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The United Nations is the major organization producing and regularly
updating probabilistic population projections for all countries. International
migration is a critical component of such projections, and between-country
correlations are important for forecasts of regional aggregates. However, in
the data we consider there are 200 countries and only 12 data points, each one
corresponding to a five-year time period. Thus a 200×200 correlation matrix
must be estimated on the basis of 12 data points. Using Pearson correlations
produces many spurious correlations. We propose a maximum a posteriori
estimator for the correlation matrix with an interpretable informative prior
distribution. The prior serves to regularize the correlation matrix, shrinking a
priori untrustworthy elements towards zero. Our estimated correlation struc-
ture improves projections of net migration for regional aggregates, producing
narrower projections of migration for Africa as a whole and wider projec-
tions for Europe. A simulation study confirms that our estimator outperforms
both the Pearson correlation matrix and a simple shrinkage estimator when
estimating a sparse correlation matrix.

1. Introduction. International migration is a major contributor to popula-
tion change, but is hard to project, making proper quantification of uncertainty
especially important. Existing global models for migration are well calibrated
marginally, that is, for individual countries [Azose and Raftery (2015)], but typ-
ically rely on an unrealistic modeling assumption that forecast errors are uncor-
related across countries. If correlations exist, but are not modeled, the resulting
projections may still be well calibrated for countries individually, but can under
or overestimate variance in projections of migration for regions that span multiple
countries. We present a method for estimating a correlation matrix from a small
number of data points that uses informative priors, shrinking elements of the cor-
relation matrix which we expect a priori to be small. In applying this method to
migration, we choose priors based on empirical evidence of nonzero correlations
among classes of countries which are “close” to one another according to a variety
of distance covariates. Our method improves projections of migration for regional
aggregates while mitigating the issue of spurious correlations that arises from try-
ing to estimate a large correlation matrix based on many short time series.
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The primary challenge of this application is how to produce principled estimates
of the correlation matrix which include both the empirical information from the
data and external knowledge not captured in the data themselves. This challenge is
the realm of Bayesian statistics, and indeed our estimates take the form of a max-
imum a posteriori (MAP) estimator, balancing a data-based likelihood against an
informative prior based on external knowledge. The novelty of our method is the
ability to express world knowledge in the form of a simple, interpretable prior dis-
tribution which is suitable for use in elicitation from domain experts without deep
statistical expertise—namely, a prior placed directly on elements of the correlation
matrix.

The idea of Bayesian estimation of covariance structure is by no means new.
One popular existing method is the graphical lasso [Friedman, Hastie and Tibshi-
rani (2008)], which is equivalent to a MAP estimate under a simple prior distri-
bution on the inverse covariance matrix. Prior distributions can be placed on other
transformations of the covariance matrix as well, including eigenvalue decompo-
sitions [Chi and Lange (2014)] or the covariance matrix itself [Bien and Tibshirani
(2011)]. Although the existing methods are appropriate for many applications, they
generally do not lend themselves well to incorporation of informative prior infor-
mation, especially if that information is to be elicited from experts rather than se-
lected empirically. This article’s methodological contribution is to demonstrate a
correlation estimator which admits an informative prior that is easily interpretable
and consequently well suited to expert elicitation.

1.1. Illustrative example. In this section, we focus on six selected countries—
Estonia, Latvia, Lithuania, South Africa, Zimbabwe, and Zambia—to highlight the
need for regularization of the correlation matrix.

Migration rates in Estonia, Latvia, and Lithuania over the period from 1950 to
2010 look quite similar (top row of Figure 1). All three countries shared a spike in
out-migration during the 1990–1995 time period, which appears as a large negative
forecast error in a first-order autoregressive [AR(1)] model. This sudden jump in
out-migration among the Baltic states shares a common cause, namely the fall of
the Soviet Union, which both induced westward migration and prompted many
ethnic Russians to move to Russia [Fassmann and Munz (1994), Okolski (1998)].

Meanwhile, several countries in Southern Africa also experienced big shifts in
migration rates during the 1990–1995 time period (bottom row of Figure 1). From
1990 to 1995, South Africa received substantially more in-migration than it had
in previous decades, while Zimbabwe and Zambia both switched from being net
receivers of migrants to net senders. For these three countries, at least some of the
change in migration was due to political shifts related to the end of South Africa’s
apartheid regime. For example, the number of legal entrants to South Africa who
overstayed their visas grew dramatically during the 1990s, with many such entrants
coming from other countries of the Southern African Development Community
[Crush (1999)].
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FIG. 1. Net migration rates (net annual migrants per thousand individuals) for six countries.

Because all six countries experienced pronounced changes in migration rates
during the same time period, the usual Pearson estimates of the correlation in
forecast errors are relatively large for these six countries (left panel of Figure 2).
Knowledge of world affairs, however, suggests that some of these correlations may
be spurious. There are plausible explanations for the correlations within the three
Baltic nations and within the Southern African nations, but the cross-regional cor-
relations are suspect. In fact, the cross-regional correlations seem to have arisen
largely from a coincidental synchrony in the timing of different geopolitical events,

FIG. 2. Estimated correlations among forecast errors for migration. The left panel shows the Pear-
son correlation estimates. The right panel shows our regularized estimates.



ESTIMATING CORRELATIONS IN INTERNATIONAL MIGRATION 943

and do not represent correlations that we would expect to continue to exist in fu-
ture migration data. Our method is designed to shrink these seemingly spurious
cross-regional correlations, producing the estimated correlation matrix shown in
the right panel of Figure 2. Cross-regional correlations decrease substantially in
magnitude, while correlations within regions remain largely unchanged.

Note that from the standpoint of interpretability, correlations are the most natu-
ral unit of analysis in this example. Elements of the inverse covariance matrix are
interpretable as statements about conditional independence, which is not of pri-
mary interest here. Elements of the covariance matrix itself are difficult to parse, as
they are not normalized for the variances of the associated countries. Various other
transformations of the covariance matrix are available for mathematical analysis
(e.g., the eigenvalue decomposition or the Cholesky decomposition), but their val-
ues are generally only interpretable by those with specialized knowledge of linear
algebra. Consequently, it is most natural in this application to express prior beliefs
directly on correlations. We provide the methodology for doing so in Section 2.

1.2. Background. Country-specific projections of international migration are
an important input in policy-making decisions [Bijak et al. (2007), Brown
and Bean (2012)]. Projected migration figures are commonly used in long-
term planning of social welfare programs [U. S. Social Security Administration
(2013), Wright (2010)]. However, projection of migration is difficult [Bijak and
Wiśniowski (2010) describe migration as “barely predictable”] and global model-
ing of migration remains somewhat rudimentary. The United Nations Population
Division produces global projections of fertility, mortality, and migration for all
countries [United Nations (2012)]. For most countries, the 2012 revision of the
World Population Prospects (WPP) deterministically projects net migration to per-
sist at current levels until 2050 and decline linearly thereafter.

Reliable analysis of migration for multi-country regions is a topic of growing
importance, as global migration governance begins to incorporate more multi-
party policy agreements, in contrast to the largely unilateral and bilateral migra-
tion policies of the past. Europe has been at the forefront of implementing multi-
lateral migration policies. Two such examples are the European Neighbourhood
Policy, which establishes shared border management practices between the Euro-
pean Union and its neighbors in Eastern Europe and the Mediterranean [Barbé and
Johansson-Nogués (2008)], and the Common European Asylum System, which
ensures standard processes for asylum applicants across EU countries [Thielemann
(2008)]. Furthermore, the International Organization for Migration (IOM) is in-
creasingly advocating for international migration governance [International Orga-
nization for Migration (2015)], and was named in 2016 as a related organization
to the United Nations [United Nations (2016)]. Greater support from the United
Nations provides a possible approach to expanding multi-lateral migration treaties
to more regions of the world.



944 J. J. AZOSE AND A. E. RAFTERY

However, migration policy at the level of multi-country regions faces several
substantial hurdles before it can achieve greater scope. One issue, which we at-
tempt to address in this paper, is that the state of quantitative knowledge of regional
migration dynamics is weak in most regions. The ability to estimate the migration
flow between any given pair of countries is a fairly recent innovation [Abel (2013)],
and the methodology to produce such flow estimates relies on constraints which
can obscure regional dynamics. A key goal of our work is to provide additional
insight into migration dynamics for arbitrary collections of countries, which may
be used to provide a quantitative basis for policy decisions. Estimates of between-
country correlations in net migration and the resulting plausible range of values for
net migration within any given group of countries may be used as a quantitative
basis for both the range of likely net migration values, and the natural apportion-
ment of that net migration (i.e., the expected distribution of net migration to all
countries in the absence of new policies).

In addition to providing regional migration projections for any desired collec-
tion of countries, a second goal of our work is to improve the migration component
of probabilistic population projections. To produce fully probabilistic population
projections, one must incorporate probabilistic projections of fertility and mortal-
ity with a global probabilistic model of migration. It follows from the demographic
balancing equation that the contribution of migration to population change is given
by net migration (i.e., in-migration minus out-migration). Probabilistic models
exist for both net migration [Azose and Raftery (2015), Azose, Ševčíková and
Raftery (2016)] and in- and out-migration separately [Wiśniowski et al. (2015)].
Both of these models are Bayesian hierarchical autoregressive models which treat
forecast errors in migration as independent across countries, conditional on model
parameters. This leads to projections that are well calibrated for individual coun-
tries, but may not be for multi-country aggregates. Our method aims to relax this
independence assumption.

It is worth noting that a strong correlation in migration rates themselves need
not translate to a strong correlation in forecast errors. For example, from 1960
through 2000, Mexico was consistently either the largest or second-largest source
of migration flows to the US, with nearly 5 million Mexicans or more migrating
to the US during the 1990s [Abel (2013)]. While we estimate that net migration
rates for the USA and Mexico have a correlation of −0.56 based on quinquennial
WPP data from 1950–2010, we estimate a correlation in forecast errors of only
−0.07. That is, most of the relationship between the USA and Mexico is already
captured by the autoregressive model parameters, and the “random” components
of migration rates for the two countries are nearly independent conditional on the
AR(1) model.

In this high-dimensional setting with short time series, the empirical correlation
matrix is a poor estimator, in that it can include many spuriously large estimated
correlations. Our goal is to use regularization to improve an empirical correlation
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matrix for forecast errors in migration. There is a large body of literature on reg-
ularized estimation of covariance matrices, with applications in genomics, image
processing, and finance, among other fields [Fan, Han and Liu (2014)]. The nov-
elty of our method is that it allows the incorporation of available prior information
in an easily interpretable way.

Existing covariance estimators based on penalized likelihood maximization are
typically maximum a posteriori (MAP) estimates under some prior distribution
of covariance, but these formulations are not well suited to specifying beliefs di-
rectly about elements of the correlation matrix. Perhaps the most similar method
to ours is that of Bien and Tibshirani (2011), which allows informative priors on
elements of the covariance matrix rather than the correlation matrix. Their method
is not directly applicable to our setting, as our goal is to augment existing marginal
variances with a suitable correlation structure. Other proposed MAP estimators
include the graphical lasso [Friedman, Hastie and Tibshirani (2008)], which can
be used to place an informative prior on the inverse covariance, and the method
of Chi and Lange (2014), which penalizes covariance estimates that have very
large or very small eigenvalues. An extreme example is given by Chaudhuri, Dr-
ton and Richardson (2007), who provide a method for covariance estimation in the
presence of known zeroes. Zhang and Zou (2014) propose a variant on penalized
likelihood maximization that replaces the negative log likelihood with a simpler
loss function.

A related class of covariance estimators relies on shrinkage of an empirical co-
variance matrix towards a simpler estimator, typically trading some bias for lower
mean squared error [Ledoit and Wolf (2003, 2004, 2012)]. A strength of these
methods is that as long as the empirical covariance matrix is positive semi-definite
and the shrinkage target is positive definite, a linear combination of the two will
naturally be positive definite. Applying a shrinkage method to the migration set-
ting would be difficult, as the elements we would like to penalize do not define a
positive definite shrinkage target.

A form of regularization that is straightforward to implement is applying thresh-
olding directly to elements of a covariance or correlation matrix [Bickel and Levina
(2008a), El Karoui (2008)]; these authors show that a hard-thresholded covariance
matrix is consistent in operator norm. Generalized thresholding [Antoniadis and
Fan (2001)], developed in the context of wavelet applications, provides a class of
related regularized estimators. A key difficulty with such estimators is that care
must be taken to ensure that the resulting estimator is positive definite. In some
problems, this can be handled by selecting a thresholding constant from an appro-
priate range [Fan, Liao and Mincheva (2013)]. Unfortunately, such an approach is
not easily adapted to our problem. The structure of the elements we wish to penal-
ize is such that we can tolerate only a small amount of shrinkage of all penalized
elements before our estimated correlation matrix loses positive definiteness.

One fully Bayesian treatment is proposed by Liechty, Liechty and Müller
(2004), who include substantive prior information by specifying clusters of cor-
relations which they expect to be similar. This is unfortunately unsuitable to our
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setting, since geographical and cultural proximity can give rise to either positive
or negative correlations. Huang and Wand (2013) describe a computationally at-
tractive noninformative prior on covariances, which does not easily extend to the
informative priors we would like to include. Other fully Bayesian treatments are
given by Barnard, McCulloch and Meng (2000), who propose a prior on the cor-
relation matrix that is either marginally or jointly uniform, and Leonard and Hsu
(1992) and Deng and Tsui (2013), who propose Bayesian estimation of the loga-
rithm of the covariance matrix, which is unfortunately hard to interpret.

In scenarios where there is a natural ordering to the variables, it is often reason-
able to make the assumption that large values of |i − j | imply near independence
or conditional independence. When this is the case, one can regularize by band-
ing or tapering of the covariance or inverse covariance matrix [Bickel and Levina
(2008b), Chen, Xu and Wu (2013), Fan, Huang and Li (2007), Furrer and Bengts-
son (2007), Levina, Rothman and Zhu (2008)]. These approaches are not suitable
to our problem, as there is no natural ordering of countries.

Good overviews of other methods in covariance estimation are given by Fan,
Liao and Liu (2016) and Pourahmadi (2011).

2. Methods. We start with an established, well calibrated autoregressive
model on net migration rates for all countries [Azose and Raftery (2015)], where
net migration in a five-year period is defined as number of in-migrants minus num-
ber of out-migrants per year per 1,000 population. This model has the form

gt − μ = diag(φ)(gt−1 − μ) + εt ,

εt
iid∼ NC

(
0,diag(σ ) · IC · diag(σ )

)
,

φc
iid∼ U(0,1),

μc
iid∼ N

(
λ, τ 2)

,

σ 2
c

iid∼ IG(a, b).

Notationally, gt is a length-C vector of net migration rates for all countries during
the time period from t to t + 1, where C is the number of countries analyzed. The
quantities μ, φ, and σ are vectors of model parameters, each of length C. The cth
entry in each parameter vector (i.e., μc, φc, and σ 2

c ) gives the scalar parameter
value corresponding to country c, while 0 is a length-C vector of zeroes. The dis-
tributions used are as follows: U denotes a uniform distribution parametrized by its
upper and lower bounds, N denotes a univariate normal distribution parametrized
by its mean and variance, NC denotes a C-dimensional multi-variate normal
parametrized by its mean vector and covariance matrix, while IG denotes an in-
verse gamma distribution parametrized by its shape and scale. [We have omitted
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the specifics of hyperpriors on a, b, λ, and τ , which Azose and Raftery (2015)
selected to reflect the ranges of plausible values.]

Notably, forecast errors in this model are treated as conditionally independent,
given the model’s other parameters. Our method augments this model with an es-
timated correlation structure. Although the present paper focuses on the migration
context, the same technique could be applied to probabilistic models of other de-
mographic indicators.

From this point forward, we refer to the model of Azose and Raftery (2015) as
the Bayesian Hierarchical Model with Independent Forecast Errors (BHM+IFE).
In principle, the methodology we describe here provides a means of estimating
a correlation matrix to be adjoined to any probabilistic model with conditionally
independent forecast errors.

The outline of our procedure for estimating a correlation matrix is as follows:

1. From the BHM+IFE model, draw a posterior sample of m realizations of
model parameters, μ(1), φ(1), σ (1), . . . , μ(m), φ(m), σ (m).

2. Convert the estimated forecast errors from the posterior sample of model
parameters to a single empirical correlation matrix, R̃.

3. Combine the empirical correlation matrix with informative priors on corre-
lations to obtain a maximum a posteriori (MAP) correlation estimate, R̂.

This procedure can be viewed as performing a single step of the Monte Carlo
EM (MCEM) algorithm [Wei and Tanner (1990)].

The posterior sampling in stage 1 can be performed using any reasonable sam-
pling procedure. In practice, we performed our posterior sampling with a combi-
nation of Gibbs sampling and Metropolis–Hastings steps.

In the following sections, we first discuss the details of obtaining a MAP esti-
mator (Section 2.1), including an algorithm for computing this estimator. This is
followed by a section discussing practical considerations (Section 2.2), including
initialization and the selection of an empirical correlation matrix and a regulariza-
tion parameter.

2.1. A MAP estimator for correlation. Our goal is to estimate the correlation
structure, R, of forecast errors, εt . We assume a model of the form

(1) εt
iid∼ NC(0,�),

where the variance matrix, �, decomposes into a vector of standard deviations, σ ,
and a correlation matrix, R, as � = diag(σ ) · R · diag(σ ).

2.1.1. Expression for the MAP correlation estimator. To determine a MAP es-
timator for R, we express the posterior distribution for R as a product of likelihood
and prior.
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Data likelihood. Equation (1) implies a likelihood function for R of the form

p(ε1, . . . ,εT −1|R,σ ) ∝R det(R)−(T −1)/2

× exp

(
−1

2

T −1∑
t=1

ε′
t diag(σ )−1R−1 diag(σ )−1εt

)
,

restricted to the space � of valid correlation matrices (i.e., positive semi-definite
matrices with ones on the diagonal). Matrix trace identities simplify this likelihood
to

p(ε1, . . . ,εT −1|R,σ ) ∝R det(R)−(T −1)/2 exp
(
−1

2
tr

(
R−1R̃

))
,

where

R̃ := 1

T − 1

T −1∑
t=1

diag(σ )−1εtε
′
t diag(σ )−1.

The evidence from the data is encapsulated in R̃, which is something akin to an
empirical correlation matrix. Note that R̃ would be a sufficient statistic for R if the
εt ’s and σ were known. In fact, neither the εt ’s nor σ are known, and R̃ must be
replaced with a sensible estimate in order to proceed. Details of the estimation of
R̃ are given in Section 2.2.1.

Prior. Our choice of prior distribution on R is motivated by a desire to incor-
porate informative prior beliefs about which country pairs are likely to be nearly
uncorrelated. As such, we choose a prior of the form

π(R) ∝R

∏
0≤i<j≤C

exp
(−λPij |Rij |),

again restricted to �. The matrix P with entries Pij is a penalty matrix that encodes
the extent to which we believe that countries i and j may be correlated. In our
application to migration, we constrain all the entries in P to be equal to 0 or 1,
although in general P may be allowed to have arbitrary nonnegative entries. The
parameter λ is an overall regularization parameter that encodes how strongly we
want to penalize correlations.

The key benefit of this prior is its ease of interpretability. Setting Pij = 1 ex-
presses a belief that Rij should be close to zero, with the strength of that belief
controlled by λ. Setting Pij = 0 implies that all values of Rij are equally believ-
able, a priori. Other penalized likelihood estimators have been proposed, corre-
sponding to MAP estimators under implied priors on precision [Friedman, Hastie
and Tibshirani (2008)], covariance [Bien and Tibshirani (2011)], or eigenvalues of
the covariance matrix [Chi and Lange (2014)]. None of these allow one to specify
prior beliefs about correlations directly.
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Note that under this specification, the prior distribution of the correlation Rij

is either uniform or truncated Laplace conditionally on the rest of the correlation
matrix, but marginal distributions will not be uniform or double exponential. Al-
though it is possible to specify a marginally uniform prior on all elements of the
correlation matrix [Barnard, McCulloch and Meng (2000)], we know of no way to
specify a distribution that is marginally uniform for some elements and marginally
peaked at zero for others.

Because the prior density is a product of Laplace densities on correlations, we
will refer to our eventual correlation estimator as the LPoC (Laplace Prior on Cor-
relations) estimator. Augmenting the BHM+IFE with the LPoC correlation esti-
mate produces the BHM+LPoC model.

Posterior. Combining the likelihood and prior, we obtain the log posterior distri-
bution for R, equal to

logp(R|ε1, . . . ,εT −1,σ ) = const. − T − 1

2
log det(R) − T − 1

2
tr

(
R−1R̃

)

− λ

2
‖P ∗ R‖1 + c(ε1, . . . ,εT −1,σ ),

where ∗ denotes elementwise matrix multiplication, and ‖ · ‖1 gives the sum of the
absolute value of the elements of a matrix. Thus, finding the MAP estimator for R

is equivalent to solving the minimization problem

(2) Minimize
R∈�

{
log det(R) + tr

(
R−1R̃

) + 1

T − 1
λ · ‖P ∗ R‖1

}
.

Algorithmic details of a numerical solution are given in Section 2.1.2.
Note that if the penalty parameter, λ, is zero, then this minimization problem

yields the maximum likelihood estimator (MLE) of R conditional on σ . As long
as R̃ is itself positive definite, this MLE is just R̃, the empirical correlation matrix.
Similarly, if λ is held fixed as T grows, the penalty term in (2) converges to zero
and the LPoC estimator converges to R̃. As long as R̃ is consistent for R, the LPoC
estimator is also consistent.

2.1.2. Solving the minimization problem. We apply a majorize-minimize al-
gorithm similar to that used by Bien and Tibshirani (2011) to the minimization
problem in (2). We establish a basic outline for this algorithm before providing
full details.

The function being minimized over is the sum of a convex and a concave com-
ponent. Broadly speaking, the majorize-minimize algorithm repeatedly iterates
through the following steps:

1. Replace the concave component with its tangent plane to obtain a fully con-
vex function.

2. Find the global minimum of the convex function from Step 1.
3. Return to Step 1, computing the new tangent plane at the current location.
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Notationally, we label our starting point for this algorithm as R0 and subse-
quent iterations of this majorize-minimize algorithm are denoted with subscripts
R1,R2, . . .

In (2), the concave component is log det(R), which we replace with the tangent
plane log detRi + tr(R−1

i (R − Ri)). After simplifying and removing terms which
are constant in R, the convex minimization problem in the ith iteration of the
algorithm is

(3) Minimize
R∈�

{
tr

(
R−1

i R
) + tr

(
R−1R̃

) + λ‖P ∗ R‖1
}
.

In this inner minimization problem (3), all of the terms in the objective function
are convex, and all but λ‖P ∗ R‖1 are differentiable, so we can apply the gener-
alized gradient descent algorithm [Beck and Teboulle (2009)]. Each generalized
gradient descent step from initial location Rold takes the form

(4) argmin
ω∈�

{
(2t)−1∥∥ω − (

Rold − t
(
R−1

i − R−1
oldR̃R−1

old

))∥∥2
F + λ

T − 1
‖P ∗ ω‖1

}
,

where t is a step size parameter. Equation (4) is itself another minimization prob-
lem, but a tractable one, with one robust solution given by Cui, Leng and Sun
(2016).

Thus, the complete algorithm for finding the MAP estimator is shown in Algo-
rithms 1 and 2.

2.2. Practical considerations.

2.2.1. Estimating R̃. Since the forecast errors and model parameters of the
BHM+IFE model are unknown, we do not have access to the true value of R̃.
Instead we use an estimate of R̃. For practical reasons, we would prefer to have R̃

itself be a valid correlation matrix so that (2) will have a known analytic solution
in the limiting scenarios where T grows or λ goes to zero. Accordingly, we might
choose an estimator R̃basic with elements defined by

R̃basic
ij :=

∑T −1
t=1 ε̂i,t ε̂j,t√∑T −1

t=1 ε̂2
i,t

√∑T −1
t=1 ε̂2

j,t

,

Algorithm 1: Outer loop: Majorize-minimize algorithm to solve equation (2)

1 Initialize Ri at correlation matrix R0 ∈ �

2 repeat
3 Set Ri+1 = argminR∈�{tr(R−1

i R) + tr(R−1R̃) + λ‖P ∗ R‖1}.
// Apply Algorithm 2 to solve this inner

minimization problem
4 until ‖Ri+1 − Ri‖∞ is sufficiently small
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Algorithm 2: Inner loop: Generalized gradient descent to solve equation (3)

1 Initialize Rold at correlation matrix Ri ∈ �

2 repeat
3 Propose an update Rnew =

argminω∈�{(2t)−1‖ω− (Rold − t (R−1
i −R−1

oldR̃R−1
old))‖2

F + λ
T −1‖P ∗ω‖1}.

// Appeal to Cui, Leng and Sun (2016) to solve
this minimization problem

4 if objective function in (3) is lower at Rnew than Rold then
5 Set Rold = Rnew
6 Adjust step size according to procedure in Appendix A.
7 else
8 Adjust step size according to procedure in Appendix A.
9 end

10 until improvement in objective function from Rold to Rnew is sufficiently small

where ε̂t is the posterior mean of εt from the BHM+IFE model. This estimate,
R̃basic, is the MLE for estimating the correlation matrix of a multivariate normal
random variable with mean known to be zero and unknown marginal variance
terms. By construction, R̃basic is guaranteed to be positive semi-definite and to
have ones on the diagonal.

However, in our application, R̃basic is of low rank, since T is small relative to
the dimension of the matrix. For computational reasons, we would prefer to have
a strictly positive definite matrix, so we estimate R̃ by

R̃PD = 0.99 · R̃basic + 0.01 · IC.

This change can be viewed as augmenting our estimates of εt with a small amount
of additional uncorrelated data.

2.2.2. Selecting the regularization parameter λ. Although the penalty matrix
P can be selected on the basis of world knowledge, we are less likely to have gen-
uine prior beliefs about the value of the regularization parameter λ. Accordingly,
we need some procedure for selecting a value for λ. In regularization problems,
it is common to select the regularization parameter via cross-validation [Bien and
Tibshirani (2011), Chi and Lange (2014), Huang et al. (2006)]. This approach is
too computationally intensive to be feasible for our application. Among shrinkage
estimators, it is common to choose the amount of shrinkage in order to minimize an
expected loss function [James and Stein (1961), Ledoit and Wolf (2003)]. How-
ever, no suitable analytic result exists that allows us to approximately minimize
expected loss in our scenario.

Consequently, we developed a heuristic criterion that selects λ in a way that
aligns with the goal of our regularization process. Our method’s intent is to shrink
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the magnitude of penalized elements of the correlation matrix while leaving un-
penalized elements more or less unchanged. In practice, although we succeed in
shrinking penalized elements towards zero, this shrinkage usually comes at the
cost of inflating other elements. We have observed that this inflation tends to grow
more pronounced as λ grows. For very large values of λ, our estimated correlation
matrix may shrink nearly all penalized entries to zero at the expense of inflating a
few elements (both penalized and unpenalized) to nearly ±1. This is not a desirable
outcome.

Although it may seem counterintuitive at first, the observed inflation is not an
artifact of a coding error or poor convergence of our algorithm. A simple repro-
ducible example of inflation in a 3 × 3 matrix is provided in Appendix B. In this
low-dimensional setting, standard numerical optimization routines agree with the
results from our code and both display inflation of unpenalized elements.

Our criterion for selecting λ compares the off-diagonal elements of R̃ and R̂(λ).
We choose the value of λ which maximizes the difference between average shrink-
age and average inflation. Formally, our criterion is defined by

k(R̃, λ) = mean
i,j s.t. |R̂(λ)ij |<|R̃ij |

(|R̃ij | −
∣∣R̂(λ)ij

∣∣)

− mean
i,j s.t. |R̂(λ)ij |>|R̃ij |

(∣∣R̂(λ)ij
∣∣ − |R̃ij |).

Large positive values of k are desirable, as they correspond to values of λ for which
we induce a lot of shrinkage and not much inflation.

2.2.3. Initialization. Although our algorithm is guaranteed to find a locally
optimal solution, there is no guarantee of finding a global optimum because the
objective function is not convex. Because of computational limitations, we restrict
ourselves to searching for a locally optimal solution near R̃, rather than performing
a broader search of the parameter space for better local minima.

Initialization at R̃ is intuitively appealing, since R̃ is the known optimum in the
unpenalized (λ = 0) case. When taken in concert with our procedure for selection
of λ, it also suggests an iterative process for initialization. Our procedure for se-
lecting λ requires us to compute R̂(λ) for a range of λ values. If we slowly increase
λ away from zero, we can typically select good initial values by using the estimates
computed for previous values of λ. For instance, at λ = 0, we appeal to the known
solution of R̂(λ = 0) = R̃. At λ = 0.1, we start our search at R0 = R̂(λ = 0) = R̃.
At λ = 0.2, we start our search at R0 = R̂(λ = 0.1), and so on.

2.2.4. Alternative solution to innermost minimization problem. While Cui,
Leng and Sun (2016) present a guaranteed solution to the minimization problem in
equation (4), theirs is an iterative algorithm which can be slow under common cir-
cumstances. In practice, results in this paper have backed off to a simpler algorithm
which may not find the optimum under some conditions.
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We note that if the restriction to � were not present, equation (4) would have a
simple analytic solution, given by

(5) Rnew = S
(
Rold − t

(
R−1

i − R−1
oldR̃R−1

old

)
,

λ

T − 1
tP

)
,

where S is the elementwise soft-thresholding operator defined by

S(X,α)ij = sign(Xij ) · (|Xij | − αij

) · 1(|Xij | > αij

)
.

(The updates are actually restricted to the off-diagonal elements only, as the di-
agonal elements of a correlation matrix are constrained to equal 1.) Thus, if there
were no positive definiteness constraint, each update step would consist of a gradi-
ent descent step according to the gradient of the differentiable component followed
by soft-thresholding the result.

Although we do have to satisfy a positive definiteness constraint, in our approx-
imate algorithm we start by trying the update step in (5). If this update results in a
valid correlation matrix, then that matrix is our solution to (4), and we take this as
our proposed Rnew. However, sometimes the soft-thresholded gradient step results
in a matrix that is not positive definite. In that case, rather than applying an itera-
tive solution, in practice we have simply reduced the step size and returned to the
top of the loop.

We expect this approximation to have two major impacts. First, if the true local
minimum is on the boundary of positive definite space, then our modified algo-
rithm can converge to points which are not local minima. (In our application, we
ruled out this scenario by confirming that all eigenvalues of our final solution were
strictly positive.) Second, it typically forces small step sizes to avoid generalized
gradient descent steps which would land outside �. Because we are explicitly
looking for a solution near R̃, and doing so by applying small, incremental in-
creases to λ, we do not believe this to be an issue in our application. However, it
would take a broader search of parameter space to conclusively state that this has
not influenced our results.

In any case, this algorithmic modification is an approximation implemented for
the sake of computational speed, and the full procedure is available for those with
more computational power.

2.2.5. Step size selection. Step size selection has a large impact on perfor-
mance and convergence of this algorithm. Details of step size selection are dis-
cussed in Appendix A.

3. Results. In this section, we first report results from applying our method
to global migration data in Section 3.1. Section 3.2 then provides a simulation
study which demonstrates that our method outperforms Pearson correlations and
the Ledoit–Wolf shrinkage estimator [Ledoit and Wolf (2003)] in the situation
where the penalty matrix P is appropriate to the true correlation structure.
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3.1. Application to migration.

3.1.1. Data. We use data on net migration from the 2012 revision of the World
Population Prospects (WPP) [United Nations (2012)]. The WPP contains estimates
of net migration for all countries in five-year time periods from 1950 until 2010, a
total of 12 time periods. We compute the net migration rate gc,t as the net number
of migrants in country c over the five-year period starting at time t , divided by
thousands of individuals in country c at time t .

Because we want to express prior beliefs as a function of distance covariates, we
restrict the set of modeled countries to the 191-country overlap between the WPP
2012 and the set of countries included in CEPII’s GeoDist database, a database
of bilateral distance covariates defined on pairs of countries [Mayer and Zignago
(2011)].

3.1.2. Selection of P . Our estimation technique requires that we choose a
penalty matrix, P , that reflects our prior beliefs about which country pairs are
likely to be correlated. Although it would be possible to elicit expert opinion about
each of the roughly 18,000 country pairs, we instead choose a P that can be charac-
terized in terms of just a few covariates. Our matrix P penalizes a pair of countries
if none of the following conditions is met:

1. The two countries are contiguous.
2. The two countries’ most important cities are located less than 3000 km apart.
3. The two countries are in the same region according to the United Nations

Population Division’s division of the world into 22 regions, based on both geo-
graphical contiguity and cultural affinity [United Nations (2012)].

4. The two countries are currently in a colonial relationship.

This definition of P is in line with migration theory, which suggests that migrant
flows are more likely when monetary and social costs of movement are low [Harris
and Todaro (1970), Lee (1966), Sjaastad (1962), Stark and Bloom (1985)], as will
be the case with countries which are geographically proximate or share administra-
tive ties. This definition penalizes 85% of country pairs, leaving 15% unpenalized.
The average country is considered to be “close” to 29 other countries, and “distant”
from the remaining 161.

In selecting these conditions, we examined nine candidate distance covariates.
The first eight such covariates come from CEPII’s GeoDist database [Mayer and
Zignago (2011)], while the ninth is derived from the United Nations division into
22 regions. The left column of Table 1 gives the complete list of covariates con-
sidered. As an empirical basis for determining which criteria to include in defining
our penalty matrix, we examined the elements of the sample correlation matrix for
all pairs of countries meeting each criterion. Using a Kolmogorov–Smirnov test,
we tested whether the distribution of these sample correlations was different from
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TABLE 1
Results of Kolmogorov–Smirnov test that empirical

correlations are significantly different from the distribution
of elements of a sample correlation matrix when the true

error structure is uncorrelated. p-values lower than
0.05 are bolded

Covariate p-value

Contiguous 0.019
Common language (official) 0.23
Common language (spoken by 9% of pop.) 0.58
Geodesic distance less than 3000 km 0.0003
Colonial relationship after 1945 0.57
Common colonizer after 1945 0.11
Current colonial relationship 0.035
Ever had a colonial link 0.36
Same UN Region 0.036

the distribution of elements of the sample correlation matrix under a null hypoth-
esis of uncorrelated errors. The right column of Table 1 shows the p-values from
these Kolmogorov–Smirnov tests. Our definition of the penalty matrix P includes
all covariates with a p-value less than 0.05.

3.1.3. Selection of the regularization parameter, λ. We computed values of
R̂(λ) for all values of λ from 0 to 3 in increments of 0.1. Figure 3 shows the value
of k(R̃, λ) over a range of λ values. We found that k(R̃, λ) peaked at λ = 0.6,
where we find average shrinkage of 0.13 compared with average inflation of 0.07.
Increasing λ from 0.6 to 0.7 induces additional shrinkage, but at the cost of greatly
inflating some correlations. Accordingly, we choose R̂(0.6) as our estimate of R.

FIG. 3. Regularization criterion, k(R̃, λ) as a function of λ. The regularization criterion is the
difference between the average shrinkage among shrunk elements of R̂(λ) and average inflation
among inflated elements.
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FIG. 4. Comparison of elements of the correlation matrix before regularization (solid curves) and
after (dashed curves). Top panel shows penalized elements; bottom panel shows unpenalized ele-
ments.

Figure 4 shows the impact of regularization on the correlation matrix. Among
penalized elements (top panel), we see substantial shrinkage towards zero, al-
though many penalized elements remain large in magnitude, even after regular-
ization. The bottom panel shows the unpenalized elements of the correlation ma-
trix before regularization (solid curve) and after (dashed curve). On average we
induce some shrinkage in the unpenalized elements, but the distribution is largely
unchanged.

3.1.4. Projection and evaluation. We augment the BHM+IFE model with the
LPoC estimate R̂(0.6) to produce probabilistic projections of migration for any
collection of countries. Figure 5 contains medians and 80% prediction intervals of
projected migration for all continents. In Africa, negative correlations narrow our
projections. In Europe, positive correlations cause forecasts to widen. For the other
continents, we see little change in projected migration.

For evaluation, we compare true migration rates for regional aggregates in
1995–2010 with projections of the same regional aggregates based only on migra-
tion data from 1950–1995. This procedure entails re-estimation of the BHM+IFE
model using only the 1950–1995 data, followed by construction of an empirical
correlation matrix, selection of λ, and extraction of R̂(λ). We compare the perfor-
mance of the BHM+IFE model on regional aggregates to a model using the same
sampled values of μ, φ, and σ , but augmented with R̂(λ).

As an evaluation metric, we use the negatively oriented continuous ranked prob-
ability score (CRPS) [Gneiting and Raftery (2007), Hersbach (2000)]. The CRPS
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FIG. 5. Medians and 80% prediction intervals for net migration among continents. Projections
from the Bayesian hierarchical model with independent forecast errors (BHM+IFE) are given in
red. Projections using our estimated correlation matrix (BHM+LPoC) are in blue. Overlap is in
purple.

compares the cumulative distribution function, F , of a probabilistic forecast to an
observation, x, and is defined by

CRPS(F, x) =
∫ ∞
−∞

(
F(y) − 1{x ≤ y})2

dy.

In our application, the two probabilistic forecasts under consideration have the
same mean as one other, by design. One approximate way of looking at CRPS in
this setting is that when gc,t is close to the mean of the forecast, we reward F for
having low variance; when gc,t is far from the mean, we reward F for having high
variance.

Table 2 gives CRPS for projections of aggregate migration for the six continents.
Our model improves the quality of projections in Africa and Europe, while projec-
tions for the other four continents are more or less unchanged. Figure 6 illustrates
the change in projections of net migration in 1995–2010 for four subregions of
Africa and Europe. Projections from the BHM+IFE model are in red; projections
from BHM+LPoC are in blue. Our method narrows prediction intervals in Eastern
and Western Africa, bringing the width of the 80% prediction intervals more into
line with the range of observed variability. In both regions, true migration rates for
the projected period stayed within our narrower intervals. In contrast, our method
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TABLE 2
Continuous ranked probability score for all continents
evaluated on projections of 1995–2010, where lower is
better. Left column: Projections based on the Bayesian

hierarchical model with independent correlation
structure (BHM+IFE). Right column: Projections
based on the Bayesian hierarchical model with our

regularized correlation estimate (BHM+LPoC).
Bolded entry in each row indicates the lower value

IFE LPoC

Africa 1.66 1.49
Asia 0.73 0.74
Europe 3.92 3.76
Latin America and the Caribbean 1.62 1.62
Northern America 5.02 4.99
Oceania 8.53 8.49

widens projections in Northern and Western Europe, where the 80% intervals from
the BHM+IFE model either miss or nearly miss capturing some of the observed
data points.

This regional analysis suggests several policy considerations. For Europe as
a whole and Northern and Western Europe in particular, our approach uncovers
additional variability in the aggregated net migration rate which is not present in
the model with independent forecast errors. If it is desirable to avoid periods of
either extreme in- or out-migration, Europe could take measures to dampen this
variance. Two practical options would be shared migration quotas to control in-
migration or greater incentivizing of within-Europe migration during economic
recessions.

For Africa, the situation is nearly the opposite. Many of the strongest negative
correlations we observed can be traced back to within-region refugee flows. In
Africa, at least, when a country undergoes a shock that results in a sudden spike in
out-migration, that out-migration is likely to disperse in-migrants elsewhere in the
region. A primary regional policy consideration should be planning for equitable
refugee uptake and, if desirable, repatriation. Quantification of likely scenarios in
the absence of new policy interventions can be guided by the trajectories from our
model.

The few policy considerations discussed above are by no means exhaustive.
A recent report by the IOM and McKinsey & Company [International Organi-
zation for Migration and McKinsey & Company (2018)] lays out a case for the
many areas in which improvements in migration data would be valuable to send-
ing countries, receiving countries, and migrants themselves. Many of their cited
planning considerations would benefit from better understanding of correlations
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FIG. 6. Medians and 80% prediction intervals for projections of net migration rates for regional
aggregates. Projections from the Bayesian hierarchical model with independent forecast errors
(BHM+IFE) are given in red. Projections using our estimated correlation matrix (BHM+LPoC)
are in blue. Overlap is in purple.

in migration. These considerations include setting policies to incentivize immigra-
tion among groups with relevant skills, forecasting loads on health and education
systems in receiving countries (which may differ according to migrants’ country
of origin), and selecting appropriate locations to cater to basic needs of temporary
refugees.

3.2. Simulation study. In this section, we show by simulation that our regu-
larization procedure improves correlation estimates in a low-dimensional setting.
To match the application of interest, we simulate 12 observed time points from an
AR(1) process with correlated errors. For computational tractability, we decrease
the number of simulated countries from 191 in the real data to 9 in the simulation.
For each of 100 simulations, we perform the following procedure:

1. Generate a set of simulated migration rates g1, . . . ,g12 from an AR(1) pro-
cess with errors correlated as described below.

2. Produce point estimates of ε1, . . . ,ε11 via MCMC sampling of μ, φ, and σ .
3. Convert εt ’s to a matrix R̃ using the procedure in Section 2.2.1.
4. Solve the minimization problem (2) to obtain a regularized estimate for the

correlation matrix.
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Since the procedure for selecting λ is computationally intensive, we perform
this procedure only once and use the same value of λ for all subsequent simula-
tions.

3.2.1. Simulation details. We simulate a collection of nine countries with true
migration rates governed by the AR(1) process:

gt − μ = diag(φ)(gt−1 − μ) + εt .

For simplicity, we take μ = 0, φ = 1
21, and

εt
iid∼ N9(0,�).

We fix � to be block diagonal. The correlation structure within each 3 × 3 block
is given by

�3×3 =
⎛
⎝ 1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

⎞
⎠ ,

and the full covariance matrix by

� =
⎛
⎝�3×3 0 0

0 �3×3 0
0 0 �3×3

⎞
⎠ .

We then simulate observations g1, . . . ,g12 and attempt to make inference on the
correlation structure of �.

Because we are basing inference on a small number of time points, Pearson
estimates of correlation are highly variable. Solid curves in Figure 7 show the
distributions of the off-diagonal elements of the unregularized Pearson correlation
matrix in the ideal scenario where the values of εt can be perfectly estimated. The
top panel shows the distribution of the elements for which the true correlation is
zero. The bottom panel shows elements for which the true correlation is 0.5. In
both cases, high variability makes inference difficult. Our method is designed to
decrease variability among estimated correlations for those country pairs where
prior knowledge suggests that the correlation should be close to zero.

To illustrate a best case scenario, we choose a penalty matrix P which is well
suited to the true correlation structure. The simplest such P is the one which pe-
nalizes the off-diagonal elements of the correlation matrix if and only if the true
correlation is zero, namely

P =
⎛
⎝03×3 13×3 13×3

13×3 03×3 13×3
13×3 13×3 03×3

⎞
⎠ .
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FIG. 7. Simulation study results: Comparison of elements of the correlation matrix before regular-
ization (solid curves) and after (dashed curves). Top panel shows penalized elements; bottom panel
shows unpenalized elements. True correlations are indicated with dashed vertical lines.

3.2.2. Initial run to select λ. Our procedure to select λ is computationally ex-
pensive, as it requires us to compute R̂(λ) repeatedly as λ varies. We therefore
perform this procedure only once and use the same λ for estimation of R in all
subsequent simulated data sets. Figure 8 plots our λ-selection criterion based on a
single simulated data set over the range λ = 0,0.1,0.2, . . . ,10. The exact curve,
shown in black, exhibits some jumpiness in this low-dimensional setting, a prob-
lem which naturally becomes less severe in the high-dimensional setting of inter-

FIG. 8. Average shrinkage minus average inflation of elements of R̂(λ) as λ varies from 0 to 10.
Exact curve in black, Lowess-smoothed curve in red.
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est. Because of this jumpiness, we base our selection of λ on a Lowess-smoothed
curve, selecting the maximizing value of λ = 6.4.

This curve suggests the possibility of another local or global maximum at a
value higher than λ = 10. However, we have selected the first clear local maxi-
mum in order to mimic as well as possible the procedure performed in the high-
dimensional setting. For matrices on the order of 200 × 200, as in our actual appli-
cation, recomputing R̂(λ) for each new value of λ can take on the order of hours
of real time, depending on available hardware. Because of this, for the migration
data we continued updating λ until we felt sufficiently confident of having found
a local optimum of this criterion, and then we stopped. There are no guarantees of
global optimality surrounding this procedure; it is used for practical reasons, and
we adopt it in the present simulation setting.

3.2.3. Evaluation of repeated estimation of R. We produced 100 estimates
of R̂(λ = 6.4) from 100 different sets of simulated migration rates, all using the
same block diagonal correlation structure. The dashed lines in Figure 7 show the
distribution of off-diagonal elements of R̂, split into those elements where the true
correlation is 0 and elements where the true correlation is 0.5 (top and bottom
panel, resp.).

Our method succeeded in shrinking penalized elements towards zero. Among
elements where the true correlation is zero, we correctly estimated an exact zero
in 62% of cases in this simulation. Among unpenalized elements, our method pro-
duced estimates with slightly more variability (the standard deviation was 0.256
for Pearson correlations versus 0.272 for our estimates). Both methods produced
estimates for unpenalized elements that are within two standard errors of the true
mean value of 0.5. The mean estimated correlation was 0.489 for Pearson cor-
relations (standard error 0.009) versus 0.514 for our estimates (standard error of
0.009). On the whole, the LPoC estimator greatly improved estimates of penalized
elements at the expense of slightly increasing variability in unpenalized elements.

Table 3 compares mean absolute error and mean squared error from our method
with two competing estimators. We compare our results against both Pearson cor-
relation matrices and correlation matrices that have been regularized using the
Ledoit–Wolf method, which shrinks Pearson estimates towards a spherical corre-
lation structure [Ledoit and Wolf (2003)]. In the top panel, we estimate ε1, . . . ,ε11
with a Bayesian hierarchical model, as is done in our real application to migration.

In the bottom panel, we assume instead a scenario where we have direct access
to ε1, . . . ,ε11, as would be suitable in other applications where the interest is in
estimating correlations of directly observed quantities. In both cases, our method
provides an overall reduction in mean squared error by at least two thirds when
compared against the Pearson sample correlation matrix. A large reduction in error
from shrinking penalized elements is offset by a mild increase in error among
unpenalized elements. We also outperform the Ledoit–Wolf estimator in terms of
overall error.
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TABLE 3
Evaluation of correlation matrix estimates from simulation
study. “LPoC” refers to our estimator, which uses Laplace

priors on correlations. MAE is mean absolute error. MSE is
mean squared error. Averages over “all elements” exclude

diagonal elements, which are fixed at zero by all methods. The
lowest (best) values are shown in bold

Estimator MAE MSE

Values of εt estimated with MCMC
All elements Pearson 0.253 0.098

Ledoit–Wolf 0.193 0.055
LPoC 0.090 0.028

True correlation = 0 Pearson 0.270 0.109
Ledoit–Wolf 0.190 0.053
LPoC 0.049 0.012

True correlation = 0.5 Pearson 0.201 0.066
Ledoit–Wolf 0.200 0.060
LPoC 0.214 0.074

True values of εt used
All elements Pearson 0.227 0.079

Ledoit–Wolf 0.182 0.047
LPoC 0.078 0.022

True correlation = 0 Pearson 0.244 0.089
Ledoit–Wolf 0.162 0.039
LPoC 0.041 0.010

True correlation = 0.5 Pearson 0.176 0.051
Ledoit–Wolf 0.243 0.073
LPoC 0.190 0.058

4. Discussion. Our method augments probabilistic projections of migration
that are well calibrated for individual countries, with a correlation structure that
reflects prior knowledge of between-country correlations. By combining a high-
dimensional empirical correlation matrix with an informative prior that shrinks
spurious correlations, we produce an estimated correlation matrix that is in line
with migration theory and improves projections of regional aggregates. When
compared with a simple model that assumes uncorrelated forecast errors, our
method narrows projections of net migration for Africa and widens projections
for Europe. Out-of-sample evaluation confirms that these changes produce better
probabilistic forecasts as measured by continuous ranked probability score. Me-
chanically, the novelty of our method is our prior on correlations, which benefits
from being interpretable and simple in form, and converts MAP estimation to an
�1-penalized regularization problem which is computationally tractable.
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Our analysis focuses on modeling net migration, rather than immigration and
emigration or a complete matrix of migration flows. Although net migration is
sufficient for computing population change, it is not ideal in that it obscures the
relationships between in- and out-migration [Rogers (1990)]. However, net migra-
tion is attractive in that it can be estimated using residual methods as long as good
estimates are available for births, deaths, and population change. Indeed, this is
typically the approach taken to produce the net migration estimates for the WPP,
even in countries which produce official estimates of immigration and emigration
[United Nations (2012)]. Emigration is known to be particularly difficult to esti-
mate; de Beer et al. (2010) have documented pervasive under-counting in official
estimates of emigration among European countries, theorizing that this is due to
the difficulty of incentivizing individuals to report when they leave the country.

If sufficient data were to become available, an attractive alternative to our
method would be to model a full matrix of bilateral migration flows. Such a model
would naturally imply correlations in migration—if out-migrants from country i

tend to go to country j , then net migration in countries i and j will be negatively
correlated. However, modeling the global bilateral flow matrix is currently not fea-
sible. Abel (2013) produces global estimates of migration flows based on migrant
stock data, but for only a small number of time periods at which migrant stock
data exist. His method involves minimizing the total number of migrants subject
to the available data on migrant stocks. This induces many structural zeroes in his
estimates, making modeling difficult.

Although our method produces a MAP estimator in the presence of informa-
tive priors, we are not able to leverage the usual Bayesian machinery to produce
a sample from the posterior distribution. While it would in theory be possible
to use MCMC methods to produce a posterior sample by updating one element
of the correlation matrix at a time, an updating procedure would need to iter-
ate through some 18,000 elements of the correlation matrix, checking for posi-
tive definiteness after each proposed step. Such an algorithm is therefore likely to
move around the parameter space too slowly to be of any use. In some settings, a
Laplace approximation centered at the posterior mode can provide a good approxi-
mation of marginal posterior distributions [Tierney and Kadane (1986)]. However,
the double-exponential priors in our setting render this procedure impracticable.
Within each orthant of the parameter space, a quadratic approximation to the log
likelihood is reasonable, but because of the �1 penalty term, a different quadratic
approximation would be required for each of the roughly 218,000 orthants, which is
not feasible.

Given our interest in combining data with prior beliefs, an inverse Wishart prior
on covariance is tempting because it allows easy sampling from the full posterior.
However, the inverse Wishart distribution is restrictive in form [Barnard, McCul-
loch and Meng (2000)] and does not provide a straightforward way to describe
prior beliefs about correlations.
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Another tempting alternative is that of Liu, Wang and Zhao (2014), who gave
a simple thresholding method for producing a penalized correlation matrix that is
guaranteed to be positive definite. Their estimator solves

argmin
ω
δ·I

1

2
‖R̃ − ω‖2

F + λ‖W ∗ ω‖1,off,

to produce an estimator among the set of valid correlation matrices with minimum
eigenvalue no smaller than δ. Although the weight matrix, W , is in principle ar-
bitrary, they use W to induce greater shrinkage where empirical correlations are
weakest, not as a means of conveying prior information. We would be hesitant
to replace W with our penalty matrix P , as that use of their method would not
incorporate prior information in a principled way.

In this work, we chose a fairly simple penalty matrix P , in which all entries
were constrained to be either zero or one. Several straightforward generalizations
of this penalty matrix are possible with only minimal methodological changes.
First, the entries in P can in general take any nonnegative values, reflecting prior
beliefs about individual correlations which are allowed to vary in strength. Elic-
iting some 18,000 Pij values individually is not realistically feasible, but it may
be possible to elicit expert priors in some useful parametric form, for example,
taking Pij values to be the outputs of a linear regression, with experts expressing
prior beliefs on the association between identified covariates and expected strength
of correlations. Work on estimating migration flows within Europe [Raymer et al.
(2013)] has made use of expert elicitation of informative priors on parameters in a
migration model, and found it to be a practicable solution. Second, our method can
be generalized to shrink estimated correlations towards nonzero values by replac-
ing the penalty term λ‖P ∗ R‖1 with λ‖P ∗ (R − S)‖1 for some target matrix S.
This may be desirable in cases where heavily structured estimates of correlations
are available, as is the case for modeling of fertility [Fosdick and Raftery (2014)].

Note that we have used the 2012 revision of the WPP here [United Nations
(2012)]. The more recent 2017 revision [United Nations (2017)] contains one ad-
ditional data point. It would be of interest to redo the analysis with the newer data,
but we expect the results would be similar.

APPENDIX A: DETERMINING STEP SIZE

Step size selection is necessary in high dimensions for the general gradient de-
scent algorithm to converge quickly enough to be useful. Complex methods for
step size selection are available, but we obtained reasonable results with the back-
tracking line search algorithm, which starts with a large step size and decreases
step size whenever a proposed step results in too little improvement in the objec-
tive function.

Say we have an objective function f (x) which we are trying to minimize. The
core of the backtracking line search algorithm is as follows [Nocedal and Wright
(2006)]:
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1. Fix a backtracking coefficient β ∈ (0,1), a starting step size α0, and a starting
location x0.

2. Propose a step of length αk in direction pk . (The backtracking line search
algorithm is a generic algorithm that will work regardless of how the direction pk

is determined.)
3. If the improvement in the objective function is enough to meet the Armijo

condition given in (6) below, then take the proposed step, that is, take xk+1 =
xk + αkpk . Keep the step size constant (i.e., αk+1 = αk).

4. Otherwise, if there is any improvement in the objective function, take the
proposed step, but also decrease the step size for the next iteration (specifically, set
αk+1 = βαk).

5. Otherwise, there must have been no improvement in the objective function.
Do not take a step, but do decrease step size. (xk+1 = xk and αk+1 = βαk .)

6. Repeat steps 2–5 until convergence.

The Armijo condition, which is used to determine whether to decrease step size,
is as follows. The Armijo condition is met if the following inequality is satisfied:

(6) f (xk + αkpk) ≤ f (xk) + c1αi∇f T
k pk.

[c1 is a constant chosen from (0,1) that controls how strictly the change in f must
match the gradient at xk .]

In our application, there is a missing component—we cannot actually compute
the gradient of our objective function. The relevant objective function is given by

f (R) = tr
(
R−1

i R
) + tr

(
R−1R̃

) + λ‖P ∗ R‖1.

The first two terms in the sum are differentiable, but the third is not.
We rewrite the Armijo condition as

f (xk + αkpk) ≤ f (xk) + c1αip
T
k pk − c1αi(pk − ∇fk)

T pk,

and then approximate (pk − ∇fk) by

−2 · ∇(
tr

(
R−1

i R
) + tr

(
R−1R̃

))
.

APPENDIX B: INFLATION OF CORRELATION ESTIMATES

We provide here an example of our correlation estimation procedure which pro-
duces inflation in some unpenalized elements of the correlation matrix. We solved
the minimization problem in (2) with three different methods, finding identical
answers each time, up to small numerical tolerances. Those methods are:

1. Estimate R using our code, which appeals to the generalized gradient descent
algorithm.

2. Estimate R using a black-box numerical optimization algorithm, which has
access to the function we’re minimizing, but not its derivative.
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3. Estimate R by finding an analytic expression for the gradient of the function
we’re minimizing, and solve for a point where the gradient is zero.

One case in which inflation manifests if we take our evidence from the data to
be given by

R̃ =
⎛
⎝ 1 0.8 0.5

0.8 1 0.1
0.5 0.1 1

⎞
⎠

and the penalty matrix by

P =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ .

We denote the unknown true correlation matrix by

R =
⎛
⎝ 1 ρ1 ρ2

ρ1 1 ρ3
ρ2 ρ3 1

⎞
⎠ .

We fix the regularization parameter at λ = 0.5. The problem is then to estimate the
three parameters ρ1, ρ2, and ρ3.

With all three methods we find an estimate of

ρ̂ =
⎛
⎝ ρ̂1

ρ̂2
ρ̂3

⎞
⎠ =

⎛
⎝ 0.8211

0.1542
−0.1813

⎞
⎠ .

Note that the second element, which is penalized, experiences shrinkage to-
wards zero, as expected. The first element is inflated, while the third is both inflated
and changes sign.
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