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MODELING SEASONALITY AND SERIAL DEPENDENCE OF
ELECTRICITY PRICE CURVES WITH WARPING FUNCTIONAL

AUTOREGRESSIVE DYNAMICS1
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National University of Singapore∗ and University of North Carolina†

Electricity prices are high dimensional, serially dependent and have sea-
sonal variations. We propose a Warping Functional AutoRegressive (WFAR)
model that simultaneously accounts for the cross time-dependence and sea-
sonal variations of the large dimensional data. In particular, electricity price
curves are obtained by smoothing over the 24 discrete hourly prices on each
day. In the functional domain, seasonal phase variations are separated from
level amplitude changes in a warping process with the Fisher–Rao distance
metric, and the aligned (season-adjusted) electricity price curves are modeled
in the functional autoregression framework. In a real application, the WFAR
model provides superior out-of-sample forecast accuracy in both a normal
functioning market, Nord Pool, and an extreme situation, the California mar-
ket. The forecast performance as well as the relative accuracy improvement
are stable for different markets and different time periods.

1. Introduction. Starting in the early 1980s, electricity markets have initiated
reforms including liberalisation, privatisation, and restructuring of the energy sup-
ply and distribution industry that was traditionally monopolistic and government-
controlled. As electricity is nonstorable, power system stability requires a constant
balance between production and consumption. An over- or under-contracting and
the need to rebalance are accompanied with large losses. This makes the forecast
of electricity prices, especially within the next 24 to 48 hours, relevant to industry
and academics alike.

Electricity prices are quoted at high frequency, that is, 24 hours a day, and 7
days a week, and exhibit a strong degree of serial dependence driven by, for exam-
ple, common working time, demand and supply balance, economic and industrial
developments. Moreover, electricity prices have unique seasonal features not ob-
served in many other markets. The nature of business intensity and economic rou-
tine cause diurnal patterns, for example, with peak prices at middays and valleys
in late evenings in the Nord Pool market as well as the California market, while
the shifts of waking time from weekdays to weekends further introduce the shape
variations in the electricity price curves.
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There is a rich literature on Electricity Price Forecasting (EPF) models; see,
for example, Skantze and Ilic (2012), Weron (2014). Fundamental models are
in line with the standard demand and supply equilibrium. They are capable of
incorporating linear or nonlinear supply stack and exogenous physical and eco-
nomic factors such as loads, fuel prices, wind power and temperature to de-
scribe the price dynamics; see Vehviläinen and Pyykkönen (2005), Kanamura
and Ōhashi (2007), Boogert and Dupont (2008), Kanamura and Ōhashi (2008),
Howison and Coulon (2009), Amjady and Keynia (2009), Amjady, Daraeepour
and Keynia (2010), Nowotarski and Weron (2015), Gaillard, Goude and Nedellec
(2016), Maciejowska and Nowotarski (2016), Juban et al. (2016), Maciejowska,
Nowotarski and Weron (2016), Pape, Hagemann and Weber (2016) and Bello et
al. (2016).

Autoregressive models account for the serial dependence among the historical,
present and future values of electricity prices and have been widely used with suc-
cess in electricity price forecast. Compared to the fundamental models with finite
explanatory variables, the time series models indirectly consider the impact of all
the potential driving factors, by incorporating the historical values as predictors
that are most likely influenced by the same factors in a similar way; see also the
AutoRegressive Moving Average with eXogenous variable (ARMAX) (Nogales
et al. (2002)), the AutoRegressive Integrate Moving Average (ARIMA) and the
ARIMA-E (ARIMA with load as an explanatory variable) (Contreras et al. (2003)).
The univariate models consider the 24 serially dependent hourly price processes
separately, while the multiple series exhibit cross-dependence where the hourly
price process depends on the historical values of another process. This seems to
motivate the adoption of the multivariate time series analytical tools such as the
Vector Autoregressive (VAR) models; see, for example, Lütkepohl (2005). The
VAR models however yield unsatisfactory results, with moderate and often in-
significant modeling parameters. This is to some extent caused by the overfitting
that occurs when the model has excessively many parameters. In this case, the fitted
model describes random noise instead of the underlying relationship. Multivariate
factor models provide possible efficient solutions by representing the large dimen-
sional data with a relatively small set of factors at a cost of little information loss;
see, for example, Garcıa-Martos, Rodrıguez and Sánchez (2012), Liebl (2013) and
Maciejowska and Weron (2016), and also the Vector Autoregressive-Threshold
Autoregressive Conditional Heteroskedasticity (VAR-TARCH) approach with ex-
ogenous variables (Ziel, Steinert and Husmann (2015)).

Recent development on functional time series analysis provides an alternative
way for analysing large dimensional electricity price processes by taking into ac-
count all the raw information. In the functional domain, a continuous daily price
curve can be formed by smoothing over the 24 discrete hourly prices on each day.
The serial cross-dependence among the daily price curves is modeled by the func-
tional autoregressive (FAR) model, which extends the time series analysis from a
finite dimensional space to an infinite world; see, for example, Bosq (2000). Bosq
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(1991) derives a functional Yule–Walker (YW) estimator for the serially depen-
dent functional data. Besse, Cardot and Stephenson (2000) propose a nonpara-
metric kernel estimator based on a functional form of the YW equations; see also
Antoniadis and Sapatinas (2003), Kokoszka and Zhang (2010) and Didericksen,
Kokoszka and Zhang (2012). Mourid and Bensmain (2006) propose a maximum
likelihood estimator of the FAR model using a sieve approximation. Chen and Li
(2017) employ an adaptive approach to extend the maximum likelihood estima-
tion to nonstationary situation and implement forecast experiments on California
electricity prices. The adaptive FAR delivers superior forecast accuracy compared
with several alternative models, including the univariate time series models of AR
and ARX with load forecast and seasonal dummies as exogenous variables and the
multivariate VAR model.

Despite good forecast accuracy, the (adaptive) FAR models essentially ignore
the shifts of diurnal pattern from weekdays to weekends and unrealistically assume
no seasonal variations from day to day. On the other hand, seasonality of electricity
prices has been well studied in univariate time series models. Shahidehpour, Yamin
and Li (2002) use historical data for days with characteristics, for example, the
day of the week, the day of the year, holiday type, and weather/consumption fig-
ures that are similar to the predicted day to forecast future prices; see also Nogales
et al. (2002) and Weron (2007). Hernáez et al. (2006) point out that the pattern
of prices varies across day types. Koopman, Ooms and Carnero (2007) consider
periodic seasonal regression models with fractional ARIMA and GARCH distur-
bances to address the yearly seasonal effect and the day-of-week effects for the
analysis of daily electricity spot prices. Janczura et al. (2013) adopt a deseason-
alization approach that treats the prices as a sum of a trend-seasonal component
and a stochastic component. The econometric model introduced by Ziel, Steinert
and Husmann (2015) assumes that some days have equal hourly mean components
and consider five groups of parameter restrictions to address the weekly seasonal
effects.

The seasonal variations entangle with the dynamic evolution of electricity price
curves driven by, for example, demand and supply changes. In other words, there
are eventually two dynamic movements in the series of electricity price curves.
One is the amplitude evolution process driven by economic cycles and market re-
structuring, the other is the phase swings along the time axis within a day driven by
the seasonal variations from weekdays to weekends. A separation of the amplitude
and phase variations is of great interest in order to discover a broad common diur-
nal pattern of the daily price curves without the impact of day types; in addition,
it helps to understand the seasonal impact on the price development and thus to
enhance the forecast accuracy of electricity prices.

Time warping is a useful tool to separate amplitude and phase variations in func-
tional domain, which is also known as functional alignment or curve registration.
We refer to Marron et al. (2014) for a comprehensive review. Sakoe and Chiba
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(1978) aligns two signals with different time-axis fluctuation in speech recogni-
tion, where the Euclidean distance metric is employed as a measure of the differ-
ence between two signals. Kneip and Gasser (1992) introduces a landmark method,
which warps the special features such as peak locations to their average location
and then smooth transformations from the average location to the location of the
feature; see also Gasser and Kneip (1995). Wang, Chiou and Müller (2016) points
out that sometimes the landmarks may be missing or hard to identify. Wang and
Gasser (1997) advances the accuracy of dynamic time warping by incorporating a
cost function.

A proper choice of distance metric and template function is of high importance
in time warping. Many earlier approaches to this problem use standard distance
on curve space such as L2. This can lead to unsatisfactory results, as shown in
Figure 8 of Marron et al. (2015). Ramsay and Li (1998) also points out that the
cross-sectional mean curve is not a good representative of the sample of curves
with phase variation. A much more stable approach, with solid mathematical un-
derpinning, is a metric which is warp invariant, such as the Fisher–Rao metric
as proposed in Srivastava et al. (2011); see also Radhakrishna Rao (1945), Efron
(1975), Čencov (1982), Kass and Vos (2011). As noted in Srivastava et al. (2011)
and Marron et al. (2014), the Fisher–Rao method is especially good at aligning
peaks and valleys.

We propose a Warping Functional AutoRegressive (WFAR) model for the dy-
namic electricity price curves with seasonality. In a warping procedure, the (sea-
sonal) phase variation and the amplitude change of electricity price curves are
separated using the Fisher–Rao metric. The dynamics of the aligned curves, af-
ter removing seasonal variations, are described by the functional autoregressive
model. The forecasts of price curves are obtained by warping back the desea-
sonalized curve forecasts with the respective warping functions of the same day
type. The WFAR model simultaneously accounts for cross time-dependence and
seasonal variations of the large dimensional data measured at high time resolu-
tion, namely every hour. It is general and can be used for modeling and forecast-
ing other functional time series with seasonality. In a real application, the WFAR
model provides superior out-of-sample forecast accuracy in both a normal func-
tioning market, Nord Pool, and an extreme situation, the California market. The
forecast performance as well as the relative accuracy improvement are stable for
different markets and different time periods.

This paper is structured as follows. Section 2 describes the electricity price data
in the Nord Pool market and the California market. Section 3 details the WFAR
model including the Fisher–Rao metric, warping process and FAR estimation. Sec-
tion 4 exercises the real data analysis for both in-sample and out-of-sample evalu-
ation. Section 5 concludes.

2. Data. We consider two data sets: the hourly electricity prices in the Nord
Pool market from 1 January 2013 to 31 December 2017 and the California market



1594 Y. CHEN, J. S. MARRON AND J. ZHANG

from 5 July 1999 to 31 January 2001. The Nord Pool data contain a long period and
are used to demonstrate the performance of the proposed WFAR model in a nor-
mal functioning market situation. The data are downloaded from the Nord Pool of-
ficial site, http://www.nordpoolspot.com/historical-market-data/. In our study, the
hourly price is actually system price that is an unconstrained market clearing ref-
erence price calculated without any congestion restrictions by setting capacities
to infinity. The system price is considered by most standard contracts traded in
the Nordic region as reference price (https://www.nordpoolgroup.com). The Cal-
ifornia market data illustrate the performance of the WFAR model in an extreme
situation as there was a famous California electricity crisis that led to an explosion
in electricity prices from May 2000 to June 2001 (Joskow (2001)). The California
market data can be downloaded from http://www.caiso.com. To avoid the impact
of extreme spikes and deal with 0 prices, we take the shifted base 10 logarith-
mic transformation of the raw data. Suggested by the referee, we consider use of
log10(price + a) with price + a > 1 for the log transformation of a close-to-zero
price will lead to a very large negative value and thus “spurious” negative spike;
see Feng, Hannig and Marron (2016) for further discussion. For other possible
transformations, we refer to Uniejewski, Weron and Ziel (2018) for more details.

Figure 1(a) shows the 3D surface plot of the hourly log electricity prices of the
Nord Pool market from 1 January 2013 to 31 December 2017, which is generally
flat over the 5-year period. In contrast, the 3D surface plot of the hourly log prices
of the California market from 5 July 1999 to 31 January 2001 in Figure 1(b) was
more volatile over the 2-year period. As can be seen in Figure 1(b), the log10 prices
were under 2.35 before 5 April 2000 (close to but before the California electricity
crisis), and boomed up to 3.4 (a 10 fold increase) during the California electric-
ity crisis (from May 2000 to June 2001). The daily log price curves are obtained

FIG. 1. Overview: (a) 3D surface plot of the hourly log electricity prices of the Nord Pool market
from 1 January 2013 to 31 December 2017; (b) 3D surface plot of the California market from 5 July
1999 to 31 January 2001.

http://www.nordpoolspot.com/historical-market-data/
https://www.nordpoolgroup.com
http://www.caiso.com
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FIG. 2. Average of unwarped (a) and warped (c) hourly log prices on different days of the week
in the Nord Pool market from 1 January 2013 to 31 December 2017; Average of unwarped (b) and
warped (d) hourly log prices on different days of the week in the California market from 5 July 1999
to 31 January 2001. There are differences on both curve levels and curve phase features like peaks
and valleys between weekdays and weekends.

by smoothing over 24 discrete points via the Fourier expansion with 23 basis ele-
ments. The diurnal pattern can be easily visualized in Figure 2(a) and 2(b), where
the average values of the unwarped hourly prices on different days of the week
for the Nord Pool market and the California market are computed, respectively. In
Figure 2(a), the peaks occur during 18:00–20:00 and 9:00–12:00, and the valleys
are between 4:00 and 6:00 in the Nord Pool market. The peaks of the California
market occur during 15:00–19:00 with the valleys between 4:00 and 7:00. Beyond
the diurnal pattern existing in the price curves, there is simultaneously a shift of
diurnal pattern between weekdays and weekends. Such seasonal phase variations
are illustrated by the comparison between the average values of the unwarped and
warped hourly prices on different days of the week in each market; see the Nord
Pool market in Figure 2(a) and 2(c), and the California market in Figure 2(b) and
2(d), respectively. In the cases of unwarped curves, the existence of seasonal vari-
ations obscures the shape of diurnal pattern, when taking averages over different
day types, and the peaks/valleys occur later on weekends than weekdays. After
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time warping, which adjusts the seasonality but leaves the amplitude distance of
price curves unchanged, the peaks and valleys are aligned as shown in Figure 2(c)
and Figure 2(d), respectively.

Some summary statistics of the 24 hourly log price series are shown in Figure 3,
with the Nord Pool market over the 5-year period in the left panel and the Cali-
fornia market over the 2-year period in the right panel. The minimum prices of
both markets happen around 2:00 to 6:00 and there are no negative prices in either
sample period; see Figure 3(a) and Figure 3(b). The maximum hourly prices of the
Nord Pool market has two peaks around 9:00 and 18:00 shown in Figure 3(c). In
the California market, the maximum hourly prices appeared at 18:00–21:00; see
Figure 3(d). The spike at midnight happened on 22 January 2001 with a raw price
of 2499.0 during the California electricity crisis. The hourly prices are on average
high around 16:00–21:00 and low at midnight from 1:00 to 5:00 in both markets;
see Figure 3(e) and 3(f). The standard deviations of both markets, on the other
hand, are stable.

There exists a strong degree of serial dependence in electricity prices. As an
illustration, Figure 4(a) and Figure 4(b) depict the time series plots of two hourly
price series at 17:00 and 18:00 of the Nord Pool market and the California mar-
ket, respectively, which show obvious comovement. Compared to the concurrent
dependence, the lead-lag dependence between the two series is practically more
relevant in the forecast experiment. Figures 4(c) to 4(f) show clear evidence of
positive autocorrelations and cross-correlations of the price series. Both measure-
ments are significant even for large time lags, indicating that the electricity price at
a particular hour not only depends on its own past values, but also the lagged values
of other price series at a different hour. The sample measurements further demon-
strate the existence of (weekly) seasonal variation, where a hump is repeated at
every 7 lags, implying even stronger serial dependence among the same day of the
week. The respective humps are strongest in the Nord Pool market; see Figure 4(c)
and 4(e).

3. Method. In this section, we present the Warping Functional AutoRegres-
sive (WFAR) model to simultaneously account for phase and amplitude variations
of functional time series with seasonality. The phase variation driven by season-
ality is separated in a warping process, where the Fisher–Rao Riemannian metric
is used in order to preserve amplitude distance between curves. The serial depen-
dence of the warped curves, after removing the impact of seasonality, can be safely
modeled by functional autoregressive dynamics.

Let {Xt(τ )}nt=1 denote a sequence of random curves over a time domain τ ∈
[0,1] without loss of generality. The curves are continuous functions taking values
in the Hilbert space H endowed with its Borel σ -algebra BH. In our study, Xt(τ )

is the daily price curve observed on day t , t = 1, . . . , n. We incorporate the empiri-
cal features of the electricity prices, namely seasonality w.r.t. day of the week, and
propose an approach in estimating the warping functions. We classify the warping
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FIG. 3. Descriptive statistics of the Nord Pool market from 1 January 2013 to 31 December 2017
(left) and the California market from 5 July 1999 to 31 January 2001 (right). (a) and (c): Mini-
mum and maximum of hourly log electricity prices of the Nord Pool market, respectively; (b) and
(d): Minimum and maximum of hourly log electricity prices of the California market, respectively;
(e): Mean ± standard deviation of the hourly log electricity prices of the Nord Pool market; (f): Mean
± standard deviation of the hourly log electricity prices of the California market.
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FIG. 4. Serial dependence of the Nord Pool market from 1 January 2013 to 31 December 2017
(left) and the California market from 5 July 1999 to 31 January 2001 (right). (a) and (b): Time
series plots of the hourly log prices at 17:00 and 18:00 o’clock of the Nord Pool market and the
California market, respectively. In both markets, there is a strong cross correlation between the two
adjacent hourly price series. (c) and (d): The sample auto-correlation functions of the hourly log
prices at 17:00 of the Nord Pool market and the California market, respectively. The high ACF values
indicate the dependence on the past prices at the same hour. (e) and (f): The sample cross correlation
functions between the two hourly log price series at 17:00 and 18:00 of the Nord Pool market and
the California market, respectively, which show evidence of the lead-lag serial dependence.
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functions into seven groups accordingly. We denote the (seasonal) warping func-
tions as γ (s), where day type s refers to Monday to Sunday and X

(s)
t (τ ) as the

daily price curve on day t that belongs to day type s. The WFAR model is defined
as follows:

Y
(s)
t (τ ) = X

(s)
t ◦ γ (s)(τ ),(1)

Yt (τ ) − μY (τ) = ρ
(
Yt−1(τ ) − μY (τ)

) + εt (τ ),(2)

where Y
(s)
t (τ ) denotes the warped (aligned) curve of X

(s)
t (τ ) obtained in the warp-

ing process X
(s)
t ◦ γ (s)(τ ), which registers the curve values at equal distant grids

defined by the warping function γ (s). The serial dependence of the warped curves
is modeled with the FAR model, where μY (τ) denotes the mean function of the
warped curves, ρ is a Hilbert–Schmidt operator describing the serial dependence
and εt (τ ) is a strong H-white noise with zero mean and finite second moment
E‖εt (τ )‖2 < ∞.

In the following, we will present how to separate the seasonal phase variations
in the warping process (1) and estimate the FAR operator using the maximum
likelihood method in (2) under sieve—a reduced parameter space. The fitted model
is then used in the forecast experiment.

3.1. Warping and Fisher–Rao Riemannian metric. The goal here is to separate
phase and amplitude components of functional data in a proper way so that the am-
plitude remains unchanged in the warping process. We follow the nonparametric
approach proposed by Srivastava et al. (2011). Let � be the set of warping func-
tions: � = {γ : [0,1] → [0,1]|γ (0) = 0, γ (1) = 1, γ is a diffeomorphism}. The
metric used in the warping process should satisfy the isometry property, that is,
the distance between two functions remains the same given a common warping
function: ∥∥Xi(τ) − Xj(τ)

∥∥ = ∥∥(
Xi ◦ γ (τ)

) − (
Xj ◦ γ (τ)

)∥∥,(3)

for any i, j ∈ {1, . . . , n} and γ ∈ �. The notation ‖ · ‖ denotes distance metric. The
Fisher–Rao Riemannian metric (Radhakrishna Rao (1945)) is such a metric that
preserves amplitude distance to warping; see Čencov (1982).

Let F be the set of all absolutely continuous functions on [0,1]. For any X(τ) ∈
F and v1, v2 ∈ TX(F), where TX(F) is the tangent space to F at X(τ), the Fisher–
Rao Riemannian metric is defined as

(4) dFR(v1, v2) = 1

4

∫ 1

0

·
v1(τ )

·
v2(τ )

1

Ẋ(τ )
dτ,

where Ẋ(τ ) = d
dτ

X(τ). We drop the time point t here for notational simplification.
Defined as a smoothly varying inner product on tangent spaces of a manifold, it is
complicated to compute the F–R distance.
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A square-root slope function (SRSF) representation has been proposed to sim-
plify the computation; see Kass and Vos (2011) and Čencov (1982) for strictly
positive functions and Srivastava et al. (2011) for extension to general functions.
For any function X(τ) ∈ F , its SRSF takes the form:

(5) q(τ) = Ẋ(τ )/

√∣∣Ẋ(τ )
∣∣

which is invertible. Given the initial value X(0) and the SRSF q(τ), one obtains
X(τ) = X(0) + ∫ τ

0 q(s)|q(s)|ds. For the warped function X ◦ γ , its SRSF takes
the form

(6) q̃(τ ) = (q ◦ γ )(τ )
√

γ̇ (τ ) = (q, γ ).

Srivastava et al. (2011) shows that under the SRSF representation the F–R distance
can be equivalently computed as conventional L2 metric. In other words, the F–R
distance can be computed using the SRSFs of the original functions:

dFR
(
Xi(τ),Xj (τ )

) = ∥∥qi(τ ) − qj (τ )
∥∥,(7)

where the isometry property still holds:∥∥qi(τ ) − qj (τ )
∥∥ = ∥∥(qi, γ ) − (qj , γ )

∥∥ = ∥∥q̃i(τ ) − q̃j (τ )
∥∥.(8)

Given a set of functions X1,X2, . . . ,Xn and letting q1, q2, . . . , qn denote their
SRSFs, the warping functions γ are chosen to minimize the distance of the phase-
removed warped functions. Suppose a template function μ∗

X is known, which does
not need to be warped or in other words its warping function is the identity γid(τ ) =
1. For any function Xt with t = 1, . . . , n, the warping function can be solved:

γ ∗
t = argmin

γ∈�

dFR
(
μ∗

X − Xt ◦ γ
) = argmin

γ∈�

∥∥q∗
μ − (qt , γ )

∥∥,(9)

where q∗
μ is the SRSF of the template, which is computable in (5) when μ∗

X is
provided.

In practice the template function is unknown, and the center of the functions is
used as a template. Unlike many other scalar variables, the electricity price curves
cannot necessarily be added given the existence of seasonality and hence the con-
ventional mean is inappropriate. Tang and Müller (2008) defines the center to be a
curve having the identity Karcher mean γid(τ ) = 1. The Karcher mean, also named
Fréchet mean or Riemannian geometric mean (Bhatia and Holbrook (2006)) is a
geometric mean of several matrices or functions that determines the “center” of
a mass distribution on a Riemannian manifold. To obtain the center, a (temporal)
template is computed by minimizing its overall F–R distances to all the functional
data:

μX = argmin
n∑

t=1

∥∥μ − (qt ◦ γ )
√

γ̇
∥∥.(10)
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Using μX as the (temporal) template function, one obtains the warping functions
γ1, γ2, . . . , γn. This is equivalent to

γt = argmin
γ∈�

dFR(μX − Xt ◦ γ ) = argmin
γ∈�

∥∥qμ − (qt , γ )
∥∥,(11)

where qμ is the SRSF of μX . The warping function γt actually indicates how the
Xt is warped and the linear interpolation of Xt at γt is used in implementing the
warping process Xt ◦ γ . When aligning to μX , however, the warping functions do
not necessarily have the identity Karcher mean. To obtain the center μ∗

X whose
corresponding warping functions γ ∗

1 , γ ∗
2 , . . . , γ ∗

n have the identity Karcher mean
γid, one needs to update the warping functions by modifying the shooting vector
that represents the direction of the warping. The algorithm is formulated as in
Srivastava et al. (2011):

ALGORITHM (Srivastava et al. (2011)).

1. For every γt , compute its SRSF ψt = √
γ̇t ;

2. Initialize μψ = ψj , where j is such that argmin1≤i≤n ‖ψi − 1
n

∑n
t=1 ψt‖;

3. For each ψt , compute the shooting vectors νt = θt

sin(θt )
(ψt − cos(θt )μψ), where

θt = cos−1(
∫ 1

0 μψ(τ)ψt(τ ) dτ);
4. Compute average direction ν̄ = 1

n

∑n
t=1 νt ;

5. If ‖ν̄‖ is small, stop. Else, update μψ 
→ cos(ε‖ν̄‖)μψ + sin(‖ν̄‖) ν̄
‖ν̄‖ for a

small step size ε > 0 and return to 3;

Compute the Karcher mean γ̄n = ∫ τ
0 [μψ(z)]2 dz. The interpolated values

of each γt at query points are specified by γ̄ −1
n , which return the estimates

γ ∗
1 , γ ∗

2 , . . . , γ ∗
n . We assume the seasonal phase variation constant and use the fixed

seasonal warping function γ (s) for day type s in the time warping process. In
this way, all the time-dependent variations in the price curves are pushed into the
amplitude variations. We categorize γ ∗

1 , γ ∗
2 , . . . , γ ∗

n into seven groups according
to their day types and take the Karcher mean of each group as the final warping
function, that is, the estimate of γ (s),

γ (s) =
∫ τ

0

[
μ

(s)
ψ (z)

]2
dz,(12)

where day type s is from Monday to Sunday and μ
(s)
ψ (z) is obtained via Algo-

rithm [Srivastava et al. (2011)] for the day type s. The warped (seasonal-adjusted)
curves are obtained via Y

(s)
t = X

(s)
t ◦γ (s) in equation (1), where γ (s) is the warping

function for day t , t = 1, . . . , n.
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3.2. FAR model and sieve estimator. For the warped functions Yt (τ ) without
phase variation, the Functional AutoRegressive (FAR) model can be safely em-
ployed to describe the time evolution. The FAR model is defined as in (2):

Yt (τ ) − μY (τ) = ρ
(
Yt−1(τ ) − μY (τ)

) + εt (τ ).

Represent the operator ρ using a convolution kernel operator K , where K ∈
L

2([0,1]) is an even function with ‖K‖ < 1, the FAR model has a form of

Yt (τ ) − μY (τ) =
∫ 1

0
K(τ − s)

[
Yt−1(s) − μY (s)

]
ds + εt (τ ).(13)

Expand each functional term in the FAR model with trigonometric basis functions:

φ0 = I[0,1], φ2k(τ ) = √
2 cos 2πkτ, φ2k−1(τ ) = √

2 sin 2πkτ.

We have

Yt (τ ) = at,0 +
∞∑

k=1

[
bt,kφ2k−1(τ ) + at,kφ2k(τ )

]
,

εt (τ ) = at,0(εt ) +
∞∑

k=1

[
bt,k(εt )φ2k−1(τ ) + at,k(εt )φ2k(τ )

]
,

K(τ) = c0 +
∞∑

k=1

ckφ2k(τ ),

μ(τ) −
∫ 1

0
K(τ − s)μ(s) ds = p0 +

∞∑
k=1

[
qkφ2k−1(τ ) + pkφ2k(τ )

]
,

where at,0, at,k , bt,k are the Fourier coefficients associated with the warped func-
tions, a0(ε), ak(ε), bk(ε) are those for the unknown innovations, c0, ck correspond
to the unknown kernel function, and p0, pk , qk are related to the mean function.

Plugging into the FAR model, the relationship of the warped functions can be
equivalently represented by these Fourier coefficients for k = 1,2, . . . ,∞:

at,0 = p0 + c0at−1,0 + a0(εt ),

at,k = pk + 1√
2
ckat−1,k + ak(εt ),

bt,k = qk + 1√
2
ckbt−1,k + bk(εt ).

In other words, the FAR model can be estimated based on the above equations.
The likelihood function is however not well-defined in the infinite dimensional

parameter space. Nevertheless, based on the Grenander (1981) theory of Sieves,
Geman and Hwang (1982) propose a way to approximate the likelihood on the
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parameters’ subspaces or Sieves and establish general consistency. Mourid and
Bensmain (2006) propose an approximation of the likelihood function under sieve,
a subspace of the parameters. Chen and Li (2017) extend the ML estimation for a
general case where the mean function and innovation variation can be also consis-
tently estimated. We follow the above work and introduce a sieve to construct an
approximation. Let � denote the original infinite parameter space and let {�mn},
named sieves, be a sequence of subsets of �:

�mn ⊂ �mn+1 ⊂ · · · ⊂ �, and
⋃

�mn is dense in the parameter space �.

Specifically,

�mn =
{
K ∈ L

2
∣∣∣K(τ) = c0I[0,1](τ ) +

mn∑
k=1

ck

√
2 cos 2πkτ,

τ ∈ [0,1],
mn∑
k=1

k2c2
k ≤ mn

}
,

where 1 ≤ k ≤ mn, mn → +∞ as n → +∞.
Assume the Fourier coefficients of the innovation function εt (τ ), denoted as

a0(εt ), ak(εt ) and bk(εt ), are independent and identically Gaussian distributed with
mean zero and variance σ 2

k , we define a transition density

g(Yt , Yt−1, ρ)

= 2π−(2mn+1)/2

σ0
∏mn

k=1 σ 2
k

· exp

{
− 1

2σ 2
0

(at,0 − p0 − c0at−1,0)
2

−
mn∑
k=1

1

2σ 2
k

[(
bt,k − qk − 1√

2
ckbt−1,k

)2

+
(
at,k − pk − 1√

2
ckat−1,k

)2]}
,

and thus the conditional log-likelihood L(Y1, . . . , Yn;ρ) is

L(Y1, . . . , Yn;ρ)

= log

{
n∏

t=2

g(Yt , Yt−1, ρ)

}

= −(2mn + 1)(n − 1)

2
log 2π − (n − 1) logσ0 − (n − 1)

mn∑
k=1

logσ 2
k

− 1

2σ 2
0

n∑
t=2

(at,0 − p0 − c0at−1,0)
2
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−
n∑

t=2

mn∑
k=1

1

2σ 2
k

{(
bt,k − qk − 1√

2
ckbt−1,k

)2

+
(
at,k − pk − 1√

2
ckat−1,k

)2}
.

By maximising the log-likelihood on the sieve {�mn} with a fixed mn, we obtain
the sieve estimator of the Fourier coefficients with a closed-form

c̃0 =
∑n

t=2 at,0
∑n

t=2 at−1,0 − (n − 1)
∑n

t=2 at,0at−1,0

(
∑n

t=2 at−1,0)2 − (n − 1)
∑n

t=2 a2
t−1,0

,

c̃k = √
2
(∑

t

(at,kat−1,k + bt,kbt−1,k)

−
(∑

t

at,k

∑
t

at−1,k + ∑
t

bt,k

∑
t

bt−1,k

)/
(n − 1)

)
/(∑

t

(
a2
t−1,k + b2

t−1,k

) −
{(∑

t

at−1,k

)2
+

(∑
t

bt−1,k

)2}/
(n − 1)

)
,

p̃0 = −c̃0
∑n

t=2 at−1,0 + ∑n
t=2 at,0

n − 1
,

p̃k =
∑n

t=2 at,k − 1√
2
c̃k

∑n
t=2 at−1,k

n − 1
,

q̃k =
∑n

t=2 bt,k − 1√
2
c̃k

∑n
t=2 bt−1,k

n − 1
.

3.3. Forecasting electricity price curves. The forecasts of price curves are ob-
tained by warping back the deseasonalized curve forecasts with the respective
warping functions of the same day type. For an h-day ahead forecast, we have

Ŷ
(s)
t+h(τ ) =ãt,0 +

mn∑
k=1

[
b̃t,kφ2k−1(τ ) + ãt,kφ2k(τ )

]
,(14)

X̂
(s)
t+h(τ ) =Ŷ

(s)
t+h ◦ [

γ (s)]−1
(τ ),(15)

where

ãt,0 = p̃0 + c̃0at−1,0,

ãt,k = p̃k + 1√
2
c̃kat−1,k,

b̃t,k = q̃k + 1√
2
c̃kbt−1,k,

and [γ (s)]−1 is the inverse of γ (s).
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4. Real data analysis.

4.1. In-sample real time estimates. In this section, we apply the WFAR model
to perform in-sample analysis of the electricity price curves of the Nord Pool mar-
ket and evaluate the performance of the WFAR model. Figure 5(a) shows the center
μ∗

X (black) of the Karcher mean and the warped q1, q2, . . . , qn (grey) using μ∗
X as

the template in the Nord Pool market from 1 January 2013 to 31 December 2017.
As can be visualized, the center μ∗

X is a good representative of the warped grey
curves in terms of curve features such as broad shapes, locations and magnitudes
of the peaks and valleys. Note that the underlying curves are, instead of the orig-
inal price curves, SRSFs which are derivatives, that is, rates of change. Thus a

FIG. 5. SRSFs, Karcher mean and warping functions. The Nord Pool market from 1 January 2013
to 31 December 2017: (a) The center μ∗

X (black) of the Karcher mean and the warped q1, q2, . . . , qn

(grey) using μ∗
X as the template; (b) The Karcher means of warping functions on different days of

the week. The California market from 5 July 1999 to 31 January 2001: (c) The center μ∗
X (black) of

the Karcher mean and the warped q1, q2, . . . , qn (grey) using μ∗
X as the template; (d) The Karcher

means of warping functions on different days of the week.
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high value of SRSF implies a big change in the original price while a value around
zero indicates price stability. For example, it shows that the price increase speeds
up starting around 14:00, slows down after 16:00 and reaches a relative stability
around 18:00, which is consistent with the usual human diurnal activity. The cen-
ter μ∗

X works as the template during the warping process and ensures that all the
warping functions have the identity Karcher mean, that is, the diagonal line in Fig-
ure 5(b), which do not warp the curves to either left or right at all. By minimizing
the L2 distance between the center μ∗

X and (qt ◦ γ )
√

γ̇ in (11), we obtain the op-
timal warping function γt for Xt , t = 1, . . . , n. Figure 5(b) depicts the warping
functions γ1, . . . , γn in grey to illustrate the phase variation. As can be seen, there
is noticeable daily phase variation in electricity price curves as the warping func-
tions split much from the diagonal. The Karcher mean of the warping functions
on different days of the week shows the average of the phase variation, where the
Karcher mean of the warping functions on Saturday and Sunday show relatively
large phase variation. As for the abnormal market, California, we observe similar
behavior with slightly different diurnal pattern; see Figure 5(c) and Figure 5(d).

4.2. Out-of-sample forecast. In this section, we apply the proposed WFAR
model to perform out-of-sample forecasts of the electricity price curves and elab-
orate on the usefulness of separating the seasonal phase and level amplitude vari-
ations in functional time series data. Our interest is to investigate how much the
WFAR model can contribute to accuracy improvement.

4.2.1. Forecast procedure. We use the price data of the Nord Pool market from
28 September 2013 to 31 December 2017 and the price data of the California elec-
tricity spot market from 31 March 2000 to 31 January 2001 described in Section 2
in the forecast experiment. We employ the rolling window analysis to assess the
predictive performance of the WFAR model. The rolling window size is set to be
30 days (one month). In particular, in the California market, the price data of the
first 30 days from 31 March 2000 to 29 April 2000 is used for calibration when
making the first forecast for 30 April 2000. In the Nord Pool market, the price
data of the first 30 days from 28 September 2013 to 27 October 2013 is used for
calibration when conducting the first forecast for 28 October 2013. For every day
in the out-of-sample test period a day-ahead prediction has been run, forecasting
the 24 hourly prices. The 1-day ahead forecast X̂

(s)
t+1 is obtained in the warp back

procedure via (15). We roll the window one day ahead each time to do the estima-
tion and forecast until reaching the end of the sample (31 December 2017 in the
Nord Pool market and 31 January 2001 in the California market).

4.2.2. Alternative models for comparison. Questions remain on whether ac-
counting for seasonality in the model for electricity price forecasting is able to
improve forecast accuracy. We consider AR type models with and without taking
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seasonality into account. The alternative models are further categorized to univari-
ate, multivariate and functional cases. In particular, we considered not only AR
and VAR w/o seasonality, but also the ARX with the day-ahead load forecast, the
minimum price of the previous day, the latest price information and three seasonal
dummies as exogenous variables, in addition to several other AR type models for
univariate, multivariate and functional data.

We choose the FAR model, the VAR model, the AR model, the seasonal AR
(SAR) model, the ARX model. The FAR model does not take into account the
seasonality in the price curves, which is however direct and effective comparison
to our WFAR model for modeling the high dimensional time series in the func-
tional domain. The VAR model serves as a representative of multivariate models
for modeling the cross dependence of time series. The AR model, SAR model and
ARX model are on the other hand univariate models selected for their nice fore-
cast performance in general as elaborated in Weron and Misiorek (2008). More-
over, we consider two alternative AR-type models where the latest price infor-
mation is utilized. In the AR* model, the lagged hourly price Xj,t−1 is replaced
by X24,t−1, that is, the last known price from the previous day. Similarly, in the
ARX* model, the minimum price MinPricet−1 is replaced by X24,t−1. These two
models facilitating more recent price information are expected to improve fore-
cast accuracy, especially for the early morning hours. All the alternative mod-
els adopt the rolling window technique with the same setting as in the WFAR
model.

1. Functional autoregressive (FAR) model: the functional time series model is
given by

(16) Xt(τ ) − μ(τ) = ρ
(
Xt−1(τ ) − μ(τ)

) + εt (τ ),

where Xt(τ ) denotes the log price curve at time t , μ(τ) is mean function, ρ is a
Hilbert–Schmidt operator that captures the serial dependence; εt (τ ) is a strong
H-white noise with zero mean and finite second moment.

2. Vector autoregressive model (VAR): The multivariate time series model is given
by

(17) Xt = C + AXt−1 + εt ,

where Xt ∈ R
d denotes the vector of the d = 24 hourly price series, C ∈ R

d×1

refers to the intercept and A ∈ R
d×d is the VAR matrix capturing the serial

cross-dependence among the multiple series.
3. Autoregressive (AR) model and its variations including AR* model, seasonal

AR (SAR) model and AR model with exogenous variable (ARX and ARX*):
These univariate models estimate and forecast the log prices at each hour sep-
arately and independently. Though ignoring cross-dependence in the multiple
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series, they produce good forecast accuracy due to parsimony in parameters.

AR model: Xj,t = φj,0 + φj,1Xj,t−1 + εj,t ,

AR* model: Xj,t = φj,0 + φj,24X24,t−1 + εj,t ,

SAR model: Xj,t = φj,0 + φj,1Xj,t−1 + φj,2Xj,t−2 + φj,3Xj,t−7 + εj,t ,

ARX model: Xj,t = φj,0 + φj,1Xj,t−1 + φj,2Xj,t−2 + φj,3Xj,t−7

+ θj,1MinPricet−1 + θj,2LoadForecastj,t

+ dj,1Mon + dj,2Sat + dj,3Sun + εj,t ,

ARX* model: Xj,t = φj,0 + φj,1Xj,t−1 + φj,2Xj,t−2 + φj,3Xj,t−7

+ θj,24X24,t−1 + θj,2LoadForecastj,t

+ dj,1Mon + dj,2Sat + dj,3Sun + εj,t ,

where Xj,t ∈ R denotes the single series of log price at hour j , j =
1, . . . , d , MinPricet−1 denotes the minimum price of the previous day and
LoadForecastj,t denotes the load forecast of the forecasted day. The exoge-
nous variables include MinPricet−1 and LoadForecastj,t . The dummy variables
include Mon, Sat and Sun, which denote Mondays, Saturdays and Sundays, re-
spectively.

As mentioned, FAR and WFAR, though defined in the functional domain, avoid
overfitting problem by reducing in parameter space via sieve. We list the number
of parameters in the models in Table 1. The WFAR model and FAR model have
the smallest number of parameters, compared to 48 for the AR and AR* model,
96 for the SAR model, 216 for the ARX and 215 for ARX* model (one less than
ARX as when j = 24, Xj,t−1 = X24,t−1, that is, the lagged one price is the last

TABLE 1
The parameters in WFAR model and alternative models. WFAR model and FAR model both have the

smallest number of parameters of all the considered models

# Parameters for
Model The parameters in each model # 24 hourly price forecasts

WFAR c0, ck , p0, pk , qk , 1 ≤ k ≤ 11 35
FAR c0, ck , p0, pk , qk , 1 ≤ k ≤ 11 35
VAR C24×1, A24×24 600
AR φj,0, φj,1, j = 1, . . . ,24. 48
AR* φj,0, φj,24, j = 1, . . . ,24. 48
SAR φj,0, φj,1, φj,2, φj,3, j = 1, . . . ,24. 96
ARX φj,0, φj,1, φj,2, φj,3, θj,1, θj,2, dj,1, dj,2, dj,3 j = 1, . . . ,24. 216
ARX* φj,0, φj,1, φj,2, φj,3, θj,24, θj,2, dj,1, dj,2, dj,3 j = 1, . . . ,24. 215
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known price of of the previous day) and 600 for the VAR model given 24 prices
on each day.

4.2.3. Measures of forecast comparison. We use the root mean squared error
(RMSE) as indicators of forecast performance. We calculate the RMSE of the
entire forecasts and the error reduction, defined as the relative ratio of the daily
average RMSE between each alternative model and the WFAR model as shown in
equation (19) by WFAR model and all the alternative models.

RMSE,j =
√√√√ N∑

t=1

(x̂t,j − xt,j )2/N,(18)

Err Reduction = Average RMSE − Average RMSE of WFAR

Average RMSE of WFAR
(19)

for any j ∈ {1,2, . . . ,24}, where x̂t,j is the forecast value at hour j on day t and
xt,j is the true observed value. N is the total number of days forecasted.

To test statistical significance of forecast accuracy of the WFAR model, we use
the Diebold–Mariano test, which formally investigates the relative performance of
one predictive model over the alternatives (Diebold and Mariano (1995)). The DM
test statistic is calculated as follows:

DM12 = d̄12

σ̂d̄12

,(20)

where d̄12 = 1
24N

∑N
t=1

∑24
j=1 d1,2,t,j is the sample mean of the loss differential,

which is defined as the difference of the squared forecast errors of the two consid-
ered models, model 1 (alternative) and model 2 (WFAR)

d1,2,t,j = ε̂2
1,t,j − ε̂2

2,t,j ,(21)

where ε̂k,t,j = x̂k,t,j − xk,t,j is the forecast error of hour j on day t of model k,
k = 1,2. σ̂d̄12

is an unbiased estimate of the standard deviation of d̄12.
In addition, we conduct the multivariate (also called vectorized) Diebold–

Mariano test; see Ziel and Weron (2018) and Uniejewski, Weron and Ziel (2018).
The multivariate DM test statistic is calculated as follows:

DM12 = D̄12

σ̂D̄12

,(22)

where D̄12 = 1
N

∑N
t=1 d1,2,t is the sample mean of the loss differential d1,2,t =

‖ε̂1,t‖2 − ‖ε̂2,t‖2, where ε̂k,t is the vector of the forecast errors of all the 24 hours
on day t for model k and ‖ε̂k,t‖ = ∑24

j=1 |x̂k,t,j −xk,t,j |. Again, σ̂D̄12
is an unbiased

estimate of the standard deviation of D̄12.
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TABLE 2
RMSE of the 1-day ahead forecasts for hourly electricity log prices using the WFAR model and the

alternatives for Nord Pool market. The relative error reduction of alternative models to WFAR is
from −10.7% to 266.5%

Hour WFAR FAR VAR AR AR* SAR ARX ARX*

1 0.047 0.048 0.110 0.060 0.030 0.087 0.088 0.040
2 0.059 0.061 0.139 0.070 0.038 0.087 0.088 0.045
3 0.067 0.068 0.178 0.077 0.046 0.090 0.094 0.055
4 0.073 0.073 0.206 0.083 0.054 0.098 0.106 0.070
5 0.070 0.071 0.197 0.080 0.054 0.089 0.097 0.068
6 0.064 0.066 0.202 0.074 0.057 0.080 0.080 0.067
7 0.066 0.071 0.231 0.077 0.066 0.076 0.069 0.060
8 0.071 0.081 0.336 0.086 0.079 0.082 0.069 0.060
9 0.075 0.083 0.378 0.087 0.083 0.086 0.074 0.065

10 0.070 0.072 0.319 0.077 0.072 0.077 0.067 0.060
11 0.065 0.063 0.254 0.066 0.062 0.067 0.059 0.052
12 0.061 0.059 0.226 0.060 0.057 0.062 0.053 0.048
13 0.060 0.057 0.205 0.058 0.055 0.059 0.052 0.047
14 0.060 0.058 0.211 0.059 0.057 0.060 0.052 0.047
15 0.059 0.059 0.224 0.061 0.059 0.061 0.055 0.050
16 0.061 0.060 0.239 0.062 0.060 0.065 0.062 0.058
17 0.064 0.064 0.265 0.063 0.064 0.068 0.064 0.062
18 0.067 0.068 0.303 0.067 0.068 0.074 0.069 0.067
19 0.060 0.060 0.275 0.059 0.060 0.066 0.061 0.060
20 0.047 0.047 0.192 0.043 0.046 0.047 0.042 0.041
21 0.040 0.041 0.143 0.036 0.040 0.039 0.033 0.034
22 0.039 0.041 0.131 0.033 0.038 0.036 0.032 0.032
23 0.039 0.042 0.128 0.033 0.038 0.036 0.032 0.033
24 0.052 0.052 0.176 0.052 0.052 0.063 0.065 0.063
Average 0.060 0.061 0.219 0.063 0.056 0.069 0.065 0.053

Err Reduction – 1.9% 266.5% 6.0% −7.1% 15.2% 8.7% −10.7%

4.2.4. Forecast results. Table 2 presents the hourly forecast RMSE of the day-
ahead forecasts of all the considered models for the Nord Pool market on the log
scale. Each row presents the RMSE of price forecasts at the particular hour using
the WFAR model and the alternative models, where the best forecasts are marked
in bold-face. As can be seen, the WFAR model is superior in the out-of-sample
forecast experiment with small average RMSE and good accuracy for 9 of the 24
hours (underlined), without considering AR* and ARX* that depend on the last
known price. Specifically, WFAR outperforms the alternative models (except for
AR* and ARX*) from 1:00 to 7:00, which is the period when the valley of the
daily price curve often occurs; see Figure 2(a) and Figure 3(e). This implies that
the separation of the seasonal phase variation, often large at features like valleys,
from amplitude level variation helps to improve the forecast accuracy. The bottom
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row in Table 2 shows the relative error reduction. The WFAR model has on average
smaller RMSE, 0.060, than most of the considered models except for AR* and
ARX* with error reduction from 1.9% (FAR) up to 266.5% (VAR) on the log
scale in the normal functioning Nord Pool market, with 6.0% daily average error
reduced compared to the AR model, 15.2% to the SAR model and 8.7% to the
ARX model. The AR* and ARX* models as expected perform nicely for the early
morning hours, while for the late hours the relative superior performance against
WFAR disappears.

Table 3 reports the RMSE of the day-ahead forecasts for hourly electricity prices
for the California power market on the log scale. As can be seen, the WFAR model
is the most successful in the out-of-sample forecast of the California market on the
log scale with the smallest average RMSE and the best accuracy for 15 of the

TABLE 3
RMSE of the 1-day ahead forecasts for hourly electricity log prices using the WFAR model and the
alternatives for California market. The relative error reduction of alternative models to WFAR is

from 0.7% to 362.6%

Hour WFAR FAR VAR AR AR* SAR ARX ARX*

1 0.088 0.090 0.675 0.091 0.088 0.115 0.141 0.130
2 0.093 0.095 0.715 0.096 0.097 0.120 0.144 0.137
3 0.095 0.097 0.805 0.099 0.103 0.120 0.134 0.138
4 0.091 0.091 0.768 0.090 0.099 0.104 0.117 0.121
5 0.097 0.100 0.714 0.105 0.105 0.130 0.141 0.144
6 0.106 0.110 0.616 0.116 0.116 0.133 0.130 0.139
7 0.121 0.129 0.615 0.130 0.139 0.137 0.140 0.159
8 0.123 0.130 0.542 0.134 0.139 0.139 0.144 0.158
9 0.123 0.126 0.459 0.129 0.134 0.140 0.152 0.161

10 0.126 0.128 0.466 0.135 0.137 0.144 0.148 0.147
11 0.140 0.140 0.521 0.152 0.157 0.163 0.155 0.161
12 0.155 0.152 0.537 0.162 0.176 0.174 0.161 0.175
13 0.160 0.155 0.572 0.163 0.189 0.174 0.158 0.179
14 0.168 0.165 0.616 0.169 0.201 0.178 0.163 0.191
15 0.167 0.166 0.710 0.169 0.204 0.178 0.160 0.188
16 0.167 0.166 0.830 0.168 0.207 0.175 0.148 0.164
17 0.162 0.164 0.613 0.166 0.204 0.176 0.149 0.159
18 0.171 0.172 0.559 0.176 0.209 0.203 0.190 0.192
19 0.164 0.166 0.526 0.177 0.198 0.207 0.196 0.197
20 0.165 0.165 0.535 0.174 0.193 0.200 0.197 0.204
21 0.157 0.158 0.528 0.167 0.178 0.194 0.194 0.196
22 0.126 0.125 0.503 0.141 0.143 0.167 0.164 0.172
23 0.101 0.100 0.565 0.098 0.097 0.115 0.120 0.130
24 0.099 0.099 0.657 0.102 0.102 0.116 0.129 0.125
Average 0.132 0.133 0.610 0.138 0.151 0.154 0.153 0.161

Err Reduction – 0.7% 362.6% 4.5% 14.1% 16.9% 16.0% 22.1%
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24 hours of all the alternative models without exception. Once more, WFAR out-
performs the alternative models from 1:00 to 11:00 (except for 1:00 and 4:00),
the period when the valley of the daily price curve often occurs; see Figure 2(b)
and Figure 3(f), indicating the usefulness of the separation of seasonality and am-
plitude variation in the price curves. The overall superior performance leads to the
smallest average RMSE of WFAR (0.132), which is smaller than all the alternative
FAR model without considering seasonality (0.133), VAR model (0.610), and uni-
variate AR models w/o seasonality (AR: 0.138, AR*: 0.151, SAR: 0.154, ARX:
0.153 and ARX*: 0.161). At the hourly resolution, the RMSE of WFAR model
has its minimum at 1:00 (low demand time) and its maximum at 18:00 (high de-
mand time), respectively. In the best case, that is, hourly price forecast at 1:00, the
minimum RMSE of WFAR (0.088) is 664.1% less than that of the VAR model
(0.675), comparable to that of AR* model and 47.5% less than that of the ARX*
model. In the case of price forecast at 18:00, the WFAR model still beats alterna-
tive models with its maximum RMSE (0.171) 226.8% less than that of the VAR
model (0.559), and also less than those of the FAR, AR, AR*, SAR, ARX and
ARX* models (0.172, 0.559, 0.176, 0.209, 0.203, 0.190 and 0.192, respectively).
The WFAR model on average provides error reduction from 0.7% (FAR) up to
362.6% (VAR) on the log scale in the California market, with 4.5% daily average
error reduced compared to the AR model, 14.1% to the AR* model, 16.9% to the
SAR model, 16.0% to the ARX model and 22.1% to the ARX* model.

The AR* and ARX* models deliver less accurate forecasts for the California
market although both are superiorly performing for Nord Pool. This is possibly be-
cause in the normal functioning market situation where the price level is relatively
stable, the last known price does contain very useful information for forecasting.
On the other hand, the California market is volatile with many price instabilities
from day to day and thus the last price becomes less relevant. Instead seasonality
seems to dominate the evolution of prices in California as we observed WFAR
produces in general accurate forecasts at peaks hours and valleys.

We perform both the Diebold–Mariano test and the multivariate Diebold–
Mariano test for the equality of the forecast accuracy of each alternative model
with the WFAR model as benchmark. Table 4 reports the test statistics and the
corresponding p-values of the Diebold–Mariano test. Except AR* and ARX* for
the Nord Pool market and FAR for the California market, the WFAR model sig-
nificantly outperforms the alternative models (p < 0.05). Table 5 displays the test
statistics and the corresponding p-values of the multivariate Diebold–Mariano test.
As can be seen, except AR*, ARX* and ARX model, the WFAR model signifi-
cantly outperforms the alternatives (p < 0.05) in both the Nord Pool market and
the California market. The WFAR model is robust to the selection of window size
by delivering similar accuracy for various lengths of rolling window.

We also considered a parallel analysis based on inverting the log transformed
forecasts, and the relative accuracy was quite similar.
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TABLE 4
Diebold–Mariano test statistics and p-values for Nord Pool market and California market

Nord Pool market California market

Model DM statistics p-value DM statistics p-value

FAR 11.950 0.000 1.877 0.061
VAR 16.113 0.000 16.093 0.000
AR 8.883 0.000 5.011 0.000
AR* −5.669 0.000 11.704 0.000
SAR 7.533 0.000 9.687 0.000
ARX 5.206 0.000 6.602 0.000
ARX* −7.708 0.000 6.660 0.000

5. Conclusion. We propose the WFAR model to forecast electricity price
curves with seasonality. Our work contributes to the energy literature by proposing
a novel electricity price predictive model that simultaneously accounts for cross
time-dependence and seasonal variations of the large dimensional data. Our work
also contributes to the functional time series literature by separating phase vari-
ation (seasonality) and amplitude variation (time evolution). We investigate the
forecast performance of the proposed WFAR model in the Nord Pool market and
the California electricity market. The forecasting results allow us to conclude that
WFAR model provides stable and generally good accuracy in EPF. In addition,
the WFAR model is general and can be used for modeling and forecasting other
functional time series with seasonality. It is worth mentioning the WFAR model is
unable to deal with trends over time. For the trended data, WFAR is ready to be
used after removing the trend. Furthermore, including significant exogenous vari-
able such as load could probably enhance the forecast performance of WFAR. It

TABLE 5
Multivariate Diebold–Mariano test statistics and p-values for Nord Pool market and California

market

Nord Pool market California market

Model DM statistics p-value DM statistics p-value

FAR 6.487 0.000 2.467 0.014
VAR 5.943 0.000 3.413 0.000
AR 3.110 0.002 3.034 0.003
AR* −1.744 0.081 2.623 0.009
SAR 2.321 0.020 2.496 0.013
ARX −3.131 0.002 0.492 0.623
ARX* −5.832 0.000 0.939 0.348
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is also possible to try the Warping Functional AutoRegressive model with eXoge-
nous variable (WFARX) as future work to extend the WFAR model.

Acknowledgments. We thank the Editor, the Associate Editor and two ref-
erees, whose comments have greatly improved the scope and presentation of the
paper.
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