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HEAT KERNEL UPPER BOUNDS FOR INTERACTING
PARTICLE SYSTEMS

BY ARIANNA GIUNTI, YU GU1 AND JEAN-CHRISTOPHE MOURRAT

University of Bonn, Carnegie Mellon University and CNRS

We show a diffusive upper bound on the transition probability of a
tagged particle in the symmetric simple exclusion process. The proof relies
on optimal spectral gap estimates for the dynamics in finite volume, which
are of independent interest. We also show off-diagonal estimates of Carne–
Varopoulos type.

1. Introduction.

1.1. Main result. The qualitative theory of stochastic homogenization of
divergence-form equations was developed in the late 1970s [31, 34, 48]. By a
probabilistic representation, it is equivalent to the invariance principle for the cor-
responding reversible diffusion in random environment. Shortly afterwards, a strik-
ingly general invariance principle was proved for additive functionals of reversible
Markov chains [32]. This result enables to show at once that a reversible random
walk (or diffusion) in a random environment, and a tagged particle in a symmetric
exclusion process, both rescale to Brownian motion. The recent monograph [33]
covers many further developments on this approach.

The price to pay for the breadth of this result is the difficulty to strengthen or
quantify it. For instance, it was asked in [32], Remark 1.10 whether a tagged par-
ticle in a symmetric exclusion process satisfies an invariance principle for almost
every realization of the initial configuration (a “quenched” invariance principle).
To this day, this question is still open.

Optimal quantitative results on the homogenization of divergence-form equa-
tions with random coefficients have only started to appear recently. We refer to
[6, 8–10, 22–28, 42] for a sample of the recent work, and to [7] for a monograph
on the subject. Previous work focused on showing quenched invariance principles,
and could ultimately cover very degenerate situations such as random walks on
percolation clusters [1–3, 12, 15, 19, 43, 44, 52].

In both lines of research, one central ingredient of the proofs is a heat kernel
or regularity estimate. The fact that heat kernel estimates imply a quenched invari-
ance principle was understood early on; see [47]. Proving heat kernel bounds for
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degenerate environments such as percolation clusters is however a comparatively
recent breakthrough [11, 45]. We refer to [14, 35] for surveys of the topic, and to
[4, 5, 16, 46] for more recent contributions.

We aim to develop a comparable program for the case of a tagged particle in the
symmetric exclusion process. In this paper, we show diffusive heat kernel bounds
for this process. To the best of our knowledge, this is the first result of this type
for an interacting particle system. Our method can be applied to more general
reversible particle systems, although we choose to focus on this particular case for
clarity.

In a related direction, several works aimed at proving that certain particle sys-
tems converge to equilibrium at a polynomial rate. We refer in particular to [13,
17, 18, 30, 36, 37] for references on this aspect.

We write (Xt ,ηt )t≥0 for the joint process of the tagged particle and the sym-
metric simple exclusion process on Z

d , d ≥ 2, started at (X,η). We fix the average
density of particles at ρ ∈ (0,1): under the measure 〈· | X = 0〉ρ , the random vari-
ables (η(x))x �=0 are i.i.d. Bernoulli with parameter ρ. We refer to the next section
for precise definitions. Here is our main result.

THEOREM 1.1 (Heat kernel bound). For every p ≥ 2, there exists a constant
C(d,ρ,p) < ∞ such that, for every t > 0,

(1.1)
∑

x∈Zd

〈(
P(X,η)[Xt = x])p | X = 0

〉
ρ ≤ Ct(1−p) d

2 .

COROLLARY 1.2. For every p ≥ 2 and ε > 0, there exists a constant
C(d,ρ,p, ε) < ∞ such that, for every x ∈ Z

d and t > 0,

(1.2)
〈(

P(X,η)[Xt = x])p | X = 0
〉 1
p
ρ ≤ Ct−( d

2 −ε).

We can also complement this information by an off-diagonal bound of Carne–
Varopoulos type.

THEOREM 1.3 (Carne–Varopoulos bound). There exists a constant C(d) < ∞
such that, for every x ∈ Z

d and t > 0,

〈
P(X,η)[Xt = x] | X = 0

〉
ρ ≤

∣∣∣∣∣∣∣∣∣
exp

(
−|x|2

Ct

)
if |x| ≤ t,

exp
(
−|x|

C

)
if |x| > t.

The bound obtained in Theorem 1.1 is optimal, as we now explain. By the an-
nealed central limit theorem [32], there exists a constant c(d,ρ) > 0 such that, for
every t sufficiently large,∑

|x|≤√
t

〈
P(X,η)[Xt = x] | X = 0

〉 ≥ c.
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Up to a redefinition of c(d,ρ) > 0, it thus follows by Jensen’s inequality that(
t−

d
2

∑
|x|≤√

t

〈(
P(X,η)[Xt = x])p | X = 0

〉
ρ

) 1
p ≥ ct−

d
2 .

This implies the bound converse to (1.1), up to a multiplicative constant. It also
immediately yields the existence of an x ∈ Z

d such that the left-hand side of (1.2)

is bounded from below by ct− d
2 , up to a redefinition of c(d,ρ) > 0.

1.2. Sketch of proof for the standard heat equation. Our strategy is inspired
by the following argument for the relaxation of the standard heat equation. Let u

be the parabolic Green function with the pole at the origin, that is, the decaying
solution to

(1.3)

{
∂tu = �u in (0,+∞) ×R,

u(t = 0, ·) = δ0(·) in R.

Our core goal (compare with Theorem 2.1 below) is to control the decay of mono-
tone quantities of the form

´
Rd up(t, ·), for p ≥ 2. We focus on the case p = 2 for

simplicity, and present a robust argument, which will be adapted to the particle
system, for the well-known fact that

(1.4)
ˆ
Rd

u2(t, x)dx ≤ Ct−
d
2 .

We give ourselves a partition of Rd into boxes of size �, and for each x ∈ R
d , we

denote by B�(x) the box of this partition containing x. We start by writing

(1.5)

ˆ
Rd

u2(t, x)dx ≤ 2
ˆ
Rd

(
u(t, x) −

 
B�(x)

u(t, ·)
)2

dx

+ 2
ˆ
Rd

( 
B�(x)

u(t, ·)
)2

dx,

where
ffl
B�(x)

:= |B�(x)|−1
´
B�(x)

is the normalized integral. For the first term,
Poincaré’s inequality ensures that

(1.6)
ˆ
Rd

(
u(t, x) −

 
B�(x)

u(t, ·)
)2

dx ≤ CP (d)�2
ˆ
Rd

∣∣∇u(t, x)
∣∣2 dx,

and moreover,

∂t

ˆ
Rd

u2(t, ·) = −2
ˆ
Rd

∣∣∇u(t, ·)∣∣2.
Therefore, in a time-averaged sense, the first term on the right-hand side of (1.5) is
dominated by the left-hand side, provided that � ≤ c

√
t with c sufficiently small. It
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therefore suffices to control the second term on the right-hand side of (1.5). Since´
Rd u(t, ·) ≡ 1 is independent of time, we get

ˆ
Rd

( 
B�(x)

u(t, ·)
)2

dx ≤
ˆ
Rd

∣∣B�(x)
∣∣−1

( 
B�(x)

u(t, ·)
)

dx = |B�|−1.

Choosing � = c
√

t completes our sketch of proof for (1.4).

1.3. Difficulties in the case of the exclusion process. We now discuss the en-
countered problems, and the required modifications to the argument described
above, in our context of a tagged particle in a symmetric exclusion process.

The most visible difficulties in obtaining heat kernel bounds for the tagged par-
ticle are that the environment in which the particle evolves changes over time, and
that the jump rates may degenerate to zero due to the exclusion mechanism.

Optimal heat kernel estimates for degenerate dynamic environments satisfying
some mild assumptions were obtained in [46]. These results cover in particular
the case of a diffusion with symmetric, possibly vanishing jump rates that depend
locally on an auxiliary exclusion process at equilibrium.

The latter process is however fundamentally different from the one we consider
here. Indeed, in the situation considered in [46], and more generally in the context
of stochastic homogenization, one can first sample the dynamic or static random
environment beforehand, and then define a diffusion with the given coefficients.
In contrast, in the setting we study here, the tagged particle and the bath of all the
other, untagged particles cannot be thus disentangled. There is a “retro-action” of
the particle onto its environment, which makes the approach of [46] inapplicable.
This is the core difficulty of the problem. Mathematically, this is immediately ap-
parent when we try to write down a differential equation analogous to (1.3) for
quantities such as P(x,η)[Xt = 0]: there is no closed equation for this quantity if
we only allow x and t to vary, but not η. Similarly, for random walks in static
or dynamic random environments, quantities such as the left-hand side of (1.4)
are monotone almost surely. This is not the case in our setting, and only averaged
monotone quantities will be available to us.

In spite of these difficulties, we will show here how to adapt the argument ex-
posed in the previous subsection and obtain heat kernel estimates for the tagged
particle. We replace the standard Poincaré inequality used in (1.6) by spectral gap
inequalities for the dynamics in finite volume. The proof of these inequalities re-
quires some care, due to the degeneracy of the rates. Moreover, since the dynamics
preserves the number of particles, these inequalities will hold only if we condition
on having a fixed number of particles in the box under consideration.

In the analysis of the analogue to the first term on the right-hand side of (1.5),
our need to fix the number of particles in individual boxes forces the appearance
of conditional measures in the analogue to the last term of (1.5). In other words,
instead of quantities such as

´
u(t, ·), we will have to estimate the expectation of a
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similar quantity with the integrand multiplied by the space-dependent densities of
the conditional measures. These densities are highly singular, since they concen-
trate on very thin sets of fixed number of particles inside a region. We first bound
these densities independently of the space variable, and then use the reversibil-
ity of the dynamics to transfer the evolution onto this density. For this term, the
tagged particle is irrelevant, and we can use L1 contraction in the environment
variable only. We then leverage on the locality of the initial condition f = u(0, ·)
to conclude.

1.4. Outline of the paper. In the next section, we introduce the notation and
present the general result of the form of (1.4) that we will prove; see Theorem 2.1.
In Section 3, we show a spectral gap with optimal scaling for the joint process
of the tagged particle and the exclusion process in finite volume. Section 4 starts
with a proof of the Carne–Varopoulos bound, from which we deduce a convenient
localization property. The rest of the section then implements the strategy sketched
above.

2. Notation and reformulation. We fix an integer d ≥ 2. We say that x, y ∈
Z

d are neighbors, and write x ∼ y, if |x − y| = 1, where | · | is the Euclidean
distance. This turns Zd into a graph, and we denote by B the associated set of (un-
oriented) edges. For any positive integer �, we denote by B� the box {−�, . . . , �}d ,
and by B� the set of edges with both end-points in B�. We let

	� := {
(x, η) ∈ B� × {0,1}B� : η(x) = 1

}
,

	 := {
(x, η) ∈ Z

d × {0,1}Zd : η(x) = 1
}
.

For e ∈ B and x ∈ Z
d , we denote

xe =
∣∣∣∣y if e = {x, y},
x if e �
 x.

In other words, xe is the image of x by the transposition between the two endpoints
of the edge e. For η ∈ {0,1}Zd

(or {0,1}B� ), ηe is the configuration such that,
for every x, ηe(x) = η(xe). For a function f : 	 → R (or 	� → R), we define
f e(x, η) := f (xe, ηe). We study the symmetric, simple exclusion process with a
tagged particle. This is the dynamics associated with the infinitesimal generator L
formally acting on a random variable f : 	 →R as

Lf = ∑
e∈B

ae

(
f e − f

)
,

where

(2.1) ae(η) := 1{ηe �=η}.
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We also consider the finite-volume counterparts,

L�f = ∑
e∈B�

ae

(
f e − f

)
,

where now f : 	� → R. The dynamics associated with L� takes place in
	� and preserves the number of particles; one can check that for every ρ ∈
{0, . . . , |B�|}/|B�|, the uniform measure on the set{

(x, η) ∈ 	� : ∑
z∈B�

η(z) = ρ|B�|
}

is reversible for the dynamics (i.e., the operator L� is symmetric with respect to
this measure). We denote this measure by 〈·〉�,ρ . With a slight abuse of notation
(since we also use η to denote a deterministic quantity), we write (X,η) for the
canonical random variable on 	� (or 	). For general ρ ∈ [0,1], we understand
〈·〉�,ρ to be 〈·〉�,�ρ|B�|�/|B�|. For any x ∈ Z

d , we also define 〈· | X = x〉ρ to be the
measure under which X = x almost surely [and thus η(x) = 1] and (η(y))y /∈x are
independent Bernoulli random variables with parameter ρ. When no ambiguity
occurs, we may abuse notation and write

〈· | x〉 := 〈· | X = x〉ρ.

For each A ⊆ Z
d , we denote by F(A) the σ -algebra generated by the random vari-

ables (η(x), x ∈ A). We extend the notion of F(A)-measurable random variable to
functions defined on 	 or 	� as follows. A function f : 	 → R (resp. 	� → R)
is said to be F(A)-measurable if for every x ∈ Z

d (resp., B�), the random variable
f (x, ·) is F(A)-measurable. For every p ∈ [1,∞] and measurable f : 	 →R, we
define

(2.2) ‖f ‖Lp(ρ) :=
( ∑

x∈Zd

〈|f |p | X = x
〉
ρ

) 1
p =

( ∑
x∈Zd

〈|f |p | x〉) 1
p

,

with the usual interpretation as a supremum if p = ∞. In most places, the value of
ρ will be clear from the context, so that we simply write ‖f ‖p := ‖f ‖Lp(ρ) and
keep the dependence on ρ implicit.

For an integer r ≥ 0, we say that a function f : 	 →R is Br -local if

f is F(Br)-measurable, and

for every x ∈ Z
d \ Br,f (x, η) = 0.

We say that a function is local if it is Br -local for some r < +∞.
For a local function f , we define u :R+ × 	 →R as the unique bounded solu-

tion (see, e.g., [39], Theorem 4.68 or [38], Theorem B.3) to

(2.3)

{
∂tu = Lu,

u(0, ·) = f (·).
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We may also write Ptf (·) = ut (·) = u(t, ·), where Pt denotes the semigroup as-
sociated with the generator L. Note that in the above expressions, the single dot
represents an element of 	, which is a subset of the product space Z

d × {0,1}Zd
.

In other words, an overly scrupulous notation for u(t, x, η) would be u(t, (x, η)).
Throughout the paper, we use the notation a � b in proofs, to denote a ≤ Cb for
some constant C < ∞ which may depend on some additional parameters as spec-
ified in the statement to be proved.

The main result of this paper, Theorem 1.1, is an immediate consequence of the
following estimate on monotone quantities.

THEOREM 2.1. Let ρ ∈ (0,1), f be a local function, and ut(·) = u(t, ·) be the
solution to equation (2.3). For every p ≥ 2, there exists a constant C(d,ρ,f,p) <

∞ such that for every t > 0,

(2.4) ‖ut‖p
Lp(ρ) ≤ Ct(1−p) d

2 .

Recalling that the left-hand side of (2.4) equals∑
x∈Zd

〈|ut |p | x〉
,

we see that inequality (2.4) is consistent with the idea that only those summands
indexed by x in a ball of radius about

√
t contribute to the sum, and that each of

these summands is bounded by about t−p d
2 . The constant in Theorem 2.1 can be

chosen to hold uniformly over ρ bounded away from 1.
We denote the stochastic process associated with the infinitesimal generator L

by (Xt ,ηt )t≥0 (see [38] for a construction), by P(x,η) its law starting from (x, η) ∈
	, and by E(x,η) the associated expectation. This is the joint process of the tagged
particle and the bath of the other, mutually indistinguishable particles. By [39],
Theorem 3.16, the solution to (2.3) admits the probabilistic representation

(2.5) u(t, x, η) = E(x,η)

[
f (Xt ,ηt )

]
.

PROOFS OF THEOREM 1.1 AND COROLLARY 1.2 FROM THEOREM 2.1. We
define the local function

f (x, η) := 1x=0,

so that if u solves (2.3) with this choice of f , then by (2.5), for every t > 0,

ut(x, η) = P(x,η)[Xt = 0].
By Theorem 2.1, for each p ≥ 2, there exists a constant C(d,ρ,p) < ∞ such that∑

x∈Zd

〈(
P(X,η)[Xt = 0])p | X = x

〉
ρ ≤ Ct(1−p) d

2 .
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Theorem 1.1 follows since, by stationarity, we have〈(
P(X,η)[Xt = x])p | X = 0

〉
ρ = 〈(

P(X,η)[Xt = 0])p | X = −x
〉
ρ.

By Jensen’s inequality and Theorem 1.1, for every q ≥ p, we have

〈(
P(X,η)[Xt = x])p | X = 0

〉 1
p
ρ ≤ 〈(

P(X,η)[Xt = x])q | X = 0
〉 1
q
ρ

≤ C(d,ρ, q)t
−(1− 1

q
) d

2 .

By choosing q sufficiently large, we obtain Corollary 1.2. �

3. Spectral gap inequalities. In this section, we show as a first ingredient
toward the proof of Theorem 2.1 that the joint process of the tagged particle and
the set of all the other (indistinguishable) particles, restricted to a box of size �,
relaxes over a time scale of �2. This takes the form of the following spectral gap
inequalities.

THEOREM 3.1 (Spectral gap). For every ρ ∈ (0,1), there exists CS(d,ρ) < ∞
which increases with respect to ρ and such that, for every � ∈ Z≥1 and f : 	� →
R, we have 〈(

f − 〈f 〉�,ρ)2〉
�,ρ ≤ CS�2

∑
e∈B�

〈
ae

(
f e − f

)2〉
�,ρ.

The proof of Theorem 3.1 is inspired by the arguments exposed in [51]. We
rely on the spectral gap of the dynamics of the η variable alone, which was proved
in [51], Lemmas 8.2 and 8.3 and [20], Theorem 3.1. When no tagged particle is
considered, the exclusion rule becomes artificial, in the sense that the dynamics
becomes identical to the Kawasaki dynamics, where particles are exchanged along
edges at a constant rate.

PROPOSITION 3.2 (Spectral gap for Kawasaki dynamics [20, 51]). There ex-
ists a constant CK(d) < ∞ such that, for every ρ ∈ [0,1], � ∈ Z≥1 and f :
{0,1}B� →R, 〈(

f − 〈f 〉�,ρ)2〉
�,ρ ≤ CK�2

∑
e∈B�

〈(
f

(
ηe) − f (η)

)2〉
�,ρ,

as well as, for every x ∈ B�,〈(
f − 〈

f | η(x) = 1
〉
�,ρ

)2 | η(x) = 1
〉
�,ρ

≤ CK�2
∑
e∈B�
e �
x

〈(
f

(
ηe) − f (η)

)2 | η(x) = 1
〉
�,ρ.
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The crucial difference between Theorem 3.1 and Proposition 3.2 is that the func-
tion f in Proposition 3.2 is a function of η only, while the the one in Theorem 3.1
also depends on the position of the tagged particle X. Note that the second part
of Proposition 3.2 relies on the fact that we only consider the case d ≥ 2. (In fact,
only the one-dimensional, nearest-neighbor case needs to be excluded.)

PROOF OF THEOREM 3.1. We take f : 	� → R such that 〈f 〉�,ρ = 0, and
write

|B�|〈f 2〉
�,ρ = ∑

x∈B�

〈f | X = x〉2
�,ρ + ∑

x∈B�

〈(
f − 〈f | X = x〉�,ρ)2 | X = x

〉
�,ρ,

so the first part on the right-hand side of the above equation represents the variation
induced by the tagged particle, and the second part corresponds to the variation
induced by the configurations of all other indistinguishable particles. We omit the
indices ρ, � on 〈·〉 and, for an edge b ∈ B� we define b, b ∈ B� as the two end-
points of b, so that b = (b, b). We apply the standard Poincaré inequality on B� to
the first sum above (recalling that 〈f 〉�,ρ = 0), and Proposition 3.2 to the second
one, to get

(3.1)

|B�|〈f 2〉
� �2

∑
(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

+ �2
∑
x∈B�

∑
e∈B�

e �
x

〈[
f

(
X,ηe) − f (X,η)

]2 | X = x
〉
.

We first observe that (xe, ηe) = (x, ηe) when x /∈ e, and in addition ηe = η when-
ever ae(η) = 0, so we may rewrite∑
e∈B�

e �
x

〈[
f

(
X,ηe) − f (X,η)

]2 | X = x
〉 = ∑

e∈B�

e �
x

〈
ae(η)

[
f e(X,η) − f (X,η)

]2 | X = x
〉
,

and thus bound the second term on the right-hand side of (3.1) by

�2
∑
x∈B�

∑
e∈B�

e �
x

〈[
f

(
X,ηe) − f (X,η)

]2 | X = x
〉

≤ �2
∑
x∈B�

e∈B�

〈
ae(η)

[
f e(X,η) − f (X,η)

]2 | X = x
〉

= |B�|�2
∑
e∈B�

〈
ae

(
f e − f

)2〉
.

(3.2)

We now tackle the first term on the right-hand side of (3.1). To lighten the
notation, we sometimes write the edge (x, y) as xy. By definition, it holds〈

f (X,η) | X = y
〉 = 〈

f
(
Xxy, ηxy) | X = x

〉
,
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so we may rewrite

(3.3)

�2
∑

(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

= �2
∑

(x,y)∈B�

(〈
f (X,η) − f

(
Xxy, ηxy) | X = x

〉)2
.

To conclude the proof of Theorem 3.1, we need to smuggle the coefficient a inside
the expectation on the right-hand side of the above equation. For those configu-
rations (x, η) with η(x) = η(y) = 1, and thus axy(η) = 0, we want to perform a
finite number of flips to exchange x and y in an “admissible” way in which we al-
ways flip an edge that connects an occupied site with an unoccupied one. In order
to do so, we leverage on the presence of two empty sites at positions z1 and z2. We
now construct the sequence of flips we will use; this sequence will only depend on
the positions of x, y, z1 and z2.

(1) Recall that x ∼ y, and let z1 and z2 be two holes in η, at positions distinct
from x and y. We choose a shortest nonintersecting path in B� \ {x, y} of the form

x̃ → ỹ → ·· · → z1 → ·· · → z2,

according to some arbitrary deterministic tie-breaking rule, and in such a way that
the four points x, y, x̃, ỹ form a unit square on a plane.

(2) We flip each edge along the path, starting from the end, until the second
hole z2 is next to z1, then we move the two holes back together to (x̃, ỹ), so that
we get a configuration near (x, y) of the form[∗ •

◦ ◦
]
,

where ∗ is the tagged particle at x, • is the particle at y (assuming there is one, for
the purpose of graphical representation), and we have moved the holes in z1, z2 to
(x̃, ỹ), denoted by ◦.

(3) We flip four times to obtain[∗ •
◦ ◦

]
�→

[∗ ◦
◦ •

]
�→

[◦ ∗
◦ •

]
�→

[◦ ∗
• ◦

]
�→

[• ∗
◦ ◦

]
.

(4) We move the two holes at x̃, ỹ back to z1, z2 along the path.

We wrote the description of the sequence of flips assuming that η(z1) = η(z2) =
0, but this only served as a guide to the explanation; for arbitrary η, we may define
the same sequence of edge flips, the only difference being that the flips are no
longer “allowed” exclusion flips. In other words, we will think of the sequence of
edges selected and flipped in steps (2)–(4) above as a function of x, y, z1 and z2
only, but not of η. We denote it by

Sx,y,z1,z2 := (
bi(x, y, z1, z2)

)n
i=1.(3.4)
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We have n = n(x, y, z1, z2) � |z1 − x| + |z2 − z1|. By construction,

(3.5)
(
xb1···bn, ηb1···bn

) = (
xxy, ηxy)

,

and for every η such that η(z1) = η(z2) = 0,

(3.6) abi

(
ηb1···bi−1

) = 1 for every i = 1, . . . , n.

For a fixed x ∼ y, we first define the random variable Z1(η) to be a minimizer
of the function

(3.7) z1 �→ length(x̃ → ỹ → ·· · → z1),

among all z1 ∈ Z
d \ {x, y} such that η(z1) = 0. We then define Z2(η) to be a

minimizer of the function

z2 �→ length
(
Z1(η) → ·· · → z2

)
,

among all z2 ∈ Z
d \ {x, y,Z1(η)} such that η(z2) = 0. Since ρ < 1, the set of

candidate minimizers in both definitions are nonempty for � sufficiently large. In
both definitions, we break ties according to an arbitrary deterministic rule. We can
think of an algorithm for the definition of Z1 that explores each candidate z1 ∈ Z

d \
{x, y} sequentially, starting from the minimizer of (3.7) and going increasingly,
until a candidate with η(z1) = 0 is reached. (We simply need to make sure that the
tie-breaking rule defines an ordering between the sites that have the same image
through the mapping (3.7).) A similar interpretation holds for the definition of Z2.
We denote by N2 the number of occupied sites thus explored until both Z1 and Z2
are well defined.

We write〈
f (X,η) − f

(
Xxy, ηxy) | X = x

〉
= 〈

1{Z1,Z2∈B�}
(
f (X,η) − f

(
Xxy, ηxy)) | X = x

〉
= ∑

z1,z2∈B�

〈
1{Z1=z1,Z2=z2}

(
f (X,η) − f

(
Xxy, ηxy)) | X = x

〉
.

(3.8)

For any fixed tuple (x, y, z1, z2), we now consider the (deterministic) set Sx,y,z1,z2

defined in (3.4), and use (3.5)–(3.6) to write∑
z1,z2∈B�

〈
1{Z1=z1,Z2=z2}

(
f (X,η) − f

(
Xxy, ηxy)) | X = x

〉

= ∑
z1,z2∈B�

〈
1{Z1=z1,Z2=z2}

×
n∑

i=1

abi

(
ηb1···bi−1

)
Dbif

(
Xb1···bi−1, ηb1···bi−1

) ∣∣∣ X = x

〉
,
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where we defined Dbf (X,η) := f (Xb, ηb) − f (X,η); we recall that n depends
on x, y, z1, z2. By the above equation and (3.8), we rewrite (3.3) as

�2
∑

(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

= �2
∑

(x,y)∈B�

( ∑
z1,z2∈B�

〈
1{Z1=z1,Z2=z2}

×
n∑

i=1

abi

(
ηb1···bi−1

)
Dbif

(
Xb1···bi−1, ηb1···bi−1

) ∣∣∣ X = x

〉)2

.

Applying Hölder’s inequality first in 〈· | X = x〉 and then in
∑

z1,z2∈B�
yields

(3.9)

�2
∑

(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

≤ �2
∑

(x,y)∈B�

( ∑
z1,z2∈B�

〈1{Z1=z1,Z2=z2} | X = x〉 1
2

)

× ∑
z1,z2∈B�

〈1{Z1=z1,Z2=z2} | X = x〉 1
2

×
〈(

n∑
i=1

abi

(
ηb1···bi−1

)
Dbif

(
Xb1···bi−1, ηb1···bi−1

))2 ∣∣∣ X = x

〉
.

We now estimate the probability 〈1{Z1=z1,Z2=z2} | X = x〉. If we define

r1 := |z1 − x| − 1 ≥ 0, r2 := |z2 − z1| − 1 ≥ 0,

then by the construction of the path in (1) and the definition of Z1, Z2, there exists a
constant c̃ = c̃(d) > 0 such that the total number of occupied sites around x and z1,
which we denoted by N2, satisfies N2 ≥ c̃(rd

1 + rd
2 ). Let N = |B�| − 1 be the total

number of sites except x, and N1 = �ρ|B�|� − 1 be the total number of particles
except the tagged particle. Since 〈·〉 is the uniform measure over 	�,ρ , and there
are already N2 occupied sites around x and z1, it follows from Lemma A.1 that

〈1{Z1=z1,Z2=z2} | X = x〉 ≤
[(

N

N1

)]−1 (
N − N2

N1 − N2

)
�

√
N1(N − N2)

N(N1 − N2)

(
N1

N

)N2

.

If N2/N ≤ ρ/2, we have

〈1{Z1=z1,Z2=z2} | X = x〉 �
(

N1

N

)N2

� ρc̃(rd
1 +rd

2 );
if N2/N > ρ/2, we have

〈1{Z1=z1,Z2=z2} | X = x〉 �
√

N

(
N1

N

)N2

�
√

Nρ
ρN
4 ρ

c̃(rd1 +rd2 )

2 � ρ
c̃(rd1 +rd2 )

2 .
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Thus, there exists c > 0 such that 〈1{Z1=z1,Z2=z2} | X = x〉 � ρc(rd
1 +rd

2 ), and since

(3.10)
∑

z1,z2∈B�

〈1{Z1=z1,Z2=z2} | X = x〉 1
2 �

+∞∑
r1,r2=1

rd−1
1 rd−1

2 ρ
c(rd1 +rd2 )

2 < +∞,

we estimate in (3.9)

�2
∑

(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

� �2
∑

(x,y)∈B�

∑
z1,z2∈B�

ρ
c|z1−x|d

2 + c|z2−z1|d
2

×
〈(

n∑
i=1

abi

(
ηb1···bi−1

)
Dbif

(
Xb1···bi−1, ηb1···bi−1

))2 ∣∣∣ X = x

〉
.

By applying the Cauchy–Schwarz inequality to the innermost sum and recalling
that n = n(x, y, z1, z2) � |z1 − x| + |z2 − z1|, we further obtain

�2
∑

(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

� �2
∑

(x,y)∈B�

∑
z1,z2∈B�

(|z1 − x| + |z2 − z1|)ρ c|z1−x|d
2 + c|z2−z1|d

2

×
n∑

i=1

〈
abi

(
ηb1···bi−1

)(
Dbif

(
Xb1···bi−1, ηb1···bi−1

))2 | X = x
〉
.

Since the argument inside 〈· | X = x〉 is nonnegative, we use the crude bound

(3.11)

〈
abi

(
ηb1···bi−1

)(
Dbif

(
Xb1···bi−1, ηb1···bi−1

))2 | X = x
〉

= 〈
abi

(η)
(
Dbif (X,η)

)2 | X = xb1···bi−1
〉

≤ ∑
x̃∈B�

〈
abi

(η)
(
Dbif (X,η)

)2 | X = x̃
〉 = |B�|〈abi

(
Dbif

)2〉
,

where for the “=” we used the invariance of the measure under flips. Therefore,

�2
∑

(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

� �2|B�|
∑

(x,y)∈B�

∑
z1,z2∈B�

(|z1 − x| + |z2 − z1|)ρ c|z1−x|d
2 + c|z2−z1|d

2

×
n(x,y,z1,z2)∑

i=1

〈
abi

(
Dbif

)2〉
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� �2|B�|
∑

(x,y)∈B�

∑
z1,z2∈Zd

(|z1| + |z2|)ρ c|z1|d
2 + c|z2|d

2

×
n(x,y,x+z1,x+z1+z2)∑

i=1

〈
abi

(
Dbif

)2〉
.

For each z1, z2 fixed, by our construction of Sx,y,x+z1,x+z1+z2 we observe that

in the double sum
∑

(x,y)∈B�

∑n(x,y,x+z1,x+z1+z2)
i=1 , each edge bi ∈ B� is repeated

� |z1|d +|z2|d times. The nonnegativity of the argument in 〈·〉 allows us to estimate

∑
(x,y)∈B�

n(x,y,x+z1,x+z1+z2)∑
i=1

〈
abi

(
Dbif

)2〉
�

(|z1|d + |z2|d) ∑
e∈B�

〈
ae

(
Def

)2〉
and thus

(3.12)

�2
∑

(x,y)∈B�

(〈
f (X,η) | X = x

〉 − 〈
f (X,η) | X = y

〉)2

� �2|B�|
( ∑

z1,z2∈Zd

(|z1| + |z2|)(|z1|d + |z2|d)
ρ

c|z1|d
2 + c|z2|d

2

)

× ∑
e∈B�

〈
ae

(
Def

)2〉
� �2|B�|

∑
e∈B�

〈
ae

(
Def

)2〉
.

Inserting this last inequality and (3.2) into (3.1) concludes the proof of the spectral
gap inequality. From (3.10) and (3.12), it is clear that we can choose the constant
CS(d,ρ) increasing with ρ ∈ (0,1). �

4. Proofs of the main results. The main goal of this section is to prove The-
orem 2.1. From now on, we fix a local function f . Without loss of generality, we
may assume that f ≥ 0 (and therefore u ≥ 0). In the spirit of the argument sketched
in Section 1.2, we first reduce this proof to the following bound.

PROPOSITION 4.1. Under the assumptions of Theorem 2.1, for every p ≥ 1,
there exist a constant C(d,ρ,f,p) < ∞ and, for every δ > 0, a constant C′(δ) <

∞ such that, for every t ≥ 0,

‖Ptf ‖2p
2p = ‖ut‖2p

2p

≤ C

(
δt

∑
x∈Zd

∑
e∈B

〈
ae

((
ue

t

)p − u
p
t

)2 | x〉 + C′(δ)t(1−2p) d
2

)
.

(4.1)
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PROOF OF THEOREM 2.1 FROM PROPOSITION 4.1. We first observe that

(4.2) ∂t‖ut‖2p
2p = −p

∑
x∈Zd

∑
e∈B

〈((
ue

t

)2p−1 − u
2p−1
t

)
ae

(
ue

t − ut

) | x〉 ≤ 0.

We now verify that〈
ae

((
ue

t

)p − u
p
t

)2 | x〉 ≤ C(p)
〈((

ue
t

)2p−1 − u
2p−1
t

)
ae

(
ue

t − ut

) | x〉
.(4.3)

Indeed, since u0 = f is assumed to be nonnegative, we have ut ≥ 0, and therefore
the above estimate follows from the deterministic inequality:(

xp − yp)2 ≤ C(p)
(
x2p−1 − y2p−1)

(x − y) for x, y ≥ 0.

In order to verify the latter, it suffices to consider the case of x = 1 and y ∈ [0,1]
by symmetry and homogeneity, and then the conclusion follows easily.

By (4.2), the function t �→ ‖ut‖2p
2p is decreasing and we have, for every t ≥ 0,

that

‖ut‖2p
2p ≤ 2

t

ˆ t

t
2

‖us‖2p
2p ds

(4.1)≤ C

(
δ

ˆ t

t
2

∑
x∈Zd

∑
e∈B

〈
ae

((
ue

s

)p − up
s

)2 | x〉
ds + C′(δ)t(1−2p) d

2

)
(4.3)≤ C

(
δC(p)

ˆ t

t
2

∑
x∈Zd

∑
e∈B

〈((
ue

s

)2p−1 − u2p−1
s

)
ae

(
ue

s − us

) | x〉
ds

+ C′(δ)t(1−2p) d
2

)
(4.2)= C

(
δ
C(p)

p

(‖u t
2
‖2p

2p − ‖ut‖2p
2p

) + C′(δ)t(1−2p) d
2

)

≤ C

(
δ
C(p)

p
‖u t

2
‖2p

2p + C′(δ)t(1−2p) d
2

)
.

It suffices now to fix δ sufficiently small such that Cδ
C(p)

p
< 2(1−2p) d

2 to obtain
Theorem 2.1 by iteration. �

In the next subsection, we prove Theorem 1.3 and derive convenient localiza-
tion results for the process. We then devote the rest of the section to the proof of
Proposition 4.1.

4.1. Localization and cutoff estimate. We start by proving Theorem 1.3.

PROOF OF THEOREM 1.3. Our proof is inspired by the elegant argument pre-
sented in [49] (see also [40, 41]), with some modifications related to the fact that
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our processes are indexed by continuous time. We fix x, y ∈ Z
d , and denote by ξ

the function z �→ |z − x|. We may identify ξ with the function on 	 defined by
ξ(z, η) := ξ(z). The following process is a martingale:

Mt := ξ(Xt ) − ξ(X0) −
ˆ t

0
Lξ(Xs,ηs)ds.

We have〈
E(X,η)[Mt | Xt = y] | x〉 = |y − x| −

〈
E(X,η)

[ˆ t

0
Lξ(Xs,ηs)ds | Xt = y

] ∣∣∣ x

〉
.

By reversibility,

〈
E(X,η)[Mt | Xt = x] | y〉 = −|y − x| −

〈
E(X,η)

[ˆ t

0
Lξ(Xs,ηs)ds | Xt = x

] ∣∣∣ y

〉

= −|y − x| −
〈
E(X,η)

[ˆ t

0
Lξ(Xs,ηs)ds | Xt = y

] ∣∣∣ x

〉
.

Combining the last two displays we obtain

(4.4)
〈
E(X,η)[Mt | Xt = y] | x〉 − 〈

E(X,η)[Mt | Xt = x] | y〉 = 2|y − x|.
We now take a probability space with probability measure P and associated expec-
tation E such that, under P, the processes (Xx

t ,η
x
t )t≥0 and (Xy

t ,η
y
t )t≥0 are inde-

pendent, and are distributed according to 〈P(X,η)[·] | x〉 and 〈P(X,η)[·] | y〉 respec-
tively. We denote the corresponding martingales by Mx

t and M
y
t , respectively. The

identity (4.4) can be rewritten as

E
[
Mx

t − M
y
t | Xx

t = y,Xy
t = x

] = 2|y − x|.
We apply Jensen’s inequality to derive, for any λ > 0,

eλ|y−x| = exp
(

λ

2
E

[
Mx

t − M
y
t | Xx

t = y,Xy
t = x

])

≤ E
[
e

λ
2 (Mx

t −M
y
t ) | Xx

t = y,Xy
t = x

] ≤ E[e λ
2 (Mx

t −M
y
t )]

P[Xx
t = y,Xy

t = x] .

With Lemma A.2, we further obtain

P
[
Xx

t = y,Xy
t = x

] ≤ e−λ|y−x|
E

[
e

λ
2 (Mx

t −M
y
t )]

≤ exp
[−λ|y − x| + Ct

(
eλ − 1 − λ

)]
,

(4.5)

for some constant C(d) > 0. The above estimate holds for any λ > 0, and we now
choose λ appropriately to minimize the right-hand side of the above inequality.

If |y − x| > t , we have

exp
[−λ|y − x| + Ct

(
eλ − 1 − λ

)] ≤ exp
[−|y − x|(λ − C

(
eλ − 1 − λ

))]
.
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By choosing 0 < λ � 1 so that λ − C(eλ − 1 − λ) > 0, we find c1 > 0 such that
the right-hand side of the above inequality is bounded by e−c1|y−x| in this case.

If |y − x| ≤ t , by choosing λ = |y−x|
Mt

≤ M−1, we have

exp
[−λ|y − x| + Ct

(
eλ − 1 − λ

)] ≤ exp
(−λ|y − x| + Cλ2teλ)

= exp
[
−|y − x|2

Mt

(
1 − C

M
eλ

)]
.

By choosing M � 1, we find c2 > 0 such that the right-hand side of the above
inequality is bounded by e−c2|y−x|2/t .

We finally note that, using independence and then reversibility, the left-hand
side of (4.5) is

P
[
Xx

t = y
]
P

[
Xy

t = x
] = (〈

P(X,η)[Xt = y] | x〉)2
,

and, therefore, the proof is complete. �

We now aim to show the following localization result, which says that similarly
to the standard heat equation, at a fixed time t , we may localize the solution to
∂tu = Lu with local initial data f to the box BL, provided that L � √

t .
From now on, we define L := �√t log2 t�∨1, and denote by AL the conditional

expectation

ALh(x, η) := 〈
h(x, η) | F(BL)

〉
,

with F(BL) the σ -algebra generated by the variables (η(x), x ∈ BL).

PROPOSITION 4.2 (Localization). Let h be a local, nonnegative function, and
p ≥ 1. There exists a constant C(d,ρ,h,p) < ∞ such that the function ht = Pth

satisfies, for every t > 0,

(4.6) ‖ht‖2p −
( ∑

x∈BL

〈
(ALht )

2p | x〉) 1
2p ≤ Ce− log2 t

C ,

where L = �√t log2 t� ∨ 1.

Applying the above result to ut yields that, for L = �√t log2 t� ∨ 1,

(4.7) ‖ut‖2p ≤
( ∑

x∈BL

〈
(ALut )

2p | x〉) 1
2p + Ce− log2 t

C .

Therefore, in order to prove Proposition 4.1, we only need to analyze the first term
on the right-hand side of (4.7).

The rest of Section 4.1 is devoted to proving Proposition 4.2. The latter is a lo-
calization statement in two different senses: first because it replaces ht by ALht ;
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and second because it replaces a full-space sum (implicit in the norm) by one
indexed by BL. The second aspect of localization is obtained through the Carne–
Varopoulos estimate, which indicates that the tagged particle is not super-diffusive.
This information is also useful to justify the introduction of the conditioning oper-
ator AL. The need of this conditioning in our argument is inspired by the strategy
laid out for the proof of [30], Proposition 3.1. We use the Carne–Varopoulos esti-
mate to control some boundary terms for which the tagged particle is beyond the
diffusive regime.

We start by observing that the heat kernel estimate obtained in Theorem 1.3
implies the following bound on solutions to (2.3).

LEMMA 4.3. Let h be a local, nonnegative function, and ht = Pth be the
solution to (2.3) with initial condition h. There exists a constant C(d,h) < ∞
such that, for every t > 0 and x ∈ Z

d , we have

〈ht | x〉 ≤ C
(
e−|x|2

Ct + e−|x|
C

)
.

PROOF. Recall the probabilistic representation (2.5), which reads

ht (x, η) = E(x,η)

[
h(Xt ,ηt )

]
.

We use the locality of h to derive

〈ht | x〉 = 〈
E(X,η)

[
h(Xt ,ηt )

] | x〉 ≤ ‖h‖∞
〈
P(X,η)

[|Xt | ≤ r0
] | x〉

,

where r0 denotes the size of the support of h. Let the function f (t, r) :=
e− r2

Ct 1{0≤r≤t} + e− r
C 1{r>t}, where C(d) < ∞ is the constant from Theorem 1.3.

We have that

〈ht | x〉 ≤ ‖h‖∞
∑

z:|x+z|≤r0

f
(
t, |z|).

If |x| ≤ 2r0, we use the trivial bound 〈ht | x〉 ≤ ‖h‖∞.
If |x| > 2r0, |z| is comparable to |x|, and we have

〈ht | x〉 ≤ ‖h‖∞
∑

z:|x+z|≤r0

f
(
t, |z|) ≤ C‖h‖∞

(
e−|x|2

Ct + e−|x|
C

)
,

with a possibly larger constant C. The proof is complete. �

In the proof of Proposition 4.2, we will focus on the case p = 1, and then note
that the general case p > 1 follows directly from an L∞ bound of ht . For positive
integers m < L and a sequence of increasing positive constants αj = exp(

j
γ
) with
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γ = τ
√

t and τ > 0 to be determined, we define

Um,L,α(s) := αm‖Amhs‖2
2 +

L∑
k=m+1

αk

(‖Akhs‖2
2 − ‖Ak−1hs‖2

2
)

+ αL+1
(‖hs‖2

2 − ‖ALhs‖2
2
)

= αL+1‖hs‖2
2 −

L∑
k=m

(αk+1 − αk)‖Akhs‖2
2.

We will first estimate d
ds

‖Akhs‖2
2 for k ∈ Z≥1, then derive a differential inequality

for Um,L,α(s) with s ∈ [0, t]. By Gronwall’s inequality, it will lead to a bound on
Um,L,α(t) and ‖ht‖2

2 − ‖ALht‖2
2.

We define the Dirichlet energy of h associated with x ∈ Z
d , e ∈ B as

De(h | x) := 〈
ae

(
he − h

)2 | x〉
.

For every e ∈ B and k ∈ Z≥1, recall that we write e ∈ Bk if both end-points of e

belong to Bk . We write e ∈ ∂Bk if only one of these end-points belongs to Bk .

LEMMA 4.4. There exists a constant C(d,ρ,h) < ∞ such that, for any k ∈
Z≥1, β > 1 and s > 0, we have

− d

ds
‖Akhs‖2

2 ≤ ∑
x∈Zd

∑
e∈Bk

De(hs | x) + Cβ
∑

x∈Zd

∑
e∈∂Bk

De(hs | x)

+ C

β

∑
x∈Zd

[〈
(Ak+1hs)

2 | x〉 − 〈
(Akhs)

2 | x〉] + C
(
s

d
2 e− k2

Cs + e− k
C

)
.

PROOF. Since ∂s(Akhs) = Ak(∂shs) = Ak(Lhs), we have

d

ds

∑
x∈Zd

〈
(Akhs)

2 | x〉 = 2
∑

x∈Zd

∑
e∈B

〈
Akhs, ae

(
he

s − hs

) | x〉
.

For any e ∈ B, using the transformation (x, η) �→ (xe, ηe), we get∑
x∈Zd

〈
Akhs, ae

(
he

s − hs

) | x〉 = ∑
x∈Zd

〈
(Akhs)

e, ae

(
hs − he

s

) | xe〉
= ∑

x∈Zd

〈
(Akhs)

e, ae

(
hs − he

s

) | x〉
and, therefore,

(4.8)
d

ds

∑
x∈Zd

〈
(Akhs)

2 | x〉 = − ∑
x∈Zd

∑
e∈B

〈
(Akhs)

e − Akhs, ae

(
he

s − hs

) | x〉
.
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The summand on the right-hand side of the above equation takes a similar form as
the Dirichlet energy De(hs | x). In order to make this more precise, we distinguish
between different cases of x ∈ Z

d , e ∈ B.

(i) If e ∈ Bk , then ae is F(Bk)-measurable. We also have (Akhs)
e = Akh

e
s , so〈

(Akhs)
e − Akhs, ae

(
he

s − hs

) | x〉 = 〈
ae

(
Akh

e
s − Akhs

)2 | x〉
≤ 〈

ae

(
he

s − hs

)2 | x〉
.

(ii) If e /∈ Bk+1 and x /∈ e, then we have (Akhs)
e = Akhs , so the summands in

(4.8) are zero.
(iii) If e /∈ Bk and x ∈ e, then we have |x| ≥ k. By Lemma 4.3, we have∑

x∈Zd

∑
e∈B

1{e/∈Bk,x∈e}
∣∣〈Akhs, ae

(
he

s − hs

) | x〉∣∣ ≤ C
∑

|x|≥k

(
e−|x|2

Cs + e−|x|
C

)
≤ C

(
s

d
2 e− k2

2Cs + e− k
2C

)
.

(iv) If e ∈ ∂Bk and x /∈ e, then by Lemma A.3 we have∑
x∈Zd

∑
e∈B

1{e∈∂Bk,x /∈e}
〈
(Akhs)

e − Akhs, ae

(
he

s − hs

) | x〉
≤ Cβ

∑
x∈Zd

∑
e∈∂Bk

〈
ae

(
he

s − hs

)2 | x〉
+ C

β

∑
x∈Zd

[〈
(Ak+1hs)

2 | x〉 − 〈
(Akhs)

2 | x〉]
.

The proof is complete. �

We recall that

Um,L,α(s) = αL+1‖hs‖2
2 −

L∑
k=m

(αk+1 − αk)‖Akhs‖2
2

with αj = exp(
j
γ
) and γ = τ

√
t .

LEMMA 4.5. There exists C(d,ρ,h) < ∞ such that, for any t > 1, s ∈ [0, t],
τ > C and positive integers m < L, we have

d

ds
Um,L,α(s) ≤ C

t
Um,L,α(s) + C

(
t

d
2 e−m2

Ct + e−m
C

)
.

PROOF. We have

d

ds
Um,L,α(s) = αL+1

d

ds
‖hs‖2

2 −
L∑

k=m

(αk+1 − αk)
d

ds
‖Akhs‖2

2.
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For the first term on the right-hand side of the above equation, we have

d

ds
‖hs‖2

2 = − ∑
x∈Zd

∑
e∈B

De(hs | x).

We apply Lemma 4.4 to the second term to obtain

(4.9)

d

ds
Um,L,α(s)

≤ −αL+1
∑

x∈Zd

∑
e∈B

De(hs | x) +
L∑

k=m

(αk+1 − αk)
∑

x∈Zd

∑
e∈Bk

De(hs | x)

+ Cβ

L∑
k=m

(αk+1 − αk)
∑

x∈Zd

∑
e∈∂Bk

De(hs | x)

+ C

β

L∑
k=m

(αk+1 − αk)
(‖Ak+1hs‖2

2 − ‖Akhs‖2
2
)

+ C

L∑
k=m

(αk+1 − αk)
(
s

d
2 e− k2

Cs + e− k
C

)
,

where C = C(d,ρ,h) > 0 and β > 1. We will show that by choosing τ appro-
priately, the total Dirichlet energy on the right-hand side of (4.9) can be negative,
and the rest is bounded up to some multiplicative constant by Um,L,α plus some
remainder term.

(i) Dirichlet energy. Since β > 1 in (4.9) is arbitrary, we choose β = √
t . We

also assume τ > C for the constant C appearing in (4.9), then

Cβ(αk+1 − αk) < γ (αk+1 − αk) ≤ αk+1,

and we have

Cβ

L∑
k=m

(αk+1 − αk)
∑

x∈Zd

∑
e∈∂Bk

De(hs | x)

≤
L∑

k=m

αk+1
∑

x∈Zd

( ∑
e∈Bk+1

De(hs | x) − ∑
e∈Bk

De(hs | x)

)
,

which implies

L∑
k=m

(αk+1 − αk)
∑

x∈Zd

∑
e∈Bk

De(hs | x) + Cβ

L∑
k=m

(αk+1 − αk)
∑

x∈Zd

∑
e∈∂Bk

De(hs | x)

≤ αL+1
∑

x∈Zd

∑
e∈BL+1

De(hs | x) − αm

∑
x∈Zd

∑
e∈Bm

De(hs | x).
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Therefore, the total Dirichlet energy on the right-hand side of (4.9) (i.e., the sum
of the three first terms appearing there) is negative.

(ii) The remainder term. Using γ (αk+1 − αk) ≤ αk+1, we obtain

L∑
k=m

(αk+1 − αk)
(
s

d
2 e− k2

Cs + e− k
C

) ≤
L∑

k=m

1

γ
e

k+1
γ s

d
2 e− k2

Cs +
L∑

k=m

1

γ
e

k+1
γ e− k

C .

For the first term, since s < t and γ = τ
√

t , we have

L∑
k=m

1

γ
e

k+1
γ s

d
2 e− k2

Cs � t
d
2 e− m2

2Ct

L∑
k=m

1√
t
e

k+1
τ
√

t e− k2
2Ct � t

d
2 e− m2

2Ct .

For the second term, we have

L∑
k=m

1

γ
e

k+1
γ e− k

C = 1

τ
√

t
e

1
τ
√

t

L∑
k=m

e
( 1
τ
√

t
− 1

C
)k

,

then we choose τ ≥ 2C so 1
τ
√

t
− 1

C
≤ − 1

2C
to derive (note that t > 1)

L∑
k=m

1

γ
e

k+1
γ e− k

C �
L∑

k=m

e− k
2C � e− m

3C .

Therefore,

L∑
k=m

(αk+1 − αk)
(
s

d
2 e− k2

Cs + e− k
C

) ≤ C
(
t

d
2 e−m2

Ct + e−m
C

)
.

Now using again the fact that β(αk+1 − αk) ≤ αk+1, we obtain

d

ds
Um,L,α(s) ≤ C

t

L∑
k=m

αk+1
(‖Ak+1hs‖2

2 − ‖Akhs‖2
2
) + Ct

d
2 e−m2

Ct + Ce−m
C

≤ C

t
Um,L,α(s) + C

(
t

d
2 e−m2

Ct + e−m
C

)
.

The proof is complete. �

We are now ready to conclude the proof of Proposition 4.2.

PROOF OF PROPOSITION 4.2. It is clear that we only need to consider those
t � 1. For such fixed t , we choose m = �√t log t� and L = �√t log2 t�. By
Lemma 4.5, we apply Gronwall’s inequality to Um,L,α in [0, t], and derive

Um,L,α(t) ≤C
(
Um,L,α(0) + t1+ d

2 e−m2
Ct + te−m

C
)

≤C
(
Um,L,α(0) + t1+ d

2 e− log2 t
C + te−

√
t log t
C

)
.
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Since h is a local function, it is Bm-local for large t , and recalling the definition of
Um,L,α , we have

Um,L,α(0) = αm‖Amh‖2
2 = αm‖h‖2

2.

Therefore,

αL+1
(‖ht‖2

2 − ‖ALht‖2
2
) ≤ Um,L,α(t) ≤ C

(
αm‖h‖2

2 + t1+ d
2 e− log2 t

C + te−
√

t log t
C

)
,

which leads to

‖ht‖2
2 − ‖ALht‖2

2 ≤ Cαm

αL+1
‖h‖2

2 + C

αL+1

(
t1+ d

2 e− log2 t
C + te−

√
t log t
C

)
.

Since αj = e
j
γ = e

j

τ
√

t , there exists a constant C > 0 such that

‖ht‖2
2 − ‖ALht‖2

2 ≤ Ce− log2 t
C

(
1 + ‖h‖2

2
)
.

This implies

‖ht − ALht‖2
2 = ∑

x∈Zd

〈
(ht − ALht )

2 | x〉 = ∑
x∈Zd

〈
h2

t | x〉 − ∑
x∈Zd

〈
(ALht )

2 | x〉
≤ Ce− log2 t

C
(
1 + ‖h‖2

2
)
.

For p > 1, we simply use the L∞ bound ‖ht‖∞ ≤ ‖h‖∞ to obtain

‖ht − ALht‖2p
2p = ∑

x∈Zd

〈
(ht − ALht )

2p | x〉 ≤ C
∑

x∈Zd

〈
(ht − ALht )

2 | x〉
≤ Ce− log2 t

C
(
1 + ‖h‖2

2
)
.

Using Lemma 4.3, we can further restrict the tagged particle in BL:

‖ALht‖2p
2p = ∑

x∈BL

〈
(ALht )

2p | x〉 + ∑
x /∈BL

〈
(ALht )

2p | x〉
.

For the summation outside BL, we have∑
x /∈BL

〈
(ALht )

2p | x〉 ≤ C
∑

x /∈BL

〈ALht | x〉 ≤ C
∑

x /∈BL

(
e−|x|2

Ct + e−|x|
C

)
≤ Ce− log4 t

C .

The proof of Proposition 4.2 is therefore complete. �
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4.2. Variance control: Spectral gap inequality. Recalling that in the previous
step we fixed L = �√t log2 t� ∨ 1, we now define � := �δ√t� ∨ 1, for some 0 <

δ � 1 to be determined, and fix a partition {B�,i}i∈Z≥1 of BL into boxes of size �.
For each x ∈ Z

d , we denote by B�(x) the box of this partition to which x belongs
[so that B�(x) is not the box centered at x, which we may rather denote by x +B�].
Possibly adjusting δ ever so slightly, we assume that m := (2L + 1)d/(2� + 1)d is
an integer, that is, we choose m � δ−d log2d t boxes of size � partitioning BL, and
write BL = ⋃m

i=1 B�,i .
Let M�

L ∈ Z
m≥0 be the random vector made of the number of particles in each of

the size-� boxes partitioning BL, which we decompose as

M�
L = (M1, . . . ,Mm),

with Mi denoting the (random) number of particles in B�,i .
We first show that all Mi can be restricted to be in [ρ

2 |B�|, ρ+1
2 |B�|], that is, we

only consider the cases when the number of particles in each box B�,i is relatively
close to its expectation ρ|B�|. Define

1ρ(
M�

L

) :=
m∏

i=1

1{ ρ
2 |B�|≤Mi≤ ρ+1

2 |B�|}.

Recall that we fixed a local function f ≥ 0, and that ut is the solution to (2.3).

LEMMA 4.6. Let p ≥ 1. There exists a constant C(d,ρ,f,p) < ∞ and, for
each δ > 0, a constant C ′(δ) < ∞ such that, for every t > 0,

(4.10)

∑
x∈BL

〈
(ALut )

2p | x〉
≤ C

( ∑
x∈BL

〈
(ALut )

2p1ρ(
M�

L

) | x〉 + C′(δ)t−100pd

)
.

PROOF. We write∑
x∈BL

〈
(ALut )

2p | x〉 = ∑
x∈BL

〈
(ALut )

2p1ρ(
M�

L

) | x〉
+ ∑

x∈BL

〈
(ALut )

2p(
1 − 1ρ(

M�
L

)) | x〉
,

and bound the second term on the right-hand side by∑
x∈BL

〈
(ALut )

2p(
1 − 1ρ(

M�
L

)) | x〉
�

∑
x∈BL

〈
1 − 1ρ(

M�
L

) | x〉
.

By our definition of 1ρ(M�
L), it holds for every x ∈ BL that

〈
1 − 1ρ(

M�
L

) | x〉 ≤ m∑
i=1

(〈1{Mi>
ρ+1

2 |B�|} | x〉 + 〈1{Mi<
ρ
2 |B�|} | x〉).
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For each i = 1, . . . ,m, we have

〈1{Mi>
ρ+1

2 |B�|} | x〉 ≤ 〈
eλ(Mi− ρ+1

2 |B�|) | x〉 ≤ eλ[
e− ρ+1

2 λ(
ρeλ + 1 − ρ

)]|B�|

for any λ ≥ 0, where the factor eλ comes from the case when x ∈ B�,i . For the

function g(λ) := e− ρ+1
2 λ(ρeλ + 1 − ρ), it holds that g(0) = 1 and g′(0) = (ρ −

1)/2 < 0, so we may choose λ = λρ so that Cρ := g(λρ) < 1. Thus,

〈1{Mi>
ρ+1

2 |B�|} | x〉 � C|B�|
ρ .

Since the same discussion applies to 〈1{Mi<
ρ
2 |B�|} | x〉, we obtain〈

1 − 1ρ(
M�

L

) | x〉
� mC|B�|

ρ � δ−d(
log2d t

)
C(2�δ√t�+1)d

ρ ,

which implies ∑
x∈BL

〈
(ALut )

2p(
1 − 1ρ(

M�
L

)) | x〉
� C(δ)

t100pd
,

and proves (4.10). �

Given a vector M�
L, we define for a function h,

(4.11) π�
Lh

(
M�

L, x
) := |B�|−1

∑
y∈B�(x)

〈
h | M�

L, y
〉
.

This quantity may be viewed as a local average of h, that is, as the expectation of h

conditioning on M�
L and the event that the tagged particle is uniformly distributed

in B�(x). Appealing to (4.10) and to the triangle inequality, we bound

(4.12)

∑
x∈BL

〈
(ALut )

2p | x〉
�

∑
x∈BL

〈|ALut − π�
Lut |2p1ρ(

M�
L

) | x〉
+ ∑

x∈BL

〈(
π�

Lut

)2p1ρ(
M�

L

) | x〉 + C(δ)t−100pd.

We now apply the spectral gap inequality of Theorem 3.1 to control the first term
on the right-hand side of the above display.

PROPOSITION 4.7. Let p ≥ 1. There exists a constant C(d,ρ,p) < ∞ such
that, for every F(BL)-measurable, bounded nonnegative function h : 	 → R and
t > 0, we have

(4.13)

∑
x∈BL

〈∣∣h − π�
Lh

(
M�

L, x
)∣∣2p1ρ(

M�
L

) | x〉
≤ C�2

∑
x∈BL

∑
e∈BL

〈
ae

((
he)p − hp)2 | x〉

.
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PROOF. We write∑
x∈BL

〈∣∣h − π�
Lh

(
M�

L, x
)∣∣2p1ρ(

M�
L

) | x〉

=
m∑

i=1

∑
x∈B�,i

〈∣∣h − π�
Lh

(
M�

L, x
)∣∣2p1ρ(

M�
L

) | x〉
.

It suffices to show that for every i ∈ {1, . . . ,m},∑
x∈B�,i

〈∣∣h − π�
Lh

(
M�

L, x
)∣∣2p1ρ(

M�
L

) | x〉
� �2

∑
x∈B�,i

∑
e∈BL

〈
ae

((
he)p − hp)2 | x〉

.
(4.14)

Since the ordering of the partition (B�,i)
m
i=1 is arbitrary, it suffices to prove (4.14)

for i = 1. Recalling that M�
L = (M1, . . . ,Mm), we define a decreasing sequence of

σ -algebras {Gj }mj=1 by

Gj := σ

(
M1, . . . ,Mj ,

{
η(x̃) : x̃ ∈ BL \

j⋃
k=1

B�,k

})
(4.15)

and the following random variables for q ≥ 1:(
hq)y

j := 〈
hq | Gj , y

〉
, H

q
j := |B�|−1

∑
y∈B�,1

(
hq)y

j .(4.16)

It is clear that H
q
j may be viewed as the expectation of hq conditioning on Gj and

the event that the tagged particle is uniformly distributed in B�,1.
With the above notation, we write∑

x∈B�,1

〈∣∣h − π�
Lh

(
M�

L, x
)∣∣2p1ρ(

M�
L

) | x〉 = ∑
x∈B�,1

〈〈∣∣h − H 1
m

∣∣2p | Gm,x
〉
1ρ(

M�
L

) | x〉
.

We observe that for each x ∈ B�,1, the random variable〈∣∣h − H 1
m

∣∣2p | Gm,x
〉
1ρ(

M�
L

)
depends only on M1 and (η(x̃), x̃ /∈ B�,1), thus we may substitute the outer mea-
sure 〈· | x〉 with 〈· | x0〉 for any fixed x0 ∈ B�,1 and move the summation inside to
write∑
x∈B�,1

〈∣∣h−π�
Lh

(
M�

L, x
)∣∣2p1ρ(

M�
L

) | x〉 = 〈 ∑
x∈B�,1

〈∣∣h−H 1
m

∣∣2p | Gm,x
〉
1ρ(

M�
L

) ∣∣∣ x0

〉
.

We apply the moment inequality of Lemma A.4 to derive∑
x∈B�,1

〈∣∣h − H 1
m

∣∣2p | Gm,x
〉
�

∑
x∈B�,1

〈(
hp − Hp

m

)2 | Gm,x
〉
.
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It thus remains to prove (4.14) with the left-hand side replaced by

(4.17)
〈 ∑
x∈B�,1

〈(
hp − Hp

m

)2 | Gm,x
〉
1ρ(

M�
L

) ∣∣∣ x0

〉
.

For the summation in (4.17), we have∑
x∈B�,1

〈(
hp − Hp

m

)2 | Gm,x
〉

= ∑
x∈B�,1

〈(
hp − H

p
1 +

m−1∑
i=1

(
H

p
i − H

p
i+1

))2 ∣∣∣ Gm,x

〉
(4.18)

= ∑
x∈B�,1

〈(
hp − H

p
1

)2 | Gm,x
〉 + m−1∑

i=1

∑
x∈B�,1

〈(
H

p
i − H

p
i+1

)2 | Gm,x
〉
.

We start by observing that the first term on the right-hand side of (4.18) can be
rewritten as∑

x∈B�,1

〈(
hp − H

p
1

)2 | Gm,x
〉 = 〈 ∑

x∈B�,1

〈(
hp − H

p
1

)2 | G1, x
〉 ∣∣∣ Gm,x0

〉
.(4.19)

By applying to the term inside 〈· | Gm,x0〉 the spectral gap inequality of Theo-
rem 3.1 in the box B�,1 and with density given by ρ1 := M1/|B�| ∈ [ρ

2 ,
ρ+1

2 ], we
obtain

(4.20)

∑
x∈B�,1

〈(
hp − H

p
1

)2 | Gm,x
〉

≤ CS(ρ1, d)�2
〈 ∑
x∈B�,1

∑
e∈B�,1

〈
ae

((
he)p − hp)2 | G1, x

〉 ∣∣∣ Gm,x0

〉

= CS(ρ1, d)�2
∑

x∈B�,1

∑
e∈B�,1

〈
ae

((
he)p − hp)2 | Gm,x

〉
.

To deal with the second term on the right-hand side of (4.18), the idea is similar.
For each i = 1, . . . ,m − 1, we note that 〈(Hp

i − H
p
i+1)

2 | Gm,x〉 does not depend
on x, and 〈(

H
p
i − H

p
i+1

)2 | Gm,x
〉 = 〈〈(

H
p
i − H

p
i+1

)2 | Gi+1, y
〉 | Gm,y

〉
for any y ∈ B�,1. We also have

(
H

p
i − H

p
i+1

)2 = |B�|−2
( ∑

y∈B�,1

(〈
hp | Gi , y

〉 − 〈
hp | Gi+1, y

〉))2

≤ |B�|−1
∑

y∈B�,1

(〈
hp | Gi , y

〉 − 〈
hp | Gi+1, y

〉)2
.
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After conditioning on Gi+1, we apply the spectral gap inequality of Proposition 3.2
to the box B�,i+1 and derive for every y ∈ B�,1 that〈(〈

hp | Gi , y
〉− 〈

hp | Gi+1, y
〉)2 | Gi+1, y

〉 ≤ CK�2
∑

e∈B�,i+1

〈
ae

((
he)p −hp)2 | Gi+1, y

〉
,

and this implies

(4.21)

m−1∑
i=1

∑
x∈B�,1

〈(
H

p
i − H

p
i+1

)2 | Gm,x
〉

� CK�2
m−1∑
i=1

∑
y∈B�,1

∑
e∈B�,i+1

〈
ae

((
he)p − hp)2 | Gm,y

〉
.

Combining (4.20) and (4.21), we obtain∑
x∈B�,1

〈(
hp − Hp

m

)2 | Gm,x
〉

�
(
CS(ρ1, d) ∨ CK

)
�2

∑
x∈B�,1

∑
e∈BL

〈
ae

((
he)p − hp)2 | Gm,x

〉
.

We finally plug this inside (4.17) and obtain (4.14) with i = 1. We need the factor
1ρ(M�

L) to bound CS(ρ1, d) ≤ CS(
ρ+1

2 , d). �

By Proposition 4.7 and the fact that π�
LAL = π�

L, � = �δ√t�, we can therefore
reduce (4.12) to

(4.22)

∑
x∈BL

〈
(ALut )

2p | x〉
� δ2t

∑
x∈BL

∑
e∈BL

〈
ae

((
ue

t

)p − u
p
t

)2 | x〉
+ ∑

x∈BL

〈(
π�

Lut

)2p1ρ(
M�

L

) | x〉 + C(δ)t−100pd.

4.3. Conclusion. Summarizing, it follows from Proposition 4.2 and (4.22) that
for � = �δ√t� ∨ 1 and L = �√t log2 t� ∨ 1,

(4.23)

‖ut‖2p
2p � δ2t

∑
x∈Zd

∑
e∈B

〈
ae

((
ue

t

)p − (ut )
p)2 | x〉

+ ∑
x∈BL

〈(
π�

Lut

(
M�

L, x
))2p1ρ(

M�
L

) | x〉 + C(δ)t(1−2p) d
2 .

In order to complete the proof of Proposition 4.1, it therefore suffices to show the
following.
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PROPOSITION 4.8. There exists a constant C′(δ) = C′(d, ρ, f,p, δ) < ∞
such that, for every t > 0, we have∑

x∈BL

〈(
π�

Lut

(
M�

L, x
))2p1ρ(

M�
L

) | x〉 ≤ C′(δ)t(1−2p) d
2 .

From now on, we denote by 〈·〉 the “pure” Kawasaki measure on the lattice Z
d ,

that is, the product measure of independent Bernoulli {η(y)}y∈Zd with parame-
ter ρ. We also define the operator LK associated to the Kawasaki dynamic acting
on a random variable f = f (η) as

LKf (η) := ∑
e∈B

(
f

(
ηe) − f (η)

)
.(4.24)

For every x ∈ BL, we denote with hM(x, ·) the Radon–Nikodym derivative of the
measure 〈· | M�

L, x〉 with respect to 〈· | x〉, that is, for g ∈ L1(	) we have〈
g(x, ·) | M�

L = M,x
〉 = 〈

g(x, ·)hM(x, ·) | x〉
.(4.25)

Analogously, we denote by h̃M the Radon–Nikodym derivative of 〈· | M�
L〉 with

respect to 〈·〉. We have the following lemma.

LEMMA 4.9. Let the vector M = (M1, . . . ,Mm) be fixed and such that Mi ≥ 1
for all i = 1, . . . ,m. For any x ∈ BL, we define i(x) such that B�,i(x) = B�(x). We
have

(4.26) hM(x, η) = ρ|B�|
Mi(x)

h̃M(η),

in the sense that for every random variable g = g(X,η), we have

〈
g(X, ·) | M�

L = M,x
〉 = ρ|B�|

Mi(x)

〈
g(X, ·)h̃M(·) | x〉

.

PROOF. Let 1M be the indicator function of the event M�
L = M (i.e., of having

Mi particles in each of the boxes B�,i partitioning BL), let g = g(X,η) and g̃ =
g̃(η). Since we may write

〈
g̃(·) | M�

L = M
〉 = 〈

g̃(·)h̃M(·)〉 = 〈
g̃(·)1M(·)

〈1M 〉
〉
,

and for every x ∈ BL〈
g(X, ·) | M�

L = M,x
〉 = 〈

g(x, ·)hM(x, ·) | x〉 = 〈
g(x, ·)1{η(x)=1}(·)1M(·)

〈1{η(x)=1}1M〉
〉
,
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it holds that

〈
g(X, ·) | M�

L = M,x
〉 = 〈1M〉

〈1{η(x)=1}1M〉
〈
g(x, ·)1{η(x)=1}(·)h̃M(·)〉

= ρ
〈1M〉

〈1{η(x)=1}1M〉
〈
g(X, ·)h̃M(·) | x〉

.

We establish identity (4.26) by observing that by the independence of each η(y)

and the construction of the vector M�
L, we have

〈1M〉
〈1{η(x)=1}1M〉 = |B�|

Mi(x)

. �

PROOF OF PROPOSITION 4.8. For any x ∈ BL, by the definition of hM(x, ·)
through (4.25), we rewrite

∑
x∈BL

〈(
π�

Lut

(
M�

L, x
))2p1ρ(

M�
L

) | x〉

= ∑
x∈BL

〈(
|B�|−1

∑
y∈B�(x)

〈
ut | M�

L, y
〉)2p

1ρ(
M�

L

) ∣∣∣ x

〉

= |B�|−2p
∑

x∈BL

〈( ∑
y∈B�(x)

〈
uth

M | y〉)2p

1ρ(
M�

L

) ∣∣∣ x

〉
,

where here and in the following, we interpret 〈uth
M | y〉 and 〈ut h̃

M | y〉 as random
variables with M = M�

L. By our restriction on the values of M�
L given by the

random variable 1ρ(M�
L), we can appeal to Lemma 4.9 to derive

∑
x∈BL

〈(
π�

Lut

(
M�

L, x
))2p1ρ(

M�
L

) | x〉

= ρ2p|B�|−2p
∑

x∈BL

〈 |B�|2p

M
2p
i(x)

( ∑
y∈B�(x)

〈
ut (y, η)h̃M(η) | y〉)2p

1ρ(
M�

L

) ∣∣∣ x

〉
.

We bound the above term by

|B�|−2p
∑

x∈BL

〈( ∑
y∈B�(x)

〈
ut(y, η)h̃M(η) | y〉)2p

1ρ(
M�

L

) ∣∣∣ x

〉
.



1086 A. GIUNTI, Y. GU AND J.-C. MOURRAT

For fixed i, the above expectation is independent of x ∈ B�,i , so we write for an
arbitrary xi ∈ B�,i

(4.27)

|B�|−2p
∑

x∈BL

〈( ∑
y∈B�(x)

〈
ut (y, η)h̃M(η) | y〉)2p

1ρ(
M�

L

) ∣∣∣ x

〉

= |B�|−2p+1
m∑

i=1

〈( ∑
y∈B�,i

〈
ut (y, η)h̃M(η) | y〉)2p

1ρ(
M�

L

) ∣∣∣ xi

〉

= |B�|−2p+1
m∑

i=1

〈
gi

(
M�

L

)
1ρ(

M�
L

) | xi

〉
,

with

gi

(
M�

L

) :=
( ∑

y∈B�,i

〈
ut(y, η)h̃M(η) | y〉)2p

.

We claim that (4.27) can be bounded by

|B�|−2p+1
m∑

i=1

〈
gi

(
M�

L

)
1ρ(

M�
L

) | x0
〉 = 〈

|B�|−2p+1
m∑

i=1

gi

(
M�

L

)
1ρ(

M�
L

) ∣∣∣ x0

〉

for an arbitrary x0 /∈ BL. Consider 〈gi(M�
L)1ρ(M�

L) | xi〉 for any i: it can be written
as 〈

gi

(
M�

L

)
1ρ(

M�
L

) | xi

〉 = ∑
N1,...,Nm∈Z≥0

gi(N1, . . . ,Nm)1ρ(N1, . . . ,Nm)

×
m∏

j=1

〈1{Mj=Nj } | xi〉.

For j �= i, we have 〈1{Mj=Nj } | xi〉 = 〈1{Mj=Nj } | x0〉, and since gi ≥ 0, it suffices
to show that

〈1{Mi=Ni} | xi〉 � 〈1{Mi=Ni} | x0〉,
which is equivalent with(|B�| − 1

Ni − 1

)
ρNi−1(1 − ρ)|B�|−Ni �

(|B�|
Ni

)
ρNi (1 − ρ)|B�|−Ni .

Using the simple estimate

|B�|−2p+1
m∑

i=1

gi

(
M�

L

)
1ρ(

M�
L

) ≤ |B�|−2p+1
( ∑

y∈Zd

〈
ut (y, η)h̃M(η) | y〉)2p

,
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we have proved

(4.28)

∑
x∈BL

〈(
π�

Lut

(
M�

L, x
))2p1ρ(

M�
L

) | x〉

� |B�|−2p+1
〈( ∑

y∈Zd

〈
ut(y, η)h̃M(η) | y〉)2p ∣∣∣ x0

〉
.

We remark that the term
∑

y∈Zd 〈ut (y, η)h̃M(η) | y〉 on the right-hand side above
depends on the variables with respect to which we take the outer expectation
〈· | x0〉, only through the vector M . In other words, if we denote with η̃ the con-
figuration with respect to which the measure 〈· | x0〉 is defined, then we have that
M = M(η̃) and that the right-hand side in (4.28) may be rewritten as

|B�|−2p+1
〈( ∑

y∈Zd

〈
ut(y, η)h̃M(η̃)(η) | y〉

η

)2p ∣∣∣ x0

〉
η̃

.

Here, with η or η̃ subscript in the expectations we stress the variable with respect
to which each expectation is taken. Therefore, it follows that for every fixed η̃, and
accordingly fixed M = M(η̃), we may apply to the term

∑
y∈Zd 〈ut (y, η)h̃M(η) |

y〉η reversibility and rewrite it as∑
y∈Zd

〈
ut (y, η)h̃M(η) | y〉

η = ∑
y∈Zd

〈
f (y, η)Pt h̃

M(η) | y〉
η.

Moreover, the locality of f yields

(4.29)

∑
y∈Zd

〈
ut(y, η)h̃M(η) | y〉

η �
∑

y∈Br0

〈
Pt h̃

M(η) | y〉
η,

where Br0 denotes the support of f . We now observe that, since h̃M does not
depend on the tagged particle X, it holds that Lh̃M = LKh̃M and, therefore, also
that Pt h̃

M = P̃t h̃
M , where P̃t := etLK . Therefore, the contractivity of the L1-norm

for the Kawasaki dynamics yields that〈
Pt h̃

M | y〉
η = 〈

P̃t h̃
M | y〉

η = ρ−1〈
P̃t h̃

M1{η(y)=1}
〉 ≤ ρ−1〈

P̃t h̃
M 〉 ≤ ρ−1〈

h̃M 〉 = ρ−1.

Combining this last inequality with (4.29) and (4.28) yields∑
x∈BL

〈(
π�

Lut

(
M�

L, x
))2p1ρ(

M�
L

) | x〉
� |B�|−2p+1.

Our choice of � = �δ√t� ∨ 1 allows us to conclude the proof of Proposition 4.8.
�

We can now conclude the proof of Proposition 4.1 and, therefore, also of Theo-
rems 2.1 and 1.1.



1088 A. GIUNTI, Y. GU AND J.-C. MOURRAT

PROOF OF PROPOSITION 4.1. Proposition 4.8 applied to the second term on
the right-hand side of (4.23) yields

‖ut‖2p
2p � δ2t

∑
x∈Zd

∑
e∈B

〈
ae

((
ue

t

)p − (ut )
p)2 | x〉 + C(δ)t

d
2 (1−2p),

as desired. �

APPENDIX: TECHNICAL LEMMAS

LEMMA A.1. There exists a constant C = C(π, e) such that, for any N,N1,

N2 ∈ Z≥1 with N > N1 > N2 > 0, we have[(
N

N1

)]−1 (
N − N2

N1 − N2

)
≤ C

√
N1(N − N2)

N(N1 − N2)

(
N1

N

)N2

.

PROOF. Defining ρ := N1/N , x = N2/N , we apply Stirling’s formula to de-
rive[(

N

N1

)]−1 (
N − N2

N1 − N2

)
= (N − N2)!(N1)!

(N1 − N2)!N ! ≤ C

√
N1(N − N2)

N(N1 − N2)

[
(1 − x)1−xρρ

(ρ − x)ρ−x

]N

= C

√
N1(N − N2)

N(N1 − N2)
eNfρ(x),

where

fρ(x) := ρ logρ + (1 − x) log(1 − x) − (ρ − x) log(ρ − x), x ∈ [0, ρ).

A straightforward calculation gives fρ(0) = 0, f ′
ρ(0) = logρ, and f ′′

ρ (x) < 0, thus

fρ(x) ≤ x logρ.

The proof is complete. �

LEMMA A.2. Fix any x ∈ Z
d , let ξ(z) = |z − x|, and define the martingale

Mt = ξ(Xt ) − ξ(X0) −
ˆ t

0
Lξ(Xs,ηs)ds.

For every (x, η) ∈ 	 and t, λ > 0, we have

E(x,η)

[
exp(λMt)

] ≤ exp
(
2d

(
eλ − 1 − λ

)
t
)
.

PROOF. The proof is inspired by [21]. We fix λ ≥ 0, e(λ) := eλ − 1 − λ, and
show that the process (Et )t≥0 defined by

Et := exp
(
λMt − e(λ)〈M〉t )



HEAT KERNEL ESTIMATES FOR PARTICLE SYSTEMS 1089

is a supermartingale under P(x,η), where (〈M〉t )t≥0 denotes the predictable
quadratic variation of M . The conclusion then follows since E[Et ] ≤ E[E0] = 1
and 〈M〉t ≤ 2dt .

We write Mt− to denote the left limit of M at time t , and �Mt := Mt − Mt− to
denote the size of the jump at time t . The key ingredient of the argument is that

(A.1) sup
t

�Mt ≤ 1.

We denote by ([M]t )t≥0 the bracket process associated with M . Since M is of
bounded variation, this is simply

(A.2) [M]t := ∑
0≤s≤t

(�Mt)
2.

By an extension of the fundamental theorem of calculus that allows for jumps (see,
e.g., [50], Theorem II.7.31) we have, for every s ≤ t ,

(A.3)

Et − Es =
ˆ t

s

λEr− dMr −
ˆ t

s

e(λ)Er− d〈M〉r

+ ∑
0≤s≤t

(�Er − λEr−�Mr).

By [21], Corollary 3.2, we have

x ≤ 1 =⇒ eλx ≤ 1 + λx + e(λ)x2.

By (A.1), we deduce that

�Er = Er−
(
eλ�Mr − 1

) ≤ Er−
(
λ�Mr + e(λ)(�Mr)

2)
.

Combining this with (A.2) and (A.3), we obtain

Et − Es ≤
ˆ t

s

λEr− dMr +
ˆ t

s

e(λ)Er− d
([M] − 〈M〉)r .

By [29], Proposition 4.50, the process ([M]t −〈M〉t )t≥0 is a martingale. The proof
is therefore complete. �

LEMMA A.3. There exists C(ρ) < ∞ such that, for every k ∈ Z≥1 and β > 1,
we have

(A.4)

∑
x∈Zd

∑
e∈∂Bk

1{x /∈e}
〈
(Akh)e − Akh, ae

(
he − h

) | x〉
≤ Cβ

∑
x∈Zd

∑
e∈∂Bk

〈
ae

(
he − h

)2 | x〉
+ C

β

∑
x∈Zd

[〈
(Ak+1h)2 | x〉 − 〈

(Akh)2 | x〉]
.
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PROOF. For any e ∈ ∂Bk , we write e = (y, z) with y ∈ Bk, z /∈ Bk . We first
show that (A.4) holds when h only depends on η(y), η(z), and then consider the
general case.

Since x /∈ e, to simplify the notation we just write h = h(η(y), η(z)). Recalling
that η(y), η(z) are independent Bernoulli random variables with parameter ρ, we
have

Akh = h
(
η(y),1

)
ρ + h

(
η(y),0

)
(1 − ρ),

(Akh)e = h
(
η(z),1

)
ρ + h

(
η(z),0

)
(1 − ρ).

Since ae(h
e − h) = 1{η(y) �=η(z)}[h(η(z), η(y)) − h(η(y), η(z))], we further obtain〈

(Akh)e − Akh, ae

(
he − h

) | x〉
= ρ(1 − ρ)

[
h(0,1)ρ + h(0,0)(1 − ρ) − h(1,1)ρ − h(1,0)(1 − ρ)

]
× [

h(0,1) − h(1,0)
]

+ ρ(1 − ρ)
[
h(1,1)ρ + h(1,0)(1 − ρ) − h(0,1)ρ − h(0,0)(1 − ρ)

]
× [

h(1,0) − h(0,1)
]
.

Thus,

(A.5)

〈
(Akh)e − Akh, ae

(
he − h

) | x〉
≤ Cβ

∣∣h(0,1) − h(1,0)
∣∣2 + C

β

∣∣h(0,1) − h(1,1)
∣∣2

+ C

β

∣∣h(0,0) − h(1,0)
∣∣2

for some C = C(ρ) and any β > 0.
By a similar calculation, we have〈

ae

(
he − h

)2 | x〉 = 2ρ(1 − ρ)
∣∣h(0,1) − h(1,0)

∣∣2
and 〈

(Ak+1h)2 | x〉 − 〈
(Akh)2 | x〉

= ρ2(1 − ρ)
∣∣h(1,1) − h(1,0)

∣∣2 + ρ(1 − ρ)2∣∣h(0,1) − h(0,0)
∣∣2.

It is clear that the first term on the right-hand side of (A.5) can be controlled by
〈ae(h

e − h)2 | x〉, and the last two terms can be controlled by〈
ae

(
he − h

)2 | x〉 + 〈
(Ak+1h)2 | x〉 − 〈

(Akh)2 | x〉
after applying the triangle inequality. Thus (A.4) is proved when h only depends
on η(y), η(z).
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Now we consider the general case. Fix x ∈ Z
d , and for any e = (y, z) ∈ ∂Bk

with z /∈ Bk , we define hz := 〈h | F(Bk ∪ {z})〉x , where to avoid confusion, we use
〈·〉x to denote 〈· | x〉, then we have〈

(Akh)e − Akh, ae

(
he − h

) | x〉 = 〈
(Akhz)

e − Akhz, ae

(
he

z − hz

) | x〉
.

For each realization of {η(ỹ) : ỹ ∈ Bk \ {y}}, we view hz as a function of η(y),
η(z), and the previous discussion shows that〈

(Akhz)
e − Akhz, ae

(
he

z − hz

) | x〉
≤ Cβ

〈
ae

(
he

z − hz

)2 | x〉 + C

β

[〈
(Ak+1hz)

2 | x〉 − 〈
(Akhz)

2 | x〉]
.

For the first term on the right-hand side of the above inequality, we have〈
ae

(
he

z − hz

)2 | x〉 ≤ 〈
ae

(
he − h

)2 | x〉
,

so it remains to show

(A.6)
∑

e∈∂Bk

(〈
(Ak+1hz)

2 | x〉 − 〈
(Akhz)

2 | x〉) ≤ 〈
(Ak+1h)2 | x〉 − 〈

(Akh)2 | x〉
.

Let Bk+1 \ Bk = {zi}Ni=1 and Fl = F(Bk ∪ {zi}li=1), l = 1, . . . ,N . We have

〈
(Ak+1h)2 | x〉 − 〈

(Akh)2 | x〉 = N∑
l=1

〈〈h | Fl〉2 − 〈h | Fl−1〉2 | x〉
.

For any e = (y, z) ∈ ∂Bk , it is clear that z = zl for some l = 1, . . . ,N . We claim
that

(A.7)
〈
(Ak+1hzl

)2 | x〉 − 〈
(Akhzl

)2 | x〉 ≤ 〈〈h | Fl〉2 − 〈h | Fl−1〉2 | x〉
,

which implies (A.6) and completes the proof. To prove (A.7), we observe that
Ak+1hzl

(resp., Akhzl
) is the average of 〈h | Fl〉 (resp., 〈h | Fl−1〉) with respect to

{zi}l−1
i=1, thus 〈

(Ak+1hzl
− Akhzl

)2 | x〉 ≤ 〈(〈h | Fl〉 − 〈h | Fl−1〉)2 | x〉
,

which reduces to (A.7) by the property of conditional expectation. �

LEMMA A.4. Let E denote an expectation on a probability space, and p ≥ 1.
There exists a constant C(p) < ∞ such that, for every random variable X ≥ 0,

E
[∣∣X −E[X]∣∣2p] ≤ CE

[(
Xp −E

[
Xp])2]

.

PROOF. Let Y be an independent copy of X. We have∥∥X −E[X]∥∥2p = ∥∥E[X − Y | X]∥∥2p ≤ ‖X − Y‖2p.
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Moreover, there exists a constant C(p) such that, for every x, y ≥ 0,

|x − y|p ≤ C(p)
∣∣xp − yp

∣∣.
Indeed, it suffices to verify this for x = 1 and y ∈ [0,1] by homogeneity and sym-
metry. This is then a simple exercise. As a consequence, we deduce∥∥X −E[X]∥∥2p ≤ C(p)

∥∥∣∣Xp − Yp
∣∣1/p∥∥

2p = C(p)
∥∥Xp − Yp

∥∥1/p
2 .

We conclude by the triangle inequality. �
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