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FOUR MOMENTS THEOREMS ON MARKOV CHAOS

BY SOLESNE BOURGUIN∗, SIMON CAMPESE†,1, NIKOLAI LEONENKO‡,2,3

AND MURAD S. TAQQU∗,2

Boston University∗, University of Luxembourg† and Cardiff University‡

We obtain quantitative four moments theorems establishing convergence
of the laws of elements of a Markov chaos to a Pearson distribution, where
the only assumption we make on the Pearson distribution is that it admits
four moments. These results are obtained by first proving a general carré du
champ bound on the distance between laws of random variables in the domain
of a Markov diffusion generator and invariant measures of diffusions, which
is of independent interest, and making use of the new concept of chaos grade.
For the heavy-tailed Pearson distributions, this seems to be the first time that
sufficient conditions in terms of (finitely many) moments are given in order
to converge to a distribution that is not characterized by its moments.

1. Introduction. Four moments theorems are results which imply or charac-
terize convergence in law of some approximating sequence {Fk : k ≥ 0} of random
variables toward some target measure ν. A typical example of such an approximat-
ing sequence (with the target measure ν being Gaussian) are homogeneous sums
of the form

(1.1) Fk =
k∑

j1,...,jp=1

aj1···jpWj1 · · ·Wjp,

normalized to have unit variance. Here, {Wj : j ≥ 1} is an i.i.d. sequence of stan-
dard Gaussian random variables and the constants aj1···jp are symmetric in the
indices and vanish on diagonals. The classical fourth moment theorem of Nualart
and Peccati (see [24]) states that Fk converges in law to a standard Gaussian dis-
tribution if and only if the fourth moment of Fk converges to the fourth moment
of the standard Gaussian distribution, namely 3. In fact, the aforementioned two
authors have proven their result in infinite dimensions, where the sequence of Fk

are sequences of multiple Wiener–Itô integrals of fixed order p. The original proof
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in [24] uses stochastic analysis and shortly after its publication another proof via
Malliavin calculus was given by Nualart and Ortiz-Latorre in [23]. Later, in [19],
Nourdin and Peccati used this approach to obtain a similar result for approxima-
tion of the Gamma distribution. They showed, again for a sequence of normalized
Wiener–Itô integrals, that convergence of the third and fourth moments is enough
to converge to a Gamma distribution.

In [17], Ledoux provided a new perspective. He gave new proofs of the above
results from the abstract point of view of Markov diffusion generators. In this con-
text, given a Markov diffusion generator satisfying a certain spectral condition,
convergence of a sequence of eigenfunctions of such a generator to a Gaussian
or Gamma distribution is still controlled by convergence of just the first four mo-
ments. Multiple Wiener–Itô integrals fit the framework as they are eigenfunctions
of the infinite-dimensional Ornstein–Uhlenbeck operator.

Building on [17], Azmoodeh et al. showed in [2] that the spectral condition can
be replaced with a Markov chaos property of the eigenfunctions which is less re-
strictive than the earlier notion of Markov chaos introduced in [17]. In addition to
four moments theorems for convergence toward the Gaussian and Gamma distri-
butions, a four moments theorem for the approximation of the Beta distribution
was proven.

In this paper, we derive bounds on probabilistic distances d(Gk,Z), where
{Gk : k ≥ 1} is a sequence of random variables related to Markov diffusion gener-
ators and a target random variable Z whose distribution is an invariant measure of
a diffusion (not necessarily related to the ones associated to the generators of the
sequence {Gk : k ≥ 1}).

When the target distribution is viewed from the point of view of diffusion theory,
it is interesting to note that the Gaussian, Gamma and Beta distributions share a
common feature: they are the only invariant measures of a diffusion on the real
line admitting an orthonormal basis of polynomial eigenfunctions (see [18]). They
also are the only members of the Pearson family of distributions (introduced in
[25]; see, e.g., [10] for a modern treatment) which have moments of all orders.
This naturally leads to the question whether four moments theorems can also be
proven when the target measure ν is one of the three remaining heavy-tailed classes
of Pearson distributions, commonly known as skew-t , F - and inverse Gamma-
distributions (see Section 2.3 for details). Here, heavy-tailed is understood in the
sense that only a finite number of moments exist.

Target distributions ν belonging to the Pearson family (or more generally abso-
lutely continuous invariant measures of diffusions) have already been considered
in [9, 16] as possible limit laws ν for sequences of multiple Wiener–Itô integrals.
These integrals have the infinite dimensional Ornstein–Uhlenbeck as underlying
Markov generator. For such multiple Wiener–Itô integrals, however, as was also
observed in [16], the only possible limit distributions belonging to the Pearson
family are the Gaussian and Gamma laws.
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In this paper, we present a systematic approach to the problem and prove quan-
titative four moments theorems for convergence to all six classes of the Pearson
distribution. The only assumption we make, which seems to be unavoidable in this
context, is that the parameters of the distribution are chosen in such a way that the
first four moments exist. Compared to [2], we are not only able to cover the full
Pearson class as a target distribution ν, but also extend the admissible chaos struc-
tures, so that, for example, the laws of the converging sequence of chaotic random
variables can be heavy-tailed as well. In particular, no assumption of hypercon-
tractivity or diagonalizability of the underlying generator is made. Our main result
(Theorem 3.9 along with Proposition 3.12, to which we refer for full details and
any unexplained notation) is a quantitative four moments theorem of the form

(1.2) d(Gk,Z) ≤ c

√∫
E

P (Gk)dμk + ξk

∫
E

Q(Gk)dμk,

where d is a suitable probabilistic distance metrizing convergence in law, Z is a
random variable whose law ν belongs to the Pearson family and Gk is a chaotic
random variable defined below with some underlying Markov diffusion generator
Lk with invariant measure μk for each k ≥ 0. Moreover, in (1.2), c is a positive
constant, P and Q are polynomials of degree four, whose coefficients are explic-
itly given in terms of the parameters of the law of Z. In comparison to earlier
four moments theorems, the linear combination of moments, given by the inte-
gral involving the polynomial Q appearing in the bound on the right-hand side
of (1.2) is new (and only appears in certain cases). The deterministic nonnegative
real sequence {ξk : k ≥ 0} in (1.2) is defined in terms of a new notion of chaos
grade, which, heuristically speaking, measures how similar the chaotic sequence
{Gk : k ≥ 0} is to the target random variable Z, when the latter is viewed as an
element of the Markov chaos of a Pearson generator.

To prove (1.2), we first obtain a generic bound of the form

(1.3) d(G,Z) ≤ c

∫
E

∣∣�(
G,−L−1G

) − τ(G)
∣∣ dμ

(see Theorem 3.2) for probabilistic distances d(G,Z) between a target random
variable Z whose law can belong to a large class of absolutely continuous distri-
butions, and a random variable G coming from a Markov structure which involves
a generator L with invariant measure μ, the carré du champ operator �, the pseudo
inverse L−1 of the underlying Markov generator L and a function τ related to the
target Z. Again, we stress that both, the laws of Z and G do not need to have
moments of all orders. The bound (1.3) is of independent interest and obtained us-
ing a combination of Stein’s method and the so-called Gamma calculus. It can be
seen as an abstract version of the Malliavin–Stein method on Wiener chaos, first
introduced in [20].

Then, in order to further bound (1.3) by the right-hand side of (1.2) when G is
a chaotic element of the Markov structure and the law of Z belongs to the Pearson
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family, we again make use of the Gamma calculus and spectral arguments that, in
a similar spirit as in [2], allow us to obtain (1.2), and hence linear combinations of
the first four moments as a bound for the right-hand side of (1.3).

Note that, in general, one cannot a priori use moments to prove convergence
toward a heavy-tailed distribution. However, our results provide a context in which
this is not only possible, but where convergence of only the first four moments
suffices.

As particular examples of Markov structures fitting our framework, we study
(tensorized) Pearson generators, which have multivariate Pearson distributions as
invariant measures. In this context, the chaos grade provides a heuristic for the
question which Pearson laws are compatible with each other, in the sense that
chaotic random variables [e.g., homogeneous sums of the type (1.1) with the Gaus-
sian laws replaced by arbitrary other Pearson laws with finite first four moments]
with respect to one Pearson generator can converge in distribution to the invariant
measure of another (possibly different) Pearson generator.

The paper is organized as follows. In Section 2, we introduce the Markov frame-
work we will be working in and give a quick summary of Stein’s method as well
as an overview of the Pearson distributions. Our main results, in particular the
bounds (1.3) and (1.2) as well as the definition of Markov chaos are presented in
Section 3. As an application, we study in Section 4 the case of Pearson chaos,
whose chaos structure fits our framework.

As a last remark, let us mention that speaking of four moments theorems as
opposed to a fourth moment or generally a third and fourth moment is merely
a question of style, depending on whether one normalizes the approximating se-
quences to have the correct mean and variance or not. We chose not to impose any
normalization.

2. Preliminaries.

2.1. Markov diffusion generators. Our main results will be proven in the set-
ting of Markov diffusion generators, that is, we have some underlying diffusive
Markov process {Xt : t ≥ 0} with invariant measure μ, associated semigroup
{Pt : t ≥ 0}, infinitesimal generator L and carré du champ �, where all of these ob-
jects are inherently connected. The operators L and � play an important role here.
From an abstract point of view, a standard and elegant way to introduce this setting
is through so-called Markov triples, where one starts from the invariant measure μ,
the carré du champ � and a suitable algebra of functions (random variables), from
which the generator L, the semigroup {Pt : t ≥ 0} (including their L2-domains),
and thus also the Markov process {Xt : t ≥ 0} are constructed.

The assumptions we will make here are those of a so-called Full Markov Triple
(E,μ,�) in the sense of [5], Part I, Chapter 3. Before introducing this setting
rigorously, let us give an informal description. Random variables are viewed as
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elements of an algebra A of functions F : E →R, where (E,F,μ) is some prob-
ability space. On this algebra A, the generator L and the bilinear and symmetric
carré du champ operator � are defined and related via the identity

�(F,G) = 1

2

(
L(FG) − FLG − GLF

)
.

They satisfy a diffusion property, which in its simplest form reads

Lϕ(F) = ϕ′(F )LF + ϕ′′(F )�(F,F )

or, expressed using the carré du champ,

�
(
ϕ(F ),G

) = ϕ′(F )�(F,G).

The subset of random variables with finite mean and finite variance is then
L2(E,μ) ⊆ A. On this smaller space, L and � are typically only densely defined
on their domains D(L) and D(E)×D(E). The symbol E , defined below, stands for
a Dirichlet form (the so-called energy functional), which is used to construct the
domains. On these domains, an important relation between L and � holds, namely
the integration by parts formula∫

E
�(F,G)dμ = −

∫
E

FLGdμ.

We are now going to introduce this setting in a rigorous way, following
closely [5], Part I, Chapter 3. The needed definitions and assumptions are as fol-
lows:

(i) (E,F,μ) is a probability space and L2(E,F,μ) is separable.
(ii) A is a vector space of real-valued, measurable functions (random vari-

ables) on (E,F,μ), stable under products (i.e., A is an algebra) and under the
action of C∞-functions � : Rk →R.

(iii) A0 ⊆ A is a subalgebra of A consisting of bounded functions which are
dense in Lp(E,μ) for every p ∈ [1,∞). We assume that A0 is also stable under
the action of smooth functions � as above and also that A0 is an ideal in A (if
F ∈ A0 and G ∈ A, then FG ∈ A0).

(iv) The carré du champ operator � : A0 ×A0 → A0 is a bilinear symmetric
map such that �(F,F ) ≥ 0 for all F ∈ A0. For every F ∈ A0, there exists a finite
constant cF such that for every G ∈ A0∣∣∣∣ ∫

E
�(F,G)dμ

∣∣∣∣ ≤ cF ‖G‖2,

where ‖G‖2
2 = ∫

E G2 dμ. The Dirichlet form E is defined on A0 ×A0 by

E(F,G) =
∫
E

�(F,G)dμ.
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(v) The domain D(E) ⊆ L2(E,μ) is obtained by completing A0 with respect
to the norm ‖F‖E = (‖F‖2 + E(f, f ))1/2. The Dirichlet form E and the carré du
champ operator � are extended to D(E) × D(E) by continuity and polarization.
We thus have that � : D(E) ×D(E) → L1(E,μ).

(vi) L is a linear operator, defined on A0 via the integration by parts formula

(2.1)
∫
E

FLGdμ = −
∫
E

�(F,G)dμ

for all F,G ∈A0. We assume that L(A0) ⊆ A0.
(vii) The domain D(L) ⊆D(E) consists of all F ∈D(E) such that∣∣E(F,G)

∣∣ ≤ cF ‖G‖2

for all G ∈ D(E), where cF is a finite constant. The operator L is extended from A0
to D(L) by the integration by parts formula (2.1). On D(L), L is by construction
self-adjoint (as � is symmetric). We assume that L1 = 0 and that L is ergodic:
LF = 0 implies that F is constant for all F ∈ D(L).

(viii) The operator L : A → A is an extension of L : A0 → A0. On A×A, the
carré du champ � is defined by

(2.2) �(F,G) = 1

2

(
L(FG) − FLG − GLF

)
.

(ix) For all F ∈ A, we assume �(F,F ) ≥ 0 with equality if, and only if, F is
constant. By the integration by parts formula (2.1), this implies in particular that
−L is a positive symmetric operator and, therefore, the spectrum of L is contained
in (−∞,0], with 0 always being an eigenvalue given that L1 = 0.

(x) The diffusion property holds. For all C∞-functions � : Rp → R and
F1, . . . ,Fp,G ∈A one has

(2.3) �
(
�(F1, . . . ,Fp),G

) =
p∑

j=1

∂j�(F1, . . . ,Fp)�(Fj ,G)

and

(2.4)

L�(F1, . . . ,Fp)

=
p∑

i=1

∂i�(F1, . . . ,Fp)LFi +
p∑

i,j=1

∂ij�(F1, . . . ,Fp)�(Fi,Fj ).

(xi) The integration by parts formula (2.1) continues to hold if F ∈ A and
G ∈ A0 (or vice versa).

Of course, one can also introduce a symmetric Markov semigroup and associated
Markov process with infinitesimal generator L defined on its domain D(L) but as
we will not make direct use of both of these objects in this paper, we again refer
to [5], Part I, Chapter 3, for details.
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To summarize, we have an algebra A of random variables on some probabil-
ity space (E,F,μ) on which the carré du champ operator � and the genera-
tor L act. The measure μ is called the invariant measure of L. Note that there
is no integrability assumption on the elements of A. The L2(E,μ)-domains of
L and � are denoted by D(L) and D(E) × D(E), respectively, and both, D(L)

and D(E) are dense in L2(E,μ). By construction, one has A0 ⊆ D(L) ⊆ D(E) ⊆
L2(E,μ) ⊆A.

A model example of the setting described above is the Markov triple
(Rd, γd,�), where γd is the Gaussian measure on R

d and � = 〈∇f,∇f 〉Rd the
carré du champ of the d-dimensional Ornstein–Uhlenbeck generator L given by
Lf = x ·∇f +
f . A suitable algebra A is given by polynomials in d variables. In
infinite dimension, one obtains the infinite-dimensional Ornstein–Uhlenbeck gen-
erator on Wiener space with Wiener measure as invariant distribution. In this case,
we have that L = −δD, where δ is the Malliavin divergence operator (also called
Skorohod integral) and D the Malliavin derivation operator with carré du champ
operator � given by �(F,G) = 〈DF,DG〉H, where H denotes the underlying
Hilbert space. For further details on this example, see [7, 22] or [21].

The Ornstein–Uhlenbeck generator is a particular example of Pearson genera-
tors which will be discussed in detail in Section 4. General references with more
examples fitting our framework are [3–5, 11].

In what follows, we will also make use of the pseudo-inverse L−1 of L, satisfy-
ing for any F ∈ D(L),

(2.5) LL−1F = L−1LF = F − π0(F ),

where π0(F ) = ∫
E F dμ denotes the orthogonal projection of F onto ker(L) (recall

that the kernel of L by assumption only consists of constants). For completeness,
we recall how this pseudo-inverse is constructed. By self-adjointness of L, con-
sidered as an operator on D(L), we have that D(L) = ker(L) ⊕ (ran(L) ∩D(L)).
Therefore, we can define L−1 on ran(L) ∩D(L) (as L is injective there) and then
extend it to D(L) by setting L−1F = 0 if F ∈ ker(L).

We end this subsection by a useful lemma which combines the integration by
parts formula (2.1) and the diffusion property (2.3).

LEMMA 2.1. In the setting introduced above, let F ∈ D(E), G ∈ D(L) such
that

∫
E Gdμ = 0 and ϕ : R → R be a differentiable function such that ϕ(F ) ∈

D(E). Furthermore, assume that ϕ(F )G ∈ L1(E,μ). Then, one has∫
E

ϕ(F )Gdμ =
∫
E

ϕ′(F )�
(
F,−L−1G

)
dμ.

PROOF. By (2.5) and the assumption that G is centered, we have that G =
LL−1G. Therefore, by the integration by parts formula (2.1) and the diffusion
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property (2.3), one has∫
E

ϕ(F )Gdμ =
∫
E

ϕ(F )LL−1Gdμ

=
∫
E

�
(
ϕ(F ),−L−1G

)
dμ

=
∫
E

ϕ′(F )�
(
F,−L−1G

)
dμ. �

2.2. Stein’s method for invariant measures of diffusions. In this section, we
present Stein’s method for invariant measures of diffusions. Note that if μ is a
measure which is absolutely continuous with respect to the Lebesgue measure and
admits a density p as well as a second moment, then under very minimal assump-
tions there exists a Markov diffusion generator L having μ as its invariant measure.

To be more precise, let μ be a probability measure admitting a density p

with support (l, u) ⊆ R, −∞ ≤ l < u ≤ +∞. Furthermore, let θ > 0, denote
m = ∫

R
xp(x)dx and

(2.6) σ 2(x) = −2θ
∫ x
−∞(y − m)p(y)dy

p(x)
, x ∈ (l, u),

which is a nonnegative quantity. Then the stochastic differential equation

(2.7) dXt = −θ(Xt − m)dt + σ(Xt)dBt, Xt ∈ (l, u),

where {Bt : t ≥ 0} is a Brownian motion, has a unique weak Markovian solution
with invariant measure μ (see [6], Theorem 2.3). The support of the density p

could very well be taken to be a union of open intervals, but we treat here the case
of one open interval in order not to make the notation heavier than it needs to be.

Stein’s density approach (see [26] for a detailed treatment) allows us to char-
acterize the invariant measure μ of the diffusion (2.7) through the following theo-
rem, called Stein’s lemma for invariant measures of diffusions (see [20], Proposi-
tion 6.4, or [9], Lemma 6).

THEOREM 2.2. Let μ be a probability measure admitting a density p with
support (l, u) ⊆ R, −∞ ≤ l < u ≤ +∞, such that

∫
R

|x|p(x)dx < ∞ and∫
R

xp(x)dx = m. Define the function

τ(x) = 1

2
σ 2(x)1(l,u)(x), x ∈ R,

where σ 2 is defined in terms of p by (2.6) and let Z be a random variable having
distribution μ. Suppose:

(i) For every differentiable ϕ such that τ(Z)ϕ′(Z) ∈ L1(�), one has that
(Z − m)ϕ(Z) ∈ L1(�) and

E
(
τ(Z)ϕ′(Z) − θ(Z − m)ϕ(Z)

) = 0.
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(ii) Let X be a real-valued random variable with an absolutely continuous
distribution. If for every differentiable ϕ such that τ(X)ϕ′(X) ∈ L1(�) and
(X − m)ϕ(X) ∈ L1(�), one has that

(2.8) E
(
τ(X)ϕ′(X) − θ(X − m)ϕ(X)

) = 0,

then X has distribution μ.

Based on the above Stein lemma, one can use the now well-established Stein
methodology to quantitatively measure the distance between the law of a random
variable X and the law of a random variable Z corresponding to an invariant mea-
sure of a diffusion. The generalization of the original Stein method to invariant
measures of diffusions has been recently studied in [16] and further developed in
[9]. In order to present this method, we need to introduce separating classes of
functions and probabilistic distances.

DEFINITION 2.3. Let H be a collection of Borel-measurable functions on R.
We say that the class H is separating if the following property holds: any two
real-valued random variables X,Y verifying h(X),h(Y ) ∈ L1(�) and E(h(X)) =
E(h(Y )) for every h ∈ H , are necessarily such that X and Y have the same distri-
bution.

Separating classes of functions can be used to introduce distances between prob-
ability measures in the following way.

DEFINITION 2.4. Let H be a separating class in the sense of Definition 2.3
and let X,Y be real-valued random variables such that h(X),h(Y ) ∈ L1(�) for
every h ∈ H . Then the distance dH (X,Y ) between the distributions X and Y is
given by

(2.9) dH (X,Y ) = sup
h∈H

∣∣E(
h(X)

) − E
(
h(Y )

)∣∣.
One can show that dH is a metric on some subset of the class of all probabil-

ity measures on R (see [8], Chapter 11). With some abuse of language, one often
speaks of the “distance between random variables” when really the distance be-
tween the laws of these random variables is meant. We will call a given distance
dH admissible for a set M of random variables if dH (X,Y ) is well defined for
all X,Y ∈ M, that is, if it holds that E[h(X)] < ∞ for all X ∈ M and h ∈ H . As
an example of a distance as introduced above, one can take H to be the class of
Lipschitz continuous and bounded functions. This yields the well-known Fortet–
Mourier (or bounded Wasserstein) distance denoted by dFM, which metrizes con-
vergence in distribution and is defined for all real-valued random variables. It is
therefore admissible for any set M of random variables. Other distances (with
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smaller domains) are the total variation, Kolmogorov or Wasserstein distance (see
[21], Appendix C). A Stein equation is an ordinary differential equation linking the
notion of distance [through the left-hand side of (2.9)] to the characterizing expres-
sion of a distribution appearing in Stein’s lemma [the right-hand side of (2.8), for
instance]. More precisely, a Stein equation associated to the Stein characterization
(2.8) is given by

(2.10) τ(x)f ′(x) − θ(x − m)f (x) = h(x) − E
(
h(Z)

)
,

where Z is a random variable with distribution μ given by the invariant measure
of the diffusion in (2.7). It is straightforward to check that this equation has a
continuous solution on R for each h ∈ H , denoted by fh, and given by

fh(x) = 1

τ(x)p(x)

∫ x

l

(
h(y) − E

(
h(Z)

))
p(y)dy

= − 1

τ(x)p(x)

∫ u

x

(
h(y) − E

(
h(Z)

))
p(y)dy

for x ∈ (l, u), and by

fh(x) = −h(x) − E(h(Z))

θ(x − m)

when x /∈ (l, u) [as in that case, τ(x) = 0]. Now, let X be a real-valued random
variable with an absolutely continuous distribution. By letting x = X in (2.10),
taking expectations and the supremum over the separating class of test functions
H on both sides, we can express the distance dH in (2.9) as

(2.11) dH (X,Z) = sup
h∈H

∣∣E(
τ(X)f ′

h(X)
) − E

(
θ(X − m)fh(X)

)∣∣.
The following result, a proof of which can be found in [9], Lemma 7, combines

results from [16] and [9] and provides sufficient conditions under which useful
estimates for f ′

h can be obtained.

LEMMA 2.5. Let the function σ 2, associated to a density p with support
(l, u) ⊆ R, −∞ ≤ l < u ≤ +∞, be given by (2.6). If u = ∞, then assume that
limx→u σ 2(x) > 0, and if l = −∞, assume that limx→l σ

2(x) > 0. Furthermore,
suppose that there exists a positive function g ∈ C1((l, u),R+) such that:

(i) 0 < limx→u σ 2(x)/g(x) ≤ limx→u σ 2(x)/g(x) < ∞;
(ii) limx→u g′(x) ∈ [−∞,+∞];

(iii) 0 < limx→l σ
2(x)/g(x) ≤ limx→l σ

2(x)/g(x) < ∞;
(iv) limx→l g

′(x) ∈ [−∞,+∞].
Then the solution fh to the Stein equation (2.10), for a given test function h ∈ H
such that ‖h′‖∞ < ∞, satisfies ∥∥f ′

h

∥∥∞ ≤ k
∥∥h′∥∥∞,

where the constant k does not depend on h.
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2.3. Pearson diffusions. Pearson distributions were first classified by Pear-
son [25], who noticed that some of the most important distributions in statistics,
namely the Gaussian, exponential, gamma, uniform, beta, Student-t , F and in-
verse gamma distributions, share the common feature that their logarithmic deriva-
tive can be represented as the ratio of a linear and a quadratic polynomial [see
(2.13)]. The corresponding class of diffusions having these distributions as invari-
ant measures play an equally central role and include, for example, the Ornstein–
Uhlenbeck and Cox–Ingersoll–Ross processes, which are ubiquitous in physics
and finance.

Mathematically, Pearson diffusions are Itô diffusions with mean reverting lin-
ear drift whose squared diffusion coefficient is a quadratic polynomial, that is, a
stationary solution of the stochastic differential equation

(2.12) dXt = a(Xt)dt + √
2θb(Xt)dBt,

where a(x) = −θ(x − m) and

b(x) = b2x
2 + b1x + b0.

Here, m,b2, b1, b0 are real constants, θ > 0 determines the speed of mean rever-
sion and m is the stationary mean. Recall that the scale and speed densities s and
p, respectively, are defined as

s(x) = exp
(
−2

∫ x

x0

a(u)

σ 2(u)
du

)
and p(x) = 1

s(x)σ 2(x)
.

In our case, we have the above-mentioned relation

(2.13) p′(x) = −(2b2 + 1)x − m + b1

b2x2 + b1x + b0
p(x),

which was originally used by Pearson (see [25], page 360) to introduce these dis-
tributions. From (2.13), one also sees that the class of Pearson diffusions is closed
under linear transformations. Explicitly, if Xt satisfies the stochastic differential
equation (2.12), then X̃t = γXt + δ satisfies

dX̃t = ã(X̃t )dt + σ̃ (X̃t )dBt,

where ã(x) = −θ(x − γm − δ) and

σ̃ 2(x) = 2θ
(
b2x

2 + (b1γ − 2b2δ)x + b0γ
2 − b1γ δ + b2δ

2)
.

Up to such linear transformations, Pearson diffusions can be categorized into the
six classes listed below together with their invariant distributions, densities, means
and diffusion coefficients. A detailed analysis and classification of Pearson diffu-
sions can, for example, be found in [10, 13, 14].
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1. Gaussian distribution with parameters m ∈ R and σ > 0. It has state space
R, mean m, as well as density function and diffusion coefficients given by

p(x) ∝ e
− (x−m)2

2σ2 , b(x) = σ 2.

The Gaussian distribution has moments of all orders.
2. Gamma distribution with parameters α,β > 0. It has state space (0,∞),

mean α
β

, as well as density function and diffusion coefficients given by

p(x) ∝ xα−1e−βx, b(x) = x

β
.

The Gamma distribution has moments of all orders.
3. Beta distribution with parameters α,β > 0. It has state space (0,1), mean

α
α+β

, as well as density function and diffusion coefficients given by

p(x) ∝ xα−1(1 − x)β−1, b(x) = − x2

α + β
+ x

α + β
.

The Beta distribution has moments of all orders.
4. Skew t-distribution with parameters m,ν,λ ∈ R, α > 0. It has state space R,

mean (2m−1)λ+αν
2(m−1)

, as well as density function and diffusion coefficients given by

p(x) ∝
(

1 +
(

x − λ

α

)2)−m

e−ν arctan( x−λ
α

),

b(x) = x2

2(m − 1)
− λx

2(m − 1)
+ λ2 + α2

2(m − 1)
.

The skew t-distribution has moments of order p for p < 2m − 1.
5. Inverse gamma distribution with parameters α,β > 0. It has state space

(0,∞), mean β
α−1 , as well as density function and diffusion coefficients given

by

p(x) ∝ x−(α−1)e− β
x , b(x) = x2

α − 1
.

The inverse gamma distribution has moments of order p for p < α.
6. F -distribution with parameters d1, d2 > 0. It has state space (0,∞), mean

d2
d2−2 , as well as density function and diffusion coefficients given by

p(x) ∝ x
d1
2 −1

(
1 + d1

d2
x

)− d1+d2
2

, b(x) = 2x2

d2 − 2
+ 2d2x

d1(d2 − 2)
.

The F -distribution has moments of order p for p < d2
2 .
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Pearson diffusions are particular (one-dimensional) examples fitting the Markov
triple structure introduced in Section 2.1. The generator L acts on L2(E,μ) via

(2.14) Lf (x) = −(x − m)f ′(x) + b(x)f ′′(x),

where b is the quadratic polynomial appearing in (2.12). Its invariant measure μ

is a Pearson distribution and it is furthermore symmetric, ergodic and diffusive [in
the sense of (2.4)]. The set � of eigenvalues of L is given by (see, e.g., [10])

(2.15) � =
{
−n

(
1 − (n − 1)b2

)
θ : n ∈ N0, b2 <

1

2n − 1

}
and the corresponding eigenfunctions are the well-known orthogonal polynomials
associated with the respective laws (Hermite, Laguerre and Jacobi polynomials
for the Gaussian, Gamma and Beta distributions, respectively, and Romanovski–
Routh, Romanovski–Bessel and Romanovski–Jacobi polynomials for the skew t-,
inverse gamma and F -distributions). From formula (2.15), we see that polynomials
up to degree n, where n is the largest integer strictly less than 1+b2

2b2
, are (square

integrable) eigenfunctions, so that μ has moments up to order 2n. Note that the
cardinality of � is infinite if b2 ≤ 0 and finite if b2 > 0. Consistent with the general
theory of Markov generators presented in Section 2.1 [see (ix)], zero is always
contained in � and all other eigenvalues are negative.

The structure of the spectrum S of such a Pearson generator can thus be de-
scribed as follows:

(i) If μ is a Gaussian, Gamma or Beta distribution, then S is purely discrete and
consists of infinitely many eigenvalues, each of multiplicity one. In the Gaussian
and Gamma case, where b2 = 0, these eigenvalues are the negative integers (up
to the common scaling factor θ ) including zero. Eigenfunctions are the associated
orthogonal polynomials (Hermite, Laguerre or Jacobi).

(ii) If μ is a skew t-, inverse Gamma or scaled F -distribution, then S contains
a discrete and a continuous part. The discrete part consists of only finitely many
eigenvalues.

For later reference, we note that for a Pearson distribution μ, the Stein characteri-
zation (2.8) in Theorem 2.2 becomes

(2.16) E
[
b(X)1(l,u)(X)ϕ′(X) − (X − m)ϕ(X)

] = 0,

where again b(x) = b2x
2 + b1x + b0 is the associated quadratic polynomial.

Identity (2.16) gives a recursion formula for computing the moments of a given
Pearson distribution. Indeed, if the law of X is a Pearson distribution with moments
up to order p + 2, then (2.16) with ϕ(x) = xp+1 reads

(p + 1)E
[
b(X)Xp] − E

[
(X − m)Xp+1] = 0.

This yields(
b2(p + 1) − 1

)
E

[
Xp+2] + (

b1(p + 1) + m
)

E
[
Xp+1] + (p + 1)b0 E

[
Xp] = 0
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with E[X] = m. Recall from the previous discussion that the condition for the
existence of moments of order p is p < 1 + b−1

2 , so that four moments exist if and
only if b2 < 1

3 . In this case, we start with with E[X] = m and get

E
[
X2] = (b1 + m)m + b0

1 − b2
,

E
[
X3] = (2b1 + m)((b1 + m)m + b0)

(1 − b2)(1 − 2b2)
+ 2b0m

1 − 2b2
,

E
[
X4] = (3b1 + m)(2b1 + m)((b1 + m)m + b0)

(1 − b2)(1 − 2b2)(1 − 3b2)
+ (3b1 + m)2b0m

(1 − 2b2)(1 − 3b2)

+ 3b0((b1 + m)m + b0)

1 − 3b2
.

For further analysis of the spectrum of such Pearson generators and general moti-
vation on studying Pearson diffusions, see [1].

3. Main results. Throughout this section, we always work in the Markov set-
ting introduced in Section 2.1. We thus have a probability space (E,F,μ) and the
two operators L and � with their L2-domains D(L) and D(E)×D(E) respectively,
where D(L) ⊆ D(E) ⊆ L2(E,μ). As is customary in this context, we continue to
use the integral notation for mathematical expectation, so that for example the ex-
pectation of a random variable G ∈ L1(E,μ) is denoted by

∫
E Gdμ.

3.1. Carré du champ characterization. As a first result, we show how the
Stein characterization (2.8) can be used in order to naturally characterize, in terms
of the carré du champ operator �, when a random variable G has a given proba-
bility distribution ν.

THEOREM 3.1. Let ν be a probability measure admitting a density p with
support (l, u) ⊆ R, −∞ ≤ l < u ≤ +∞, such that

∫
R

|x|p(x)dx < ∞ and∫
R

xp(x)dx = m. Define the function

τ(x) = 1

2
σ 2(x)1(l,u)(x), x ∈ R,

where σ 2 is defined in terms of p by (2.6). Furthermore, let G ∈ D(L) with an
absolutely continuous distribution and mean m. Then G has distribution ν if and
only if

�
(
G,−L−1G

) = θ−1τ(G)

almost surely.
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PROOF. Let ϕ ∈ C∞(R,R) be such that τ(G)ϕ′(G) ∈ L1(E) and
(G − m)ϕ(G) ∈ L1(E). By Lemma 2.1, one has

(3.1)
∫
E
(G − m)ϕ(G)dμ =

∫
E

ϕ′(G)�
(
G,−L−1G

)
dμ.

This implies

(3.2)

∫
E

τ(G)ϕ′(G) − θ(G − m)ϕ(G)dμ

= θ

∫
E

ϕ′(G)
(
θ−1τ(G) − �

(
G,−L−1G

))
dμ,

so that the assertion follows from Theorem 2.2. �

Using Stein’s method, we obtain the following quantitative version of Theo-
rem 3.1.

THEOREM 3.2. Let ν be a measure with density p and let σ 2 be given
by (2.6). Assume that σ 2 satisfies the assumptions of Lemma 2.5, and let τ(x) =
1
2σ 2(x)1(l,u)(x), x ∈ R. Furthermore, let G ∈ D(L) such that

∫
E τ(G)dμ < ∞

and
∫
E Gdμ = m. Finally, let Z be a random variable with distribution ν. Then

one has

(3.3) dH (G,Z) ≤ cH

∫
E

∣∣�(
G,−L−1G

) − θ−1τ(G)
∣∣ dμ,

where dH is an admissible distance for G and Z, defined via (2.9) using a separat-
ing class H of absolutely continuous test functions such that suph∈H ‖h′‖∞ < ∞
and cH is a positive constant depending solely on the class H .

REMARK 3.3. Note that the Fortet–Mourier metric always satisfies the as-
sumptions of Theorem 3.2, as, by definition, ‖h′‖∞ ≤ 1 for all h in the Fortet–
Mourier class of test functions (see, e.g., [21], Appendix C). In concrete situations,
when both the law ν and the generator L are explicit, one can often take stronger
distances such as Kolmogorov or total variation.

PROOF OF THEOREM 3.2. On the one hand, by using Stein’s method for in-
variant measures of diffusions (see Section 2.2), we can write, using (2.11),

(3.4) dH (G,Z) = sup
h∈H

∣∣∣∣ ∫
E

τ(G)f ′
h(G)dμ −

∫
E

θ(G − m)fh(G)dμ

∣∣∣∣,
where fh denotes the solution to the Stein equation (2.10). On the other hand, by
Lemma 2.1, one has∫

E
(G − m)fh(G)dμ =

∫
E

f ′
h(G)�

(
G,−L−1G

)
dμ.
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Plugged into (3.4) and applying the Hölder inequality, we obtain

dH (G,Z) = sup
h∈H

∣∣∣∣ ∫
E

(
τ(G)f ′

h(G) − θf ′
h(G)�

(
G,−L−1G

))
dμ

∣∣∣∣
≤ sup

h∈H

∥∥f ′
h

∥∥∞θ

∫
E

∣∣�(
G,−L−1G

) − θ−1τ(G)
∣∣ dμ,

so that the assertion follows by Lemma 2.5 with cH = kθ suph∈H ‖h′‖∞ < ∞.
�

REMARK 3.4. Let us point out some key features of the results of this subsec-
tion.

First, to avoid any confusion, note that the target measure ν appearing in Theo-
rems 3.1 and 3.2 is not related to the invariant measure μ of the generator L, in the
domain of which G lies. As far as ν is concerned, as pointed out in Section 2.2, al-
most any distribution admitting a density can be regarded as an invariant measure
of a diffusion, and is therefore admissible as a target distribution.

Second, observe that our assumptions on the random variable G are quite mild,
hence providing a lot of flexibility for applications.

In the specific case where the underlying generator is the infinite dimensional
Ornstein–Uhlenbeck generator (Wiener space) and the target law ν is Gaussian
(constant diffusion coefficient), a bound of this type had been obtained in [20],
which has been applied in several contexts, for example, to obtain Berry–Esséen
theorems for parameter estimation of stochastic partial differential equations (see
[15]) or in the context of fractional Ornstein–Uhlenbeck processes (see [12]).

Theorems 3.1 and 3.2 in this section extend the class of possible target distribu-
tions from Gaussian to general invariant measures of diffusions, and also allows to
consider functionals of non-Gaussian random fields. In particular, both the target
law and the underlying random field can have heavy tails.

3.2. Markov chaos and four moments theorems. This subsection introduces
the concept of chaotic eigenfunctions, for which the general bound obtained in
Theorem 3.2 can further be bounded by a finite linear combination of moments.
Chaotic eigenfunctions have first been introduced in [17] and a more general def-
inition has been given in [2]. In order to also be able to deal with heavy-tailed
invariant measures, we have to extend this definition once again by introducing the
new notion of chaos grade.

We continue to assume as given a Markov structure as introduced in Section 2.1
and denote the spectrum of the generator L [defined on D(L)] by S. As −L is
nonnegative and symmetric, one has S ⊆ (−∞,0]. Let � ⊆ S denote the set of
eigenvalues of L. We always have that 0 ∈ � as by assumption L1 = 0. Chaotic
random variables are then defined as follows.
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DEFINITION 3.5. An eigenfunction F with respect to an eigenvalue −λ of L

is called chaotic, if there exists η > 1 such that −ηλ is an eigenvalue of L and

(3.5) F 2 ∈ ⊕
−κ∈�
κ≤ηλ

ker(L + κ Id).

In this case, the smallest η satisfying (2.15) is called the chaos grade of F .

In other words, an eigenfunction is called chaotic if its square can be expressed
as a sum of eigenfunctions.

REMARK 3.6. (i) As we assume that L2(E,F,μ) is separable, the set � and
therefore the direct orthogonal sum (3.5) of eigenspaces is at most countable.

(ii) The chaos grade is invariant under scaling of the generator, in the sense that
if F is a chaotic random variable of L with chaos grade η, then the chaos grade
of F remains unchanged when viewed as a chaotic random variable of αL for any
α ∈ R.

Let us give some examples to illustrate the concept.

EXAMPLE 3.7. 1. An example is the generator L of a Pearson distribution
and we will study this example in detail in Section 4. At this point, let us briefly
illustrate the chaos grade concept by treating the concrete case of the Gaussian
distribution μ. Here, the generator is the one-dimensional Ornstein–Uhlenbeck
generator, acting on L2(R,μ). As is well known, the spectrum of L consists of the
negative integers and zero, which all are eigenvalues with the respective Hermite
polynomials as eigenfunctions (the Hermite polynomial Hp of order p being an
eigenfunction with respect to the eigenvalue −p). The square of such a Hermite
polynomial Hp can of course be expressed as a linear combination of Hermite
polynomials up to order 2p, so that the chaos grade of Hp is η = 2. This expansion
is given explicitly by the well-known product formula

H 2
p(x) =

p∑
j=0

cp,jH2(p−j)(x),

where cp,j = j !(p
j

)2.
2. The preceding example can also be looked at in infinite dimensions. Here,

the one-dimensional Gaussian distribution is replaced with Wiener measure and L

is the infinite dimensional Ornstein–Uhlenbeck generator. The spectrum of L still
consists of the negative integers and zero, with the eigenfunctions now being mul-
tiple Wiener–Itô integrals of the form F = Ip(f ) [so that LIp(f ) = −pIp(f )].
The product formula for such integrals says that

F 2 = Ip(f )2 =
p∑

j=0

cp,j I2(p−j)(fj ),
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where the constants cp,j are defined as in the previous example and the kernels fj

are given in terms of so-called contractions of the original kernel f . This shows
that any such multiple Wiener–Itô integral is a chaotic eigenfunction in the sense
of Definition 3.5 with chaos grade 2.

3. Another example in dimension one is obtained by taking L to be the Ja-
cobi generator acting on L2([0,1], ν), with invariant measure ν given by ν(dx) =
cα,βxα−1(1 − x)β−11[0,1](x)dx for some positive parameters α,β . Then L is such
that

Lf (x) = x(1 − x)f ′′(x) + (
α − (α + β)x

)
f ′(x).

It is well known that the eigenvalues of L are given by the Jacobi polyno-
mials. The chaos grade of an eigenfunction associated to the eigenvalue λn =
−n(1 + n−1

α+β
) is given by 2(1 + n

n−1+α+β
) (see Section 4 for a full treatment of

chaos grade characterizations). Note that the chaos grade in this case is no longer 2
and depends on the eigenvalue the eigenfunction is associated to. As in the Wiener
case, a tensorization procedure (see Section 4) allows to generalize this example
to higher dimensions.

REMARK 3.8. For a systematic study of the chaos grades of eigenfunctions
of Pearson generators, see Section 4.

We are now ready to prove four moments theorems for Pearson distributions. In
all that follows, F will denote an eigenfunction of L, which is necessarily centered,
and G = F + m a translated version of F which has then expectation m ∈ R as in
the previous section. Furthermore, as the six classes of Pearson diffusions given
by (2.12) are invariant under linear transformations (see Section 2.3), we assume
from here on without loss of generality that θ = 1

2 .

THEOREM 3.9. Let ν be a Pearson distribution associated to the diffusion
given by (2.12) with mean m and diffusion coefficient

σ 2(x) = b(x) = b2x
2 + b1x + b0,

where b0, b1, b2 ∈ R. Let F be a chaotic eigenfunction of L with respect to the
eigenvalue −λ, chaos grade η and moments up to order 4. Set G = F + m. Then,
if η ≤ 2(1 − b2), one has

(3.6)
∫
E

(
�

(
G,−L−1G

) − b(G)
)2 dμ ≤ 2

(
1 − b2 − η

4

)∫
E

U(G)dμ,

whereas if η > 2(1 − b2), one has

(3.7)

∫
E

(
�

(
G,−L−1G

) − b(G)
)2 dμ

≤ 2
(

1 − b2 − η

4

)∫
E

U(G)dμ + ξ(1 − b2)

2

∫
E

Q2(G)dμ,
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where

ξ = η − 2(1 − b2) > 0,

and where the polynomials Q and U are given respectively by

Q(x) = x2 + 2(b1 + m)

2b2 − 1
x + 1

b2 − 1

(
b0 + m(b1 + m)

2b2 − 1

)
and

U(x) = (1 − b2)Q
2(x) − 1

12

(
Q′(x)

)3
(x − m).

REMARK 3.10. (i) Observe that both
∫
E U(G)dμ and

∫
E Q2(G)dμ are linear

combinations of the first four moments of G, that is, there exists coefficients cj , dj ,
j = 0, . . . ,4 such that∫

E
U(G)dμ =

4∑
j=0

cj

∫
E

Gj dμ and
∫
E

Q2(G)dμ =
4∑

j=0

dj

∫
E

Gj dμ.

The coefficients cj , dj only depend on the coefficients of the polynomial b and the
mean m of the target distribution, and hence only on ν. For convenience, they are
given in Table 1. We provide some examples of such linear moment combinations
below.

(ii) In Theorem 3.13, we will use Theorem 3.9 to obtain moment conditions
for the convergence in law of a sequence {Gk : k ≥ 1} to a random variable Z

with distribution ν. Consider, for example, (3.6). If
∫
E U(Gk)dμ → 0 as k → ∞,

then the left-hand side of (3.6) converges to zero, and hence the distribution of Gk

converges to the Pearson distribution ν by Theorem 3.2.
(iii) Note that by the identities (3.14) and (3.8) in the forthcoming proof of

Theorem 3.9 and the Cauchy–Schwarz inequality,∫
E

U(G)dμ ≤
√∫

E
Q2(G)dμ

√∫
E

(
�

(
G,−L−1G

) − b(G)
)2 dμ,

showing that the moment combination
∫
E U(G)dμ indeed vanishes for a random

variable G having the law ν of the target distribution (as the � expression is zero
if the law of G is ν by Theorem 3.1).

(iv) In order to understand the presence of the additional moment combination,

ξ(1 − b2)

2

∫
E

Q2(G)dμ

in the bound (3.7), let L̃ be the Markov diffusion generator of the diffusion (2.12)
with mean m and diffusion coefficient σ 2(x) = b(x) as in the statement of Theo-
rem 3.9, so that the Pearson distribution ν is its invariant measure and its support is
Ẽ = (l, u). Let F̃ = x − m and G̃ = F̃ + m = x. Then F̃ is an eigenfunction of L̃

(as it is the first orthogonal polynomial with respect to ν) and G̃ has distribution ν.
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TABLE 1
Coefficients in the linear combinations of moments in Remark 3.10(i)

j cj

0
(b0+ m(b1+m)

2b2−1 )2

1−b2
+ 2m(b1+m)3

3(2b2−1)3

1 4b0(b1+m)
1−2b2

+ 2(b1+m)2(b1+2m(3b2−1))

3(1−2b2)
3

2 −2b0 − 2(b1+m)2

2b2−1

3 −2b1 − 4m
3

4 1
3 − b2

j dj

0 (b0(2b2−1)+m(b1+m))2

(1−2b2)
2(1−b2)

2

1 4(b1+m)(b0(2b2−1)+m(b1+m))

(1−2b2)
2(b2−1)

2 2(b0(1−2b2)
2+(b1+m)(2b1(b2−1)+(4b2−3)m))

(1−b2)(1−2b2)
2

3 4(b1+m)
2b2−1

4 1

Indeed, for any smooth function ϕ, (2.14) yields

0 =
∫
Ẽ

L̃G̃dν =
∫
R

b(x)1(l,u)(x)ϕ′′(x) − (x − m)ϕ′(x)ν(dx),

where the right-hand side is exactly the Stein characterization (2.16). By Proposi-
tion 4.2 for n = 1, F̃ has chaos grade η̃ = 2(1−b2). Therefore, ξ = η− η̃ measures
how much the chaos grade η of G exceeds the chaos grade η̃ of G̃. If G is replaced
by a sequence {Gk : k ≥ 0} with chaos grades {ηk : k ≥ 0}, as will be done in
Proposition 3.13, then in order to converge, it is necessary that ηk converges to η̃.

PROOF OF THEOREM 3.9. As LF = −λF and L1 = 0, we have that LG =
−λ(G−m). Also, by definition L−1G = L−1F = − 1

λ
F = − 1

λ
(G−m). Therefore,

also using the fact that � vanishes if any of its two arguments is a constant, it
follows that

�
(
G,−L−1G

) = 1

λ
�(G − m,G − m)

= 1

2λ
(L + 2λ Id)(G − m)2

= 1

2λ
(L + 2λ Id)

(
G2 − 2mG + m2)

.
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Using this identity, it is straightforward to verify that the polynomial Q satisfies

(3.8) �
(
G,−L−1G

) − b(G) = 1

2λ

(
L + 2(1 − b2)λ Id

)
Q(G),

so that we can write, using ξ = η − 2(1 − b2),∫
E

(
�

(
G,−L−1G

) − b(G)
)2 dμ(3.9)

=
∫
E

(
1

2λ

(
L + 2(1 − b2)λ Id

)
Q(G)

)2
dμ

= 1

4λ2

∫
E

(
(L + ηλ Id)Q(G) − ξλQ(G)

)2 dμ

= 1

4λ2

(∫
E

(
(L + ηλ Id)Q(G)

)2 dμ + Rη(G)

)
,(3.10)

where

Rη(G) = ξ2λ2
∫
E

Q2(G)dμ − 2λξ

∫
E

Q(G)(L + ηλ Id)Q(G)dμ

(3.11)
= −2λξ

∫
E

Q(G)
(
L + 2(1 − b2)λ Id

)
Q(G)dμ − ξ2λ2

∫
E

Q2(G)dμ.

As L is symmetric,

(3.12)

∫
E

(
(L + ηλ Id)

(
Q(G)

))2 dμ =
∫
E

Q(G)(L + ηλ Id)2Q(G)dμ

= ηλ

∫
E

Q(G)(L + ηλ Id)Q(G)dμ

+
∫
E

Q(G)L(L + ηλ Id)Q(G)dμ

≤ ηλ

∫
E

Q(G)(L + ηλ Id)Q(G)dμ

= ηλ

∫
E

Q(G)
(
L + 2(1 − b2)λ Id

)
Q(G)dμ

+ ηξλ2
∫
E

Q2(G)dμ,

where the inequality follows from the fact that∫
E

Q(G)L(L + ηλ Id)Q(G)dμ ≤ 0.

Indeed, as by assumption

Q(G) = ∑
−κ∈� : κ≤ηλ

πκ

(
Q(G)

)
,
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where πκ(Q(G)) denotes the orthogonal projection of Q(G) onto the eigenspace
ker(L + κ Id), one has∫

E
Q(G)L(L + ηλ Id)Q(G)dμ

= ∑
−κ∈� : κ≤ηλ

∫
E

πκ

(
Q(G)

)
L(L + ηλ Id)πκ

(
Q(G)

)
dμ

= − ∑
−κ∈� : κ≤ηλ

κ(ηλ − κ)

∫
E

πκ

(
Q(G)

)2 dμ ≤ 0.

Plugging (3.12) and (3.11) into (3.10) yields

(3.13)

∫
E

(
�

(
G,−L−1G

) − b(G)
)2 dμ

≤ η − 2ξ

4λ

∫
E

Q(G)
(
L + 2(1 − b2)λ Id

)
Q(G)dμ

+ ξ(1 − b2)

2

∫
E

Q2(G)dμ.

In order to prove that

(3.14)
∫
E

Q(G)
(
L + 2(1 − b2)λ Id

)
Q(G)dμ = 2λ

∫
E

U(G)dμ,

we use integration by parts and the diffusion property of �, as well as the fact that
(Q′(x)3)′ = 6Q′(x)2, to write∫

E
Q(G)LQ(G)dμ = −

∫
E

�
(
Q(G),Q(G)

)
dμ

= −
∫
E

(
Q′(G)

)2
�(G,G)dμ

= −1

6

∫
E

�
((

Q′(G)
)3

,G
)
dμ

= 1

6

∫
E

(
Q′(G)

)3
LGdμ

= −λ

6

∫
E

(
Q′(G)

)3
(G − m)dμ.

Hence,

(3.15)

∫
E

(
�

(
G,−L−1G

) − b(G)
)2 dμ

≤ η − 2ξ

2

∫
E

U(G)dμ + ξ(1 − b2)

2

∫
E

Q2(G)dμ
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proving (3.7) since (η−2ξ)/2 = 2(1−b2 −η/4). Note finally that if η ≤ 2(1−b2),
then ξ ≤ 0, and hence ξ(1 − b2) ≤ 0, so that the second term in (3.15) is negative
and can be dropped. This proves (3.6). �

REMARK 3.11. In view of the general bound (3.3) obtained in Theorem 3.2,
it is natural to ask whether the quantity∫

E

(
�

(
G,−L−1G

) − θ−1τ(G)
)2 dμ,

where G is an eigenfunction, can be bounded by the first four moments of G,
when τ is the diffusion coefficient of a diffusion with invariant measure out-
side of the Pearson class. Inspecting the proof of Theorem 3.9, one sees that,
after expanding the square, the first four moments appear naturally from the
term

∫
E �(G,−L−1G)2 dμ. The remaining terms

∫
E τ(G)�(G,−L−1G)dμ and∫

E τ(G)2 dμ yield moments up to order four if, and only if the diffusion coefficient
τ is a polynomial of degree at most two, for which the corresponding invariant
measures are exactly the Pearson distributions. In this sense, the class of Pearson
target laws for which we provide four moment theorems is exhaustive.

By combining Theorem 3.9 with Theorem 3.2, we obtain quantitative moment
bounds for suitable distances.

PROPOSITION 3.12. In the setting and with the notation of Theorem 3.9, let
Z be a random variable with distribution ν. Then, if η ≤ 2(1 − b2), one has

dH (G,Z) ≤ cH

√(
1 − b2 − η

4

)∫
E

U(G)dμ,

whereas if η > 2(1 − b2), one has

dH (G,Z) ≤ cH

√(
1 − b2 − η

4

)∫
E

U(G)dμ + ξ(1 − b2)

2

∫
E

Q2(G)dμ.

Here, dH denotes an admissible distance for G and Z, defined via a separating
class H of absolutely continuous test functions such that suph∈H ‖h′‖∞ < ∞.
The positive constant cH depends solely on the class H .

PROOF. We have to check that the function σ 2 satisfies the assumptions of
Lemma 2.5. This is immediate by taking g = σ 2. We then apply Cauchy–Schwarz
to (3.2) and use (3.6) and (3.7). �

At this point, it is straightforward to state the following quantitative four mo-
ments theorems for approximation of any Pearson distribution admitting at least
four moments by a sequence of chaotic eigenfunctions.
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THEOREM 3.13. Let ν be a Pearson distribution associated to the diffusion
given by (2.12) with mean m and diffusion coefficient σ 2(x) = b(x) = b2x

2 +
b1x + b0, and let Z be a random variable with law ν. For k ∈ N, let Fk be a
chaotic eigenfunction with chaos grade ηk of a Markov diffusion generator Lk

and let Gk = Fk + m. Furthermore, let dH be an admissible distance for {Gk :
k ∈ N}∪ {Z}, defined via a separating class H of absolutely continuous test func-
tions with uniformly bounded derivative. Then, if ηk ≤ 2(1 − b2), one has

dH (Gk,Z) ≤ cH

√(
1 − b2 − ηk

4

)∫
E

U(Gk)dμ

whereas if ηk > 2(1 − b2), one has

dH (Gk,Z) ≤ cH

√(
1 − b2 − η

4

)∫
E

U(Gk)dμ + ξk(1 − b2)

2

∫
E

Q2(Gk)dμ,

where ξk = ηk − 2(1 − b2). Here, cH is a positive constant solely depending on
the separating class H . In particular, the following two conditions are sufficient
for the sequence {Gk : n ≥ 0} to converge in distribution to Z:

(i)

(3.16)
∫
E

U(Gk)dμ → 0.

(ii) For every subsequence (ηkr ) of (ηk) such that ηkr > 2(1 − b2) for every
r ∈ N one has

sup
r∈N

∫
E

Q2(Gkr )dμ < ∞

and ηkr → 2(1 − b2).

PROOF. This is an immediate consequence of Theorem 3.13. The sufficient
condition (ii) ensures that the second term on the right-hand side of (3.7) converges
to zero. �

REMARK 3.14. To the best of our knowledge, Theorem 3.13 is the first in-
stance where moment conditions are given in order to converge to heavy-tailed
distributions (which are not characterized by moments). Furthermore, the main re-
sults (all nonheavy-tailed) of [2, 17, 19, 20, 24] are included as particular cases
and in a unified way.

EXAMPLE 3.15. Let us give some explicit examples of the moment combi-
nations appearing in Condition (3.16) for several target distributions. To improve
readability, we abbreviate the pth moment

∫
E G

p
k dμ by mp(Gk).
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(i) For convergence toward a centered Gaussian distribution with variance σ 2,
we have b(x) = σ 2 and m = 0, so that by Table 1, we get that c0 = σ 4, c1 = 0, c2 =
−2σ 2, c3 = 0 and c4 = 1

3 , hence recovering the well-known moment condition

1

3
m4(Gk) − 2σ 2m2(Gk) + σ 4 → 0,

which becomes m4(Gk) → 3 when m2(Gk) = σ 2 = 1.
(ii) For convergence toward a (heavy-tailed) Student t-distribution with mean

zero and τ degrees of freedom (which is a particular case of a Skew t-distribution
with parameters m = τ+1

2 , λ = ν = 0 and α = √
τ ), we have b(x) = x2

τ−1 + τ
τ−1 .

Therefore, the moment condition becomes

(τ − 4)

3(τ − 1)
m4(Gk) − 2τ

(τ − 1)
m2(Gk) + τ 2

τ 2 − 3τ + 2
→ 0.

This moment condition is new.
(iii) For convergence toward the inverse gamma distribution with shape param-

eter α > 0 and scale parameter β > 0, which is noncentered (as opposed to the

two previous examples) with mean β
α−1 , we have b(x) = x2

α−1 . We hence obtain
new moment conditions as well, ensuring convergence to the (heavy-tailed) in-
verse gamma distribution. For instance, setting the shape parameter α = 5, we get
that

1

12
m4(Gk) − β

3
m3(Gk) + β2

4
m2(Gk) − β3

24
m1(Gk) → 0.

4. Pearson chaos. As an application of our results, we treat the case where
the converging sequence of chaotic eigenfunctions itself comes from a genera-
tor associated to a Pearson law. To avoid technicalities, we present here only the
finite-dimensional case, analogous results in infinite dimension can be obtained
in a similar way. We begin by describing a general and well-known tensorization
procedure of Markov generators.

Fix N ≥ 2 and, for 1 ≤ i ≤ N , let Li be a generator with invariant probabil-
ity measure μi and L2-domain D(Li) ⊆ L2(Ei,Fi ,μi). Let (E,F,μ) be the
product of the probability spaces (Ei,Fi ,μi). Then we can define a generator
LN = ⊗N

i=1 Li on D(LN) = ⊗N
i=1 D(Li) by

LN(F1 × F2 × · · · × FN) =
N∑

i=1

F1 × · · · × Fi−1 × (LiFi) × Fi+1 × · · · × FN.

From this definition, it follows that if Fi is an eigenfunction of Li with eigenvalue
λi , then F = ⊕N

i=1 Fi is an eigenfunction of LN with eigenvalue λ = ∑N
i=1 λi . The

following corollary describes how the chaos grade behaves under tensorization.
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COROLLARY 4.1. In the above setting, let each eigenfunction Fi be chaotic
with chaos grade ηi . Then F is chaotic and its chaos grade η is bounded as follows:

min{η1, η2, . . . , ηN } ≤ η ≤ max{η1, η2, . . . , ηN }.
The above inequalities become equalities, if, and only if, all of the chaos grades ηi

are equal.

PROOF. By definition, the squares F 2
i can be expanded as sums of eigenfunc-

tions, with the eigenvalue of largest magnitude in such an expansion being λiηi .
Therefore, F 2 can also be expanded as a sum of eigenfunctions, with the eigen-
value of largest magnitude, say λmax, being given by

λmax =
N∑

i=1

λiηi.

Applying the definition of chaos grade (see Definition 3.5) now yields that

η = λmax

λ
=

∑N
i=1 λiηi∑N
i=1 λi

,

from which the assertion follows as all λi have the same sign. �

In the following proposition, we calculate the possible range of values of the
chaos grade for eigenfunctions related to all six Pearson distributions.

PROPOSITION 4.2. Let L be the generator associated to a Pearson diffu-
sion defined by (2.12) and denote the eigenvalues of L by −λn where λn =
n(1 − (n − 1)b2)θ for b2 < 1

2n−1 . Let Fn be an eigenfunction of L with respect

to −λn. Then Fn is chaotic, if, and only if, b2 < 1
4n−1 , and in this case its chaos

grade ηn is given by

(4.1) ηn = ηn(b2) =
⎧⎪⎨⎪⎩

2 if b2 = 0,

2
(

1 + n

n − 1 − 1
b2

)
if b2 �= 0.

Furthermore, the following are true:

(i) If μ is a Student, F - or inverse Gamma distribution, then ηn ∈ (4
3 ,2−2b2].

(ii) If μ is a Gaussian or Gamma distribution, then ηn = 2.
(iii) If μ is a Beta distribution then ηn ∈ (4,2 − 2b2], if b2 < −1, ηn = 4, if

b2 = −1 and ηn ∈ [2 − 2b2,4), if −1 < b2 < 0.

PROOF. An eigenfunction Fn of a Pearson generator with respect to the eigen-
value −λn = n(1− (n−1)b2)θ is an orthogonal polynomial of degree n. Its square
is then a polynomial of degree 2n. In order for F 2

n to be expressible as a sum of
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square integrable eigenfunctions, we therefore need that the first 2n eigenfunc-
tions of L are square integrable, or equivalently that moments up to order 4n exist.
Hence, by (2.15), the condition required is

(4.2) b2 <
1

4n − 1
.

Let us assume that the above inequality is satisfied. Then, by its very definition, ηn

is given by the quotient of the 2nth eigenvalue with the nth one. Indeed, as ηn is the
multiplicative factor that indicates what eigenvalue the highest-order eigenfunction
in the decomposition of the square of Fn is associated to. On the other hand, we
know that the square of the polynomial eigenfunction of degree n produces a sum
of polynomial eigenfunctions up to degree 2n, corresponding to the eigenvalue
−λ2n. Hence we have

(4.3) ηn = λ2n

λn

= 2n(1 − (2n − 1)b2)θ

n(1 − (n − 1)b2)θ
,

so that (4.1) follows. Assertion (ii) is immediate as in this case b2 = 0 and the
chaos grade is constant. In order to show assertion (i) in which b2 > 0, note that
the function n �→ ηn(b2) is decreasing. Therefore, the largest possible chaos grade
is obtained by taking n = 1 in (4.3), which gives 2(1 − b2). On the other hand,
as by (4.2), n < 1

4( 1
b2

+ 1), the lower bound 4
3 of the chaos grade is obtained by

taking n = �1
4( 1

b2
+ 1)�. Assertion (iii) where b2 < 0 follows in a similar way. �

Proposition 4.2 shows that on a global level, the chaos grade η of chaotic eigen-
functions of a Pearson generator lies in the interval (4

3 ,∞). Furthermore, all val-
ues in this interval can be attained, in the sense that if x is such a value, then there
exists a generator L of a Pearson diffusion (2.12) which has a chaotic eigenfunc-
tion of chaos grade x. The six types of Pearson distributions are partitioned into
three classes with disjoint intervals for the chaos grade values of the corresponding
eigenfunctions. These intervals are all of the form{

2(1 − b2) : b2 ∈ I
}
,

where I is the set of allowed values for the corresponding class, that is, I =
(−∞,0) for the class of student, F - and inverse Gamma distributions, I = {0}
for Gaussian and Gamma distributions and I = (0,∞) for the Beta distributions
(see Figure 1).

Applying the tensorization procedure described above to the case where all gen-
erators Li are equal to some generator L of a Pearson diffusion immediately yields
the following result.

THEOREM 4.3. Let μ be a Pearson distribution and L be the associated
Markov generator. Denote its eigenvalues by {−λi : 0 ≤ i < I }, where I ∈ N∪{∞}
and such that λi < λi+1. Furthermore, denote by Pi the ith orthogonal polynomial
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4
3 2 4

Student
F -dist.

Inv. Gamma Beta

Gaussian
Gamma

FIG. 1. Possible chaos grades for the Pearson distributions.

associated to μ. Let LN = L⊗N be the generator obtained by the tensorization
procedure described above and denote by μN the associated product measure.
Then the set of eigenvalues of LN is given by

S =
{
−

N∑
i=1

λki
: k1, . . . , kN ∈ I

}
.

If −λ = −∑N
i=1 λki

is such an eigenvalue, then all eigenfunctions F of LN with
respect to −λ are of the form

F = ∑
|α|=p

aαPα,

where:

(i) p = ∑N
i=1 ki ,

(ii) the sum is taken over all N -dimensional multiindices α = (α1, . . . , αN) of
order p,

(iii) the aα are real constants,
(iv) Pα(x) = Pα(x1, x2, . . . , xN) = ∏N

i=1 Pαi
(xi).

Combining Corollary 4.1 with Proposition 4.2 and the discussion thereafter, we
see that for the six classes of Pearson distributions the intervals for the chaos grades
of the respective chaotic eigenfunctions are invariant under tensorization. In other
words, the chaos grades of chaotic eigenfunctions of LN :

(i) assume values in the interval (4
3 ,2), if the tensorized distribution is Stu-

dent, F - or inverse Gamma,
(ii) are equal to two in the case of tensorized Gaussian or Gamma distributions,

(iii) lie in the interval (2,∞) if the distribution is Beta.

Coming back to the four moments theorems proved in Section 3.2, the possible
chaos grades also yield a heuristic about “compatible” Pearson distributions, in
the sense that one can be obtained as a limit of a chaos of another Pearson dis-
tribution. Recall from Section 3.2 [in particular Remark 3.10(iv)] that if we want
to approximate a random variable Z with a Pearson law and chaos grade η̃ to be
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the limit of a sequence (Gn) of chaotic random variables with corresponding chaos
grade sequence (ηn), we need that ηn ≤ η̃ or ηn → η̃, where η̃ is the chaos grade of
Z when seen as a chaotic random variable itself. For example, if Z has a Gaussian
or Gamma distribution, then η̃ = 2. Therefore, chaotic random variables coming
from a heavy-tailed Pearson chaos are compatible, as in this case we always have
ηn ≤ 2. The Gamma and Gaussian chaos is of course compatible as well as here
the two chaos grades coincide and for convergence from Beta chaos to a Gaussian
or Gamma distribution, our conditions require that ηn → 2. This translates to the
parameters of the underlying invariant Beta measure growing to infinity. Taking Z

to be a heavy-tailed Pearson distribution yields a chaos grade η̃ which is strictly
less than two. Here, our conditions suggest that only heavy-tailed chaos are com-
patible. The aforementioned heuristic could likely be made rigorous by a detailed
study of the carré du champ characterization given in Theorem 3.1 and is left for
future research.
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