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This article focuses on the problem of studying shared- and individual-
specific structure in replicated networks or graph-valued data. In particular,
the observed data consist of n graphs, Gi, i = 1, . . . , n, with each graph con-
sisting of a collection of edges between V nodes. In brain connectomics,
the graph for an individual corresponds to a set of interconnections among
brain regions. Such data can be organized as a V × V binary adjacency ma-
trix Ai for each i, with ones indicating an edge between a pair of nodes and
zeros indicating no edge. When nodes have a shared meaning across repli-
cates i = 1, . . . , n, it becomes of substantial interest to study similarities and
differences in the adjacency matrices. To address this problem, we propose
a method to estimate a common structure and low-dimensional individual-
specific deviations from replicated networks. The proposed Multiple GRAph
Factorization (M-GRAF) model relies on a logistic regression mapping com-
bined with a hierarchical eigenvalue decomposition. We develop an efficient
algorithm for estimation and study basic properties of our approach. Simula-
tion studies show excellent operating characteristics and we apply the method
to human brain connectomics data.

1. Introduction. Binary undirected networks, encoding the presence or ab-
sence of connections between pairs of nodes, have wide applications in biology
and social science [Girvan and Newman (2002)]. While most available procedures
focus on modeling a single network, we consider the case where a network over
a common set of nodes is measured for each individual under study, leading to
multiple network observations. One particular example is structural or functional
brain networks, with the brain parcellated into a fixed number of regions. Multi-
modal magnetic resonance imaging (MRI) scans, together with advanced image
processing tools, can give us a connectivity pattern of the brain represented by an
undirected binary network [Zhang et al. (2018a)]. Such networks from multiple
subjects typically share a common structure while exhibiting their own features.

In this context, it becomes of particular interest to study similarities and dif-
ferences in human brain networks. Shared connectivity patterns provide important
insights into evolutionarily-conserved structures in the human brain. For example,
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pairs of brain regions that have very high or very low probabilities of connection
for essentially all individuals. Individual-specific structure of the brain network
may help to predict and add to mechanistic understanding of causes of variation in
human cognitive traits and behaviors. Lock et al. (2013) proposed a useful tool to
separate joint and individual variation for multiple datasets associated with a com-
mon set of objects. However, their method was not designed for network-valued
data. There is a strong need for new statistical methods that identify and separate
the common and individual structure for multiple replicated networks.

The focus of this article is on extracting common and low-dimensional
individual-specific structure from replicated binary networks. In structural brain
connectivity applications, providing the main motivation of this article, the
individual-specific components reflect distinct characteristics of that individual’s
brain structure which may relate to her traits. We focus on data from the Human
Connectome Project (HCP) [Van Essen et al. (2012)] (www.humanconnectome
project.org/), which contains rich brain imaging data along with a range of cogni-
tive, motor, sensory and emotional traits [Barch et al. (2013)]. Figure 1 displays
two binary structural brain networks we extracted from two HCP subjects and the
difference of their adjacency matrices. The left panel shows the network for an
individual with a low visuospatial processing score, while the middle panel shows
one with a high score. Potentially, the individual difference, for example, the cross-
hemisphere connectivity, may predict a range of traits, such as cognitive, motor,
and sensory abilities.

There is a large literature on statistical modeling of binary networks [Gold-
enberg et al. (2010)]. For example, exponential family random graph models
(ERGMs) assume the probability of observing a graph is determined by a vec-
tor of graph statistics, such as the total number of edges, the degrees of the vertices
and so on. However, since the mappings from graphs to features are often many to
one mappings, one drawback of the ERGM is that simply relying on some sum-
mary features of a graph can not represent complex structures of networks. Latent
space models [Hoff, Raftery and Handcock (2002)], however, are more flexible at

FIG. 1. Adjacency matrices of two structural brain networks in the HCP data (left and middle) and
a heatmap of their differences (right).
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characterizing the distribution of graphs because they can effectively model each
edge probability, while still maintaining rich types of dependence structure in the
graph.

A variety of latent space models have been developed [Durante, Dunson and Vo-
gelstein (2017), Hoff (2008), Tang et al. (2015)], which are appealing in defining
rich types of network structure while achieving dimensionality reduction by em-
bedding each node in a low-dimensional latent space. Edges are typically assumed
to be conditionally independent given the latent positions of nodes. The edge prob-
abilities are described as functions of distance or (weighted) inner products of
node-specific latent vectors with a logit or probit link. Bayesian inference is often
employed, but substantial computational problems can arise for large multiple-
network data.

Considering a single network, efficient algorithms have been developed for esti-
mating its low-dimensional latent structure. Sussman et al. (2012) estimate nodes’
latent positions from a low rank approximation to the adjacency matrix for a ran-
dom dot product graph (RDPG) with identity link. Though Sussman et al. (2012)
proved the consistency of assigning nodes to blocks by clustering over their latent
vectors, the dot product of the estimated latent positions may not be valid proba-
bilities. O’Connor, Médard and Feizi (2015) proposed to do node clustering on an
RDPG with a logistic link to address this problem. They provided an efficient algo-
rithm for maximum likelihood inference of nodes’ latent positions which contains
a spectral decomposition on the mean-centered adjacency matrix and a logistic
regression with positive constraint on the coefficients.

There is a literature on analysis methods for data consisting of a set of networks
that share a common vertex set. For multi-layer or multi-view graphs, vertices cor-
respond to entities and different graph layers capture different types of relation-
ships among the entities [Dong et al. (2014)]. Linked Matrix Factorization (LMF)
[Tang, Lu and Dhillon (2009)] approximates each graph by a graph-specific fac-
tor and a factor matrix common to all graphs. The goal is to cluster vertices into
communities, and LMF focuses on merging the information from multiple graphs
instead of characterizing unique structure for each graph. Other relevant methods
include principal component analysis (PCA) and tensor decomposition [Kolda and
Bader (2009), Tucker (1966)]. Usual PCA requires flattening of the data, which de-
stroys the network structure, while tensor methods that concatenate the adjacency
matrices together might be more appropriate [Zhang et al. (2018b)]. None of these
approaches directly addresses our problem of interest.

We develop a promising framework for studying the common and low-
dimensional individual structure of multiple binary networks with similar patterns.
Our approach provides a data generating process for each graph, which shows how
the low-dimensional structure drives the high-dimensional networks. Specifically,
the logit of the edge-probability matrix for each network is decomposed into the
sum of a common term and a low-rank individual-specific deviation. Based on the
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idea of an unrestricted eigen-decomposition (no positive constraints on eigenval-
ues), our model is able to capture complex network patterns, such as hubs [Hoff
(2008)], better than latent distance or latent inner-product models. A novel algo-
rithm inspired by O’Connor, Médard and Feizi (2015) is proposed for efficiently
estimating the model.

The rest of the paper is organized as follows. The model and algorithm together
with two variants are proposed in Section 2. Section 3 contains simulation studies
demonstrating the computational performance of our algorithm and basic proper-
ties of parameter estimates. Applications to scan-rescan brain network data and the
HCP data are reported in Section 4 and Section 5 concludes.

2. Methodology. We focus on undirected binary networks with a common
node set and no self-loops. Let A1, . . . ,An be the corresponding adjacency matri-
ces of these networks. Each Ai is a V × V symmetric matrix with Ai[vu] = 1 if
node u and v are connected in network i and Ai[vu] = 0 otherwise.

2.1. M-GRAF model. We take the conditional independence approach of la-
tent space models by assuming for each pair of nodes (u, v) in network Ai , an edge
is drawn independently from a Bernoulli distribution given the corresponding edge
probability:

(2.1) Ai[uv] | �i[uv]
ind∼ Bernoulli(�i[uv]), u > v;u, v ∈ {1,2, . . . , V },

where �i denotes the V × V symmetric edge probability matrix corresponding to
network i, i = 1, . . . , n.

In our exploratory analyses of brain network data, we observe that brain struc-
tural networks generally share some common connectivity patterns such as hemi-
sphere modularity, as shown in Figure 2. In addition, the deviation of individual
networks from the average tends to be much sparser, with many entries in the
deviation matrix |Ai − Ā| of small magnitude (shown in the right most panel of
Figure 2). We expect that these deviations can be accurately approximated as low
rank.

Therefore, we assume the logit of each probability matrix �i can be decom-
posed into two parts: a symmetric matrix Z ∈ R

V ×V shared by all networks repre-
senting the baseline log odds for each connection and a symmetric low rank matrix
Di ∈R

V ×V representing the deviation of unit i from the baseline:

(2.2) logit(�i) = Z + Di, i = 1, . . . , n.

Suppose Di has rank K , typically with K � V . Taking an eigenvalue decomposi-
tion of Di ,

(2.3) Di = Qi�iQ
�
i ,

where Qi ∈ R
V ×K satisfies Q�

i Qi = IK and �i = diag(λi1, . . . , λiK) is a K × K

diagonal matrix.



COMMON AND INDIVIDUAL STRUCTURE OF BRAIN NETWORKS 89

FIG. 2. Left: the adjacency matrix Ai of a subject’s structural brain network in the HCP data.
Middle: average of the adjacency matrices Ā = ∑n

i=1 Ai/n. Right: absolute value of (Ai − Ā).

Equations (2.2)–(2.3) imply that the individual elements of �i can be expressed
as

logit(�i[uv]) = Zuv +
K∑

k=1

λikQi[uk]Qi[vk],

for u �= v, u, v ∈ {1, . . . , V }, i = 1, . . . , n.

(2.4)

Zuv in (2.4) represents the baseline log odds for the node pair u, v across all net-
works. Interpretation of the rest of (2.4) is similar to that of the eigenmodel in Hoff
(2008) where the relationship between two nodes is represented as a weighted dot
product of node-specific latent vectors. For each network i, Qi[uk] can be inter-
preted as node u’s value of some unobserved characteristic k or latent coordinate
along axis k. λik is the scaling parameter of latent axis k. The magnitude of λik

controls the impact of axis k in determining the edge probabilities of network i,
while the sign of λik determines whether similar values of Qi[uk] and Qi[vk] would
contribute positively or negatively to the connection probability between node u

and v.
This model based on the idea of eigenvalue decomposition is flexible at char-

acterizing a wide array of patterns in network data [Hoff (2008)], including tran-
sitivity and hubs. Transitivity describes the phenomenon that a friend of a friend
is a friend, which is well represented by a latent distance model or RDPG but is
poorly characterized by a stochastic block model. A hub refers to a center node
that connects to many other nodes while these nodes do not connect to each other.
Such structure could be described by a stochastic block model with a large num-
ber of groups. However, latent distance models or RDPGs often perform poorly or
require high dimension of latent characteristics to capture the pattern of hubs. As
Hoff (2008) pointed out, the flexibility of the eigenmodel is “due to the fact that
it provides an unrestricted low rank approximation to the adjacency matrix” and
is therefore able to represent more complicated patterns than the other three latent
space models.
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2.2. Inference of Q1, . . . ,Qn. For estimation of the model (2.1)–(2.3), we first
simplify the joint log-likelihood of the n network observations A1, . . . ,An as

logL(A1, . . . ,An | Z,D1, . . . ,Dn)

=
n∑

i=1

V∑
u=1

∑
v<u

[
Ai[uv] log(�i[uv]) + (1 − Ai[uv]) log(1 − �i[uv])

]

=
n∑

i=1

V∑
u=1

∑
v<u

[
Ai[uv] log

(
�i[uv]

1 − �i[uv]

)
+ log(1 − �i[uv])

]

=
n∑

i=1

V∑
u=1

∑
v<u

[
Ai[uv](Zuv + Di[uv]) + log(1 − �i[uv])

]
.

(2.5)

PROPOSITION 2.1. Assuming that the common structure Z is given,

arg max
D1,...,Dn

logL(A1, . . . ,An | Z,D1, . . . ,Dn)

= arg max
D1,...,Dn

n∑
i=1

1

2
tr

([
Ai − π(Z)

]
Di

)
,

where tr(·) is the matrix trace, π(·) is the logistic function and π(Z) denotes ap-
plying π(·) to each entry in matrix Z. The diagonal elements of π(Z) and Ai are
set to 0.

The proof of Proposition 2.1 can be found in Appendix A.1. From the form of
the joint log-likelihood (2.5), it is clear the Dis can be estimated independently for
i = 1, . . . , n conditionally on Z. According to Proposition 2.1, tr([Ai − π(Z)]Di)

is a good surrogate function of the log-likelihood logL(Ai | Z,Di), which is easier
to maximize since it is linear in Di . Hence given Z and recalling the low rank
assumption on Di , we solve the following optimization (2.6) to estimate Di :

max
Di

tr
([

Ai − π(Z)
]
Di

)
s.t. rank(Di) = K.

(2.6)

Plugging in the eigen-decomposition (2.3) of Di into the target function of (2.6),
we have

tr
([

Ai − π(Z)
]
Di

) = tr
([

Ai − π(Z)
]
Qi�iQ

�
i

)
= tr

(
Q�

i

[
Ai − π(Z)

]
Qi�i

)
=

K∑
k=1

λikQ
�
i[·k]

[
Ai − π(Z)

]
Qi[·k],
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where Qi[·k] denotes the kth column of Qi . Then we obtain the following equiva-
lent optimization to (2.6):

max
Qi,�i

K∑
k=1

λikQ
�
i[·k]

[
Ai − π(Z)

]
Qi[·k]

s.t. Q�
i Qi = IK, Qi ∈ R

V ×K.

(2.7)

Suppose the diagonal entries of �i are sorted decreasingly so that λi1 ≥ · · · ≥
λik > 0 > λi,k+1 ≥ · · · ≥ λiK . Then the optimal Qi in (2.7) can be solved accord-
ing to the following Proposition 2.2.

PROPOSITION 2.2. Let B be a V × V symmetric real matrix. Suppose the
eigenvalues of B are σ1(B) ≥ · · · ≥ σV (B) and the corresponding orthonormal
eigenvectors are q1, . . . ,qV . For any k ∈ {1, . . . , V }, given k positive real numbers
c1 ≥ · · · ≥ ck > 0, and for any orthonormal set {u1, . . . ,uk} in R

V , one has

(2.8) max
u1,...,uk

k∑
j=1

cju
�
j Buj = c1σ1(B) + · · · + ckσk(B)

and

(2.9) min
u1,...,uk

k∑
j=1

cju
�
j Buj = c1σV (B) + · · · + ckσV −k+1(B).

Therefore an optimal solution to (2.8) is {q1, . . . ,qk} and an optimal solution to
(2.9) is {qV , . . . ,qV −k+1}.

The proof is in Appendix A.2. Let q
(i)
1 , . . . ,q

(i)
k be the first k eigenvectors of

Ai − π(Z) corresponding to the largest eigenvalues, and q
(i)
V −K+k+1, . . . ,q

(i)
V the

last (K − k) eigenvectors of Ai − π(Z) corresponding to the smallest eigen-
values. Then according to Proposition 2.2, an optimal solution Qi to (2.7) is
Qi = (q

(i)
1 , . . . ,q

(i)
k ,q

(i)
V −K+k+1, . . . ,q

(i)
V ).

2.3. Logistic regression for Z and {λik}. Once {Qi : i = 1, . . . , n} is esti-
mated, it remains only to estimate the parameters {λik : k = 1 . . . ,K; i = 1 . . . , n}
and Z. Note that λik’s and entries of Z are linear in the logistic link function
(2.4). Therefore the MLE of {λik} and Z given {Qi} can be solved by logistic
regression of the lower triangular entries of {Ai : i = 1, . . . , n} on the correspond-
ing entries of {Qi[·k]Q�

i[·k] : k = 1, . . . ,K; i = 1, . . . , n}. Let L(·) be a function
mapping the lower triangular entries of a V × V matrix into a V (V − 1)/2 × 1
long vector, let π i = L(�(i)) = (πi1, . . . , πiL)�, where L = V (V − 1)/2, let
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z = L(Z) = (z1, . . . , zL)�, and let Mi be a L × K matrix with each column being
Mi[·k] = L(Qi[·k]Q�

i[·k]) for k = 1, . . . ,K . Then (2.4) can be written as

(2.10) logit(πil) = zl +
K∑

k=1

λikMi[lk], l = 1, . . . ,L; i = 1, . . . , n.

However, as K increases, overfitting could cause a serious separation issue in
the logistic regression (2.10), where the binary outcomes can be almost perfectly
predicted by a linear combination of predictors. The separation issue is well known
to cause nonidentifiability of logistic regression coefficients with the MLE being
±∞. A solution to this problem is to place a penalty or prior on the coefficients.
Penalized likelihood estimation proposed by Firth (1993) is equivalent to the use of
Jeffreys invariant prior. The Newton–Raphson algorithm by Heinze (2006) based
on Firth’s method was very slow even for a small synthetic dataset in our simula-
tion. Gelman et al. (2008) propose independent Cauchy priors with center 0 and
scale 2.5 for each of the logistic regression coefficients as a weakly informative
default. However, such Cauchy priors have very heavy tails and often do not have
good performance in sparse data settings with separation issues in our experience.
Hence, we instead recommend the following weakly informative Gaussian prior
distributions:

Zuv ∼ N
(
0,102/γ

)
, u > v, u, v ∈ {1, . . . , V },(2.11)

λik ∼ N

(
0,

2.52

γ · (2 · sdik)2

)
, k = 1, . . .K; i = 1, . . . , n,(2.12)

where γ is a prior precision factor, sdik is the standard deviation (sd) of Mi[·k],
and the factor 1/(2 · sdik)

2 in (2.12) is equivalent to standardizing the predictors
to have sd of 0.5 as suggested by Gelman et al. (2008).

The Gaussian prior is equivalent to L2 regularization or a ridge penalty for gen-
eralized linear models. Hence, we could compute maximum-a-posteriori (MAP)
estimates for Z and {λik} with the glmnet function in R. The algorithm imple-
mented in glmnet uses cyclical coordinate descent [Hastie and Tibshirani (1990)]
and can handle large problems efficiently in our experience. γ is selected through
cross validation.

2.4. CISE algorithm. Based on the derivations above, we develop a CISE
(common and individual structure explained) algorithm for estimating the M-
GRAF model (2.1)–(2.3). CISE is essentially a block coordinate descent algorithm
and Algorithm 1 presents the details.

2.5. Distance-based classification of networks. In many applications, in ad-
dition to the network variable Ai there may be a class label li ∈ {1,2, . . . ,m} as-
sociated with each subject i in the dataset, such as high IQ or low IQ, healthy or
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Algorithm 1: Common and individual structure explained (CISE) for multi-
ple binary networks

Input: Adjacency matrices A1, . . . ,An of size V × V , low rank K ,
tolerance ε ∈ R+.

Output: Estimates of {Qi : i = 1, . . . , n}, Z, and
{λik : k = 1, . . . ,K; i = 1, . . . , n}.

1 Initialize π̂(Z) = ∑n
i=1 Ai/n ;

2 Initialize each Q̂i to be the K eigenvectors of Ai − π̂ (Z) corresponding to
the largest eigenvalues in magnitude.

3 do
4 (I) Perform L2-penalized logistic regression (2.10)–(2.12) to obtain the

MAP estimates of {Zuv} and {λik}. Time complexity of this step is
O(nV 2K), according to Minka (2003).

5 (II) For each i, let ki be the number of positive values in λi,1:K ;

6 Compute the first ki eigenvectors of Ai − π(Z), q
(i)
1 , . . . ,q

(i)
ki

, and
the last

7 (K − ki) eigenvectors, q
(i)
V −K+ki+1, . . . ,q

(i)
V (with sorted

eigenvalues).
8 Let Q̂i = (q

(i)
1 , . . . ,q

(i)
ki

,q
(i)
V −K+ki+1, . . . ,q

(i)
V ). Time complexity of

this
9 partial eigen-decomposition is O(V 2K) or less [Woolfe et al.

(2008)].
10 while percent change of joint log-likelihood (2.5) ≥ ε;

with Alzheimer’s disease. People may want to predict the class membership for a
new unlabeled subject based on her brain connectivity. After estimating the low-
rank components {Qi,�i}, representing individual-specific features of a subject’s
network data, classification can proceed via a simple distance-based procedure.
We define the following distance measure between subject i and j , which avoids
misalignment and rotation issues of eigenvectors across subjects:

d(i, j) := ‖Di − Dj‖F

= ∥∥Qi�iQ
�
i − Qj�jQ

�
j

∥∥
F ,

where ‖ · ‖F denotes the Frobenius norm. Since Qi and Qj lie on the Stiefel
manifold SK,V = {X ∈ R

V ×K : X�X = IK}, we can further simplify this distance
metric as

d2(i, j) = tr
[(

Qi�iQ
�
i − Qj�jQ

�
j

)�(
Qi�iQ

�
i − Qj�jQ

�
j

)]
= tr

(
�2

i

) + tr
(
�2

j

) − 2 tr
(
�iQ

�
i Qj�jQ

�
j Qi

)
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so that we only need to compute traces of several small K ×K matrices instead of
the large V × V matrices. For a new unlabeled subject i	, the proximity measure
between i	 and a class c is defined as the average distance from i	 to all the subjects
in the class c. Subject i	 is then allocated to the class with the minimum proximity.

2.6. Variants. The model described in Section 2.1 is very flexible, since for
each subject, we have {Qi,�i} to represent its individual structure. This model can
be modified to further reduce the number of parameters in two different settings so
as to accommodate different degrees of heterogeneity in the data.

2.6.1. Variant 1: Di = Qi�Q�
i . In this case, �i’s are assumed to be the same

over all networks so that the number of unknown coefficients in {�i} declines from
nK to K . This model implies that the scaling parameters controlling the impacts of
the latent axes are equal for all networks (as discussed in Section 2.1). In this case,
the estimation of Qi	 for a new network i	 becomes quite efficient once Z and �

have been estimated from the training set of networks. Suppose the diagonal entries
of �̂ are sorted decreasingly: λ̂1 ≥ · · · ≥ λ̂k > 0 > λ̂k+1 ≥ · · · ≥ λ̂K , Q̂i	 therefore
consists of the first k and the last (K − k) eigenvectors of Ai	 −π(Ẑ). This variant
provides competitive goodness-of-fit to the brain network data compared with the
more flexible model Di = Qi�iQ

�
i as shown in the applications.

Only a small modification to Algorithm 1 is needed for estimation of �. Again
we choose a weakly informative prior for λk’s:

(2.13) λk ∼ N

(
0,

2.52

γ · (2 · sdk)2

)
, k = 1, . . . ,K,

where sdk is the standard deviation of (M�
i[·k], . . . ,M�

n[·k])�. As in (2.12), the fac-
tor 1/(2 · sdk)

2 in (2.13) is equivalent to standardizing the predictor to have sd of
0.5; the numerator 2.5 is the suggested scale of the Cauchy prior by Gelman et al.
(2008); γ adds flexibility to the shrinkage of this prior, which is often tuned by
cross validation in practice. Then the MAP estimates for Z and � can be obtained
via a L2-penalized logistic regression.

2.6.2. Variant 2: Di = Q�iQ
�. Alternatively, we might do a joint embedding

by restricting Qi’s to be the same. Then the individual structure of each network is
represented by a linear combination of K common rank-one matrices and a K × 1
loading vector λi,1:K , which greatly reduces dimensionality. In this joint embed-
ding setting, we could still follow an iterative algorithm to do inference on the
parameters. Z and {�i : i = 1, . . . , n} can be estimated from a logistic regression
with ridge penalty as discussed in Section 2.3 with Mi replaced by M = L(QQ�).
The challenge lies in estimating Q given Z and {�i}.
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Similar to the previous cases, given Z and {�i}, Q can be estimated from the
following optimization

max
Q∈RV ×K

n∑
i=1

tr
([

Ai − π(Z)
]
Di

)
s.t. Di = Q�iQ

�,

Q�Q = IK.

(2.14)

Plugging in Di = Q�iQ
� into the target function of (2.14), we have

n∑
i=1

tr
([

Ai − π(Z)
]
Di

)

=
n∑

i=1

tr
([

Ai − π(Z)
]
Q�iQ

�)

=
n∑

i=1

tr
(
Q�[

Ai − π(Z)
]
Q�i

)

=
n∑

i=1

K∑
k=1

λikq
�
k

[
Ai − π(Z)

]
qk

=
K∑

k=1

q�
k

{
n∑

i=1

λik

[
Ai − π(Z)

]}
qk,

where qk is the kth column of Q. Define Wk := ∑n
i=1 λik[Ai − π(Z)], k =

1, . . . ,K . Then the optimization (2.14) can be written as

max
q1,...,qK

K∑
k=1

q�
k Wkqk

s.t. q�
k qk = 1, q�

k qj = 0 (k �= j).

(2.15)

Let evec1(W) denote the first eigenvector (unit length) of W corresponding to
the largest eigenvalue. If evec1(W1), . . . , evec1(WK) are close to K orthonormal
vectors, we will obtain a global maxima for (2.15), otherwise, we can only get a
local maxima due to the fact that the optimization is non-convex and there is no
closed form solution available. A greedy algorithm is developed to solve (2.15),
and the details are presented in Appendix A.3.

3. Simulation studies. In this section, we conduct a number of simulation
experiments to evaluate the efficiency of CISE algorithm. We also assess the per-
formance of M-GRAF model in inference on the common and individual-specific
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FIG. 3. Average computation time (in seconds) per iteration of CISE (Algorithm 1) for 30 runs
versus latent dimension K (left), number of networks n (middle), and number of nodes V (right). All
the numerical experiments are conducted in R (version 3.3.1).

components of variability in synthetic networks. CISE algorithm is implemented
in both R and Matlab and all the numerical experiments are conducted in a ma-
chine with 8 Intel Core i7 3.4 GHz processor and 16 GB of RAM. The Matlab and
R codes are available in the Supplementary Material [Wang, Zhang and Dunson
(2019)]. The algorithm is also implemented in the R package CISE available on
CRAN.

3.1. Computational performance. Each iteration of CISE includes two steps:
(1) L2-penalized logistic regression and (2) n partial eigenvalue decompositions
of V ×V matrices. We simulated a sequence of Erdös–Rényi graphs (each edge is
present with probability 0.5) for different numbers of nodes and then assess how
the execution time increases with the problem size. Figure 3 displays the average
computation time per iteration of CISE algorithm (in R) as a function of the latent
dimension K , the number of networks n, and the number of nodes V . We can see
that for large problem size with n = 800, V = 100, and K = 10, each iteration of
CISE on average takes less than 20 seconds; with V = 500, n = 100, and K = 5,
the average running time is around 25 seconds. The runtime of each CISE iteration
in Matlab is similar to that in R though a bit longer for small problem size. From
Figure 3, it is clearly seen that CISE exhibits a linear order with K and n, and a
quadratic order with V , that is, O(V 2nK), which is the same as our theoretical
analysis in Algorithm 1.

CISE is a block coordinate descent algorithm, and is guaranteed to converge
to a (local) mode. In our experience with simulated and real data, CISE generally
converges very fast with a good initialization as specified in Algorithm 1: it usually
takes less than five steps before the relative change in the joint log-likelihood be-
comes less than 1% even for very large problem size. Figure 4 shows how the joint
log-likelihood (2.5) evolves over iterations under different problem sizes. CISE is
much more efficient than the Gibbs sampler in Durante, Dunson and Vogelstein
(2017) which conducts Bayesian inference on a related model to M-GRAF but
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FIG. 4. CISE algorithm: joint log-likelihood over iterations under different values of n, V , and K .

could take hours or days to run for the same problem size. In practice when deal-
ing with real brain network data, we suggest setting ε = 0.01 in Algorithm 1 based
on our experiments.

3.2. Inference on common and individual structure. The goal in this section
is to assess the performance of our proposed method in terms of inference on the
shared versus individual-specific components of variability in replicated networks.
To mimic the real brain network data, we first estimate Z and {Di} under K = 3
from about 800 68 × 68 structural brain networks extracted from HCP data. Then
the networks are simulated from the M-GRAF model based on the estimated Ẑ

and {D̂i}.
We conduct a sequence of numerical experiments to demonstrate properties

of the estimated parameters in the M-GRAF model as the number of networks
grows. The true values of Z and {Di} are denoted as Z0 and {Di0} where each Di0

has rank K = 3. We generate different numbers n (n = 50,100,200,400,800) of
68 × 68 adjacency matrices from the M-GRAF model based on Z0 and randomly
selected Di0’s. At each value of n, we run CISE algorithm with K = 3 to obtain
the estimated parameters Ẑ and {D̂i}. Element-wise differences between the lower
triangular entries of Ẑ and Z0 and the counterpart between D̂i and Di0 for 20 ran-
domly selected networks are recorded. The procedure described above is repeated
50 times where each time we randomly permute 10% of the entries in Z0. Figure 5
displays boxplots of the pooled differences between estimated parameters and their
true values under each n across 50 simulations. Based on the plot, the differences
between Ẑ and Z0 seem to converge to 0 as n increases. We also notice that the
differences between D̂i and Di0 are centered around 0 and stable across n, which
is as expected since the number of parameters in {Di} increases with n. Figure 6
displays the estimated Ẑ and D̂i’s versus their corresponding true values from one
experiment under n = 800.
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FIG. 5. Box plots of pooled differences across 50 simulations between L(Ẑ) and L(Z0) (left) and
L(D̂i) − L(Di0) for 20 randomly selected networks (right) under each number of networks n. The
networks are generated from M-GRAF model with K = 3.

3.3. Selection of the dimensionality K . In the above simulation experiments
of this section, we assume the dimensionality K is known and simply set K equal
to its true value. But in practice, we face a model selection problem.

In the scenario that we have some extra categorical variable in the dataset and
the goal is to do prediction, we can use cross validation to choose K as illustrated
in Section 4. Otherwise we recommend the classical “Elbow” method to determine
K , which requires first running CISE algorithm for a sequence of K’s and plotting
the joint log-likelihood (2.5) at convergence versus dimension K . Then the opti-
mal K is determined to be the bend point where the objective function starts to
increases slowly as shown in Figure 7. The plot implies that the bend point is at
K = 3 for different numbers n of networks, which coincides with the true dimen-
sion in our data generating process. Based on our study, this approach outperforms
AIC or BIC particularly when n is large.

FIG. 6. Level plots for estimated parameters (lower triangular) versus their true values (upper
triangular) with n = 800 and K = 3. Left: Ẑ versus Z0; Middle and Right: D̂i versus the true Di0
for two networks, where the 373th network (middle) has the lowest network density and the 185th
network (right) has the highest network density in the synthetic data.
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FIG. 7. Mean joint log-likelihood at convergence of CISE algorithm with their 95% confidence
intervals across 50 simulations versus dimension K under different numbers of replicated networks.
The networks are simulated from M-GRAF model with K = 3 as described in Section 3.2.

4. Applications to structural brain networks. In this section, we apply M-
GRAF to two real datasets involving 256 HCP subjects: (1) HCP scan-rescan
dataset and (2) a subset of HCP 1, 200 subjects dataset. Each subject is prepro-
cessed using a state-of-the-art dMRI preprocessing pipeline [Zhang et al. (2018a)]
to extract 68 × 68 binary structural networks based on the Desikan parcellation
atlas [Desikan et al. (2006)]. Certainly, even state-of-the-art tractography is sub-
ject to measurement errors, but ground truth measurements on actual neurofibers
are unavailable given current technology. Hence, there will be two components of
variability in the measured brain networks, one attributed to systematic variability
across subjects in their brain connection structure, and one due to measurement
errors. Our model can accomodate these two components of variability, with the
low-rank assumption on individual deviation not only capturing the main variation
of each graph but also serving as a denoising procedure.

In addition to the network data, we also extract a cognitive trait, measuring the
subject’s visuospatial processing ability, to study the relationship between brain
connectivity and this cognitive score.

4.1. Scan-rescan brain network data. In this application, we compare the per-
formance of CISE (Algorithm 1) with several other low-rank approximation meth-
ods on the scan-rescan brain network data. The data were collected for 44 healthy
subjects under a scan-rescan session, and therefore two 68 × 68 binary adjacency
matrices are available for each subject for a total of n = 88 brain networks. Two
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FIG. 8. Paired adjacency matrices for two subjects in the HCP scan-rescan data.

examples of the scan-rescan networks extracted for two subjects are shown in Fig-
ure 8. It is easy to observe that differences between scan-rescan adjacency matrices
for the same subject are much smaller than those between the adjacency matrices
for different subjects

These scan-rescan data provide an appealing setting for studying how discrim-
inative the latent structure can be in identification of subjects. The idea is to first
learn a low-rank representation for each brain network and then check whether the
pairs of networks having the closest low-rank representations correspond to the
same subjects. Specifically, we use the distance measure d(i, j) between scan i

and j as introduced in Section 2.5 and then conduct leave-one-out cross validation
(LOOCV): for a test subject i	, find j	 = arg minj �=i	 d(i	, j) and check if i	 and
j	 correspond to the same person. Similarly, for the model where Di = Qi�Q�

i ,
the pairwise distance is defined as

d2(i, j) = ∥∥Qi�Q�
i − Qj�Q�

j

∥∥2
F

= 2 tr
(
�2) − 2 tr

(
�Q�

i Qj�Q�
j Qi

)
.

Another variant of our model Di = Q�iQ
� does not provide good fit to the data

and thus we do not display the results below.
We compare the performance of CISE with some popular matrix and tensor

decompositions on multiple network data as below. For a fair comparison, we ap-
ply these low-rank approximation methods to the demeaned adjacency matrices
{Ai − Ā : i = 1, . . . , n} where Ā = ∑

Ai/n, so as to better capture the deviation of
each network from their common structure.

• Separate factorization. We apply the spectral embedding method [Sussman et al.
(2012)] separately to each network in the dataset where each probability matrix
�i is estimated by the sum of Ā and a low rank approximation to (Ai − Ā) via
SVD.

• CP decomposition. Let Ad denote the V ×V ×n tensor of demeaned adjacency
matrices. The CP decomposition seeks to model Ad as a sum of rank-one ten-
sors: Ad ≈ ∑K

k=1 dkuk ◦ vk ◦ wk , where uk ∈ R
V , vk ∈ R

V , wk ∈ R
n, dk ≥ 0

and ◦ denotes the outer product [Kolda and Bader (2009)]. Unlike the singular
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TABLE 1
LOOCV identification accuracy on scan-rescan data for different methods

M-GRAF1 M-GRAF2 Separate CP Tucker
Di = Qi�iQ

�
i Di = Qi�Q�

i factorization decomposition decomposition

K = 2 0.705 0.761 0.761 0.114 0.136
K = 5 0.886 0.932 0.932 0.477 0.670
K = 7 0.966 0.989 0.943 0.591 0.761
K = 8 0.977 1.000 0.966 0.625 0.841

value decomposition (SVD) for a matrix, CP decomposition does not uniquely
decompose the data [Kolda and Bader (2009)], which may complicate the anal-
ysis. Similar to Sussman et al. (2012), each probability matrix �i is estimated
by �̂i = Ā + ∑K

k=1 dkwkiukv
�
k , where wki is the ith entry of wk .

• Tucker decomposition. Tucker decomposition seeks to model Ad as Ad ≈
D ×1 U1 ×2 U2 ×3 W where D is a K1 × K2 × K3 core tensor and the factors
U1 ∈ R

V ×K1 , U2 ∈ R
V ×K2 and W ∈ R

n×K3 are orthonormal matrices [Kolda
and Bader (2009)]. We set K1 = K2 = K and K3 = n in this case, and again we
consider each matrix along the third dimension of the low rank tensor plus Ā as
the estimated probability matrix �̂i .

We use R package rTensor to compute the components in tensor decomposi-
tions. The distance measure in these methods is defined as d(i, j) := ‖�̂i − �̂j‖F .
We report the LOOCV accuracy of subject identification on the scan-rescan data
in Table 1. The results show that the accuracy from the variant of our model
Di = Qi�Q�

i is always the highest under the same rank K and reaches 1 at
K = 8. Although separate factorization has the same accuracy as our model at
rank 2 and 5, its accuracy increases more slowly with K . The two tensor decom-
position methods have poor classification performance here, implying that their
low rank approximations are not discriminative enough in this scenario.

After obtaining a discriminative latent structure, we want to further check how
well edges in the networks can be predicted. We compute the area under the ROC
curve (AUC) in predicting L(Ai) with estimated probability matrix �̂i and the
residual sum of squares (RSS), that is, the L2-norm of the difference between
L(Ai) and L(�̂i). The mean and standard deviation of AUC and RSS across all
the subjects are reported in Table 2, which shows that CISE has higher AUC and
lower RSS than other methods with the same rank K . The results from the two
variants of our model are quite similar, though allowing �i to vary across individ-
uals performs slightly better due to more flexibility.

We assess goodness-of-fit by comparing some key topological features of net-
works observed in the data to those estimated from different methods. The selected
topological measures include network density, average shortest path length, tran-
sitivity, and mean of node degrees (degree mean) [Newman (2010)]. Specifically,
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TABLE 2
Mean and standard deviation of AUC and RSS across subjects under different K’s

M-GRAF1 M-GRAF2 Separate CP Tucker
Di = Qi�iQ

�
i Di = Qi�Q�

i factorization decomposition decomposition

AUC
K = 2 0.9880 ± 0.0024 0.9877 ± 0.0024 0.9846±0.0031 0.9758 ± 0.0043 0.9758 ± 0.0043
K = 5 0.9948 ± 0.0014 0.9945 ± 0.0014 0.9928±0.0017 0.9768 ± 0.0042 0.9777 ± 0.0040
K = 7 0.9969 ± 0.0009 0.9968 ± 0.0009 0.9959±0.0011 0.9774 ± 0.0037 0.9791 ± 0.0037
K = 8 0.9976 ± 0.0008 0.9974 ± 0.0007 0.9970±0.0008 0.9779 ± 0.0036 0.9800 ± 0.0037

‖L(Ai) −L(�̂i )‖2

K = 2 9.63 ± 0.51 9.68 ± 0.52 10.75 ± 0.46 11.62 ± 0.51 11.61 ± 0.51
K = 5 7.65 ± 0.53 7.75 ± 0.53 9.63 ± 0.40 11.50 ± 0.50 11.41 ± 0.49
K = 7 6.64 ± 0.48 6.72 ± 0.52 8.99 ± 0.37 11.42 ± 0.47 11.27 ± 0.48
K = 8 6.18 ± 0.50 6.34 ± 0.50 8.69 ± 0.36 11.38 ± 0.47 11.19 ± 0.48

we first obtain the predictive distributions of these topological measures for each
subject by simulating 100 networks from the estimated �̂i under different models,
and then compare the predictive means to the empirical topological features via
scatterplots along with 95% confidence intervals as shown in Figure 9. Each dot in
these scatterplots corresponds to a subject with x-coordinate being her empirical
topological measure and y-coordinate the predictive mean. The closer the points
are to the dashed diagonal line, the better fit of the model. For a fair comparison, we
choose K = 17 for Separate factorization and K = 36 for Tucker decomposition
in Figure 9 since these choices of K provide an accuracy of 1 for the two meth-
ods in the scan-rescan classification task. We set K = 100 for CP decomposition,
which provides an accuracy of around 0.989. Figure 9 shows that the two variants
of our model provide much better characterization of network topological features
than the other methods. In addition, the variant Di = Qi�Q�

i provides almost
indistinguishable predictive results from those under the M-GRAF model with
Di = Qi�iQ

�
i . Therefore, restricting �i to be the same across subjects seems

to be a reasonable assumption for brain network data.

4.2. Brain networks and cognitive traits. The HCP collects measurements on
a range of motor, sensory, cognitive, and emotional processes for each partici-
pant, with an overarching goal being improved understanding of the relationship
between brain connectivity and human traits [Barch et al. (2013)]. For sake of clar-
ity and brevity, we focus here on studying relationships between brain structural
connectivity and one particular trait—visuospatial processing.

Visuospatial processing is commonly assessed using the Variable Short Penn
Line Orientation Test (VSPLOT), where two line segments are presented on the
screen and participants are asked to rotate a movable line so that it is parallel to
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FIG. 9. Goodness-of-fit assessment for selected network topological features under different meth-
ods. The methods from left to right: M-GRAF1 is M-GRAF with Di = Qi�iQ

�
i under K = 8;

M-GRAF2 is M-GRAF with Di = Qi�Q�
i under K = 8; S-F is separate factorization with K = 17;

CP decomposition with K = 100 and Tucker decomposition with K = 36. The topological features
from top to bottom are network density, average shortest path length, transitivity, and degree mean.
Each dot of the scatterplot corresponds to a subject, where x-coordinate denotes her observed topo-
logical feature, y-coordinate denotes the corresponding predictive mean, and the grey segment de-
notes the 95% predictive confidence interval. The dashed line in each scatterplot denotes the y = x

line.

the fixed line; for more details, we refer the readers to Moore et al. (2015). The
latest released HCP data contain VSPLOT scores of about 1200 healthy adults.
We preselected subjects having high (top 10%) and low (bottom 10%) VSPLOT
scores with 106 subjects in each group. Hence the resulting dataset contains an
indicator of high/low visuospatial processing score li ∈ {0,1} and an adjacency
matrix Ai representing the structural connectivity among 68 brain regions for 212
individuals.



104 L. WANG, Z. ZHANG AND D. DUNSON

TABLE 3
Mean and standard deviation of

prediction accuracies in repeated 10-fold
cross validation

K Accuracy

1 0.561 ± 0.101
2 0.621 ± 0.107
3 0.622 ± 0.104
4 0.623 ± 0.105
5 0.643 ± 0.102
6 0.641 ± 0.104
7 0.629 ± 0.105

We followed the same goodness-of-fit assessment procedure as described in
Section 4.1 and observed very similar performance between the models Di =
Qi�Q�

i and Di = Qi�iQ
�
i . Therefore, we choose the variant Di = Qi�Q�

i to
further reduce the number of parameters. We use the distance described in Sec-
tion 2.5 to classify subjects with high and low visuospatial processing score using
their estimated low-rank components {Qi} and �. The prediction accuracy is mea-
sured by repeating 10-fold cross validation (CV) 30 times. We report the mean and
standard deviation of the CV accuracies under different choices of K in Table 3.
It seems that K = 5 is enough to provide a good prediction accuracy of 0.643 on
average, implying that individual-specific components of brain connectivity are re-
lated to visuospatial processing. The estimated common structure Ẑ of brain con-
nectivity underlying all subjects is displayed via a heatmap in Figure 10. The chord
diagram in Figure 10 shows the selected 277 edges with π(Ẑuv) > 0.999, where
π(·) is the logistic function. Hence we expect these connections to be present with
probability almost 1 for an average brain of 212 HCP subjects.

Table 3 also shows that K = 2 leads to a jump in performance relative to K = 1.
Since λ̂ = 83.6 under K = 1 and (λ̂1, λ̂2) = (77.6,−71.7) under K = 2, we dis-
play the second column of Qi corresponding to λ2 via a heatmap across the 68
brain regions for two subjects in Figure 11 (their adjacency matrices are shown in
Figure 1). According to Moore et al. (2015), visuospatial processing is linked to
posterior cortical function and thus we focus on the regions in the occipital lobe,
which is located in the posterior portion of the human cerebral cortex and is the vi-
sual processing center of the brain containing most of the anatomical regions of the
visual cortex [Zeki et al. (1991)]. Subject 1 in the left plot of Figure 11 has the low-
est score in VSPLOT and we can see that her brain regions located in the occipital
lobe (bottom of the plot) all have similar positive coordinates. Since λ̂2 < 0, this
indicates that Subject 1 tends to have few connections within the occipital lobe.
Subject 211 in the right plot of Figure 11 has the highest score in VSPLOT and the
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FIG. 10. Heatmap of the estimated Ẑ under K = 5 (left) and a chord diagram of the connections
uv’s (277 in total) with π(Ẑuv) > 0.999 (right), where π(·) is the logistic function.

coordinates of her brain regions in occipital lobe are not similar, indicating more
connections within this lobe.

To identify a subnetwork that might relate to visuospatial processing, we test
for differences in the log odds of each connection between the two groups. Specif-
ically, for each connection uv in the brain network, we applied a t-test on the
Di[uv]’s in high and low visuospatial functioning groups under K = 5. We ad-
justed for multiple comparisons by rejecting all local nulls having a p-value below
the Benjamini and Hochberg (1995) threshold to maintain a false discovery rate
FDR≤ 0.15. The significant connections are displayed via a chord diagram in Fig-
ure 12. Figure 12 shows that many connections in the selected subnetwork relate to

FIG. 11. Heatmap of the second column of Qi for subject i = 1 (left) and i = 211 (right) under
K = 2. Their adjacency matrices are presented in Figure 1.
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FIG. 12. Selected subnetwork that might be related to the visuospatial processing: significant con-
nections (15 in total) in the t-test of Di[uv]’s between high and low visuospatial processing group
for each edge uv under FDR ≤ 0.15. The color of the chords represents the corresponding t statistic,
which goes from blue to red as t statistic goes from −3.20 (minimum among all connections) to 3.88
(maximum).

regions in the occipital lobe, especially the right occipital lobe. This seems consis-
tent with neuroimaging and lesion studies which provide evidence of dysfunction
in right posterior regions of the brain for deficits in visuospatial processing [Moore
et al. (2015)]. In particular in the occipital lobe, Region 12R (right lingual) and
20R (right peri calcarine) in Figure 12 seem to be the most affected regions re-
lated to visuospatial processing since they have more connections with differences
between the two groups. This agrees with the findings that damage to the lingual
gyrus leads to a form of topographic disorientation [Kravitz et al. (2011)] and ab-
normalities in calcarine sulcus, which is a key node of the ventral visual pathway,
are related to impaired visual information processing [Wu et al. (2015)].

5. Conclusion. In this paper, we develop a framework for studying common
and individual structure of multiple binary undirected networks with similar pat-
terns. Two variants of the model have been proposed to account for different de-
grees of heterogeneity in the data so as to avoid overfitting. We have developed an
efficient algorithm—CISE—for estimating the model based on spectral decompo-
sition. Simulation studies have illustrated the fast computation of CISE algorithm
on large datasets and good properties in inference. We also demonstrated how ac-
counting for common structure can lead to a much lower dimensional individual
latent structure, which is highly discriminative in scan-rescan identification. Our
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approach also provides better prediction and goodness-of-fit (in terms of topo-
logical properties) to brain network data than some popular dimension-reduction
methods.

Although CISE algorithm has good performance when the latent dimension K

is small, it can get trapped at some local modes when K is large due to high
dimensionality of the parameter space. A multi-resolution approach might be a
solution to this issue, where we apply a coarse to fine factorization of Z and the
estimates of the parent entries in the previous layer provide prior information for
the daughter entries in the next layer. This technique may prevent some parameters
from getting trapped in local modes leading to a better optima.

APPENDIX: PROOFS OF PROPOSITIONS

This appendix contains proofs of Proposition 2.1 and Proposition 2.2 in Sec-
tion 2.2 as well as an algorithm for inference of Q in the variant Di = Q�iQ

�.

A.1. Proof of Proposition 2.1.

PROOF. Note that the expression inside the brackets of (2.5) is a univariate
function of Di[uv] given Zuv . Let x = Di[uv], a = Ai[uv], μ = Zuv . Then �i[uv] =
π(μ + x), where π(x) := 1/[1 + exp(−x)] ∈ (0,1). Let h(x) := log[1 − π(x)].
Then

(A.1) h′(x) = −π ′(x)

1 − π(x)
= −π(x)(1 − π(x))

1 − π(x)
= −π(x).

Consider μ as known and the expression inside the brackets of (2.5) is defined as

f (x) := aμ + ax + h(μ + x).

Next we will show that given μ,

(A.2) arg max
x

f (x) = arg max
x

[
a − π(μ)

]
x.

According to (A.1), the first derivative of f (x) becomes

f ′(x) = a − π(μ + x).

Note that a ∈ {0,1} since a is the realization of a binary random variable.

(i) a = 1. f ′(x) = 1 − π(μ + x) > 0 indicating that f (x) is maximized at
x = +∞ which also maximizes [a − π(μ)]x.

(ii) a = 0. f ′(x) = −π(μ + x) < 0 indicating that f (x) is maximized at x =
−∞ which also maximizes [a − π(μ)]x.
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Then (A.2) is verified based on (i) and (ii) and the optimal {Di : i = 1, . . . , n}
maximizing (2.5) given Z can be written as

arg max
{Di}

n∑
i=1

V∑
u=1

∑
v<u

[
Ai[uv](Zuv + Di[uv]) + log(1 − �i[uv])

]

= arg max
{Di}

n∑
i=1

V∑
u=1

∑
v<u

[
Ai[uv] − π(Zuv)

]
Di[uv]

= arg max
{Di}

n∑
i=1

1

2
tr

([
Ai − π(Z)

]
Di

)
.

The last line follows because π(Z) and each Ai are symmetric matrices and their
diagonal elements are set at 0. �

A.2. Proof of Proposition 2.2.

PROOF. It suffices to prove (2.8) as (2.9) follows by replacing B with −B

noting that σj (−B) = −σV −j+1(B), j = 1, . . . , V .
We do induction on dimension k and first verify the k = 1 case. By Rayleigh–

Ritz Theorem [Parlett (1998)], for any unit vector u ∈ R
V we have

max
u�u=1

u�Bu = σ1(B).

Since c1 > 0, then maxu�u=1 c1u
�Bu = c1σ1(B). So (2.8) holds for k = 1.

Assume (2.8) holds for k = j − 1. We now show that (2.8) also holds for k = j .
Let u1, . . . ,uj be an orthonormal basis of a j -dimensional subspace U in R

V .
We define a scaled partial trace to represent the objective function in (2.8) for
notational simplicity in the rest proof:

ptr(B | U,c1:j ) :=
j∑

i=1

ciu
�
i Bui .

Then

max
dim(U)=j

ptr(B | U,c1:j ) = max
u1,...,uj

j∑
i=1

ciu
�
i Bui

for any orthonormal set {u1, . . . ,uj } in R
V .

According to Courant–Fischer Theorem [Parlett (1998)],

(A.3) σj (B) = max
dim(U)=j

min
u ∈ U : u�u = 1

u�Bu.
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Then for every j -dimensional subspace U of RV and any orthonormal basis of U ,
u1, . . . ,uj , there is some um (m ∈ {1, . . . , j}) such that u�

mBum ≤ σj (B). Since
cj > 0, then

(A.4) cju
�
mBum ≤ cjσj (B).

The remaining vectors {ui : i �= m} is also an orthonormal basis of a (j − 1)-
dimensional subspace Ũ . By induction,

(A.5) ptr(B | Ũ , c1:(j−1)) ≤
j−1∑
i=1

ciσi(B).

Adding the two inequalities (A.4) and (A.5), we have

ptr(B | U,c1:j ) ≤ c1σ1(B) + · · · + cjσj (B)

for any j -dimensional subspace U . Therefore

max
dim(U)=j

ptr(B | U,c1:j ) ≤ c1σ1(B) + · · · + cjσj (B).

On the other hand, by selecting U to be the span of the first j orthonormal
eigenvectors of B , we obtain the reverse inequality

max
dim(U)=j

ptr(B | U,c1:j ) ≥ c1σ1(B) + · · · + cjσj (B). �

A.3. Inference of Q in the joint embedding model Di = Q�iQ
�. We are

going to solve q1, . . . ,qK sequentially, where qk is the kth column of Q. Let
eval1(W) denote the largest eigenvalue of W . Suppose s1 = arg maxk eval1(Wk).
Then set qs1

= evec1(Ws1). To decide the next qk to update, let U be a V × (V −
1) matrix comprising of a set of orthonormal basis of the space orthogonal to
qs1

. For k �= s1, we know qk ∈ span(U) and hence assume qk = Uak for some
vector ak ∈R

V −1. q�
k qk = 1 implies that a�

k U�Uak = a�
k ak = 1. So ak is of unit

length. Then the optimization problem maxqk
{q�

k Wkqk : q�
k qk = 1;q�

k qs1
= 0}

transforms to the optimization

max
ak∈RV −1

a�
k U�WkUak

s.t. a�
k ak = 1.

(A.6)

By Rayleigh–Ritz Theorem, the solution of ak is evec1(U
�WkU) and

max
{
q�

k Wkqk : q�
k qk = 1,q�

k qs1
= 0

} = eval1
(
U�WkU

)
.

Note that the eigenvalues of a symmetric matrix are invariant to orthogonal trans-
formation, that is, eval1(U�WkU) = eval1(R�U�WkUR) for any orthogonal
matrix R. Hence U in (A.6) can be an arbitrary orthonormal basis of the sub-
space q⊥

k . Suppose s2 = arg maxk �=s1
eval1(U�WkU). Then set qs2

= Uas2 where
as2 = evec1(U

�Ws2U). Repeat the above process and we can obtain the other qk’s.
We summarize the procedure to solve Q given Z and {λik} in Algorithm 2.



110 L. WANG, Z. ZHANG AND D. DUNSON

Algorithm 2: Inference of Q in the joint embedding model Di = Q�iQ
�

1 Let Wk = ∑n
i=1 λik[Ai − π(Z)], k = 1, . . . ,K .

2 Find s1 = arg maxk eval1(Wk) and set qs1
= evec1(Ws1).

3 for k = 2 : K do
4 find a set of orthogonal basis U of the subspace span(qs1

, . . . ,qs(k−1)
)⊥ ;

5 find sk = arg maxk∈{1,...K}\{s1,...,s(k−1)} eval1(U�WkU) ;

6 set qsk
= Uask where ask = evec1(U

�WskU) ;
7 end

Output: Q = (q1, . . . ,qK).

Acknowledgements. We would like to thank David Choi for insightful com-
ments, and Peter Hoff for useful comments on method comparisons.

SUPPLEMENTARY MATERIAL

Code and Data (DOI: 10.1214/18-AOAS1193SUPP; .zip). The R and Matlab
codes for CISE algorithm and the HCP data can be found in the file above.
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