : E[

ξeaξ ] = 0
}
.
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The main ingredient of the proof is the assertion that the family of terminal gains
of trading strategies

D �
{
ξ : ξ = γ · S(γ )T for some demand γ

}
is L∞-dense in C, which can be interpreted as an approximate completeness of
the model. This claim follows from Theorem 2.3, after we observe that a random
variable ξ ∈ C also belongs to D if the Q(ξ)-martingale S(ξ) has the MRP, where

St (ξ) = EQ(ξ)[ψ |Ft

]
,

dQ(ξ)

dP
= V ′(−ξ)

E[V ′(−ξ)] = exp(aξ)

E[exp(aξ)] .

3. The MRP for analytic fields of martingales. Let X be a Banach space
and U be an open connected set in Rd . We recall that a map x �→ X(x) from U to
X is analytic if for every y ∈ U there exist a number ε = ε(y) > 0 and elements
(Yα(y)) in X such that the ε-neighborhood of y belongs to U and

X(x) = ∑
α

Yα(y)(x − y)α, |y − x| < ε.

Here, the series converges in the norm ‖·‖X of X, the summation is taken with
respect to multi-indices α = (α1, . . . , αd) ∈ Zl+ of nonnegative integers, and if x =
(x1, . . . , xd) ∈ Rd , then xα � ∏d

i=1 x
αi

i .
This is our second main result.

THEOREM 3.1. Let U be an open connected set in Rl and suppose that the
point x0 ∈ Rl belongs to the closure of U . Let x �→ ζ(x) and x �→ ξ(x) be contin-
uous maps from U ∪ {x0} to L1(R) and L1(Rd), respectively, whose restrictions
to U are analytic. For every x ∈ U ∪ {x0}, assume that ζ(x) > 0 and define a
probability measure Q(x) and a Q(x)-martingale S(x) by

dQ(x)

dP
= ζ(x)

E[ζ(x)] , St (x) = EQ(x)

[
ξ(x)

ζ(x)

∣∣∣Ft

]
.

If the Q(x0)-martingale S(x0) has the MRP, then the exception set

I �
{
x ∈ U : the Q(x)-martingale S(x) does not have the MRP

}
has Lebesgue measure zero. If, in addition, U is an interval in R, then the set I is
at most countable.

The following example shows that any countable set I in R can play the role
of the exception set of Theorem 3.1. In this example, we choose ζ(x) = 1 (so that
Q(x) = P) and take x �→ ξ(x) to be a linear map from R to L∞(R).
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EXAMPLE 3.2. Let (�,F, (Fn),P) be a filtered probability space, where the
filtration is generated by independent Bernoulli random variables (εn) with

P[εn = 1] = P[εn = −1] = 1

2
.

It is well known that every martingale (Nn) admits the unique “integral” represen-
tation

(3) Nn = N0 +
n∑

k=1

hk(ε1, . . . , εk−1)εk,

for some functions hk = hk(x1, . . . , xk−1), k ≥ 1, where h1 is just a constant.
Let I = (xn) be an arbitrary sequence in R. We define a linear map x �→ ξ(x)

from R to L∞(R) by

ξ(x) =
∞∑

n=1

(x − xn)

2n(1 + |xn|)εn = ψ0 + ψ1x,

where ψ0 and ψ1 are bounded random variables

ψ0 = −
∞∑

n=1

xn

2n(1 + |xn|)εn, ψ1 =
∞∑

n=1

1

2n(1 + |xn|)εn.

We have that

Mn(x) = E
[
ξ(x)|Fn

] = E
[
ξ(x)|ε1, . . . , εn

] =
n∑

k=1

(x − xk)

2k(1 + |xk|)εk

and thus

�Mn(x) = Mn(x) − Mn−1(x) = (x − xn)

2n(1 + |xn|)εn.

If x /∈ I , then the martingale (Nn) from (3) is a stochastic integral with respect to
M(x):

Nn = N0 +
n∑

k=1

hk(ε1, . . . , εk−1)
2k(1 + |xk|)

(x − xk)
�Mk(x).

However, if xm ∈ I , then the martingales M(xm) and

L(m)
n =

n∑
k=1

1{k=m}εk = 1{n≥m}εm, n ≥ 0,

are orthogonal. Hence, L(m) does not admit an integral representation with respect
to M(xm).
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The rest of the section is devoted to the proof of Theorem 3.1. It relies on The-
orems A.1 and B.1 from the Appendices and on the lemmas below.

Throughout the paper, all operations on stochastic processes are defined point-
wise, for every (t,ω). In particular, if X is a matrix-valued process, then |X| de-
notes the one-dimensional process of the running norm

|X|t (ω) �
∣∣Xt(ω)

∣∣.
Let X be a (uniformly) square integrable martingale taking values in Rm.

We denote by [X] = ([Xi,Xj ]) its process of quadratic variation and by 〈X〉 =
(〈Xi,Xj 〉) its predictable process of quadratic variation; they both take values in
the cone Sm+ of symmetric nonnegative m×m-matrices. We define the predictable
increasing process

AX � tr 〈X〉 =
m∑

i=1

〈
Xi,Xi 〉.

Standard arguments show that there is a predictable process κX with values in Sm+
such that

〈X〉 = (
κX)2 · AX.

On the predictable σ -algebra P of [0,∞) × � we introduce a measure

μX(dt, dω) � dAX
t (ω)P[dω].

For a nonnegative predictable process γ , the expectation under μX is given by

EμX [γ ] = E

[∫ ∞
0

γ dAX

]
= E

[∫ ∞
0

γt dAX
t

]
.

We observe that this measure is finite:

μX([0,∞) × �
) = E

[
AX∞

] = E
[|X∞ − X0|2]

< ∞.

For predictable m-dimensional processes (γ n) and γ the notation γ n μX

→ γ stands
for the convergence in measure μX:

∀ε > 0 : μX[∣∣γ n − γ
∣∣ > ε

] → 0, n → ∞.

LEMMA 3.3. Let X be a square integrable martingale with values in Rm and
γ be a predictable m-dimensional process. Then γ is X-integrable and γ · X = 0
if and only if κXγ = 0, μX-a.s.

PROOF. Since γ 1{|γ |≤n} · X → γ · X as n → ∞ in the semimartingale topol-
ogy, we can assume without a loss in generality that γ is bounded. Then γ · X is a
square integrable martingale with predictable quadratic variation

〈γ · X〉t =
∫ t

0

∣∣κXγ
∣∣2 dAX =

∫ t

0

∣∣κX
s γ s

∣∣2 dAX
s
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and the result follows from the identity

E
[
(γ · X)2∞

] = E
[〈γ · X〉∞] = E

[∫ ∞
0

∣∣κXγ
∣∣2 dAX

]
= EμX [∣∣κXγ

∣∣2]
. �

For every predictable process ζ taking values in Sm+ , we can naturally define a
Sm+ -valued predictable process ζ⊕ such that for all (t,ω) the matrix ζ⊕

t (ω) is the
pseudo-inverse to the matrix ζt (ω).

From Lemma 3.3, we deduce that if α is an integrand for X then the predictable
process

β � κX⊕
κXα

is also X-integrable and α · X = β · X. Moreover, |β| ≤ |α|, by the minimal norm
property of the pseudo-inverse matrices. In view of this property, we call a pre-
dictable m-dimensional process γ a minimal integrand for X if γ is X-integrable
and

γ = κX⊕
κXγ.

From the definition of a minimal integrand, we immediately deduce that

(4)
∣∣κXγ

∣∣ ≤ ∣∣κX
∣∣|γ |, |γ | ≤ ∣∣κX⊕∣∣∣∣κXγ

∣∣,
where, following our convention, both the norm and the inequalities are defined
pointwise, for every (t,ω).

We denote by H1 = H1(Rd) the Banach space of uniformly integrable d-
dimensional martingales M with the norm:

‖M‖H1 � E
[
sup
t≥0

|Mt |
]
.

By Davis’ inequality, the convergence Mn → 0 in H1 is equivalent to the conver-
gence [Mn]1/2∞ → 0 in L1, where [Mn] is the quadratic variation process of Mn.

We say that a sequence (Nn) of local martingales converges to a local mar-
tingale N in H1,loc if there are stopping times (τm) such that τm ↑ ∞ and
Nn,τm → Nτm

in H1. Here as usual, we write Y τ � (Ymin(t,τ )) for a semimartin-
gale Y stopped at a stopping time τ .

LEMMA 3.4. Let X be a square integrable martingale with values in Rm and
(γ n) be a sequence of predictable m-dimensional X-integrable processes such

that the stochastic integrals (γ n · X) converge to 0 in H1,loc. Then κXγ n μX

→ 0. If,

in addition, (γ n) are minimal integrands then γ n μX

→ 0.
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PROOF. It is sufficient to consider the case of minimal integrands. By local-
ization, we can suppose that γ n · X → 0 in H1, which by Davis’ inequality is
equivalent to the convergence of ([γ n · X]1/2∞ ) to 0 in L1.

Assume for a moment that |γ n| ≤ 1. Then [γ n · X] ≤ [X] and the theorem of
dominated convergence yields that [γ n · X]∞ → 0 in L1. As

E
[[

γ n · X]
∞

] = E
[〈
γ n · X〉

∞
] = E

[∫ ∞
0

∣∣κXγ n
∣∣2 dAX

]
= EμX [∣∣κXγ n

∣∣2]
,

we deduce that κXγ n μX

→ 0, which in view of (4), also implies that γ n μX

→ 0.
In the general case, we observe that

βn � 1

1 + |γ n|γ
n

are minimal integrands for X such that |βn| ≤ 1 and [βn · X] ≤ [γ n · X]. Hence,

by what we have already proved, βn μX

→ 0, which clearly yields that γ n μX

→ 0 and

then that κXγ n μX

→ 0. �

LEMMA 3.5. Let X be a square integrable m-dimensional martingale and
γ = (γ ij ) be a predictable X-integrable process with values in Rm×d . Then X is
a stochastic integral with respect to Y � γ · X, that is, X = X0 + ζ · Y for some
predictable Y -integrable d × m-dimensional process ζ , if and only if

(5) rankκXγ = rankκX, μX-a.s.

PROOF. We recall that a predictable process ζ is Y = γ · X-integrable if and
only if γ ζ is X-integrable. From Lemma 3.3, we deduce that ζ is Y -integrable and
satisfies

X = X0 + ζ · Y = X0 + ζ · (γ · X) = (γ ζ ) · X
if and only if

κXγ ζ = κX, μX-a.s.

However, the solvability of this linear equation with respect to ζ is equivalent to (5)
by an elementary argument from linear algebra. �

LEMMA 3.6. Let U be an open connected set in Rd and x �→ σ(x) be an
analytic map with values in k × l-matrices. Then there is a nonzero real-analytic
function f on U such that

E �
{
x ∈ U : rankσ(x) < sup

y∈U

rankσ(y)
}

= {
x ∈ U : f (x) = 0

}
.

In particular, the set E has Lebesgue measure zero and if d = 1, then it consists of
isolated points.
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PROOF. Let m � supy∈U rankσ(y). If m = 0, then the set E is empty and we
can take f = 1. If m > 0, then the result holds for

f (x) = ∑
α

detσα(x)σ ∗
α (x),

where (σα) is the family of all m×m sub-matrices of σ . The remaining assertions
follow from the well-known properties of zero-sets of real-analytic functions. �

PROOF OF THEOREM 3.1. Without restricting generality, we can assume that
ζ(x0) = 1, and hence, Q(x0) = P. Proposition 2 in [9] shows that if some multi-
dimensional local martingale has the MRP, then there is a bounded, hence square
integrable, m-dimensional martingale X that has the MRP. We fix such X and
use for it the Sm+ -valued predictable process κX and the finite measure μX on the
predictable σ -algebra P introduced just before Lemma 3.3.

We define the martingales

Yt (x) � E
[
ζ(x)|Ft

]
, Rt (x) � E

[
ξ(x)|Ft

]
,

and observe that R(x) = S(x)Y (x). Let α(x) and β(x) be integrands for X with
values in Rm and Rm×d , respectively, such that

Y(x) = Y0(x) + Y−(x)α(x) · X,

R(x) = R0(x) + Y−(x)β(x) · X,

where as usual, Y− stands for the left-continuous process (Yt−). Integration by
parts yields that

dR(x) − S−(x) dY (x) = Y−(x) d
(
S(x) + [

S(x),α(x) · X])
.

It follows that

S(x) + [
S(x),α(x) · X] = S0(x) + σ(x) · X,

where

σ(x) = β(x) − α(x)S∗−(x).

From Theorem B.1, we deduce that S(x) has the MRP (under Q(x)) if and only if
the stochastic integral σ(x) · X has the MRP. By Lemma 3.5, the latter property is
equivalent to

rankκXσ(x) = rankκX, μX-a.s.,

and, therefore, the exception set I admits the description

I = {
x ∈ U : μX[

D(x)
]
> 0

}
,

where for x ∈ U ∪ {x0} the predictable set D(x) is given by

D(x) = {
(t,ω) : rankκX

t (ω)σt (x)(ω) < rankκX
t (ω)

}
.
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From Theorem A.1, we deduce the existence of the integrands α(x) and β(x)

and of the modifications of the martingales Y(x) and R(x) such that for every
(t,ω) ∈ [0,∞) × � the function

x �→ σt (x)(ω) = βt (x)(ω) − αt(x)(ω)
R∗

t−(x)(ω)

Yt−(x)(ω)
,

taking values in the space of m × d-matrices, is analytic on U . Hereafter, we shall
use these versions.

Let λ be the Lebesgue measure on Rl and B = B(U) be the Borel σ -algebra
on U . Since for every (t,ω) the function x �→ σt (x)(ω) is continuous on U , the
function (t,ω, x) �→ σt (x)(ω) is P ×B-measurable. It follows that

E �
{
(t,ω, x) : rankκX

t (ω)σt (x)(ω) < rankκX
t (ω)

} ∈P ×B.

From Fubini’s theorem, we deduce the equivalences(
μX × λ

)[E] = 0 ⇔ μX[F ] = 0 ⇔ λ[I ] = 0,

where

F �
{
(t,ω) : λ[{

x ∈ U : rankκX
t (ω)σt (x)(ω) < rankκX

t (ω)
}]

> 0
}
.

Hence to obtain the multidimensional version of the theorem, we need to show that
μX(F) = 0.

From Lemma 3.6 and the analyticity of the function x �→ σt (x)(ω), we deduce
that

(6) F = {
(t,ω) : rankκX

t (ω)σt (x)(ω) < rankκX
t (ω),∀x ∈ U

}
.

We recall now that if (xn) is a sequence in U that converges to x0, then
the martingales (R(xn), Y (xn)) converge to the martingale (R(x0), Y (x0)) =
(S(x0),1) in L1. By Lemma A.3, passing to a subsequence, we can assume that
(R(xn), Y (xn)) → (R(x0), Y (x0)) in H1,loc. From Lemma 3.4, we deduce that

κXα(xn)
μX

→ 0,

κXβ(xn)
μX

→ κXβ(x0) = κXσ(x0).

It follows that

κXσ(xn) = κX(
β(xn) − α(xn)S

∗−(xn)
) μX

→ κXβ(x0) = κXσ(x0).

Passing to a subsequence, we can choose the sequence (xn) so that

κXσ(xn) → κXσ(x0), μX-a.s.

As a �→ ranka is a lower-semicontinuous function on matrices, it follows that

lim inf
n

rankκXσ(xn) ≥ rankκXσ(x0), μX-a.s.
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Accounting for (6), we obtain that

F ⊂ D(x0), μX-a.s.

However, as S(x0) has the MRP, Lemma 3.5 yields that μX[D(x0)] = 0 and the
multidimensional version of the theorem follows.

Assume now that U is an open interval in R and that contrary to the assertion
of the theorem the exception set I is uncountable. Then there are ε > 0, a closed
interval [a, b] ⊂ U , and a sequence (xn) ⊂ [a, b] such that

μX[
D(xn)

] ≥ ε, n ≥ 1.

Since for every (t,ω), the function x �→ σt (x)(ω) is analytic, we deduce from
Lemma 3.6 that on every closed interval the integer-valued function x �→
rank(κX

t (ω)σt (x)(ω)) has constant value except for a finite number of points,
where its values are smaller. Hence, if

rank
(
κX
t (ω)σt (xn′)(ω)

)
< rank

(
κX
t (ω)

)
for countable

(
n′) ⊂ (n),

then

rank
(
κX
t (ω)σt (x)(ω)

)
< rank

(
κX
t (ω)

)
for all x ∈ U.

Accounting for (6), it follows that

lim sup
n

D(xn) �
⋂
n

⋃
m≥n

D(xm) = F

and thus

μX[F ] ≥ lim sup
n

μX[
D(xn)

] ≥ ε.

However, as we have already shown, μX[F ] = 0 and we arrive to a contradiction.
�

APPENDIX A: ANALYTIC FIELDS OF MARTINGALES AND
STOCHASTIC INTEGRALS

We denote by D∞([0,∞),Rd) the Banach space of RCLL (right-continuous
with left limits) functions f : [0,∞) → Rd equipped with the uniform norm:
‖f ‖∞ � supt≥0|f (t)|.

THEOREM A.1. Let U be an open connected set in Rl and x �→ ξ(x) be an
analytic map from U to L1(Rd). Then there are modifications of the accompanying
d-dimensional martingales

Mt(x) � E
[
ξ(x)|Ft

]
,
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such that for every ω ∈ � the maps x �→ M·(x)(ω) taking values in D∞([0,∞),

Rd) are analytic on U .
If in addition, the MRP holds for a local martingale X with values in Rm, then

there is a stochastic field x �→ σ(x) of integrands for X such that

M(x) = M0(x) + σ(x) · X,

and for every (t,ω) ∈ [0,∞) × � the function x �→ σt (x)(ω) taking values in
m × d-matrices is analytic on U .

The proof of the theorem is divided into a series of lemmas. For a multi-index
α = (α1, . . . , αl) ∈ Zl+, we denote

|α| � α1 + · · · + αl.

The space H1 has been introduced just before Lemma 3.4.

LEMMA A.2. Let (Mα)α∈Zl+ be uniformly integrable martingales with values

in Rd such that ∑
α

2|α|∥∥Mα
∥∥
L1

< ∞.

Then there is an increasing sequence (τm) of stopping times such that {τm = ∞} ↑
� and ∑

α

∥∥Mα,τm
∥∥
H1

< ∞, m ≥ 1.

PROOF. We define the martingale

Lt � E

[∑
α

2|α|∣∣Mα∞
∣∣∣∣∣Ft

]
, t ≥ 0,

and stopping times

τm � inf{t ≥ 0 : Lt ≥ m}, m ≥ 1.

Clearly, {τm = ∞} ↑ � as m → ∞ and |Mα| ≤ 2−|α|L. Moreover,∥∥Lτm
∥∥
H1

= E
[

sup
0≤t≤τm

Lt

]
≤ m +E[Lτm] = m + L0 < ∞.

It follows that ∑
α

∥∥Mα,τm
∥∥
H1

≤ ∥∥Lτm
∥∥
H1

∑
α

2−|α| < ∞. �

LEMMA A.3. Let (Mn) and M be uniformly integrable martingales such that
Mn → M in L1. Then there exists a subsequence of (Mn) that converges to M in
H1,loc.
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PROOF. Since Mn → M in L1 there exists a subsequence (Mnk) such that
∞∑

k=1

∥∥Mnk+1 − Mnk
∥∥
L1

2k < ∞.

Lemma A.2 implies that Mnk → M in H1,loc. �

Let X be a square integrable martingale taking values in Rm. As in Section 3,
we associate with X the increasing predictable process AX � tr〈X〉, the Sm+ -
valued predictable process κX such that 〈X〉 = (κX)2 · AX , and a finite measure
μX(dt, dω) � dAX

t (ω)P[dω] on the predictable σ -algebra P of [0,∞) × �. We
recall that an integrand γ for X is minimal if

(7) γ = κX⊕
κXγ.

LEMMA A.4. Let X be a bounded martingale with values in Rm and
(γ α)α∈Zl+ be minimal integrands for X such that

(8)
∑
α

∥∥γ α · X∥∥
H1 < ∞.

Then

(9)
∑
α

∣∣γ α
∣∣2 = ∑

α

∣∣γ α
t (ω)

∣∣2 < ∞, μX-a.s.

PROOF. By Davis’ inequality, (8) is equivalent to∑
α

E
[[

γ α · X]1/2
∞

]
< ∞.

By replacing if necessary γ α with 1
1+|γ α |γ

α , we can assume without a loss of gen-
erality that |γ α| ≤ 1. Let us show that in this case the increasing optional process

Bt �
∑
α

[
γ α · X]

t , t ≥ 0,

is locally integrable. Since

B∞ = ∑
α

[
γ α · X]

∞ ≤
(∑

α

[
γ α · X]1/2

∞
)2

< ∞,

we only need to check that the positive jump process �B is locally integrable.
Actually, we shall show that supt≥0 �Bt is integrable. Indeed, as X is bounded,
there is a constant c > 0 such that |(γ α)∗�X| ≤ c. Hence,

sup
t≥0

�Bt ≤ ∑
α

((
γ α)∗

�X
)2 ≤ c

∑
α

∣∣(γ α)∗
�X

∣∣ ≤ c
∑
α

[
γ α · X]1/2

∞ ,

where the right-hand side has finite expected value.
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Since for every stopping time τ ,

E[Bτ ] = ∑
α

E
[[

γ α · X]
τ

] = ∑
α

E

[∫ τ

0

∣∣κXγ α
∣∣2 dAX

]
,

the local integrability of B yields the existence of stopping times (τm) such that
τm ↑ ∞ and∑

α

E

[∫ τm

0

∣∣κXγ α
∣∣2 dAX

]
= ∑

α

EμX [∣∣κXγ α
∣∣21[0,τm]

]
< ∞.

It follows that ∑
α

∣∣κXγ α
∣∣2 < ∞, μX-a.s.

This convergence implies (9) in view of inequalities (4) for minimal integrands.
�

LEMMA A.5. Let X be a square integrable martingale taking values in Rm

and (γ n) be minimal integrands for X such that (Mn � γ n · X) are uniformly
integrable martingales. Suppose that there are a uniformly integrable martingale
M and a predictable process γ such that Mn → M in L1 and γ n

t (ω) → γt (ω) for
every (t,ω). Then γ is a minimal integrand for X and M = γ · X.

PROOF. In view of characterization (7) for minimal integrands, the minimality
of every element of (γ n) implies the minimality of γ provided that the latter is X-
integrable. Thus we only need to show that γ is X-integrable and M = γ · X.

By Lemma A.3, passing to subsequences, we can assume that Mn = γ n · X →
M in H1,loc. Since the space of stochastic integrals is closed under the convergence
in H1,loc, there is a X-integrable predictable process γ̃ such that M = γ̃ · X. From
Lemma 3.4, we deduce that

κX(
γ n − γ̃

) μX

→ 0.

It follows that

κX(γ̃ − γ ) = 0, μX-a.s.,

and Lemma 3.3 yields the result. �

PROOF OF THEOREM A.1. It is sufficient to prove the existence of the re-
quired analytic versions only locally, in a neighborhood of every y ∈ U . Hereafter,
we fix y ∈ U . There are ε = ε(y) ∈ (0,1) and a family (ζα = ζα(y))α∈Zl+ in L1

such that

ξ(x) = ξ(y) + ∑
α

ζα(x − y)α, max
i

|xi − yi | < 2ε,

∑
α

E
[|ζα|](2ε)|α| < ∞,
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where the first series converges in L1.
By taking conditional expectations with respect to Ft we obtain that

(10) Mt(x) = Mt(y) + ∑
α

Lα
t (x − y)α, max

i
|xi − yi | < 2ε,

where Lα
t � E[ζα|Ft ] and the series converges in L1. Lemma A.2 yields an in-

creasing sequence (τm) of stopping times such that {τm = ∞} ↑ � and∑
α

∥∥Lα,τm
∥∥
H1

ε|α| < ∞, m ≥ 1.

It follows that ∑
α

sup
t≥0

∣∣Lα
t (ω)

∣∣ε|α| < ∞, P-a.s.

and we can modify the martingales (Lα) so that the above convergence holds true
for every ω ∈ �. Then the series in (10) converges uniformly in t for every ω ∈ �

and every x such that maxi |xi −yi | < ε. Thus, it defines the modifications of M(x)

for such x with the required analytic properties.
For the second part of the theorem, we observe that the statement is invariant

with respect to the choice of the local martingale X that has the MRP. Proposition 2
in [9] shows that we can choose X to be a bounded m-dimensional martingale.

As X has the MRP, there are minimal integrands σ(y) and (γ α) such that

M(y) = M0(y) + σ(y) · X,

Lα = Lα
0 + γ α · X, α ∈ Zl+.

From Lemma A.4, we deduce that∑
α

∣∣γ α
t (ω)

∣∣2ε2|α| < ∞

for all (t,ω) except a predictable set of μX-measure 0. By Lemma 3.3, we can set
γ α = 0 on this set without changing γ α · X. Then the series converges for every
(t,ω). As ε ∈ (0,1), we deduce that∑

α

∣∣γ α
t (ω)

∣∣ε2|α| < ∞

and thus for x = (x1, . . . , xl) such that maxi |xi − yi | < ε2 and every (t,ω) we can
define

σt (x)(ω) � σt (y)(ω) + ∑
α

γ α
t (ω)(x − y)α.

By construction, the function x → σt (x)(ω) is analytic in a neighborhood of y. By
Lemma A.5, for every x such that maxi |xi − yi | < ε2 the predictable process σ(x)
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is an integrand for X and

M(x) = M(y) + ∑
α

Lα(x − y)α

= M0(x) + σ(y) · X + ∑
α

(
γ α · X)

(x − y)α

= M0(x) + σ(x) · X. �

APPENDIX B: THE MRP UNDER THE CHANGE OF MEASURE

Let X be a d-dimensional local martingale and Z > 0 be the density process of
P̃ ∼ P. We denote by Z̃ � 1/Z the density process of P under P̃ and set L � Z̃− ·Z
and L̃ � Z− · Z̃. Using integration by parts, we deduce that

d(Z̃X) = X− dZ̃ + Z̃− dX̃,

where

X̃ = X + [X, L̃].
It follows that X̃ is a d-dimensional local martingale under P̃. Of course, this is
just a version of Girsanov’s theorem.

We observe that the relations between X and X̃ are symmetric in the sense that

X = X̃ + [X̃,L].
Indeed, as we have already shown, Y � X̃ + [X̃,L] is a d-dimensional local mar-
tingale. Clearly, the local martingales X and Y have the same initial values and the
same continuous martingale parts. Finally, they have identical jumps:

�(Y − X) = �
([X, L̃] + [X̃,L]) = �X(�L̃ + �L + �L̃�L)

= �X�(ZZ̃) = 0.

THEOREM B.1. The local martingale X has the MRP if and only if the local
martingale X̃ under P̃ has the MRP.

PROOF. By symmetry, it is sufficient to prove only one of the implications. We
assume that X has the MRP. Let M̃ be a local martingale under P̃. The arguments
before the statement of the theorem yield the unique local martingale M such that

M̃ = M + [M,L̃].
If now H is an integrand for X such that M = M0 + H · X, then

M̃ = M̃0 + H · (
X + [X, L̃]) = M̃0 + H · X̃. �
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