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The functional properties of skeletal muscles depend on the spatial ar-
rangements of fast and slow muscle fibre types. Qualitative assessment of
muscle configurations suggest that muscle disease and normal ageing are as-
sociated with visible changes in the spatial pattern, though a lack of statisti-
cal modelling hinders our ability to formally assess such trends. We design a
nested Gaussian conditional autoregressive (CAR) model to quantify spatial
features of dichotomously marked muscle fibre networks and implement it
within a Bayesian framework. Our model is applied to data from a human
skeletal muscle and results reveal spatial variation at multiple levels across
the muscle. The model provides the foundation for future research in de-
scribing the extent of change to normal muscle fibre type parameters under
experimental or pathological conditions.

1. Introduction. The ability of skeletal muscle to develop tension to move or
to resist the movement of joints is fundamental to the ability of animals to interact
with their environment. In humans, collections of individual muscle fibres are ar-
ranged into bundles called fascicles, and fascicles in turn are grouped together into
the functional units we call muscles. The individual muscle fibres can be broadly
categorised into slow twitch (“type I”) or fast twitch (“type II”) based on their
relative speed of contraction.

Fibre type composition and distribution is crucial in the determination of muscle
function (Cornwall and Kennedy (2015), Faulkner et al. (2007), Lexell, Taylor
and Sjöström (1988), Miller, Woodley and Cornwall (2016)) with departures from
“typical” spatial distributions likely to reflect age- and disease-related imperatives.
Age-related alterations in the spatial distribution of muscle fibre types are thought
to be due to changes in usage pattern, and these might arise by change to lifestyle
or as a consequence of remodelling of nerve-muscle connections resulting from
selective loss of nerves (Aare et al. (2016), Mosole et al. (2014)). The specific
biological drivers for selective nerve loss in disease states or in normal ageing
remain largely unknown, though consequential changes to muscle fibres is a well-
established and conspicuous feature (Cornwall and Sheard (2012), Webster et al.
(1988)). Assessment of muscle samples from individuals with diseases such as
amyotrophic lateral sclerosis, type 2 diabetes and Duchenne muscular dystrophy
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shows diagnostically important clustering of fibre types (Oberbach et al. (2006),
Webster et al. (1988)). The spatial behaviours can be complex—in the instance of
Duchenne muscular dystrophy, for example, there is a tendency for muscle fibres
of the same type to cluster across the whole muscle as well as at the edges of
individual fascicles (cf. Webster et al. (1988)).

As a result of these observations, fibre-type spatial distributions have been
widely acknowledged as varying in some disease states and with age. Despite the
potential importance of this conjecture with respect to understanding the patho-
genesis of neuromuscular conditions and both normal and abnormal age-related
changes, the spatial patterns formed by configurations of fast- and slow-twitch fi-
bres have proved difficult to quantify—owed in part to a lack of relevant statistical
tools. As a consequence relatively few formal inferences have been made concern-
ing the manifestation of fibre-type distributions within or between muscle fascicles
(Cornwall and Sheard (2012)) and, in turn, the ways in which any variation might
be systematic or predictable.

Previous work has largely been limited to subjective visual inspections, as well
as qualitative, semiquantitative and exploratory test-based approaches (see the
overview in Davies, Cornwall and Sheard (2013)) with no development of robust
statistical models that enable precise quantification of spatial distributions of fi-
bre types across whole muscles or within muscle fascicles. Such a model would
provide a tool to undertake research addressing basic biological principles, includ-
ing how skeletal muscles change as we age and how neuromuscular pathologies
manifest and progress.

Our objective is to develop a modelling framework to better understand the
spatial behaviour of such fibre-type observations. We propose using thresholded
hidden Gaussian conditional autoregressions to describe the binary response, fol-
lowing Weir and Pettitt (1999, 2000) and Pettitt, Weir and Hart (2002). These are
part of a class of latent probit regression models (Chib and Greenberg (1998)). Our
main methodological contribution lies in nesting a pair of latent Gaussian condi-
tional autoregressive (CAR) processes, allowing us to describe spatial variation
separately at the fibre and fascicle levels. The former describes how fibres vary
within a fascicle, while the latter simultaneously allows the parameters describing
this behaviour to vary spatially across the muscle. Sufficient flexibility exists in
this framework for the incorporation of spatial covariate information, as we shall
demonstrate with a measure of fibre and fascicle proximity to local boundaries.

The remainder of the article is structured as follows. In Section 2 we describe
the type of data to be analysed, including origin and preprocessing, and present
a novel data set to be analysed. Our proposed model is in Section 3 with model
fitting outlined in Section 4. The results of application to the real data are given
in Section 5. In Section 6 we provide concluding remarks on the extensibility of
the modelling framework for coping with multiple muscles or subjects as well as
additional examples of related research.
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2. Data collection and processing.

2.1. Dissection and immunohistochemistry. While the scrutiny of muscle tis-
sue can be performed for smaller biopsies taken from live individuals, larger sec-
tions (including cross-sections of entire muscles) are difficult to acquire and are
most commonly accessed through the use of bodies donated to medical science. In
either case identification of fast- and slow-twitch fibres is achieved by taking trans-
verse sections through the specimen in such as way as to ensure all fibres within
the muscle are represented in the section and by then processing the section us-
ing immunohistochemistry, where the two fibre types react differently to a specific
chemical treatment—leaving one type darkly stained and the other unstained. The
result is photographed through a microscope.

Figure 1 shows such a photograph which will serve as the focus of our anal-
ysis; fast-twitch fibres are stained dark. It represents a cross-section of an entire
muscle taken from the neck of an elderly cadaver and processed in accordance
with the institutional ethical requirements of the University of Otago and the New
Zealand Human Tissue Act (New Zealand Govt. (2008)). A consequence of the
immunohistochemistry procedure, observable in Figure 1, is the potential lateral
displacement of some fascicles from their immediate neighbours. Noteworthy is
the fact that there would be no such spacing between adjacent regions of fibres
in situ, and so we ignore these large clefts in the geometrical identification of the
neighbour networks (Section 2.2).

Image processing software (Rueden et al. (2017)) is subsequently used to iden-
tify individual fibres as planar coordinates and their corresponding type. Fascicles
over the entire muscle were then identified independently by two experts in muscle
biology and morphology based on the visual assessment of fibre arrangement and
the identification of cleavage planes. These planes denote the region between ad-
jacent fascicles, and their presence is commonly used to assist in the identification
of contiguous bundles of fibres.

FIG. 1. Muscle cross-section following immunohistochemistry to identify slow-twitch fibres
(light—unstained) and fast-twitch fibres (dark—stained).
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2.2. Computational geometry. The next step is to obtain sensible geometric
representations of the shapes of the fascicles. These constructs are important in
our analysis for two reasons. First, they will be used to truncate the triangulations
of each bundle of fibres so the estimated neighbour network in each case respects
the irregular shape of the corresponding fascicle. Second, and perhaps more impor-
tantly, we must be able to compute for each fibre some measure of “distance from
centre” which inherently requires knowledge of the boundary of the observation
set.

In Davies, Cornwall and Sheard (2013) the three example fibre bundles are well
approximated by simple convex hulls. This is inappropriate in the current anal-
ysis because many fascicles and indeed the overall muscle do not form convex
geometric shapes. Instead, we turn to a lesser-known generalisation of the con-
vex hull, namely the α-shape (Edelsbrunner et al. (1983); see also Pateiro-López
and Rodríguez-Casal (2010)), which is capable of producing geometric approxi-
mations that do respect concavity. To identify the neighbour networks, we use De-
launay triangulations (see, e.g., Okabe et al. (2000)); these are computed for each
bundle of fibres for which there is precedent in the literature with respect to muscle
data (Davies, Cornwall and Sheard (2013), Fonseca et al. (2003), Pernuš (1988)).
Using the geometric centroids of each α-shape, these steps are repeated at the fas-
cicle level to identify the fascicle-to-fascicle neighbour network across the entire
muscle. The interested reader is referred to Section 1 of Supplement A (Davies et
al. (2019)) for further details on these geometric techniques.

The topmost image of Figure 2 shows the entire collection of 6246 fibres of
our data as well as the neighbour network for each fibre bundle, presenting the
first spatial layer of the hierarchical relationship we aim to model. The bottom
image shows the second spatial layer of the hierarchy. This is provided as the
muscle-wide α-shape as well as all 199 fascicle-specific α-shapes used to define
the networks visible in the previous image. The fascicle centroids are marked off,
and the muscle-wide fascicle neighbour network is superimposed. Hereinafter, for
simplicity we will refer to type I, slow twitch fibres as “light” and type II, fast
twitch fibres as “dark.”

It remains important to acknowledge that any geometric representation of ei-
ther the fibre or fascicle neighbourhood structure is approximate, and we offer
some additional discussion on this issue in Supplement A (Davies et al. (2019)).
Informal sensitivity analysis, which involved manipulating the extent to which fi-
bre neighbours were identified close to fascicle boundaries as well as altering the
fascicle-level neighbour network to instead follow distance-based rules, had mini-
mal effect on the final results for the data set studied here.

3. Data and model. We propose to model the data through nested CAR pro-
cesses. This allows the binary responses to be informed at both the fibre level
(according to spatial positioning relative to other fibres within the fascicle) and at
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FIG. 2. Multilevel spatial structure of the muscle fibres and fascicles. Top: Individual fibres in their
respective Delaunay neighbour networks (grey lines); “dark” fibres are black; “light” fibres are pink.
Bottom: α-shapes as the boundaries for the overall muscle and the fascicles (grey polygons), and the
muscle-wide fascicle neighbour network as a Delaunay triangulation of the geometric centroids of
the fascicle polygons (black lines).

the fascicle level (according to the spatial positioning of the fascicle within the
muscle).

The fibre-level model uses the approach of Pettitt, Weir and Hart (2002) for
CAR modelling of binary data. We extend their approach through inclusion of
spatially referenced covariates. The covariate effects vary by fascicle and are hier-
archically modelled with a further CAR process. The hierarchical model is a spe-
cial case of the linear model of coregionalisation (Banerjee, Carlin and Gelfand
(2015), Banerjee et al. (2008), Finley, Banerjee and Gelfand (2015), Gelfand et al.
(2004), Ren and Banerjee (2013), Wackernagel (1998)).

The two CAR processes inform different aspects of the scientific application.
The fascicle-level CAR process describes how the effects of the spatially ref-
erenced covariates vary throughout the muscle. This is of direct interest in un-
derstanding muscle function. The fibre-level CAR process describes the spatial
variation of the observations after accounting for covariates. This is of interest in-
somuch as it helps us to assess the extent to which the covariates fail to describe
spatial patterns present in the observed data.

3.1. Observation process. Assume a data set comprising N individual muscle
fibres. These are spatially arranged in bundles of K disjoint fascicles, with nk

fibres in fascicle k, k ∈ {1, . . . ,K}, such that N = n1 + n2 + · · · + nK .
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Each of the N fibres has a corresponding binary mark; let yik = 1 if fibre i of
fascicle k is dark with yik = 0 for light. The vector yk = (y1k, . . . , ynkk) denotes
the observations from fascicle k with the N -vector

y = [y11, . . . , yn11, y12, . . . , yn22, . . . . . . , y1K, . . . , ynKK ]T

= [
yT

1, . . . ,yT
K

]T
(3.1)

giving the observations across the entire muscle.
We commence design of our multilevel probit model by following Chib and

Greenberg (1998), where the binary process is described in terms of a latent nor-
mal variable, thresholded at zero. We let zik denote a latent continuous variable for
fibre i in fascicle k. The vector zk = (z1k, . . . , znkk) denotes the values of the latent
variable for the observations from fascicle k with the N -vector [zT

1, . . . ,zT
K ]T giv-

ing the variables across the entire muscle in the same way as y. The thresholding
leads to a deterministic relationship between yik and zik :

p(yik = h|zik) =
{

1 if I (zik > 0) = h,

0 otherwise,

i ∈ {1, . . . , nk}, k ∈ {1, . . . ,K}, h ∈ {0,1},

p(y|z) =
K∏

k=1

nk∏
i=1

p(yik|zik).

(3.2)

In the following sections we outline the multilevel model for z.

3.2. Latent fibre-level process. The aim is to describe how the type of fibre
varies spatially within a fascicle, particularly with respect to proximity to the edge
of the fascicle. We do this by considering the inverse distance of each fibre from
fascicle edge as a covariate. This is found by first measuring εik , the Euclidean
distance in R

2 of the ith fibre in fascicle k to the nearest boundary of the α-shape
of its owning fascicle. We then invert this, yielding a metric that increases with
distance from the middle of the fascicle, and standardise. To this end we define

δik = dik − d̄k

sdk

,

where dik = ε−1
ik and d̄k and sdk

are the mean and standard deviation respectively
of d1k, . . . , dnkk . The vector δk = [δ1k, . . . , δnkk] gives these standardised distances
for all fibres in fascicle k, with the N -vector

(3.3) δ = [
δT

1, δT
2, . . . , δ

T
K

]T

giving the distances for all fibres within the muscle.
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There might exist other unmeasured drivers of the observed spatial behaviour.
To capture potentially important residual effects, we consider a CAR error struc-
ture for the fibres in each fascicle. The neighbour network is represented using

ωijk =
{

1 if i is a Delaunay neighbour of j within fascicle k,

0 otherwise;
i, j ∈ {1, . . . , nk}; k ∈ {1, . . . ,K}. This allows us to consider the neighbour struc-
ture at the fascicle and muscle level,
(3.4)

�k =

⎡
⎢⎢⎢⎣

0 ω12k . . . ω1nkk

ω21k 0 . . . ω2nkk

...
...

. . .
...

ωnk1k ωnk2k . . . 0

⎤
⎥⎥⎥⎦ and � =

⎡
⎢⎢⎢⎢⎣
�1 0 . . . 0

0 �2
. . . 0

...
. . .

. . .
...

0 0 . . . �K

⎤
⎥⎥⎥⎥⎦ ,

where 0 denotes a matrix of zeros of arbitrary size. For any given k, ωiik = 0 ∀i,
so that all �k’s and hence � have zeros on the main diagonal. This neighbour
network is represented in the top of Figure 2.

We account for the conditional autoregressive spatial dependence in fascicle k

through the specification of a precision matrix Qk(ρ). Using similar notation as in
Cressie (1993) and Pettitt, Weir and Hart (2002), we let

(3.5) Qk(ρ) = σ−2Mk(ρ)−1{
Ink

− Ck(ρ)
}; σ−2 > 0,−∞ < ρ < ∞,

where σ−2 is the scalar, universal precision, ρ is a scalar, universal spatial de-
pendence parameter, and Ink

is the nk × nk identity matrix. Spatial dependence,
based directly on the fibre neighbour network, is incorporated through the nk × nk

matrix Ck(ρ). The form of Ck(ρ) requires presence of the corresponding matrix
Mk(ρ) in (3.5) to ensure positive definiteness of the covariance matrix itself. Due
to the thresholding at zero, the parameter σ−2 is set to 1 to ensure identifiability;
we suppress it in further equations.

The quantity Mk(ρ) = diag[m1k, . . . ,mnkk] is a diagonal matrix with elements

mik = (
1 + |ρ|ω∗

ik

)−1
,

where ω∗
ik is the number of neighbours of the ith fibre in the kth fascicle

(3.6) ω∗
ik =

nk∑
j=1

ωijk; i, j ∈ {1, . . . , nk}, k ∈ {1, . . . ,K}.

This is equivalent to summing over the ith row or column of �k in (3.4).
The matrix Ck(ρ) is defined as

Ck(ρ) =

⎡
⎢⎢⎢⎣

0 c12k . . . c1nkk

c21k 0 . . . c2nkk

...
...

. . .
...

cnk1k cnk2k . . . 0

⎤
⎥⎥⎥⎦ with cijk = ρωijkmik; i �= j.



1336 DAVIES, SCHOFIELD, CORNWALL AND SHEARD

Defining β0k as the fascicle-specific intercept and β1k as a fascicle-specific ef-
fect of distance from edge, the corresponding model for zk is

p(zk|β, ρ) = MVN
(
1nk

β0k + δkβ1k,Qk(ρ)
); k ∈ {1, . . . ,K},

where 1nk
is a nk-vector of ones and we define the collections β0 = (β01, . . . ,

β0K)T, β1 = (β11, . . . , β1K)T, and β = (βT
0,βT

1)
T. The notation MVN(a,B) de-

notes a multivariate normal distribution with mean a and precision matrix B .
The model p(zk|β, ρ) is equivalent to the CAR model described in Pettitt, Weir

and Hart (2002), with a linear model describing the mean. They remark upon sev-
eral appealing properties of the above form of Qk(ρ):

• The denominator terms mik in Ck(ρ) and Mk(ρ) allow ρ to be defined for
all real values on (−∞,+∞). A simpler version of these definitions, used by
Weir and Pettitt (2000) for their analysis of Finnish toad data, involves removal
of the (1 + |ρ|ω∗

ik)
−1 from the Ck(ρ) (i.e., the denominator is set to 1). This

leads to Ck(ρ) = ρ�k and removes the need for Mk(ρ) in (3.5). However, the
covariance matrix is only positive definite on a union of intervals determined by
the eigenvalues of �k ; hence ρ would only be permitted to take on particular
values that correspond to intervals defined by the data observed. Our preference
is to work with Qk(ρ) described above, so that the spatial dependency parameter
ρ is comparable between data sets.

• The determinant |Qk(ρ)| can be computed efficiently, as described in Section 4.
Such strategies were generalised by Jin, Carlin and Banerjee (2005) and allow
for model fitting of fascicles with many fibres.

The joint model for z is given as p(z|β, ρ) = ∏K
k=1 p(zk|β, ρ), due to the condi-

tional independence between fascicles. This can also be written in a “global” form
convenient for describing the fitting algorithms in Section 4 as

(3.7) p(z|β, ρ) = MVN
(
A1β0 + Aδβ1,Q(ρ)

)
,

where A1 and Aδ are the appropriate n × K block diagonal matrices

A1 = diag[1n1, . . . ,1nK
] and Aδ = diag[δ1, . . . , δK ].

The global precision matrix

(3.8) Q(ρ) = M(ρ)−1{
IN − C(ρ)

}; −∞ < ρ < ∞
is found by taking block diagonals of the fascicle-specific matrices:

(3.9)
M(ρ) = diag

[
M1(ρ), . . . ,MK(ρ)

];
C(ρ) = diag

[
C1(ρ), . . . ,CK(ρ)

]
.

These model descriptions make clear that conditional on β and ρ there is no
covariation between fibres of different fascicles. We allow the elements of β to
co-vary as we describe in the next section.
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3.3. Fascicle-level process. It is expected that the fascicle-specific parameters
β0k and β1k will vary spatially across the muscle. As with the fibre-specific model
we allow these parameters to depend on the standardised inverse distance from

fascicle centre to muscle edge, 	k = Dk−D̄
SD

, where Dk is the Euclidean distance
from centre of fascicle k to the edge of the muscle (obtained in the same way
as earlier, now by inversion of the shortest distance from fascicle centroid to the
muscle boundary), and D̄ and SD are the sample mean and standard deviation of
the D1, . . . ,DK . The muscle-wide collection is denoted � = [	1,	2, . . . ,	K ]T.

It is conceivable that the lateral displacement of some fascicles as a by-product
of the immunohistochemistry procedure noted in Section 2.1 will have some effect
on these measurements. For the purposes of the current analysis, we assume any
such effects are negligible, supported in part by the use of the geometric centroid
of each fascicle to calculate the nearest-edge lengths, coupled with the fact the
muscle region is itself approximated by an α-shape.

To account for spatial structure, we define the muscle-wide neighbour network
illustrated on the bottom of Figure 2. As before we find the Delaunay neighbours;
using the geometric centroids of the K α-shapes as the positional reference points,

(3.10) ηk� =
{

1 if fascicle k is a neighbour of �,

0 otherwise,

so that

η =

⎡
⎢⎢⎢⎣

0 η12 . . . η1K

η21 0 . . . η2K

...
...

. . .
...

ηK1 ηK2 . . . 0

⎤
⎥⎥⎥⎦

is the K × K muscle-wide neighbourhood matrix.
We account for the spatial dependence across the muscle through specification

of a K ×K precision matrix R(ξ) that is of the same form as each Qk(ρ) in (3.5).
Specifically, let

(3.11) R(ξ) = L(ξ)−1{
IK − G(ξ)

}; −∞ < ξ < ∞,

where L(ξ) is a diagonal matrix L(ξ) = diag[l1, . . . , lK ] with elements lk = (1 +
|ξ |η∗

k )
−1 with η∗

k = ∑K
�=1 ηk� being the number of fascicle neighbours for fascicle

k. Thus we have

(3.12) Gξ =

⎡
⎢⎢⎢⎣

0 g12 . . . g1K

g21 0 . . . g2K

...
...

. . .
...

gK1 gK2 . . . 0

⎤
⎥⎥⎥⎦ with gk� = ξηk�lk;k �= �.

We now define the K-vector u,

(3.13) p(u|ξ) = MVN
(
0K,R(ξ)

)
,
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where 0K is a K-vector of zeros. These variables contribute to the model for β0
and β1,

(3.14) p(β l|θβ,u) = MVN(αl1K + γl� + νlu, τlIK); l ∈ {0,1},
where αl describes the intercept; γl is the effect on β l of distance from fascicle
centre to muscle edge; νl gives the weightings of spatial variable u on β l , and
τl is the precision of β l . In practice we model in terms of σl = τ−0.5

l , l ∈ {0,1}
so that θβ = (α0, α1, γ0, γ1, ν0, ν1, σ0, σ1)

T is the collection of parameters used to
describe β .

The variable u is a common spatial process underlying both β0 and β1. This
reflects our prior belief that β0k and β1k will be correlated; a fascicle with a large
positive intercept (a high proportion of dark fibres at mean distance from centre) is
unlikely to have a large positive effect of distance. The model for β in (3.14) can
be thought of as factor analysis, where the single factor varies spatially according
to a CAR model. Note that the spatial variables u and the parameters ν0 and ν1
can jointly change sign without affecting the model fit. To avoid sign switching
problems, we postprocess the posterior draws to ensure ν0 > 0. If this involves
changing the sign of ν0, we also reverse the sign of ν1 and u.

Equation (3.14) also highlights the aforementioned links to multivariate spatial
coregionalisation models. Taking (β0k, β1k) to be a bivariate response at each fas-
cicle location, u represents the key ingredient of a shared, spatially correlated field
separately affecting the component-specific processes by way of ν0 and ν1 (cf. v(s)
in equation (7.20) of Banerjee, Carlin and Gelfand (2015)).

Finally, it is prudent to consider the potential for spatial confounding in mixed-
effect spatial regression models, whereby fixed predictors co-vary alongside the
spatial random effect (Hodges and Reich (2010)). In our specification of the
between-fascicle process, we assume any such confounding is negligible given
the single spatial covariate of “distance from muscle centre,” �, is unlikely to be
highly correlated with the Delaunay network defining spatial dependence in the
random effect u.

4. Implementation. We fit the multilevel model described above using
Bayesian methods. Denoting the full collection of parameters as θ = (θT

β, ρ, ξ)T,
the joint posterior is

(4.1) p(z,u,β, θ |y) ∝ p(y|z)p(z|β, ρ)
∏

l∈{0,1}
p(β l|θβ,u)p(u|ξ)p(θ),

where the model terms are defined above and p(θ) is the joint prior distribution.
We assume parameters are independent a priori with

p(σl) = t(0,∞)(0, bσ ,3); p(αl) = N(0, bα); p(γl) = N(0, bγ );
p(νl) = N(0, bν); p(ρ) = N(0, bρ); p(ξ) = N(0, bξ ),
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where l ∈ {0,1}; t(h1,h2)(a, b, c) denotes a truncated t-distribution on the interval
(h1, h2) with centre a, scale b−1 and c degrees of freedom, and N(a, b) denotes
a univariate normal with mean a and precision b. We choose the hyperparame-
ters b(·) so that we have a combination of weakly informative and vague priors as
detailed in Section 2 of Supplement A (Davies et al. (2019)).

It is challenging to efficiently sample from the joint posterior distribution in
(4.1). Separately updating all unknowns in turn leads to a Markov chain with im-
practically poor mixing. There is high posterior correlation between parameters.
The parameters σl , l ∈ {0,1} have extended sojourns near 0, leading to little move-
ment in the corresponding parameters β l . We explored the use of hierarchical cen-
tring approaches, and the problem persisted. Similarly, there is high dependence
between u and ξ . To overcome these problems, we use a scheme where we jointly
update σl and β l , and u and ξ . We sample all other variables separately in turn
from their full conditional densities if of known form, or using a random-walk
Metropolis–Hastings algorithm otherwise. Pilot runs of several thousand iterations
identify suitable values for the tuning parameters required for the Metropolis–
Hastings proposals. An alternative is to consider adaptive tuning methods; see, for
example, Andrieu and Thoms (2008). In what follows we outline the joint updates
along with the full conditional densities for the other variables.

4.1. Joint update of σl and β l . We jointly update σl and β l together using
a Metropolis step. We make use of a known full conditional density for β l in
determining the proposal density J (·|·),

J
(
σ�

l ,β�
l |θ (t)

l

) = J
(
σ�

l |σ (t)
l

)
p

(
β�

l |σ�
l , . . .

)
, l ∈ {0,1},

where p(β�
l |σ�

l , . . .) is the full conditional distribution for β l ,

p(β l|·) = p(z|β, ρ)p(β l|θβ,u)

Z(σl)
= MVN

(
�−1

l ml,�l

)
,

with �0 = AT
1Q(ρ)A1 + τ0IK ,

m0 = AT
1Q(ρ)(z − Aδβ1) + τ0IK(α01K + γ0� + ν0u),

and �1 = AT
δQ(ρ)Aδ + τ1IK ,

m1 = AT
δQ(ρ)(z − A1β0) + τ1IK(α11K + γ1� + ν1u).

We use the notation Z(σl) to make it clear that the normalising constant of this full
conditional distribution depends on σl as well as other parameters not involved in
this joint update. This choice of proposal leads to cancellation in the Metropolis
acceptance probability, r ,

r = Z(σ�
l )p(σ �

l )

Z(σ
(t)
l )p(σ

(t)
l )

J (σ
(t)
l |σ�

l )

J (σ �
l |σ (t)

l )
,
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such that it is a function of σl but not β l . The proposal J (σ �
l |σ (t)

l ) is chosen to be
a truncated normal distribution (truncated at zero) with a location parameter given
by the current value σ

(t)
l .

4.2. Full conditional distribution for latent variable z. The full conditional
distribution for zik is p(zik|·) ∝ p(y|z)p(z|β, ρ). This has a truncated normal dis-
tribution

p(zik|·) =
{

N[0,∞)

(
z̄ik,

(
1 + |ρ|ω∗

ik

))
, yik > 0,

N(−∞,0)

(
z̄ik,

(
1 + |ρ|ω∗

ik

))
, yik ≤ 0,

where

z̄ik = β0k + β1kδik + ρ

1 + |ρ|ω∗
ik

nk∑
j=1

ωijk(zjk − β0k − β1kδjk),

and N(h1,h2)(a, b) is the truncated normal distribution on the interval (h1, h2) with
mean a and precision b.

4.3. Full conditional distribution for spatial parameter ρ. The full condi-
tional distribution for ρ is p(ρ|·) ∝ p(z|β, ρ)p(ρ) which is not of known form.
Evaluating the proportional full conditional distribution presents a computational
challenge as we require the determinant of Q(ρ), the global precision matrix.
However, we can largely avoid this challenge by recognising that we can rewrite
(3.8) in the following way:

Q(ρ) = IN + |ρ|ω∗ − ρ�

=

⎧⎪⎪⎨
⎪⎪⎩

IN − ρ
(
� − ω∗)

, ρ > 0,

IN, ρ = 0,

IN − ρ
(
� + ω∗)

, ρ < 0,

where � is given in (3.4) and ω∗ = diag[ω∗
11, . . . ,ω

∗
n11, . . . . . . ,ω

∗
1K, . . . ,ω∗

nKK ] is
a diagonal matrix of the ω∗

ij values from (3.6) arranged in the natural order corre-
sponding to C(ρ) and M(ρ) in (3.9). The above is equivalent to equation (2.6) in
Pettitt, Weir and Hart (2002), and is important because it allows the determinant
of Q(ρ) to be found for any ρ based on precomputed eigenvalues of the matri-
ces � − ω∗ and � + ω∗. Thus, we avoid the heavy computational burden at each
iteration of the algorithm, allowing for computation in large network settings.

4.4. Joint update of u and ξ . We jointly update ξ and u together using a
Metropolis step as with σl and β l above. The proposal density J (·|·) is

J
(
ξ�,u�|θ (t)

l

) = J
(
ξ�|ξ (t))p(

u�|ξ�, . . .
)
, l ∈ {0,1},
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where p(u�|ξ�, . . .) is the full conditional distribution for u,

p(u|·) = p(β0|θβ,u),p(β1|θβ,u)p(u|ξ)

Z(ξ)
= MVN

(

−1a,


)
with 
 = Rξ + ∑

l∈{0,1} τlν
2
l IK and a = ∑

l∈{0,1} τlνl(β l − αl1K − γl�). The

Metropolis acceptance probability, r , is r = Z(ξ�)p(ξ�)

Z(ξ(t))p(ξ (t))

J (ξ (t)|ξ�)

J (ξ�|ξ (t))
, that is, a func-

tion of ξ but not u. The proposal J (ξ�|ξ (t)) is a normal distribution centred on the
current value ξ (t) and truncated at zero.

4.5. Remaining full conditional distributions. The full conditional distribu-
tions for αl , γl and νl (indexed by l ∈ {0,1}) are

p(αl|·) = N
(
τlψ

−1
αl

(β l − γl� − νlu)T1K,ψαl

)
where ψαl

= τlK + bα;
p(γl|·) = N

(
τlψ

−1
γl

(β l − αl1K − νlu)T�,ψγl

)
where ψγl

= τl�
T� + bγ ;

and

p(νl|·) = N
(
τlψ

−1
νl

(β l − αl1K − γl�)Tu,ψνl

)
where ψνl

= τlu
Tu + bν.

5. Results. We fit the above model to the neck muscle data introduced in
Section 2. Care must be taken with the starting value of z, where the sign of
all components must match the observed binary marks in y. For the inverse cu-
mulative distribution function of the standard normal, �−1, we set z

(0)
ik = β

(0)
0k =

�−1(n−1
k

∑nk

j=1 yjk)∀ i ∈ {1, . . . , nk}; k ∈ {1, . . . ,K}, with any instances of ±∞
replaced accordingly by ±4. We run four parallel Markov chains with varying
starting values. Each chain is run for 220,000 iterations, discarding the first 20,000
as burn-in and retaining every 20th value thereafter to reduce storage requirements.

Fascicle image plots for β0 and β1 showing the posterior expectations are pre-
sented in Figure 3 based on the pooled results of the four chains. We provide a
similar plot showing their posterior standard deviations in Section 3 of Supple-
ment A (Davies et al. (2019)), where we also detail interactive 3-dimensional ver-
sions of Figure 3 (in which a third axis reflects posterior standard deviation); these
are accessible online.

Pooled posterior summaries are provided in Table 1 for all scalar parame-
ters. Plots and other diagnostics we used to assess convergence appear in Sup-
plement A (Davies et al. (2019)), and the reader is provided with the data set
and all necessary R code (R Core Team (2018)) to run the algorithm in Supple-
ment B (Davies et al. (2019)).

The components of β0 describe the relative dark/light count for each fascicle.
There are two distinct spatial pockets of fascicles with a larger proportion of dark
fibres in the left and rightmost extremes of the muscle, though we also note a
middle corridor of “even” and “greater light” ratios. This agrees with a visual
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FIG. 3. Posterior expectations of all components of β0 (top) and β1 (bottom). The colour bands in
each case are centred with white on the corresponding αl posterior mean.

TABLE 1
Posterior summaries of scalar parameters. With the exception of σ0 and σ1, bold entries depict

those parameters whose corresponding credible interval excludes zero

Parameter Post. expectation 95% cred. int.

ρ 0.0013 (−0.0243,0.0276)

α0 0.2300 (0.0336,0.4369)

γ0 0.0635 (0.0071,0.1188)

ν0 1.342 (0.820,2.009)

σ0 (τ−1/2
0 ) 0.0607 (0.0027,0.1479)

α1 0.1764 (0.1215,0.2269)

γ1 0.0134 (−0.0245,0.0508)

ν1 −0.2464 (−0.5221,−0.0219)

σ1 (τ−1/2
1 ) 0.0402 (0.0017,0.1030)

ξ 14.99 (5.24,28.61)
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inspection of the data in Figure 2 and provides evidence of nonuniform fibre type
distributions across the muscle section.

The parameter γ0 describes how the β0k’s are associated with distance from
muscle centre. Its 95% credible interval excludes zero and provides weak evidence
that the relative count of dark fibres increases in fascicles closer to the muscle edge.

Each β1k describes the effect of distance from fascicle centre on the relative
abundance of dark fibres for the kth fascicle. Overall positivity of these compo-
nents suggests a tendency across the muscle of dark fibres within a given fascicle
to become more abundant as we near the boundary of its owning fascicle. That
said, this behaviour appears weaker—or at least harder to detect—in the afore-
mentioned leftmost and rightmost pockets which tend to “own” more dark fibres
to begin with. Elsewhere, as indicated by Figure 3, there is a stronger tendency of
dark fibres to be positioned nearer the boundary for those fascicles with more even
(and greater light) relative counts of the two fibre types. In terms of the statistical
model, this aligns with a conjecture made in Section 3.3. Scientifically, this pro-
vides an interesting example of a previously unquantified phenomenon which has
received little attention in the physiological literature.

Unlike the mean structure of β0, however, the posterior of the slope parameter
γ1 is not readily distinguishable from zero. Thus, while there is evidence the total
amount of dark fibres in a given fascicle increases with fascicle proximity to mus-
cle edge, the results suggest the magnitude of the effect of relative dark-to-light
abundance as we move from centre to edge of a given fascicle is not itself affected
by the position of the fascicle with respect to the edge of the muscle. This offers an
interesting insight into the biological drivers for this process which indicates both
across-muscle and within-muscle factors influencing fibre-type proportionality.

Strong positive spatial correlation is evident for the components within each of
β0 and β1, leading to the aforementioned pockets of similar spatial trends. These
effects are due to the common spatial field u; the dependence parameter of which ξ

exhibits a clear positively centred posterior. The opposite signs of the spatial offset
coefficients ν0 and ν1, accompanied in both instances by posterior credible inter-
vals excluding zero, lead to the rough “inversion” of magnitudes of the (β0k, β1k)

pairs across the muscle.
A final remark concerns the fibre-type spatial dependence parameter ρ. With

an associated interval straddling zero, this suggests that there does not remain any
detectable residual systematic behaviour in the spatial configuration of the binary-
mark fibres. This provides an important point of difference with previous work. In
both Venema (1993) and Davies, Cornwall and Sheard (2013), detection of like-
fibre spatial interaction via such a correlation parameter was the end goal, thereby
merely allowing a researcher to search for evidence against random, independent
dark/light configurations. In the current model, however, this spatial dependence
parameter is a term only intended to capture unexplained spatial structure in the
binary observations following adjustment by β0k and β1k for any given fascicle
k. The inability to detect a nonzero ρ for these data means we have been able to
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explain said spatial structure by the regression of relative dark/light counts with
respect to distance from fascicle centre.

6. Discussion. Using a latent nested Gaussian CAR process we have demon-
strated how one might effectively model dichotomously marked skeletal muscle
fibre configurations. The proposed framework is specifically designed in such a
way that the natural hierarchy of the spatial structure is itself used to inform var-
ious parameters taken to drive the binary patterning, thus providing quantifiable
measures of the inherent spatial relationships, both within and between fascicles,
across an entire muscle.

To illustrate the above, we analysed a cross-section of a human neck muscle,
offering a novel impression of how fast- and slow-twitch fibres are arranged in
their respective fascicles. Incorporation of deterministic predictors of the inherent
spatial patterning, namely distance from fascicle and muscle centre, showed that
we could partially explain the configuration at hand; flagged in particular by the
corresponding lack of detection of residual spatial dependence at the fibre level.
As far as we are aware this relationship has not been demonstrated elsewhere by
any targeted statistical model and thus forms an important conclusion for wider
consideration by the physiological research community.

From a statistical standpoint, the flexibility of the Gaussian CAR framework
allows for very natural extensions. Our next step is to consider such processes for
multiple muscles simultaneously, either by examining samples taken from multiple
individuals, from multiple locations within a given individual or indeed both. For
example, to answer age- or disease-related questions, we would envisage collecting
such muscle data for multiple individuals by first identifying appropriate strata.
The model could then be extended to incorporate a third “person” level, thereby
allowing us to factor in the disease status or age of the muscle samples and allow
joint estimation of relevant parameters in the presence of all potentially important
factors. Advancements to fitting strategies for Bayesian probit regression models
(Durante (2018)) offer promising options for improving sampling algorithms in
these more complicated settings.

The class of statistical model discussed here can be applied to similar data sets
in the physical and biological sciences. Studies in spatial ecology, for example,
often deal with data that are hierarchically clustered in space (see, e.g., Takashina
et al. (2018)). Nesting spatially dependent CAR processes would thus be useful
for describing both local and global fluctuations in relevant characteristics of plant
or animal populations. For similar physiological data sets as studied in this work,
test-based tools (such as those we term “count statistics” in Davies, Cornwall and
Sheard (2013)) are popular in their simplicity and, as such, their independent de-
velopment continues today (for a recent example see Kelly et al. (2018)). However,
such techniques applied in isolation lack sufficient flexibility to provide formal in-
ferences regarding joint, interacting and/or latent unobserved drivers of systematic
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spatial behaviours. Indeed, sophisticated hierarchical models offer a rich alterna-
tive for applications in the wider biological research arena where relatively simple
summary statistics and test-based methods are employed (see an example and com-
mentary in Davies, Sheard and Cornwall (2016), Makino, Funayama and Ikegaya
(2016)). Investigations that marry targeted statistical modelling solutions with the
pursuit of novel scientific hypotheses have the potential to provide unique insights
into these kinds of complex biological processes.
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SUPPLEMENTARY MATERIAL

Geometry, Diagnostics, and β Posterior Plots (DOI: 10.1214/18-
AOAS1214SUPPA; .pdf). A PDF document providing additional examples of the
geometrical treatment of the muscle data, various diagnostic plots of the MCMC,
and additional graphics related to the sampled posteriors of β .

R Code and Data Files (DOI: 10.1214/18-AOAS1214SUPPB; .zip). A .zip
archive containing R code and data necessary to repeat the analysis. Readers
should open muscle.R and follow the instructions therein.
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