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The central aim in this paper is to address variable selection questions
in nonlinear and nonparametric regression. Motivated by statistical genetics,
where nonlinear interactions are of particular interest, we introduce a novel
and interpretable way to summarize the relative importance of predictor vari-
ables. Methodologically, we develop the “RelATive cEntrality” (RATE) mea-
sure to prioritize candidate genetic variants that are not just marginally im-
portant, but whose associations also stem from significant covarying relation-
ships with other variants in the data. We illustrate RATE through Bayesian
Gaussian process regression, but the methodological innovations apply to
other “black box” methods. It is known that nonlinear models often exhibit
greater predictive accuracy than linear models, particularly for phenotypes
generated by complex genetic architectures. With detailed simulations and
two real data association mapping studies, we show that applying RATE en-
ables an explanation for this improved performance.

1. Introduction. Classical statistical models and modern machine learning
methodology have recently been dichotomized into two separate groups. The for-
mer are often characterized as interpretable modeling approaches and include con-
ventional methods such as linear and logistic regressions. The latter, however, have
sparked a greater debate as they have been frequently criticized as “black box”
techniques with opaque implementations and uncertain internal workings. When-
ever support vector machines or neural networks give meaningful performance
gains over more conventional regression models, a challenge of interpretability
arises. In these situations it is often questioned what characteristics of the input
data are being most used by the black box. One of the key features leading to
these performance gains is the automatic inclusion of higher order interactions
between variables [Cotter, Keshet and Srebro (2011)]. Popular machine learning
kernel functions and fully connected neural network layers implicitly enumerate
all possible nonlinear effects [Wahba (1990)]. While this fact is in itself a partial
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explanation for improvement gains, we often wish to know precisely which vari-
ables are the most important—with the ultimate goals of furthering scientific un-
derstanding and performing model/feature selection [Barbieri and Berger (2004)].

As our main contribution we propose a “RelATive cEntrality” (RATE) mea-
sure for investigating variable importance in Bayesian nonlinear models, partic-
ularly those considered to be black box. Here, RATE identifies variables which
are not just marginally important, but also those whose data associations stem
from a significant covarying relationship with other variables. Our method is en-
tirely general with respect to the modeling approach taken; the only requirement
being that a method can produce uncertainty intervals for predictions. As an il-
lustration we focus on Gaussian process modeling with Markov chain Monte
Carlo (MCMC) inference. In addition we note that this variable selection approach
immediately applies to other methodologies such as Bayesian neural networks
[Richard and Lippmann (1991)], Bayesian additive regression trees [Chipman,
George and McCulloch (2010)] and approximate inference methods like varia-
tional Bayes [Rasmussen and Williams (2006)].

While variable selection is the main utility for our method, we are motivated
by the approach of continuous model expansion [Gelman, Hwang and Vehtari
(2014)]. The goal is to build the best fitting or optimally predictive model while
searching over many variables and the interactions between them but without ex-
plicitly worrying about sparsity. Indeed, this has become a recent focus of statisti-
cal methods research, especially in terms of understanding the relative importance
of subsets of candidate predictors with respect to specific predictive goals [Lin,
Chan and West (2016)]. While we believe strongly in regularization as a key in-
gredient in developing good statistical models, our choice of Gaussian process pri-
ors achieves robust inference without explicitly imposing a sparsity penalty. The
reason to avoid sparsity constraints like the lasso is not just philosophical—as typi-
cally applied L1-regularization suffers from a lack of stability [Lim and Yu (2016),
Piironen and Vehtari (2017)], and the use of Laplacian priors too has been criti-
cized [Carvalho, Polson and Scott (2010)]. Simultaneously, we are also motivated
by the rise of deep neural networks, which are typically wildly overparameterized,
and yet, when combined with large datasets, can give quite impressive improve-
ments to model performance.

We assess our proposed approach in the context of association mapping (i.e., in-
ference of significant variants or loci) in statistical genetics as a way to high-
light data science applications that are driven by many covarying and interact-
ing predictors. For example, understanding how statistical epistasis between genes
(i.e., the polynomial terms of the variables in the genotype matrix) influence
the architecture of traits and variation in phenotypes is of great interest in ge-
netics applications [Crawford and Zhou (2018), Crawford et al. (2017), Mackay
(2014), Phillips (2008), Prabhu and Pe’er (2012), Wan et al. (2010), Zhang and
Liu (2007), Zhang et al. (2010)]. However, despite studies that have detected “per-
vasive epistasis” in many model organisms [Horn et al. (2011)] and improved ge-
nomic selection (i.e., phenotypic prediction) using nonlinear regression models
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[Howard, Carriquiry and Beavis (2014)], substantial controversies remain [Hill,
Goddard and Visscher (2008)]. For example, in some settings, association map-
ping studies have identified many candidates of statistical epistasis or interactions
that contribute to quantitative traits [Hemani et al. (2014)], but some of these re-
sults can be explained by additive effects of other unsequenced variants [Wood
et al. (2014)]. To date, we have a limited understanding of this important biolog-
ical question because it is often difficult to pinpoint how nonlinearities influence
complex prioritization of associated genetic markers. Indeed, it has been suggested
that if one aims to infer biological interactions, statistically modeled interactions
and main effect terms should not be interpreted separately [Wang, Elston and Zhu
(2011a, 2011b)]. Our contribution in this paper is therefore of direct scientific rele-
vance in that RATE will enable scientists to consider embracing machine learning-
type approaches by allowing them to open up the black box.

The remainder of this paper is organized as follows. In Section 2 we briefly
detail the Gaussian process regression model and motivate the need for an effect
size (regression coefficient) analog that serves to characterize the importance of the
original input variables in nonparametric methods. In Section 3 we specify how to
conduct association mapping using distributional centrality measures. Here, we
also define the concept of relative centrality (RATE) which provides evidence for
the relative importance of each variable. In Section 4 we show the utility of our
methodology on real and simulated data. Finally, we close with a discussion in
Section 5.

2. Motivating Bayesian nonparametric framework. In this paper we pro-
pose a relative centrality measure as an interpretable way to summarize the impor-
tance of input variables for nonparametric methodologies. We will do this within
the context of association mapping in statistical genetics. This effort will require
the utilization of three components: (i) a motivating probabilistic model, (ii) a no-
tion of an effect size (or regression coefficient) for each genetic variant and
(iii) a statistical metric that determines marker significance. Each of these compo-
nents are naturally given in linear regression. Our goal is to provide a computation-
ally tractable way to derive the same necessary components for nonlinear methods.

In this section we focus on formulating components (i) and (ii), while compo-
nent (iii) is developed later in Section 3. First, we begin by detailing Bayesian
Gaussian process regression as our motivating probabilistic model. Next, we gen-
eralize a previous result which defines an effect size (regression coefficient) analog
for the input data in nonparametric methods [Crawford et al. (2018)]. Extensions
to other methodologies (e.g., Bayesian kernel ridge regression, neural networks)
can be found in Supplementary Material [Crawford et al. (2019)]. For simplic-
ity we make the assumption that the phenotypic response is continuous; although
the frameworks discussed can be altered for dichotomous traits (e.g., case-control
studies). This expansion would include steps similar to those outlined in previ-
ous works [Zhang, Dai and Jordan (2011)]. We leave these specific details to the
reader.
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2.1. Gaussian process regression. We now state a Bayesian modeling frame-
work, which we use to construct a generalized projection operator between an
infinite dimensional function space, called a reproducing kernel Hilbert space
(RKHS), and the original genotype space. This projection will allow us to define an
effect size analog for Bayesian nonparametric analyses. We begin by considering
standard linear regression

(1) y=XB +e, e ~N(0, 1),

where y is an n-dimensional vector of phenotypes from »n individuals, X is an
n X p matrix of genotypes for p genetic variants encoded as {0, 1, 2} copies of a
reference allele at each marker, g is the corresponding additive effect size, & is as-
sumed to follow a multivariate normal distribution with mean zero and variance 72
and I is an identity matrix. For convenience we will also assume that the genotype
vector has been centered and standardized to have mean 0 and standard deviation
1.

In genetic applications the assumption that phenotypic variation can be fully ex-
plained by additive effects is often too restrictive [Mackay (2014), Phillips (2008)].
One natural way to overcome this problem is to conduct model inference within
a high dimensional function space. Indeed, an RKHS may be defined based on a
nonlinear transformation of the data using a positive definite covariance function
(or kernel) that is assumed to have a finite integral operator with eigenfunctions
{¢¢}72 | and eigenvalues {8¢};° ;. Namely,

/k(x, x')d(x, x') < oo, Sepe(X) = /Xk(x, X ) e (x') dx'.

For these classes of covariance functions, the following infinite expansion holds
k(x,x") =302 8e¢pe(X) ¢ (x) [Mercer (1909)], and an RKHS function space may
be formally defined via the closure of a linear combination of basis functions [Pillai
et al. (2007)]. As a direct result we rewrite equation (1) as the following RKHS
regression model [Zhang, Dai and Jordan (2011)]:

2) y=¥Tc+e,  e~N(0,7%),

where ¥ (x) = {/3¢¢¢(x)}2, is a vector space spanned by the bases, ¥ =
[¥(x1),...,¥(x,)]T is a corresponding matrix of concatenated basis functions
and ¢ = {c¢}j2, are the corresponding basis coefficients. The above specification
in equation (2) closely resembles the linear model in equation (1)—except now
the bases are the feature vectors ¥ (x) (rather than the unit basis), and the trans-
formed space can be infinite dimensional. Theoretically, this is an important prop-
erty because the inclusion of nonlinear interactions and covarying relationships are
implicitly captured in the RKHS.

Unfortunately, properly representing any given basis function in an empirically
amenable form is a difficult task [Scholkopf, Herbrich and Smola (2001)]. To cir-
cumvent this analytical issue, one may alternatively conduct inference in an RKHS
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by specifying a Gaussian process (GP) as the prior distribution over the function
space directly

fx) ~GP(m(x), k(x, X)),

where f(e) is completely specified by its mean function and positive definite
covariance (kernel) function, m(e) and k(e, e) respectively. In practice, if we
condition on a finite set of locations (i.e., the set of observed samples n), the
Gaussian process prior then becomes a multivariate normal [Kolmogorov and
Rozanov (1960)]. By specifying a joint version of the nonparametric regression
model above, we consider taking a “weight-space” view on Gaussian processes
[Rasmussen and Williams (2006)],

(3) y=f+e, f~N(@0,K), &~N(0,7°0),

where, in addition to previous notation, f = [ f(x1), ..., f(X,)]T is assumed to
come from a multivariate normal with mean 0 and covariance matrix K = WTW
with each element k;; = k(x;,x;). Altogether, we refer to the family of models
taking on this form as GP regression. The formulation of the weight space GP is
similar to the linear mixed model (LMM) [Lippert et al. (2011), Zhou and Stephens
(2012)] that is frequently used in genetics but with one key difference; the GP
model utilizes a nonlinear covariance matrix K instead of the usual gram matrix
XXT/p. From this perspective an RKHS model can be viewed as an extension of
the LMM for modeling nonlinear effects such as statistical interactions. Indeed, the
GP model still presents the same modeling benefits as an LMM, such as controlling
for structured random effects. For example, notice that the Gaussian covariance
function can be written as a product of three terms [Cotter, Keshet and Srebro
(2011)]

1 1 1
exp| 53 1% = x| =exp{ =z (1x17 + [x 1) [ expf ~ 5w .

The last term includes (nonlinear transformed) elements of the LMM relatedness
matrix that has been well known to effectively control for population stratification
in genetic studies [Kang et al. (2010), Wu et al. (2011), Yang et al. (2014), Zhou
and Stephens (2014)]. Because of these properties, RKHS-based models have be-
come powerful tools for predictive problems in many research areas and have been
widely used for genomic selection in animal breeding programs [de los Campos
et al. (2009, 2010)]. We replicate some of these sentiments via a small simulation
study (see the Supplementary Material and Table S1).

Lastly, we want to point out that (although not explicitly considered here) the
formulation of the GP regression model in equation (3) can also be easily ex-
tended to accommodate other fixed effects (e.g., age, sex or genotype principal
components) [de los Campos et al. (2009), Shi et al. (2012)] as well as be adapted
to account for interactions between variants and nongenetic risk factors [Cuevas
et al. (2017), Weissbrod, Geiger and Rosset (2016)].
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Note on bandwidth parameters. In many cases the covariance function is in-
dexed by a bandwidth parameter 6 (also known as a smoothing parameter or
lengthscale), which we expansively write as kg (e, @). For example, the previously
mentioned Gaussian kernel can be specified as kg (x, X') = exp{—||x — x'||2/26?}.
Within a fully Bayesian model this bandwidth parameter can be assigned a prior
distribution, and its posterior distribution may be inferred [Zhang, Dai and Jor-
dan (2011)]. However, for simplicity we follow recent studies using the “median
heuristic” and work with a fixed bandwidth that we choose as 6 = median;;||x; —
X [l2 [Chaudhuri et al. (2017)].

Posterior inference and sampling. 'We now briefly detail a simple MCMC sam-
pling procedure for estimating the parameters in GP regression. Assume now that
we have a completely specified hierarchical model

y=f+e, f~N(@0K), e~N(0,7’), >~ Scale-Inv-x*(a,b),

where, in addition to previous notation, we further assume that the residual vari-
ance parameter 7> follows a scaled-inverse chi-square distribution with degrees of
freedom a and scale b as hyper parameters. Given the conjugacy of this model
specification, we may use a Gibbs sampler to estimate the joint posterior distribu-
tion P(f, 12|y). This consists of iterating between the following two conditional
densities:

1. flz2,y ~ Nm*, V*) where m* = KK + )"y and V* = K —
KK+ 2D 'K;

2. 72|f,y ~ Scale-Inv-x2(a*, b*) where a* = a + n and b* = a* [ab +
y-bHT(y—-Dl
Iterating the above procedure 7 times results in a set of sampled draws from the
target joint posterior distribution. Taking the mean over these draws yields pos-
terior estimates for the model parameters (see the Supplementary Material for a
detailed algorithmic overview).

2.2. Effect size analog for nonparametric methods. A noteworthy downside
to the GP regression model is the inability to find an effect size for causal variants.
From a prediction and genomic selection perspective this loss is fine, but from
the perspective of finding genetic markers that give rise to this improved predic-
tive performance (i.e., association mapping) the interpretability of the model is
lost. We now define the effect size analog for general nonparametric methods as a
solution to this limitation [Crawford et al. (2018)]. We first briefly outline the con-
ventional wisdom for coefficients in linear regression. In linear models a natural
interpretation of a regression coefficient is the projection of the genotypes X onto
the phenotypic vector y,

(4) B =Proj(X, y),
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with the choice of loss function, noise model as well as prior distributions or regu-
larization penalties specifying the exact form of the projection. One standard pro-
jection operation is Proj(X, y) = X'y, where X' is the Moore—Penrose generalized
inverse. For Bayesian procedures priors over the parameters 8 induce a distribu-
tion on the resulting projection procedure Proj(X, y) [Carvalho, Polson and Scott
(2010), Liang et al. (2008)].

The general definition for the effect size analog is based on the similar idea
of projecting a nonlinear function onto the design matrix. Specifically, consider a
nonlinear function evaluated on n-observed samples such that E(y|X) = f. We for-
mally define the effect size analog as the result of projecting the genotypic matrix
X onto the nonlinearly estimated function vector f,

(5) B = Proj(X, f).

This projection operation and its practical calculation effectively requires two sets
of coefficients: (i) the theoretical coefficients ¢ on the basis functions; and (ii) the
coefficients that determine the effect size analog B. Following the formulation in
equation (5), we use equations (2) and (3) to specify the joint projection of design
matrix X onto the vector f = WTc as the linear map,

(6) B=X"wTe=Xf.

The argument for why the p-dimensional vector ﬁ is an effect size analog for
nonparametric regression models is that, on the n-observations, f ~ Xg. In the
Supplementary Material we rederive previous results to formally show that the map
from f to ﬁ is injective modulo the null space of the genotypic matrix [Crawford
et al. (2018)]. This is similar to the classical linear regression case where two
different coefficient vectors will result in the same estimated value if the difference
between the vectors is in the null space of X. Additionally, the only requirement for
equation (6) is a well-defined feature map 1 (e). This includes taking the Cholesky
decomposition of the covariance matrix as a feature map, or even employing low-
rank approximations such as the Nystrom approximation [Drineas and Mahoney
(2005)], random Fourier features [Rahimi and Recht (2007)] or explicit Mercer
expansions [Fasshauer and McCourt (2016)]. We should be clear that a variety of
projection procedures (corresponding to various priors and loss functions) can be
specified, and a systematic study elucidating which projections are efficient and
robust is of interest for future research.

A key motivation for the effect size analog is to conduct nonlinear association
mapping in the original genotype space while also accounting for population struc-
ture and significant covarying relationships between variants. When a phenotype
or trait is solely driven by additive effects, the projections (4) and (5) with the same
genotypes X are equivalent, and the resulting effect size analog from equation (6)
is the same as the OLS estimate derived by a standard linear model. Alternatively,
it has been shown (via Taylor series expansions) that certain covariance functions
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enumerate nonlinear effects among observed markers [Jiang and Reif (2015)]. The
Gaussian kernel, in particular, includes all higher-order interaction components,
where the contribution of the terms decays polynomially with the order of nonlin-
earity [Cotter, Keshet and Srebro (2011)]. Therefore, when a given phenotype is
driven by an arbitrary combination of additivity and interactions, a properly cho-
sen nonlinear map ¥ (e) will lead to an inversion in equation (6) that represents
each B ; as a weighted sum of higher order interactions between marker j and all
other markers (see text in the Supplementary Material).

3. Genetic association mapping using centrality measures. The effect size
analog serves as a nonlinear summary coefficient for each genetic variant in the
original modeling space. However, since the explicit projection in equation (6)
does not always guarantee a preserved mapping of sparse solutions [Crawford et al.
(2018)], we cannot directly use standard Bayesian quantities such as posterior in-
clusion probabilities (PIPs) or Bayes factors (BFs) to rank markers in order of
their significance. Indeed, there are many approaches to compute marginal associ-
ation statistics based on corresponding effect size estimates [Barbieri and Berger
(2004), Stephens and Balding (2009)], but many of these techniques rely on arbi-
trary thresholding. More importantly, they also fail to take advantage of significant
underlying dependencies and covarying relationships between variants or sets of
genomic loci.

We now develop our main methodological innovation. We introduce an analogy
to traditional Bayesian hypothesis testing for nonparametric regression methods, a
post-hoc approach for association mapping via a series of “distributional centrality
measures” using Kullback—Leibler divergence (KLD) [Goutis and Robert (1998),
Smith, Naik and Tsai (2006), Tan et al. (2017), Woo et al. (2015), Piironen and Ve-
htari (2016, 2017), Alaa and van der Schaar (2017)]. Our strategy will be to use the
posterior samples of the effect size analogs to infer the relative covariance between
genetic variants. This underlying correlation structure will then be systematically
searched over to posit significant individual associations. We refer to this approach
as computing the RATE of genetic markers.

3.1. Kullback—Leibler divergence. Typical questions in network studies sim-
plify to the general issue of determining the “centrality” of nodes—the potential
importance of individual components in relation to the other nodes in the entire
network. When network relationships are modeled via multivariate distributions,
this can be explored in various statistical ways. Assume here that we have a collec-
tion of deterministically computed samples from the implied posterior distribution
of the effect size analog B (via the projection in equation (6)). One interpretable
way to summarize (in a single measure) the influence/importance of the jth variant
in X, on the rest of the variants in X_;, is via the computation of the KLD mea-
suring the difference between 73(73_ j | ,E ;) and P(ﬁ_ j). Specifically, this is defined
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by solving the following integral:

(7)  KLD(8)) :/N log<P~Lj~)

i, \PB_IB)
where we use the shorthand KLD(B;) = KLD(P(B_)IP(B_;|B,)). Here, the
KLD is a nonnegative quantity and in this context takes the value of zero if and
only if P(B_;|B8;) = P(B_;). Equivalently, this means that the KLD is zero if and
only if the posterior distribution of ﬁ_ ; 1s independent of the effect B ;- Therefore,
the case for which KLD(8 ) = 0 may simply be interpreted as meaning that variant
j is not a key explanatory variable relative to others. Otherwise, for any given
conditioning value B ; the divergence in equation (7) represents the information
(i.e., entropy) change induced on the distribution of B_ ;—naturally varying as the
conditioning value ) j varies.

Closed form derivation under approximate normal posteriors. For our case
study and immediate applications we are interested in straightforward computation
of KLD measures in order to address problems with increasingly large numbers of
genotypes and possible interactions. For these purposes and for the rest of the pa-
per, we therefore restrict attention to contexts in which we can assume an adequate
normal approximation to the full joint posterior distribution of the p-dimensional
effect size analog 8. Ongoing and future work is concerned with computational
and numerical aspects of the more general context, while the methodological and
applied advances enabled by our approach are well-highlighted under the normal
posterior assumption. N

Thus, we take the posterior for 8 as (approximately) multivariate normal with
an empirical mean vector g and positive semidefinite covariance/precision matri-
ces ¥ = A~! estimated via simulation methods. Consider the association map-
ping case where we want to investigate the centrality or marginal importance of
marker j. We may partition conformably as follows:

BZ(EEj,) ﬂz(:—j)’

Yy = Uj GIJ 5 A= )\‘j XI] 5
O’_j Z_j )‘—j A_j

where EJ-, wj, oj and A; are scalars; B_j, p_j, 0—jand A_j are (p — 1)-
dimensional vectors; and X_; and A_; are (p — 1) x (p — 1) positive defi-
nite, symmetric matrices. Under this partitioning we know that the marginally
B_j~ N(n_ j» X—j). Furthermore, we also know that, when conditioned on the
Jjth variant, P(E, j |/§ j) 1s a multivariate distribution with expectation and covari-
ance

EG_jBp=n_;+0;Bj—np.  VB_Bp=A"



VARIABLE PRIORITIZATION IN BLACK BOX METHODS 967

where 6 ; = —A:}l_ j is a (p — 1)-dimensional vector. Inserting these probabil-
ity density forms into equation (7) with some algebraic rearrangement yields the
following:

~ 1
KLD(B)) = 5[~ log|Z—jA—j| + E(el ;A je—;) — 2E(e] ))A—;0 e,

-1 2
(8) —E(eT_jZ_je,j)+ej0}A,j0j],

where log| e | represents the log determinant function of a matrix, e_; = _; —

m_jisavector,e; = B —  is a scalar and the expectations are taken with respect
to the marginal posterior distribution of B_ ;. Next, denote the following definition
of an expectation of quadratic forms [Mathai and Provost (1992)],

E(uTQu) = E(u")QE() + tr(V(w)Q),

for any vector u and positive semidefinite covariance matrix Q, where tr(e) is the
matrix trace function. Using this equality, the computation of the KL.D in equation
(8) simplifies to the following closed form

~ 1
KLD(8;) = 5[—10g(|)3_jA_j|) +tr(Z_jA_j)

) +1=p+a;B—up?.

where o ; = 0}A_j0j = XT_jA:}X_j and tr(I) = p — 1. By symmetry in the no-
tation for elements of subvectors and submatrices, it trivially follows that we may
simply permute the order of the variables in ﬁ and iteratively compute the KL.D to
measure the centrality of any variant j.

3.2. Prioritization and relative significance. In the nonlinear regression con-
text values ;j close to zero may be interpreted as “null hypotheses™ with little to
no relevance to the modeled outcome. Therefore, searching for the most central
(i.e., influential) genetic markers simply reduces to looking for the greatest KLD
when setting each B 7 = 0. More contextually specific questions arise when decid-
ing if a given centrality measure is significant. Indeed, in practice a threshold may
be chosen in order to determine if any given KLD represents a significant shift
in entropy. Previous studies have done this through k-fold permutation to find an
effective genome-wide threshold [Woo et al. (2015)]. This approach can be costly
for datasets with many markers.

A more computationally efficient option for determining a natural ranked cutoff
is to explore the relevance of variables recursively and to judge their significance
via a scaled version of the KLD. We call this “RelATive cEntrality” or RATE,

(100  RATE(B;) =KLD(8;)/Y_ KLD(B»), Y RATE(B)) =1.
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Here, the RATE measure is bounded within the range [0, 1] with the natural inter-
pretation of measuring a variable’s relative importance. Suppose that j identifies
the genetic marker with the largest RATE value. Conditioning on a reduced margin
and then repeating the computation outlined in equations (9) and (10) will identify
the relatively second most explanatory marker. We can repeat this procedure un-
til each of the remaining variants appear to be equal in their relative importance.
This would indicate that all significant variants had been identified, and all that
remain are variants for which their influences on the posterior distribution are in-
distinguishable. This recursive process can be simplified to defining an initial set
of candidate associated markers with first order centrality measures satisfying

{j :RATE(B)) > 1/p}.

The value 1/p represents the null assumption that there is relatively equal impor-
tance across all variants; hence, there are no central nodes that exist within the
posterior distribution. We may quantify this behavior by checking the entropic dif-
ference between a uniform distribution and the observed RATE measures. Namely,

(1)  A=log(p)—H,  H=-) RATE(B;)log(RATE(B))),

where H represents the intrinsic entropy of the relative centrality measures, and
the case of no significantly associated markers yields an entropy of log(p). One
way to calibrate A is linked to effective sample size (ESS) measures from impor-
tance sampling [Gruber and West (2016, 2017)]. In a very different applied context
authors have exploited the use of an approximate ESS measure defined by

(12) ESS = 1/(1+ A) x 100%.

This ESS measure is a calibration metric that provides a notion of “loss in uni-
formity”. For example, 50% loss in terms of (1 — ESS) translates to a larger A
value of 1. This equates to the presence of at least one variant that is significantly
associated with the observed phenotypic trait. On the other hand a minor 5% loss
corresponds to a more uniform case with A value of about 0.05. Again, this lat-
ter scenario would occur when there are hardly any influential markers within the
data.

For any given set of significant variables, according to their estimated RATE
measure, further analyses may be carried out involving the relative costs of false
positives and negatives to make an explicitly reasoned decision about which spe-
cific variants to pursue [Stephens and Balding (2009)]. Unless stated otherwise,
the results we present throughout the rest of the paper will be based on using
RATE. We explore the power of this alternative approach for association mapping
in Section 4.
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3.3. Relationship to graphical models and precision analysis. In conventional
statistics the proposed variable selection procedure is very much related to preci-
sion analysis. It follows that the rate of change for the KLD (i.e., the first derivative
of equation (9) with respect to a given effect size analog) is found via the term
aj = AT jA:}X_ j- This means that the closed form computation of the KLD is
directly impacted by the deviations between the approximation of a given predic-
tor’s posterior mean and the assumption that its true effect is zero. Therefore, o
characterizes the implied linear rate of change of information when the effect of
any predictor is absent—thus, providing a natural (nonnegative) numerical sum-
mary of the role of 8 ; in the multivariate distribution. In terms of weightings from
the precision matrix, we see the following equivalent representation for the rate of
change of the KLD,

aj =3 > ckehjhje

k) ]

where ci is the corresponding k-£th element of the matrix A:}. As derived in the
previous subsection, we may alternatively denote o = 67 jA_ ;0 j, where again
0_;= —A:}A_ j s a (p — 1)-dimensional vector and A _; is the precision matrix
of the conditional distribution P(B_ j | E 7). These representations help show that, in
the context of normal statistical regression, «; computes the “variance explained”
(i.e., the fitted sum-of-squares) by each covariate j.

The idea of variable selection via entropic shifts also has a key connection to
graphical models. Often the goal of graphical models is to investigate if the pre-
cision matrix has some off-diagonal series corresponding to an underlying con-
ditional independence structure between predictor [Carvalho and West (2007)].
RATE—a relative distributional centrality measure that assesses importance (or
influence) of each variable on the network of relationships reflected in the graph—
is greatly affected by the graphical structure resulting from the implied zeros in A.
A missing edge between two predictors j and ¢ means that A j, = 0; hence, limiting
the contribution of node ¢ to the overall “network impact factor” of « ;. From the
sum defining o; above, we see that a term related to variables k and £ is nonzero
only when both A and A j; are nonzero. Therefore, the k-£th summation term is
nonzero only for pairs of predictors that are direct neighbors of j in an undirected
graph.

3.4. Software implementation. Software for computing the RATE measure is
carried out in R code which is freely available at https://github.com/lorinanthony/
RATE. Detailed derivations of the algorithm, which utilizes low-rank matrix fac-
torizations for a more practical implementation, are derived in the Supplementary
Material [Crawford et al. (2019)].


https://github.com/lorinanthony/RATE
https://github.com/lorinanthony/RATE

970 CRAWFORD, FLAXMAN, RUNCIE AND WEST

4. Results. We now illustrate the utility of using centrality measures for ge-
netic association mapping through extensive simulation studies and real data anal-
yses. The motivation for each set of examples is to better understand the perfor-
mance and behavior of RATE under different types of genetic architectures. First,
we use a small simulation study to help the reader build a stronger intuition about
how RATE prioritizes influential variables in a dataset. It is during this demonstra-
tion where we also explore what happens to the concepts of “centrality” and “uni-
formity,” when the effects of all known significant markers are assumed to be ab-
sent from the model. Next, we use more realistic simulations to assess the mapping
power of our approach in genetic-based applications. Here, the goal is to show that
RATE performs association mapping as well as the most commonly used Bayesian
and regularization modeling techniques. Finally, we assess the potential of the our
approach in two real datasets. The first is an Arabidopsis thaliana QTL mapping
study consisting of six different metabolic traits from an F6 Bay-0 x Shahdara
recombinant inbred lines (RILs) population. The second is a genome-wide asso-
ciation study (GWAS) in a heterogeneous stock of mice from the Wellcome Trust
Centre for Human Genetics.

4.1. Simulation studies. For all synthetic demonstrations and assessments we
consider a simulation design that is often used to explore the utility of statisti-
cal methods across different genetic architectures underlying complex phenotypic
traits [Crawford and Zhou (2018), Crawford et al. (2017), Zeng and Zhou (2017)].
First, we assume that all of the observed genetic effects explain a fixed proportion
of the total phenotypic variance. This proportion is referred to as the “broad-sense
heritability” of the trait, which we denote as HZ2. From the more conventional
statistics perspective the parameter H” can alternatively be described as a factor
controlling the signal-to-noise ratio in the simulations. Next, we use a genotypic
matrix X with n samples and p single nucleotide polymorphisms (SNPs) to gener-
ate synthetic real-valued phenotypes that mirror genetic architectures affected by
a combination of linear (additive) and interaction (epistatic) effects.

We randomly choose a select subset of j* “causal” (or truly associated) SNPs
as the determining factors of the data generating process. The linear effect sizes
for all j* associated genetic variants are assumed to come from a standard normal
distribution, 8+ ~ N(0, 1). When applicable, we also create a separate matrix W
which holds all pairwise interactions between the causal SNPs. These correspond-
ing interaction effect sizes are drawn as y ~ A(0, I). We scale both the additive
and interaction effects so that collectively they explain a fixed proportion of H.
Namely, the additive effects make up p%, while the pairwise interactions make up
the remaining (1 — p)%. Alternatively, the proportion of the heritability explained
by additivity is said to be V(X8) = pH?, while the proportion detailed by nonlin-
earity is given as V(Wy) = (1 — p)H2. We consider two choices for the parameter
p = {0.5, 1}. Intuitively, p = 1 represents the limiting case where the variation
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of a trait is driven by solely additive effects. For p = 0.5, the additive and inter-
action effects are assumed to equally contribute to the total phenotypic variance.
Once we obtain the final effect sizes for all causal variants, we draw normally dis-
tributed random errors as € ~ N (0, I) to make up the remaining (1 — H2)% of the
total V(y). Finally, continuous phenotypes are then created by summing over all
observed effects using two simulation models:

(i) Standard model: y=Xg + Wy +&.
(i) Population stratification model: y = Zw + X8 + Wy + ¢,

where Z contains covariates representing additional population structure, and @
are the corresponding fixed effects which are also assumed to follow a standard
multivariate normal distribution. Alternatively, one can think of the combined ef-
fect of Zw as structured noise. To this end, simulations under model (ii) will make
the appropriate assumption that V(Zw) + V(e) = (1 — H?). For any simulations
conducted under model (ii), genotype PCs are not included in any of the model
fitting procedures, and no other preprocessing normalizations were carried out to
account for the added population structure.

It is helpful to point out here that the main purpose of the following simulations
is to demonstrate the utility of RATE in providing an explicit ranking of variable
importance, so as to uncover the implicit ranking assigned by nonparametric re-
gression methods. Our simulation comparisons are thus targeted to illustrate how
RATE can be used in this task, and how its overall variable selection performance
differs from standard parametric mapping procedures in different scenarios.

4.1.1. Proof of concept simulations: Demonstrating centrality. In this subsec-
tion we show how distributional centrality measures may be used and interpreted
when prioritizing genetic markers in an association mapping study. Our main con-
cern is to familiarize the reader with the behavior and concepts underlying RATE.
To do this, we make use of n = 2000 synthetic genotypes that are independently
generated to have p = 25 single nucleotide polymorphisms (SNPs) with allele
frequencies randomly sampled from a uniform distribution over values ranging
from [0.05, 0.5]. The resulting n x p simulated genotype matrix X is then used
to create continuous phenotypes using the standard generative model (i). Here, we
assume that only the last three variants j* = {23, 24, 25} are causal, and that their
combined genetic effects make up H? = 60% of the total phenotypic variation.
We then examine the full two cases for the parameter p = {0.5, 1}. As a brief re-
minder p represents the proportion of broad-sense heritability that is contributed
by additivity versus interaction effects. Indeed, these simulation assumptions are
not realistic in terms of the qualities observed in real data applications; however,
we stress that this section merely serves as a simple demonstration of “centrality”
and “uniformity.” The small number of variants allows us to clearly illustrate and
visualize these proofs of concepts.
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Throughout the rest of this subsection, we detail the behavior RATE in the sim-
ple linear case with p = 1. Similar results for p = 0.5 can be found in the Supple-
mentary Material. For each simulation we fit a standard GP regression model under
a zero mean prior and a Gaussian covariance function using a Gibbs sampler with
10,000 MCMC iterations and hyper-parameters set to a =5 and b =2/5. During
each iterate a corresponding nonlinear projection is computed as in equation (5).
This results in an approximation of the implied posterior distribution for the effect
size analog. With these conditional draws we calculate the distribution’s empirical
posterior mean, covariance, and precision. Next, we use the closed form solutions
in equations (9) and (10) to derive a RATE measure for each genetic marker.

Figure 1(a) depicts an illustration of first order centrality across the 25 variants.
Here, the three known causal SNPs are colored in blue. As a reference we also dis-
play a red dashed line that is drawn at the level of relative equivalence (i.e., 1/p).
This represents the value for which all variants are approximately uniform in their
centrality or significance. To put this into better context, we provide uniformity
checks: (1) the entropic difference A according to equation (11) and (ii) the corre-
sponding empirical ESS estimate as computed in equation (12). In this first panel
figure we see that RATE accurately determines variants #23-25 as being the most
central to the posterior distribution.

To demonstrate what it conceptually means to be central to a distribution, we
next consider a series of follow-up analyses. Here, we iteratively assume that the
genetic effect of the most significantly associated SNP has been nullified from the
dataset. We then condition on a reduced margin for the posterior distribution and
recompute the RATE measures. The key takeaway is that, without the effect of the
data’s most influential SNPs, the relative importance of the remaining variants will
continue to increase until each of them are approximately equal in weight—hence,
resembling a uniform distribution. Consider the ongoing example and assume that
we nullify the effect of variant # 24. After recomputing RATE(S j | B4 = 0) for ev-
ery j # 24th variant, we see that while markers #25 and #23 are still the most
significant according to their second order centrality; the importance levels of
the other markers have shifted closer to becoming relatively equivalent (see Fig-
ure 1(b)). This shift continues when the effects of the remaining causal variants are
also removed successively (see Figures 1(c) and (d) respectively). Also notice dur-
ing this transition, A — 0 and ESS — 100%. This same trend happens both in the
presence of interaction effects (Figure S2), as well as when the causal variants are
in nearly perfect collinearity (or “linkage disequilibrium” (LD)) with noncausal
markers (Figures S3 and S4). In the latter case we force variants # 23-25 to have a
correlation coefficient R = 0.9 with variants #1-3.

It is also important to demonstrate what happens to the proposed centrality mea-
sures if one mistakenly removes the effect of a genetic marker that is not central
to explaining the observed phenotypic variation. Reconsider the ongoing exam-
ple where, instead of iteratively removing the effect of the most central variant, we
simply nullify the effect of markers #1-3, which we know to be nonsignificant (see
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FI1G. 1. Orders of distributional centrality via RATE measures. These are simple proof of concept
simulations with broad-sense heritability level H? = 0.6 and p = 1. Here, (1 — p) is used to deter-
mine the proportion of signal that is contributed by interaction effects. Data are simulated such that
the effects of only the last three genetic variants j* = {23, 24,25} (blue) are nonzero. The dashed
line is drawn at the level of relative equivalence (i.e., 1/ p). Figure (a) shows the first order centrality
across all markers; (b)—(d) show results when the most significantly associated variants are itera-
tively nullified. Uniformity check values are also reported: (i) the entropic difference A, and (ii) the
corresponding empirical effective sample size (ESS) estimates.

Figure 2(a)). Figures 2(b)—(d) (and Figure S5) illustrate that the three true causal
variants (i.e., markers #23-25) are continuously identified as the most associated
or central to the overall posterior distribution. Noticeably, with each passing re-



974 CRAWFORD, FLAXMAN, RUNCIE AND WEST

© ©
o o
e DELTA=2078 ® DELTA =2.007
® ESS=3248% ® ESS=33.26%
w 0
o o
< | < |
o 6\ o
. [
= - =y -
E o 7 oy o 7
= i
13
N 4 N
S Al
S S
o o
S~ s~
Covariates Covariates
(a) First Order Centrality (b) Second Order Centrality
© ©
o o
o DELTA= 1.868 ® DELTA=1.833
© ESS=34.86% ® ESS=35.3%
['e} (e}
S i
=)
s x| [
T £ °
N I
it 18
==y 8 B I 2 i
= IEF.
hrf 1o
g o o o
X o £ o
©
S S
o o
S - S~
Covariates Covariates
(¢) Third Order Centrality (d) Fourth Order Centrality

FIG. 2. Orders of distributional centrality via RATE measures when nonassociated variants are
deemed significant. These are simple proof of concept simulations with broad-sense heritability level
H? =0.6 and p = 1. Here, (1 — p) is used to determine the proportion of signal that is contributed
by interaction effects. Data are simulated such that the effects of only the last three genetic vari-
ants j* = {23, 24,25} (blue) are nonzero. The dashed line is drawn at the level of relative equiv-
alence (i.e., 1/p). Figure (a) shows the first order centrality across all markers; (b)—(d) show the
results when nonsignificant markers #1-3 are iteratively nullified. Uniformity check values are also
reported: (1) the entropic difference A, and (ii) the corresponding empirical effective sample size
(ESS) estimates.

moval of a noncentral variant, the degree to which the RATE measures begin to
look uniform has slowed substantially.
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As a final demonstration we show what happens when the null assumptions of
relative centrality are met. Recall that under the null hypothesis, RATE assumes
that every variant equally contributes to the broad-sense heritability of a trait—
that is, no one SNP is more important or more central than the others. To illustrate
this, we generate synthetic phenotypes such that the effect sizes of all 25 SNPs
in the data are set to 1. Figure S6 shows results from four different datasets. The
key takeaway here is that in these cases RATE produces much more uniformly
distributed first order centrality measures as indicated by the entropic statistics A
and ESS. For completeness, in Figure S7 we also show what happens to the raw
and unscaled KLLDs when phenotypes have been permuted.

4.1.2. Power assessment and method comparisons. We now assess the power
of RATE and its ability to effectively prioritize truly associated variants under
different genetic architectures. To do this, we now consider simulations that mir-
ror more realistic genetic applications. Here, we utilize real genotypes from chro-
mosome 22 of the control samples in the Wellcome Trust Case Control Consor-
tium (WTCCC) 1 study [The Wellcome Trust Case Control Consortium (2007)]
(http://www.wtccc.org.uk/) to generate continuous phenotypes (see the Supple-
mentary Material for details). Exclusively considering this group of individuals
and SNPs leaves us with an initial dataset consisting of n = 2938 samples and p =
5747 markers. During each simulation run we randomly choose j* = 30 SNPs,
which we classify into the two distinct causal groups: (1) a small set of five vari-
ants, and (2) a larger set of 25 variants. All causal markers have additive effects
and, when applicable, the group 1 causal SNPs interact with group 2 causal SNPs
but never with each other (the same rule applies to the second group). We will con-
sider three simulation scenarios. Scenario I involves phenotypes generated by stan-
dard model (i); while scenarios II and III consider model (ii) where we introduce
population stratification effects by allowing the top five and 10 genotype principal
components (PCs) Z to make up 30% of the overall variation in the simulated traits
respectively. Within these three scenarios we set the broad-sense heritability to be
H? = 0.3 and consider two choices for the parameter p = {0.5, 1}.

We compare the GP regression model and our proposed distributional centrality
measures to a list of standard Bayesian and regularization modeling techniques.
Specifically, these methods include: (a) a genome scan with a single-SNP uni-
variate linear model that is typically used in GWAS applications (SCANONE)
[Yandell et al. (2007)], (b) L1-regularized lasso regression; (c) the combined regu-
larization utilized by the elastic net [Waldmann et al. (2013)]; and (d) a commonly
used spike and slab prior model, also commonly known as Bayesian variable se-
lection regression [Guan and Stephens (2011)] which places a prior distribution on
each SNP as a mixture of a point mass at zero and a diffuse normal centered around
zero. For each Bayesian method we run a Gibbs sampler for 10,000 MCMC itera-
tions. Regularization approaches were fit by first learning tuning parameter values
via 10-fold cross validation.


http://www.wtccc.org.uk/
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All results described in the main text are based on scenarios I and II, while
results for scenario III can be found in the Supplementary Material. We evalu-
ate each method’s ability to effectively prioritize the causal SNPs in 100 different
simulated datasets. The criteria we use compares the false positive rate (FPR) with
the rate at which true variants are identified by each model (TPR). This is further
quantified by assessing the area under the curve (AUC). Note that SCANONE pro-
duces p-values, lasso and the elastic net give magnitude of regression coefficients
and the Bayesian variable selection model computes posterior inclusion proba-
bilities (PIPs). Method performance varies depending on the two factors: (a) the
presence of interaction effects, and (b) additional structure due to population strat-
ification. For example, in the first simulation scenario all methods exhibit lower
power when a proportion of the broad-sense heritability is made up of interac-
tion effects (e.g., Figure 3(a)). This power increases when additive effects domi-
nate the heritability (e.g., Figure 3(b)). Overall, the lasso is the worst performing
method. In the cases where there are no additional population stratification effects,
the SCANONE approach proved to be better method. These results are unsurpris-
ing since this scenario best suites the assumptions of this approach.

While the performance of our distributional centrality measures are compara-
ble in the first setting, its true advantage becomes apparent when there is some
underlying population structure between genotypes (i.e., scenarios II and III).
Importantly, under this type of data the power of RATE is consistently better
than its counterparts (e.g., Figures 3(c), (d) and S8). From a significance thresh-
old perspective RATE also proves to have the best “optimal” selection metric.
Solely considering SNPs with RATEs > 1/p consistently yielded more associa-
tive mapping power than observing both (a) the equivalence of the Bayesian
“median probability model” (i.e., PIPs > 0.5) [Barbieri and Berger (2004)], and
(b) SCANONE p-values below the Bonferroni-corrected significance threshold
(i.e., P < 8.7 x 107%) (see Figure S9). For example, in simulation scenario II
the “optimal” RATE model identified 72% and 78% of the casual variables for
p =0.5 and 1 respectively. This compared to 24% and 37% for the median prob-
ability model, and 32% and 46% for the multiple testing corrected SCANONE
model (see Figure S9). This trend is consistent across all of the simulation settings
that we consider.

Altogether, we want to stress that these simulation results are important from
a model interpretation perspective. Even though methods like SCANONE effec-
tively prioritize SNPs in certain scenarios, their significance metrics struggle to
create separation between selected and nonselected markers. Therefore, if a practi-
tioner were to choose variants satisfying some “optimal” genome-wide threshold,
the more conservative methods will simply miss the majority of the true causal
variables (i.e., a higher count of false negatives). RATE, on the other hand, is con-
sistently able to distinguish among the SNPs in a given set. Even in the scenarios
where phenotypes are simulated without population stratification effects, RATE is
more likely to deem associated variants as significant genome-wide—just at the
possible cost of slightly more false positives.
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FI1G. 3. Power analysis for prioritizing genetic variants. Phenotypes are simulated with broad-
-sense heritability level H? = 0.3 with control parameter p = {0.5, 1} in Figures (a) and (c) and
Figures (b) and (d) respectively. Here, (1 — p) is used to determine the proportion of signal that is
contributed by interaction effects. Compared approaches include Gaussian process regression with
RATE (blue), Bayesian variable selection with a spike and slab prior (PIPs) (pink), lasso regression
(red), the elastic net (green) and the SCANONE method (orange). Area under the curve (AUC) is re-
ported to facilitate comparisons. Scenario I corresponds to phenotypic outcomes being generated via
simulation model (i). Scenario Il introduces population stratification effects with simulation model
(1) by allowing the top five genotype PCs to make up 30% of the phenotypic variance. Results are
based on 100 replicates in each case.

4.2. Real data analysis: Arabidopsis QTL study. We now apply our approach
to a quantitative trait loci (QTL) association mapping study focused on the charac-
terization of complex phenotypes in Arabidopsis thaliana, a small flowering plant



978 CRAWFORD, FLAXMAN, RUNCIE AND WEST

native to Eurasia. The specific dataset that we consider comes from the Versailles
Arabidopsis Stock Center [Loudet et al. (2002)] (http://publiclines.versailles.inra.
fr/page/33) and has been previously used for evaluating the mapping power of
other statistical methods [Demetrashvili, den Heuvel and Wit (2013)]. More de-
scriptively, it consists of n =403 F6 plants from a Bay-0 x Shahdara recombinant
inbred lines (RILs) population that were genotyped for p = 1028 genetic mark-
ers and phenotyped for 63 different metabolic traits [Wentzell et al. (2007)]. After
pruning the genotypes of variants with near perfect correlation (R > 0.99), we
obtained a final set of 524 markers (see the Supplementary Material for details).
We limit the scope of our analysis to six biochemical content measurements in-
cluding allyl, Indol-3-ylmethyl (I3M), 4-methoxy-indol-3-ylmethyl (MO4I3M),
4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MTS8) and 3-hydroxypropyl
(OHP3) (see Table S2). Importantly, the goal of the original study was to high-
light complex connections between gene expression and metabolite (glucosino-
late) variation [Wentzell et al. (2007)]. Here, we consider this particular case study
not only because it presents a variety of quantitative traits, but also because the
data contains a mixture of additive and some epistatic effects. Indeed, this dataset
presents a realistic mix between the cases we previously examined for simulation
scenario .

For each metabolic trait we provide a summary table which lists centrality mea-
sures for all gene expression polymorphisms as detected via GP regression and
RATE (see Table S3). To contrast the associations identified by our nonparamet-
ric method, we also directly compared results from implementing the SCANONE
approach, since it proved to be the most powered of the competing methods in
simulations (again, see Table S3). Figures 4 and S10-S14 display plots of enrich-
ment for a genome-wide scan on the six traits according to the RATE enrichment
metric. These figures also show the comparative results for the standard single-
variant testing approach. Referenced in all images are blue points which represent
genetic markers with significant distributional centrality measures above the line
of relative equivalence (i.e., RATEs > 1/p). In Table 1 we report the number of
significant markers that are identified by both methods. Once again, these are de-
termined by markers with RATE(8) > 1/p and P < 9 x 1077 respectively. Again,
the latter represents the genome-wide Bonferroni-corrected significance threshold.
In the second part of Table 1, we take the significant markers identified by each
model and refit simple linear regressions with them. Here, we report R> as a way
to assess which method was able to select markers that explain the greatest pro-
portion of variance in all six traits.

Overall, RATE consistently identified genomic locations that correspond to
known members of biosynthetic pathways in Arabidopsis thaliana. Most of these,
as in the original study, were small networks of QTLs known to control biosyn-
thetic pathways. For example, in MO4I3M, the most central loci appeared on the
second chromosome and were headlined by the marker tagged At2g14170 (see
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FI1G. 4. Genetic map wide scan for the 4-methoxy-indol-3-ylmethyl (MO413M) glucosinolate trait
analyzed in Arabidopsis thaliana QTL mapping study. Compared methods are: (a) Gaussian pro-
cess regression with RATE and (b) SCANONE (orange). Significant markers are determined by
RATE(,E) >1/pand P <9 x 1073 respectively. The latter represents the genome-wide Bonferroni—
corrected significance threshold. To ease the comparisons, points in blue represent genetic markers
with significant distributional centrality measures. Markers labeled in color were not found by RATE.

Figure 4(a)). This variant is associated with ALDH6B2—a gene within the Ara-
bidopsis genome known to catalyze enzymatic reactions in valine and pyrimidine
catabolism (i.e., destructive metabolism) [Hou and Bartels (2015), Kirch et al.
(2004)]. Similarly, on the first chromosome RATE featured a small group of central
loci lead by Atlg78370—which encodes a core glucosinolate biosynthesis gene
GSTU20 and plays a key role in glutathione transferase activity and metabolism
[Wu et al. (2016)]. For the trait MT8 content RATE deemed the most impor-
tant region of the genome to be on the fifth chromosome (see Figure S13). Here,
the marker At5g22630 had the greatest relative centrality measure. This polymor-
phism represents ADTS5 which has recently been suggested to moonlight proteins
that play an enzymatic role in biosynthesis [Bross et al. (2017)]. This same marker
is also highlighted as being moderately influential in explaining the variability in
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TABLE 1
Comparing RATE and the SCANONE mapping approach in the Arabidopsis QTL study.
Glucosinolate content traits include allyl content, indol-3-ylmethyl (13M),
4-methoxy-indol-3-ylmethyl (MOAI3M), 4-methylsulfinylbutyl (MSO4), 8-methylthiooctyl (MT8)
and 3-hydroxypropyl (OHP3). Significant markers are determined by RATE(B) > 1/p and
P <9 x 107" respectively. The latter represents the genome-wide Bonferroni-corrected
significance threshold. Values in bold denote the best according to R? when considering “optimal”
model fit with the significant markers. The last section describes the percent overlap between the
significant markers found using the two methods

Phenotypic traits
Category Method Allyl I3M MO4I3M MSO4 MT8 OHP3
# Sig. Markers RATE 64 130 165 117 85 96
SCANONE 61 75 99 100 71 98
RZ? of Sig. Model RATE 0.686 0.472  0.570 0.544 0.610 0.569
SCANONE 0.675 0.353 0.452 0.494 0.527 0.566
% Overlap SCANONE C RATE  97%  100% 98% 100% 100%  97%

allyl content across the plants (see Figure S10). This makes sense because of the
strong positive correlation between the content of these two traits.

These validated findings from previous experimentally based studies lead us to
believe that our results contain true positives. Lastly, in order to bolster confidence
in the relative centrality measures identified by our nonparametric approach, we
also display the correlation structure across the genotypes and phenotypes for the
403 Bay-0 x Shahdara RILs (see Figures S15 and S16). Consistent with our re-
sults, there appeared to be strong cis-type covariances between groups of genetic
markers located on the same chromosome. This underlying genetic architecture
resembles data analytic situations where our approach is most powered.

In order to better explain why our nonparametric approach and the SCANONE
method performed similarly in each of the six phenotypes, we use a variance
component analysis to evaluate how different types of genetic effects (i.e., lin-
ear vs. nonlinear) contribute to the overall broad-sense heritability [Zhou (2017)]
(see text in the Supplementary Material for details). Briefly, we use a linear mixed
model with multiple random effects to partition the phenotypic variance into three
different categories: (a) an additive component, (b) a pairwise interaction compo-
nent and (c) a third order interaction component. Disregarding the contribution of
random noise, we quantify the contribution of these genetic effects by estimat-
ing the proportion of heritability that is explained via their corresponding variance
components. Table S4 displays these results which effectively highlights that each
of the six traits are primarily dominated by additivity.

4.3. Real data analysis: Heterogenous stock of mice GWAS. We lastly as-
sess RATE’s association mapping ability in a more traditional GWAS setting
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by analyzing three quantitative traits in a heterogeneous stock of mice dataset
[Valdar et al. (2006)] from the Wellcome Trust Centre for Human Genetics (http:
//mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml). This data contains n ~ 2000
individuals and p ~ 10,000 SNPs with minor allele frequencies above 5%—with
exact numbers varying slightly depending on the phenotype (see the Supplemen-
tary Material for details). The three quantitative traits we consider include body
weight, percentage of CD8+ cells and high-density lipoprotein (HDL) content.
We consider this particular dataset not only because it contains a wide variety of
quantitative traits but also because the data contains related samples. Relatedness
has been shown to manifest different orders of interaction effects [Hemani, Knott
and Haley (2013), Crawford et al. (2018, 2017)], and thus this dataset also presents
a realistic mix between the cases we examined in simulation scenarios II and III.

Once again, we compare the GP regression model to the single-SNP approach
via SCANONE which serves as a baseline. For each trait we provide a summary ta-
ble which lists the corresponding RATEs and p-values for all SNPs (see Table S5).
Figures 5, S17 and S18 then visually display this information via Manhattan plots.
In these figures chromosomes are shown in alternating colors for clarity with the
top five most enriched regions (according to RATE measures) being highlighted as
a way to facilitate comparisons between the mapping approaches.

As in the previous real data application our nonparametric approach was able
to detect multiple loci that have been previously validated as having functional as-
sociations with the traits of interests. Many of these findings were also indicated
in the original study that produced this dataset [Valdar et al. (2006)]. For example,
the X chromosome is well known to majorly influence adiposity and metabolism in
mice [Rance, Hill and Keightley (1997), Chen et al. (2012, 2013), Cox, Bonthuis
and Rissman (2014)]. As expected, in the body weight and HDL content traits,
our approach identified significant enrichment in this genomic region—headlined
by the chromatin remodeling complex gene Smarcal in both cases. Additionally,
for the body weight phenotype, RATE also prioritized markers on chromosomes
7 and 10 as having notable associations. Previous computational studies have
shown variants on both of these chromosomes to have additive effects and sta-
tistical epistatic interactions that influence mice body composition [Ankra-Badu
et al. (2009), Brockmann et al. (1998), Diament and Warden (2003), Kleyn et al.
(1996)]. In this particular analysis we attribute the selection of these loci to the
nonlinear properties of the Gaussian covariance function and the nonparametric
nature of the GP regression model. Similarly, for HDL content RATE found many
significant SNPs on the first, eleventh and twelfth chromosomes. The correspond-
ing spike on chromosome 1 is a genomic location that most notably harbors the
HDL driver gene Ath-1 [Paigen et al. (1987)] (see Figure 5(a)). Finally, for the
phenotype detailing the percentage of CD8+ cells, our method identified the ma-
jority of significant SNPs to be on the seventeenth chromosome—including those
within boundary of MyofI, a gene that has been suggested to modulate cell adhe-
sion and motility in the immune system [Kim et al. (2006)]. Overall, this general
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FIG. 5. Genome-wide scan for high-density lipoprotein (HDL) content in the heterogeneous stock
of mice dataset. Figure (a) depicts the relative distributional centrality measures (RATE) of quality—
control-positive SNPs plotted against their genomic positions. Gaussian process regression was used
to derive these measures. Chromosomes are shown in alternating colors for clarity, with the top five
most enriched regions (according to RATE) being highlighted by the star symbol. Figure (b) serves
as a direct comparison and depicts results from a typical GWAS analysis using SCANONE. Here, we
overlay the enriched regions detected by RATE to simplify the comparison.

genomic location that has been validated to greatly determine the ratio of T-cells
[Yalcin et al. (2010)].

Once again, we use variance component analysis to now dissect the broad-sense
heritability of these three mice traits and help better explain why there could be dif-
ferences in the loci discovered by RATE and SCANONE (see Table S6). As in the
previous subsection we implement a linear mixed model to partition the overall
broad-sense heritability into the same additive, second order (pairwise) interaction
and third order interaction genetic effect types. Note that, unlike in the Arabidop-
sis QTL study, additive effects do not dominate the genotypic contribution in any
of the three mice phenotypes that we consider—this is particularly obvious for
the trait detailing the HDL content (Figure 5 and Table S6). Instead, the variance
components corresponding to the second and third order interactions make up the
majority of the broad-sense heritability. We believe that accounting for these non-
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linear relationships, as well as controlling for the relatedness between samples,
allows RATE to identify loci that SCANONE misses.

5. Discussion. In this paper, we proposed a new general measure for con-
ducting variable selection in “black box” Bayesian methodologies. While many of
these black box approaches often give notable predictive performance gains, the
reasoning behind these results can be difficult to explain and interpret. Within a
statistical genetics context we discussed how the previously proposed effect size
analog for nonparametric regression enables the prioritization of variants based on
their marginal associations. Recognizing that one of the main sources of perfor-
mance gains in black box modeling is through underlying interactions and non-
linear effects between predictor variables, we introduced our new distributional
centrality measure RATE—meant to rank genetic markers based on their influence
on the joint distribution with other markers. As we demonstrated with simulation
studies, our new measure can be used for feature selection, giving state-of-the-art
performance even in the presence of population structure. In real QTL and GWAS
data applications, RATE allowed us to uncover biologically relevant markers by
simultaneously taking into account significant interactions when ranking variants
based on their relative importance.

In its current form we have focused on demonstrating RATE with a Gaussian
process regression model. Although our entire illustration of the method is based
on the manipulation of approximate posterior distributions in Bayesian applica-
tions, each of the innovations that we present can be applied in a frequentist set-
ting. The effect size analog is merely a summary statistic which can be derived af-
ter fitting any model. Therefore, one could envision a frequentist setting in which
parameter estimation and uncertainty is done using bootstrap, for example. In par-
ticular this would lead to a multivariate normal-like estimator for the mean and
covariance of the effect size analog. One could then proceed to compute the rel-
ative centrality measures with this distribution. The utility of our approach, from
this alternative point of view, remains an open question.

RATE is not without its limitations. One particular limitation of RATE is that
while it provides a measure of general association for nonparametric methods, it
cannot be used to directly identify the component (i.e., linear vs. nonlinear) that
drives individual variable associations. Thus, despite being able to detect signif-
icant variants that are associated to a response in a nonlinear fashion, the RATE
measure is unable to directly identify the detailed orders of interaction effects.
A key part of our future work is learning how to disentangle this information.
A second, and perhaps the most noticeable, limitation of RATE is that the com-
putation of the centrality measures scales at least cubically with the number of
features in the input data (see Table S7 in the Supplementary Material). This is
opposed to the other methods we compare in this study (e.g., single-SNP tests)
which take a fraction of the time to compute. In future work we would like to
consider the challenges of analyzing large scale studies. An example of this would
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be consortium-sized efforts in human-based genome-wide association studies with
millions of markers and thousands of genotyped individuals [Sudlow et al. (2015),
The 1000 Genomes Project Consortium (2010), The Wellcome Trust Case Con-
trol Consortium (2007)]. In these settings one possible immediate fix would be to
use a two step procedure. In the first step we implement a more scalable mapping
method [Lippert et al. (2011), Purcell et al. (2007), Zhou and Stephens (2012)] as a
screen to select the top marginally associated markers. Then, in the second step we
test for more detailed nonlinear prioritization using centrality measures. Nonethe-
less, new algorithms and alternative code implementations are likely needed to
scale RATE up to datasets that are orders of magnitude larger in size.
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