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We propose a Bayesian panel model for mixed frequency data, where
parameters can change over time according to a Markov process. Our model
allows for both structural instability and random effects. To estimate the
model, we develop a Markov Chain Monte Carlo algorithm for sampling from
the joint posterior distribution, and we assess its performance in simulation
experiments. We use the model to study the effects of macroeconomic uncer-
tainty and financial uncertainty on a set of variables in a multi-country context
including the US, several European countries and Japan. We find that there
are large differences in the effects of uncertainty in the contraction regime
and the expansion regime. The use of mixed frequency data amplifies the rel-
evance of the asymmetry. Financial uncertainty plays a more important role
than macroeconomic uncertainty, and its effects are also more homogeneous
across variables and countries. Disregarding either the mixed-frequency com-
ponent or the Markov-switching mechanism can bring to substantially differ-
ent results.

1. Introduction. The role of uncertainty as a driver of macroeconomic fluc-
tuations has been at the center of attention especially since the beginning of the
Great Recession in 2007. Most of the literature has so far focused on measuring
uncertainty and its effects in the US economy. Hence, there is a clear need to study
whether the results for the US also hold for other countries, which differ for the
structure of their goods, labour and financial markets, degree of openness, conduct
of fiscal and monetary policy, and other institutional characteristics.

In this paper we take a multi-country perspective and assess the effects of un-
certainty on different macroeconomic variables in various countries: US, Canada,
Japan, Euro area as a whole and its main member States, UK, Switzerland, Nor-
way, Sweden, all the countries for which we can construct a measure of uncertainty
based on the Consensus Economic Forecasts. To properly address this question,
we take a panel approach, as an unrestricted model for many variables and coun-
tries would be too large. We also allow for different effects of uncertainty over
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time, and in particular in expansionary and recessionary times. Finally, we exploit
the presence of mixed frequency data to improve estimation efficiency and reduce
identification problems; see, for example, Foroni and Marcellino (2014). A multi-
country study on uncertainty has been recently proposed by Baker, Bloom and
Davis (2016). However, the main focus of their work is to develop a new index of
economic policy uncertainty (EPU) and the focus on a panel of countries is lim-
ited. To conduct this study, we develop a multi-country panel Markov-switching
unrestricted mixed-data sampling regression (panel MS-UMIDAS from now on).
Our first main contribution is therefore methodological. The panel MS-UMIDAS
framework allows us to model a large panel of countries and several variables for
each country, to use a time-varying transition mechanism and to model nonlinear-
ities. Finally, it makes possible to consider variables at mixed frequencies.

The model is at the crossing of different strands of literature. Markov-switching
dynamic panel models have been introduced by Kaufmann (2010), and further
extended by Kaufmann (2015) to allow for a time-varying Markov-switching tran-
sition distribution, and by Billio et al. (2016b) to a multivariate VAR setup. Our
model builds on Kaufmann (2010, 2015) and extends her model in two directions.
First, we introduce country-specific and variable-specific random effects that allow
us to obtain heteroskedastic effects with time-variation in the error variance. This
is particularly relevant because it means that we do not need to include a Markov-
switching mechanism in the variance once it is present in the random effects, in
order to have time-variation in the variance of the residuals. Second, our model
allows to use data at different frequencies.

There is an increasing literature on mixed frequency data. Here, we focus on
one of the main strands, the mixed-data sampling (MIDAS) model. MIDAS re-
gressions in their original specification, as introduced by Ghysels, Santa-Clara
and Valkanov (2005), are tightly parameterized reduced form equations, which
use distributed lag polynomials to parsimoniously incorporate high-frequency in-
formation into models for low-frequency variables. Foroni, Marcellino and Schu-
macher (2015) show that an unrestricted variant of MIDAS, which does not re-
sort to functional distributed lag polynomials and preserves linearity of the model
(UMIDAS), is particularly suited when the frequency mismatch is not too big, as
in the case of macroeconomic data. Since we are interested in modelling macroe-
conomic variables, and due to the simplicity of the UMIDAS approach, we adopt
this specification in our panel MS context. We highlight that the use of different
MIDAS parameterizations [Ghysels, Santa-Clara and Valkanov (2005), Ghysels,
Sinko and Valkanov (2007), Pettenuzzo, Timmermann and Valkanov (2016)] is al-
lowed within our framework and does not pose any additional conceptual difficulty.
It would imply though an enlargement of the parameter space and the addition of
a step in the estimation algorithm.

Our paper relates also to other contributions in the mixed-frequency literature.
Guérin and Marcellino (2013) introduce Markov-switching MIDAS and apply this
model to the prediction of the US economic activity. Khalaf et al. (2013) have
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extended the MIDAS approach to the panel regression models suitable for analysis
with GMM methods. We extend both these papers because we introduce here a
Markov-switching panel MIDAS.

The estimation of our model is conducted in a Bayesian framework. In order to
avoid overparameterization issues and overfitting problems we follow a hierarchi-
cal strategy in the specification of the prior as suggested in the Bayesian dynamic
panel modeling literature [Canova and Ciccarelli (2004, 2009), Bassetti, Casarin
and Leisen (2014), Kaufmann (2010)]. The hierarchical prior can be used to incor-
porate cross-equation interdependencies and various degrees of information pool-
ing across countries [Chib and Greenberg (1995), Min and Zellner (1993)], and
allows us to naturally introduce random effects into the panel model. Although the
MIDAS models have been typically used in a classical estimation context, recently
the literature has expanded into the Bayesian estimation of this class of models
[Foroni, Ravazzolo and Ribeiro (2015), Pettenuzzo, Timmermann and Valkanov
(2016), Rodriguez and Puggioni (2010)].

As a second main contribution, we apply our model to study the effects of un-
certainty on different sectors and variables across a panel of developed countries,
including data at different frequencies and at the same time allowing for differ-
ent regimes. In our analysis, we consider different measures of uncertainty avail-
able in the literature: a measure of forecast disagreement as proxy for macroe-
conomic uncertainty, as in Dovern, Fritsche and Slacalek (2012), and the VIX as
proxy of financial uncertainty, as proposed by Bloom (2009) in his seminal paper.
We assume that monthly uncertainty is exogenous to quarterly macroeconomic
variables. The identification scheme relies on the release time of the uncertainty-
related and macroeconomic variables, with the former generally released earlier
and in higher frequency and the latter released with some delay and in low fre-
quency. The literature has documented evidence of substantial time-variation in
the transmission and implications of uncertainty shocks [Alessandri and Mumtaz
(2014), Caggiano, Castelnuovo and Groshenny (2014), Mumtaz and Theodoridis
(2018)]. Our Markov-switching specification can capture this type of behavior. It
also partially protects from omitted variable bias, as potential unmodelled vari-
ables which affect both macroeconomic variables and uncertainty are captured by
the regime switching mechanism.

Our empirical results can be summarized as follows. There are large differences
in the effects of uncertainty in the contraction regime and the expansion regime.
The use of mixed frequency data rather than quarterly uncertainty variables ampli-
fies the relevance of the asymmetry. Moreover, financial uncertainty plays a more
important role than macroeconomic uncertainty. Its effects are stronger in the con-
traction regime than in the expansion regime, in particular on the real variables.
Further, the effects of financial uncertainty are also more homogeneous across
variables and countries than those of macroeconomic uncertainty. When financial
uncertainty is removed, the role of macroeconomic uncertainty increases, captur-
ing part of the financial uncertainty and highlighting the need of jointly consid-
ering both types of uncertainty to avoid biased results, in line with the results
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in Jurado, Ludvigson and Ng (2015) and Carriero, Clark and Marcellino (2018).
Finally, we show that disregarding either the mixed-frequency component or the
Markov-switching mechanism can bring to substantially different results.

This paper is organized as follows. Section 2 presents our Bayesian panel
Markov-switching MIDAS model, discusses the Bayesian inference framework
and confirms efficiency and convergence of our estimation method. Section 3
presents empirical results on the effects of financial and macroeconomic uncer-
tainty on macroeconomic variables. Section 4 concludes. Proofs of the results and
additional details are presented in a set of Appendices. Details on the estimation
algorithm and additional empirical results can be found in the supplementary ma-
terials Supplement B–Supplement E [Casarin et al. (2018)].

2. A panel Markov-switching UMIDAS model. We introduce a panel
Markov-switching UMIDAS specification, with which we model a set of coun-
tries and variables and, at the same time, we allow to use a time-varying transition
mechanism and to exploit data at different frequency.

The idea of a Markov-switching dynamic panel model has been introduced by
Kaufmann (2010), who considers a group-specific time series model, in which
the information about the business cycle turning points is extracted by estimating
groups of series that follow a similar time series process over time. The parame-
ters that describe the process are shrunk towards group-specific means rather than
pooled, allowing for group-specific parameter heterogeneity. The different groups
of series are then linked by a dynamic structure. Kaufmann (2015) extends her
previous model to allow for endogenous transition probabilities.

Our model builds on Kaufmann (2010, 2015). We consider a panel of G coun-
tries and ng variables for each country, and extend the previous studies in two
directions. First, we apply country- and variable-specific random effects that al-
low us to obtain heteroskedastic effects with time-variation in the error variance
without the requirement of specifying a dynamic model for it. Second, our model
allows to use data at different frequencies, without the need of previously aggre-
gating them to the lowest available frequency.

2.1. Model specification. Let us consider a panel of G countries and ng vari-
ables for each country. The number of variables for each country does not have to
be the same. However, to keep the notation simple, we will consider, with no loss
of generality, each country having ng variables.

The panel specification we propose is the following:

(2.1) cig

(
Lm, sgt

)
yigt = μig(sgt ) +

N∑
j=1

δigj (L, sgt )xigj t + εigt ,

for all i and g, where εigt
i.i.d.∼ N (0, σ 2

ig) for all t and the errors are uncorrelated
across equations at all leads and lags.
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The lag structure of each variable yigt and of the covariates xigjt are defined
respectively as:

cig

(
Lm, sgt

) = 1 −
c∑

l=1

Lmlcigl(sgt ), δigj (L, sgt ) =
v∑

d=0

δigjd(sgt )L
d,

where L is the lag operator. As yigt are sampled at frequency m, the lag operator
in cig(L

m, sgt ) is a power of Lm, with Lmyigt = yigt−m and c is the maximum
lag length for the variable yigt . The variables xigjt are instead sampled at each
t , so that we do not need to restrict L in δigj (L, sgt ) and v is the maximum lag
length for the covariate xigjt . Hence, each variable yigt is influenced by its own
lags, and by the contemporaneous and lagged values of all the covariates xigjt ,
with j = 1, . . . ,N , and the coefficients can vary depending on sgt . The variable
sgt is a Markov chain process, with t = m,2m, . . . ,mTq , and it has a transition
probability

P(sgt = k | sgt−m = h) = pghk,

with h, k = 1, . . . ,K , where K is the total number of regimes. The switching co-
efficients for each country g = 1, . . . ,G and variable i = 1, . . . , ng are defined as

μig(sgt ) =
K∑

k=1

ξgktμigk,

(2.2)

cigl(sgt ) =
K∑

k=1

ξgkt ciglk, δijdg(sgt ) =
K∑

k=1

ξgkt δijdgk,

for l = 1, . . . , c and j = 1, . . . ,N where ξgkt is the indicator function of being in a
specific regime k and it is defined as ξgkt = I{k}(sgt ).

The model in equation (2.1) is quite general, since it assumes that the dependent
variables are observed at the same (m = 1) or lower (m > 1) frequency than the
independent variables. Further, the specification can be easily extended to allow
for dynamic interaction effects between the variables of each country and also
between variables of different countries. Unfortunately, in practice the interaction
effects would lead to a larger number of parameters to estimate and to a potential
overfitting problem. Therefore, we leave the modelling of these effects for further
research.

2.2. A hierarchical prior specification. We follow Canova and Ciccarelli
(2004, 2009) and assume a hierarchical prior on the switching coefficients. The
hierarchical prior specification is particularly suited in this context where the num-
ber of parameters to estimate is large. While the estimation of all the parameters
can lead to overfitting problems, the use of restrictions, such as parameter pooling,
can be a strong assumption conducting to misleading results and poor forecasting
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performance. The hierarchical specification allows instead for different degrees of
information pooling across countries and series, by assuming conditional indepen-
dence across countries and series and by introducing panel- and country-specific
common factors [Canova and Ciccarelli (2004, 2009), Bassetti, Casarin and Leisen
(2014), Billio et al. (2016b), Koop and Korobilis (2016)]. Also, this motivates the
use of panel models with random effects instead of using pooling or equation-by-
equation estimation.

In detail, we design the prior distributions in a way that the regime-specific coef-
ficients of the different time series are shrunk toward country-specific and regime-
specific common means:

μigk = μk + ζμ,gk + ημ,igk,
(2.3)

ζμ,gk ∼ N (0, rμ,k), ημ,igk ∼ N (0, qμ,gk),

ciglk = clk + ζc,glk + ηc,iglk,
(2.4)

ζc,glk ∼ N (0, rc,k), ηc,iglk ∼ N (0, qc,gk),

δigjdk = δjdk + ζδ,gjdk + ηδ,igjdk,
(2.5)

ζδ,gjdk ∼ N (0, rδ,k), ηδ,igjdk ∼ N (0, qδ,gk),

with Cov(ημ,igk , ηc,i′g′lk′) = 0, Cov(ημ,igk , ηδ,i′g′jdk′) = 0, and Cov(ηc,iglk ,
ηδ,i′g′jdk′) = 0, for all i, i ′, g, g′, j, l, d and k, k′. The country- and regime-specific
random effects are ζμ,gk , ζc,glk and ζδ,gjdk . Our choice of the hierarchical prior
distribution depends mainly on the application. In our empirical exercise we be-
lieve that the impact of uncertainty might substantially differ across countries,
but that variables in the same country will respond similarly with a larger neg-
ative effect in the contraction regime than in the expansion regime. This moti-
vates our choice for country- and regime-specific random effects. An alternative
modelling strategy is to shrink the coefficients towards a variable-specific mean,
ζμ,ik , instead of a country-specific mean, ζμ,gk . This can be obtained by setting
μigk = μk + ζμ,ik + ημ,igk , ημ,igk ∼ N (0, qμ,gk), ζμ,ik ∼ N (0, rμ,k). A similar
model can be used for ciglk and δigjdk . In cases for which the choice among differ-
ent priors is controversial (e.g., in the cases in which the hierarchical prior changes
over time), Koop and Korobilis (2016) develop an approach which allows for dy-
namic model averaging or selection of models with different hierarchical priors.

In order to complete the elicitation of the hierarchical prior distribution, we
assume a truncated normal prior distribution for the common intercepts μ =
(μ1, . . . ,μK)′:

μ ∼NK

(
0K, s2

0IK

)
IAμ(μ),

where 0K is the K-dimensional null vector, IK the K-dimensional identity matrix,
s0 is an hyperparameter, and Aμ is the set of all possible values of μ which satisfy
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some identification constraints, such as μ1 < · · · < μK . We refer to Frühwirth-
Schnatter (2006), ch. 3–4, for an introduction to the problems of regime identifi-
cation and label switching and to Billio et al. (2016b) and Billio et al. (2012) for
the use of these constraints in business cycle analysis. Alternative identification
constraints can be used. For example, if one expects the duration of the states to be
different, then constraints on the transition matrix can be employed to effectively
identify the regimes. As initial condition, in the application we set s0 = 10.

We assume cross-regime independent normal prior distributions for the com-
mon coefficients ck = (c1k, . . . , cck)

′ and δk = (δ10k, . . . , δ1Nk, . . . , δv0k, . . . ,

δvNk)
′:

ck
i.i.d.∼ Nc

(
0c, r

2
0Ic

)
, δk

i.i.d.∼ NN(v+1)

(
0N(v+1), r

2
0IN(v+1)

)
,

for k = 1, . . . ,K . In the empirical analysis we set the hyper-parameter r0 to 10.
We assume cross-regime independent inverse gamma prior distributions for the

two sets of scale hyper-parameters qμ,gk , qc,gk , qδ,gk and rμ,k , rc,k , rδ,k of the
panel coefficients in equation (2.4) to (2.6):

qμ,gk, qc,gk, qδ,gk
i.i.d.∼ IG(n0,m0), rμ,k, rc,k, rδ,k

i.i.d.∼ IG(n0,m0),

for k = 1, . . . ,K , and g = 1, . . . ,G, where IG(n′,m′) denotes the inverse gamma
distribution with shape and rate parameters n′ and m′ and density function given
in Supplement B. In the empirical exercises we set the hyper-parameters n0 and
m0 equal to 1.

As regards the scale parameter of the error term in equation (2.1), we also con-
sider country- and variables specific components, that is we define our prior as:

(2.6) σ 2
ig = σ 2λ−1

ig χ−1
g ,

for g = 1, . . . ,G, and i = 1, . . . , ng , where σ 2 is a common scaling factor, χg is a
country-specific factor which captures the potential cross-country variance hetero-
geneity, and λig is a variable-specific scale factor. We use the following inverted
gamma and gamma hierarchical prior distributions, which are usually assumed for
the scale parameters in multi-country panel models [see, e.g., Bassetti, Casarin and
Leisen (2014) and references therein]

σ 2 i.i.d.∼ IG(a0, b0), λig
i.i.d.∼ Ga(c10, d10), χg

i.i.d.∼ Ga(c20, d20),

for g = 1, . . . ,G and i = 1, . . . , ng , where Ga(c′, d ′) denotes the gamma distribu-
tion with shape and rate parameters c′ and d ′, respectively and density function
given in Supplement B. In the empirical exercises we use the hyper-parameters:
a0 = 1, b0 = 1, a10 = 1, b10 = 1, c20 = 1 and d20 = 1.

We assume independent hierarchical Dirichlet prior distributions for the rows
of the country-specific transition probabilities. Let pgk = (pg,k1, . . . , pg,kK)′ and
νk = (νk1, . . . , νkK)′, then our prior distribution is

pgk
i.i.d.∼ Dir(φν1, . . . , φνK), νk

i.i.d.∼ Dir(1/K, . . . ,1/K),

for k = 1, . . . ,K and g = 1, . . . ,G, where φ = ∑K
h=1 νh.



2566 CASARIN, FORONI, MARCELLINO AND RAVAZZOLO

2.3. A random effect model. Under the hierarchical prior specification that we
elicited in the previous subsection, the dynamic panel model can be reinterpreted
as a random effect model with country-specific and regime-specific effects for in-
tercepts, regression coefficients and scale parameters. By replacing the coefficients
in equation (2.1) with the switching representation in equation (2.2) and the hier-
archical prior structure in equation (2.4) to (2.6), and rearranging terms, we obtain
the following model:

yigt =
K∑

k=1

ξgkt

{
(μk + ζμ,gk + ημ,igk) +

c∑
l=1

yigt−ml(clk + ζc,glk

(2.7)

+ ηc,iglk) +
N∑

j=1

v∑
d=0

xigjt−d(δjdk + ζδ,gjdk + ηδ,igjdk)

}
+ εigt ,

for t = m,2m, . . . , Tqm. The model in equation (2.7) can be regarded as the
Markov-switching extension of a panel MIDAS model such as the one discussed
in Khalaf et al. (2013).

While the expanded representation of our Bayesian panel MS-UMIDAS model
as in equation (2.1) is useful to understand how the random effects enter into the
model, it can result uneasy for the presentation of the inference procedure. There-
fore, we rewrite equation (2.7) in a more concise form, combining the MIDAS
representation [Pettenuzzo, Timmermann and Valkanov (2016)] with a compact
switching regression representation [Billio et al. (2016b)].

For this purpose, define the allocation variable vector ξgt = (ξg1t , . . . , ξgKt )
′,

where ξgkt is the indicator function of being in a specific regime. Further, we
define the autoregressive component vigt = (yigt−m, . . . , yigt−mc)

′ and xig,j t =
(xig,j t , . . . , xig,j t−v)

′ which includes the contemporaneous and lagged values of
the j th exogenous variable, for j = 1, . . . ,N . In addition, we collect all the
parameters into vectors. First, we introduce vectors, of regime-specific com-
mon factors for intercepts, μ = (μ1, . . . ,μK)′, autoregressive coefficients, cl =
(cl1, . . . , clK)′, for l = 1, . . . , c, and contemporaneous and lagged covariate coeffi-
cients δjd = (δjd1, . . . , δjdK)′, for j = 1, . . . ,N and d = 0, . . . , v. Second, we de-
fine the regime- and country-specific common factors, ζμ,g = (ζμ,g1, . . . , ζμ,gK)′,
ζ c,gl = (ζc,gl1, . . . , ζc,glK)′, ζ δ,gjd = (ζδ,gjd1, . . . , ζδ,gjdK)′, for g = 1, . . . ,G,
l = 1, . . . , c and j = 1, . . . ,N . Finally, for i = 1, . . . , ng and g = 1, . . . ,G, the
random effects are collected into the vectors ημ,ig = (ημ,ig1, . . . , ημ,igK)′, ηc,igl =
(ηc,igl1, . . . , ηc,iglK)′, and ηδ,igjd = (ηδ,igjd1, . . . , ηδ,igjdK)′, for l = 1, . . . , c, j =
1, . . . ,N and d = 0, . . . , v.

The following result holds.

PROPOSITION 1. The model in equation (2.7) can be written as

(2.8) yigt = z′
igt (β + ζ g + ηig) + εigt ,
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with β = (μ, c1, . . . , cc, δ10, . . . , δNv)
′ the parameter vector, zigt = (ξ ′

gt ,v′
igt ⊗

ξ ′
gt ,x′

ig,1t ⊗ ξ ′
gt , . . . ,x′

ig,Nt ⊗ ξ ′
gt )

′ the covariate vector of dimension K(1 + c +
N(v + 1)) × 1, ηig = (ημ,ig , ηc,ig1, . . . ,ηc,igc,ηδ,ig10, . . . ,ηδ,igNv)

′ the variable-
specific random effects vector, and ζ g = (ζμg , ζ c,g1, . . . , ζ c,gc, ζ δ,g10, . . . , ζ δ,gNv)

′
the country-specific random effects vector.

PROOF. See Appendix A. �

2.4. Posterior approximation. The joint posterior distribution obtained from
the likelihood and the priors outlined in the previous subsection is not tractable,
thus our Bayesian inference approach relies on a Markov chain Monte Carlo
(MCMC) approximation of the posterior distribution [Robert and Casella (1999)].
At each iteration, the MCMC algorithm generates a random sample for the latent
variables and the parameters of the model from their full conditional distributions.
The sequence of MCMC samples obtained after removing the initial set of burn-in
samples can be used to approximate any posterior quantity of interest.

We design an efficient MCMC algorithm by combining a multi-move strategy,
that is by sampling jontly blocks of parameters and latent variables, with a Rao–
Blackwellization strategy, that is, by integrating out analytically some of the con-
ditioning variables [Liu (1994), Roberts and Sahu (1997)].

In detail, let y = (y′
m(c+1), . . . ,y′

mTq
)′ be the vector of observations, with

yt = (y′
1t , . . . ,y′

Gt)
′, ygt = (y1gt , . . . , ynggt )

′, ξ = (ξ ′
1, . . . , ξ

′
G)′ the allocation

variable, with ξg = (ξ ′
g,m(c+1), . . . , ξ

′
g,mTq

)′, ηigk = (ημ,igk, ηc,igk, ηδ,igk)
′, ζ =

(ζ ′
1, . . . , ζ

′
G)′, η = (η′

11, . . . , η
′
nGG)′. Then, the complete likelihood of the model

in equation (2.8) is

L(y, ξ |θ , ζ ,η) = ∏
t∈T

G∏
g=1

ng∏
i=1

(
2πσ 2

ig

)−1/2 exp
{
− ε2

igt

2σ 2
ig

} K∏
f =1

K∏
k=1

p
ξgf t−1ξgkt

gf k ,

where pgf k are the country-specific transition probabilities, εigt is defined in
equation (A.3) as εigt = yigt − z′

igt (β + ζ g + ηig) in the proof of Propo-
sition 1 in Appendix A, zigt is defined in Proposition 1, and T = {m(c +
1),mc + 2m, . . . ,mTq}. Further, θ = (β , σ 2,λ,χ , q, p) indicates the parame-
ter vector, with λ = (λ11, . . . , λnGG)′, χ = (χ1, . . . , χG)′, q = (q′

11, . . . ,q′
GK)′,

r = (r′
1, . . . , r′

K)′, where qgk = diagrv{Qgk}, rk = diagrv{Rk}, diagrv{R} the
operator which transforms the diagonal matrix R into a vector, p = (vec{P1},
. . . ,vec{PG}), vec{R} the operator which stacks vertically the columns of the ma-
trix R, Qgk = diag{(qμ,gk, ι

′
c ⊗qc,gk, ι

′
N(v+1) ⊗(qδ,gk)}, Rk = diag{(rμ,k , ι′c ⊗rc,k ,

ι′N(v+1) ⊗ (rδ,k)}, diag{r} the operator which transforms the vector r into a diago-
nal matrix with the elements of r on the main diagonal, and P ′

g = (pg1, . . . ,pgK).



2568 CASARIN, FORONI, MARCELLINO AND RAVAZZOLO

Then, the posterior is

π(ξ , ζ ,η, θ |y) ∝ L(y, ξ |θ , ζ ,η)π
(
σ 2) K∏

k=1

π(μk)π(ck)π(δk)π(Rk)π(νk)

×
G∏

g=1

π(χg)π(ζ gk)π(Qgk)π(pgk)

ng∏
i=1

π(λig)π(ηigk),

which is not analytically tractable. Thus, we apply a Gibbs sampler, which iterates
over the following steps:

(i) Draw ζ ,η, ξ ,β,P1, . . . ,PG, ν from p(ζ ,η, ξ ,β,p, ν | σ 2,λ,χ,q, r,y).
(ii) Draw σ 2, λ, χ , q, r from p(σ 2,λ,χ,q, r | β,p, ν, ζ ,η, ξ ,y).

The following result applies for step (i) of the Gibbs and shows that the model
in equation (2.9) naturally exhibits heteroskedastic effects driven by the covariates
and the Markov-switching process.

PROPOSITION 2. Marginalizing out the random effects in the right-hand side
of equation (2.8) one obtains

yigt = z′
igtβ + ε̃igt ,

(2.9)
ε̃igt ∼N

(
0, σ 2

igt

)
, t = m(c + 1),2m, . . . ,mTq,

with σ 2
igt = σ 2λ−1

ig χ−1
g + z′

igt (R + Qg)zigt .

PROOF. See Appendix A. �

Proposition 2 has two important consequences, one for the efficiency of the
posterior approximation algorithm and the other for the properties of the model.
First, since the random effect parameters can be integrated out of the likelihood
(Rao–Blackwellization), and the time-varying error variance remains linear in the
parameter β , conditionally to the hidden Markov chain, we can sample from the
full conditional distribution of β ,P1, . . . ,PG, ν and ξ with the conditioned vari-
ables ζ and η integrated out. This motivates the use of the following sampling
scheme, known as collapsed Gibbs [Kaufmann (2010)], for the Step (i):

(i.1) Draw β,P1, . . . ,PG, ν, ξ from p(β,p, ν, ξ | σ 2,λ,χ,q, r,y).
(i.2) Draw ζ ,η from p(ζ ,η | β,p, ν, σ 2,λ,χ,q, r, ξ ,y).

The main advantage of this Rao–Blackwellization and collapsed Gibbs sampling
is that it accelerates convergence to the target distribution. In the derivation of the
full conditional distribution in the step (i.1) we use the complete data likelihood
of the model in equation (2.9). Each step of the Gibbs sampler is blocked further.
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The details of the derivation of the full conditional distributions and the sampling
methods used are given in Supplement B.

The second implication of Proposition 2, is that we do not need to include a
Markov-switching mechanism in the variance. In time series models without ran-
dom effects, time-varying volatility is usually included by specifying a dynamic
model for the conditional variance. However, in our dynamic panel model the
Markov-switching dynamics is included in the random effects, and since they are
usually integrated out in model fitting and forecasting, this implies (as shown in
Proposition 2) that time-varying variance is naturally included in the analysis.

Our proposed MCMC method for the posterior approximation is efficient and
it reaches convergence to the true parameters. In Supplement C we report the re-
sults of a simulation study, in which we show that the MCMC chain is converging,
and that latent Markov-switching regimes and parameter values are precisely esti-
mated.

3. Economic uncertainty in a panel of countries. We apply our panel
Markov-switching UMIDAS model to study the effects of uncertainty on differ-
ent sectors and variables across a panel of countries. After a brief overview of the
main contributions in the uncertainty literature, we describe the dataset and the
measures of uncertainty that we consider, comment on the main empirical results,
and present some robustness analyses. Further, we show that disregarding either
the mixed-frequency component or the Markov-switching mechanism, key ingre-
dients of our panel MS-UMIDAS specification, can bring to substantially different
results.

3.1. Uncertainty and macroeconomic effects. The interest in uncertainty has
grown enormously over the recent years. Since the seminal paper of Bloom (2009),
research has focused on creating new approaches to measure uncertainty and its
effects. Bloom (2009) himself defines his measure of uncertainty as the uncondi-
tional volatility of stock market returns. Baker, Bloom and Davis (2016) develop an
index of economic policy uncertainty which reflects the frequency of uncertainty-
related words in the articles of leading newspapers. Scotti (2016) proposes an un-
certainty index which aims at capturing how uncertain agents are about the current
real economic activity, using surprises from Bloomberg forecasts. Rossi and Sekh-
posyan (2015) create a macroeconomic uncertainty index based on comparing the
realized forecast error of the real GDP growth with the historical forecast error
distribution of the same variable. Jurado, Ludvigson and Ng (2015) and Carriero,
Clark and Marcellino (2018) provide a measure of uncertainty based on whether
a large set of macroeconomic and financial variables become more or less pre-
dictable.

Despite the different measures of uncertainty that have been proposed, stud-
ies agree that macroeconomic uncertainty is countercyclical. Here we sketch only
some of the contributions to a voluminous and expanding literature. For a more
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extensive review see Bloom (2014). An increase in uncertainty is typically asso-
ciated with large declines in real activity. Caggiano, Castelnuovo and Groshenny
(2014) show that the impact of an uncertainty shock on unemployment in the US
is much larger during recessions, suggesting a different behavior depending on the
state of the economy. Carriero, Clark and Marcellino (2018) proposes an econo-
metric framework for jointly measuring uncertainty and capturing its impact on the
economy. The authors find sizeable effects of uncertainty on key macroeconomic
variables. Ferrara and Guerin (2015) analyze the role of uncertainty for the US in
a mixed-frequency set up and find that credit and labor market variables react the
most to uncertainty shocks, showing a prolonged negative response. Ludvigson,
Ma and Ng (2015) address the question on whether uncertainty and real economic
activity could affect one another contemporaneously. They find that higher uncer-
tainty in recessions is endogenous to business cycle fluctuations.

Here we compare the effects of macroeconomic and financial uncertainty, on
macroeconomic variables, by extending the analysis in previous literature to a
panel of countries, allowing for the possibility of switching in the effects of the
two types of uncertainty over the business cycle, and to data at different frequen-
cies. We are mainly interested in studying the asymmetric effects in the impact and
delayed effects of uncertainty on each variable, where uncertainty is measured at
a frequency higher than the macroeconomic variables. Thus, we make the simpli-
fying assumption that uncertainty is exogenous, while in Jurado, Ludvigson and
Ng (2015) and Carriero, Clark and Marcellino (2018) there is a feedback from the
macroeconomic variables to (low frequency) uncertainty. This is relevant to study
the dynamic propagation of uncertainty shocks in the economic system.

3.2. Dataset. We consider a panel of G = 13 countries: United States (US),
Europe (EU), Japan (JP), Germany (DE), France (FR), United Kingdom (UK),
Italy (IT), Canada (CA), the Netherlands (NE), Norway (NW), Spain (SP), Sweden
(SW) and Switzerland (CH). The choice of the countries is based on the availability
of data from the Consensus Economics, from which we construct our measure of
macroeconomic uncertainty.

Our macroeconomic uncertainty measure is based on the disagreement about
the projections for the real GDP growth among the professional forecasters par-
ticipating to the Consensus economic polls. Our uncertainty measure consists of
the standard deviations of the said projections. A clarification on how to compute
the measure is needed. The respondents to the survey are asked to give their ex-
pectations on the current and next calendar year. Following Dovern, Fritsche and
Slacalek (2012) and Ferrara and Guerin (2015), we construct our measure of dis-
agreement on one-year-ahead forecasts. Thus, we first transform fixed-event fore-
casts into fixed-horizon forecasts, by taking the average of the forecasts for the
current and next calendar year weighted by their share in the forecasting horizon:

xe
t = K

12
xt+K|t + 12 −K

12
xt+12+K|t .
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Here xe
t is the one-year-ahead expectation, xt+K|t is the current-year expectation,

xt+12+K|t is the next-year expectation and K are the months to the end of the
current year at the moment the survey is made. The standard deviation is then
computed on this one-year-ahead expectation.

As a measure of financial uncertainty we consider the US VIX, as in Bloom
(2009). We consider the US measure also when looking at the uncertainty in other
countries because it is the longest series available. Further, we computed the cor-
relation of the US VIX with the series of VIX available for other countries (e.g.
UK, Canada, Italy) and the correlation is high. Figure D.4 in Supplement D shows
the three-year rolling correlation of the US VIX with the VIX for the other coun-
tries we have available. In Figure D.5 we show the correlation of the VIX with the
macroeconomic uncertainty measures for each country. The three monthly series
are kept separately in this graph. In Supplement D, we repeat the exercise using
the Financial Uncertainty Index developed in Ludvigson, Ma and Ng (2015) for
the US economy and a financial uncertainty measure based on systemic risk and
proposed in Billio et al. (2016a) for the EU financial market.

The macroeconomic variables we consider for each country in the panel are the
following: real GDP (labeled GDP in tables) and industrial production growth rates
(IPI), employment growth rate (Emp), consumption growth (Con), inflation (Inf),
nominal earnings growth (Ner), real earnings growth (Rer), working hours growth
(Hours), nominal interest rates (IR), stock market index growth (Stock) and mone-
tary M2 aggregate growth (M2). All variables are sampled at a quarterly frequency
from 1997 to 2014. The availability of the data for each country, the sample period
and the source are given in Supplement D. Figures D.1–D.2 show the dependent
variables in the panel. Figure D.3 shows the exogenous variables (i.e., forecast dis-
agreement and VIX). All the variables are standardized to have comparable scales
for the coefficients. See figures E.3–E.5 in Supplement E for the impact of uncer-
tainty on the different variables in the original variable-specific scale.

The uncertainty variables are collected at monthly frequency and the other
macroeconomic variables at quarterly frequency. The model uses four lags for the
quarterly variables, two lags (contemporaneous and 1-quarter lag) for the monthly
variables, and two regimes. The first regime requires that the common intercepts
μ are nonpositive. We define it as contraction regime. In the second regime, the
common intercepts are equal to zero or positive. We define it as expansion regime.
Economic theory supports that the variable M2 can both grow or decrease in con-
traction periods. We notice that in all the countries in our dataset M2 mostly in-
creases during recessions, therefore we take minus its growth rate and apply the
described restriction. As mentioned, the use of different regimes and of data at
different frequencies attenuates possible endogeneity problems of uncertainty.

3.3. Results. We first look at the country- and series-specific impact δijdgk =
δjdk + ζδ,gjdk + ηδ,igjdk in the two regimes, where i refers to the macroeco-
nomic variable, j indicates the covariate, and we define j = 1 the macroeco-
nomic uncertainty and j = 2 the financial uncertainty; d indicates the lag. We
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consider six months of past information and correspondingly six coefficients (i.e.,
d = 0, . . . ,5), where g = 1, . . . ,13 indicates the country, and k indicates the
regime, with k = 1,2 referring respectively to contraction and expansion.

In Table 1 we provide a summary representation of the coefficients by reporting
the median of the sum of the six coefficients for the monthly contemporaneous
and lagged variables, that have 90% of the mass different from zero for the two
regimes. This allows us to take into account the parameter uncertainty in the re-
sults, since we sum the full distributions of the coefficients and we drop those that
include zero in the 90% highest posterior density (HDP). Table 1 reports results
only for the VIX because the HDP of coefficients associated to macroeconomic
uncertainty includes zero in all cases, confirming the marginal role of macroeco-
nomic uncertainty with respect to financial uncertainty. In all cases, the sum of
coefficients is larger in absolute value in regime 1 than in regime 2, supporting
evidence in Caggiano, Castelnuovo and Groshenny (2014), Alessandri and Mum-
taz (2014) and Ludvigson, Ma and Ng (2015) that uncertainty has a bigger effect
in recessions (regime 1). Moreover, the sum of coefficients is significant for both
regimes for almost all countries for the variables GDP, Industrial production, real
earnings, stock markets, M2, whereas it sometimes includes zero in the HDP for
employment, consumption, inflation, nominal earnings and hours, in particular for
the expansionary regime. Further, the effect of financial uncertainty on interest rate
is homogeneous across 10 countries, but it differs for Japan (not significant on both
regimes), Canada and Switzerland (not significant in expansion). The Abenomics
for Japan, the stronger expansion of Canada in periods of high US financial uncer-
tainty, and the central bank interventions on the Swiss exchange rate are possible
explanations for this finding.

We then move to look at the disaggregated results in more detail. Figures 1
to 3 show the impact of uncertainty on the variables of different countries for
the two regimes (contraction and expansion), at different lags. In each figure, the
left column plots the impact of the forecast disagreement (j = 1) and the right
column plots the impact of VIX (j = 2). The regimes extracted for each country
are reported in Figures E.1–E.2 in Supplement E.

Each plot of the Figures 1 to 3 reports the results for a variable i. The circles
represent the common impact in each of the two regimes, that is they represent
the pair (δjd1, δjd2), with δjdk, k = 1,2 defined as in equation (2.6). In the fig-
ures the circles are indicated with the pair (j, d), referring to the pair of covari-
ate (j = 1,2) and lag (d = 0, . . . ,5). Notice that the circles are the same across
plots for every variable i, but they differ between the plots in the first and second
column (given the different covariate indexed by j ). The dots instead represent
country- and series-specific impact in the two regimes, that is, they represent the
pair (δijdg1, δijdg2) for all countries, where δijdgk is defined as in equation (2.6).
The dots are different in each plot, given that they are different for each variable.

The first clear result is that for all variables, in all countries and both measures of
uncertainty, all the estimates (intended as the mean of the posterior distributions)
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TABLE 1
Effects of financial uncertainty (sum of the VIX coefficients) on the different variables in the 13 countries, in regime 1 (recession, first column) and

regime 2 (expansion, second column). Symbol “–”: not available. Empty cell: not significantly different from zero

GDP IPI Emp Con Inf Ner Rer Hours IR Stock M2

Regimes 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

US −1.07 −0.28 −2.53 −0.67 −0.80 −0.21 −0.84 −0.23 −0.66 −0.26 −0.76 −0.22 −0.78 −0.21−14.09 −3.72 −1.22 −0.33
EU −1.18 −0.30 −3.27 −0.85 −0.53 −0.65 −0.86 −0.23 – – – – – – −0.88 −0.23−17.83 −4.72 −1.25 −0.33
JP −1.83 −0.46 −7.54 −1.98 −0.27 −1.61 −0.41 −0.66 −0.18 −2.06 −0.76 −0.21 −0.61 −17.17 −4.54 −0.26

DE −1.50 −0.39 −4.26 −1.12 −0.51 −1.01 −0.26 −0.54 −0.52 −0.69 − −1.31 −0.88 −0.23−19.64 −5.19 −1.97 −0.52
FR −0.87 −0.22 −2.95 −0.77 −0.48 −0.72 −0.62 −0.26 −0.55 −0.43 −0.85 −0.22−17.01 −4.51 – −
UK −1.1 −0.28 −2.5 −0.65 −0.57 −1.23 −0.32 −0.86 −0.22 −1.01 −1.25 −0.32 −0.86 −0.86 −0.21−11.97 −3.17 −1.23 −0.32
IT −1.24 −0.32 −4.21 −1.10 −0.56 −0.94 −0.24 −0.67 −0.29 −0.75 −0.22 – – −0.87 −0.23−18.60 −4.92 −3.87 −1.03
CA −1.01 −0.26 −3.18 −0.83 −0.56 −0.71 −0.52 −2.27 – −2.32 −0.62 −0.22 −0.66 −14.87 −3.93 −1.16 −0.32
NE −1.22 −0.32 −4.47 −1.17 – – – – −0.85 −0.21 −0.32 −0.87 −0.23 −0.86 −0.22 −0.86 −0.22−20.20 −5.35 – –
NW −1.77 −0.48 −6.52 −1.72 – – – – −1.32 −0.35 −1.48 −0.38 −2.15 −0.55 – − −0.88 −0.24−21.25 −5.63 −3.12 −0.83
SP −1.18 −0.3 −3.73 −0.97 – – – – −1.07 −0.26 −0.82 −0.21 −1.22 −0.33 −1.47 −0.39 −0.89 −0.22−17.99 −4.78 – –
SW −1.67 −0.44 – – – – – – −0.82 −0.21 −0.97 −0.26 −1.03 −0.29 −0.98 −0.26−19.92 −5.28 −2.95 −0.80
CH −1.01 – – – – – – −0.46 – – – – −0.61 −0.87 −15.41 −4.06 – –
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FIG. 1. Impact of uncertainty on different macroeconomic variables. Different plots: impact of
macroeconomic (left) and financial (right) uncertainty on each variable i = 1, . . . , ng for all the
countries g = 1, . . . ,G, in the two regimes k = 1,2 (respectively, contraction and expansion). Cir-
cles: common impact δjdk , where j = 1,2 refers to forecast disagreement and VIX, respectively, and
d = 0, . . . ,5 to the lag. Dots: country- and series-specific impact δijdgk as in equation (2.6), in the
two regimes. Shades of color: refer different pairs (j, d). Dashed line: the 45◦ line.
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FIG. 2. Impact of uncertainty on different macroeconomic variables. Different plots: impact of
forecast disagreemnt (left) and VIX (right) on each variable i = 1, . . . , ng for all the countries
g = 1, . . . ,G, in the two regimes k = 1,2 (respectively, contraction and expansion). Circles: common
impact δjdk , where j = 1,2 refers to forecast disagreement and VIX, respectively, and d = 0, . . . ,5
to the lag. Dots: country- and series-specific impact δijdgk as in equation (2.6), in the two regimes.
Shades of color: refer different pairs (j, d). Dashed line: the 45◦ line.
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FIG. 3. Impact of uncertainty on different macroeconomic variables. Different plots: impact of
forecast disagreement (left) and VIX (right) on each variable i = 1, . . . , ng for all the countries
g = 1, . . . ,G, in the two regimes k = 1,2 (respectively, contraction and expansion). Circles: common
impact δjdk , where j = 1,2 refers to forecast disagreement and VIX, respectively, and d = 0, . . . ,5
to the lag. Dots: country- and series-specific impact δijdgk as in equation (2.6), in the two regimes.
Shades of color: refer different pairs (j, d). Dashed line: the 45◦ line.

are not on the 45 degree line. This means that there is an asymmetric effect of the
uncertainty across regimes. For the macroeconomic uncertainty, measured as fore-
cast disagreement, in the contraction regime, contemporaneous shocks in the first
and third months [labelled (1,0) and (1,2)] have negative impact on GDP, IPI and
consumption, whereas at one quarter lag [labelled (1,3) and (1,5)] have positive
impact on GDP, IPI and consumption. This seems to confirm the drop, rebound and
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overshoot dynamics described in Bloom (2009). For the same variables, in the ex-
pansion regime the coefficients (1,0), (1,3) and (1,5) are negative whereas (1,1),
and (1,4) are positive. So, the effects are different in the two regimes, confirming
the asymmetric evidence in Caggiano, Castelnuovo and Groshenny (2014).

The same results apply to the VIX: in the contraction regime the effects in first
and third month [labeled by (2,0) and (2,2) in the plots] are negative on GDP, IPI
and consumption, whereas at one quarter lag the first and second months [labelled
(2,3) and (2,4)] have a positive impact on GDP, IPI and consumption. In the
expansion regime, the coefficients (2,0), (2,3) and (2,4) are negative whereas
(2,1), (2,2) and (2,5) are positive.

The outcome is similar for other macroeconomic variables, even if some of the
coefficients are closer to zero, in particular those indicating the effect of macroeco-
nomic uncertainty. For example, the coefficients for forecast disagreement of the
third month in the first regime (1,2) for employment, nominal and real exchange
rates, inflation, hours, interest rate, stock returns and M2 are basically zero for all
countries. Such pattern is less evident for the VIX coefficients where only in few
occasions the coefficient is zero.

The second important finding is that the coefficients of financial uncertainty are
in almost all cases larger than those of macroeconomic uncertainty. For example, a
1% increase in financial uncertainty in the first month of the quarter results in the
first regime in a reduction of quarterly GDP of at least 0.2% for all countries, and in
the second regime in a reduction of quarterly GDP around 0.15% for all countries.
Similar evidence is found for other variables, confirming the evidence in Caggiano,
Castelnuovo and Groshenny (2014), who focus only on unemployment.

On the contrary, a 1% increase in macroeconomic uncertainty in the first month
of the quarter results in a reduction of GDP around 0.05% in recession, and in a re-
duction of GDP bigger than 0.05% in expansion. Similar evidence is found for the
other variables. Interestingly, financial uncertainty shocks cause larger drops in the
contraction regime, whereas macroeconomic uncertainty shocks in the expansion
regime. Our measure of financial uncertainty, the VIX, incorporates a risk pre-
mium component, that is not necessarily included in the macroeconomic measure,
and this could possibly explain the stronger link between it and our macroeco-
nomic variables.

The plots show that the effects of the VIX are more homogeneous across coun-
tries, with most of the coefficients close to the common impacts; on the contrary,
more heterogeneity exists for the forecast disagreement. The result can be ex-
plained by the fact that we use the same US VIX variable for all countries, as
it is highly correlated to the VIX of the countries for which it is available, even if
for a shorter sample. Forecast disagreement is instead different across countries,
suggesting that financial uncertainty shocks are rather uniform across the coun-
tries in our sample, whereas macroeconomic uncertainty shocks depend more on
domestic economic conditions.
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FIG. 4. Estimated time-varying volatility σ̂igt for the GDP of different countries (coloured lines).

We find evidence of heteroschedasticity in all variables and countries. Figure 4
shows the estimated time-varying volatility for the GDP of the different countries
averaged over different regimes. For the plot of the raw series of GDP see the
top-left panel in Figure D.1 in Supplement D.

σ̂ 2
igt =

K∑
k=1

{
σ̂ 2λ̂−1

ig χ̂−1
g + ẑ′

igt (R̂ + Q̂g)ẑigt

}
pgkt ,

where z′
igt,k = (e′

k,v′
igt ⊗e′,x′

ig,1t ⊗e′, . . . ,xig,Nt ⊗e′
k) is the time-varying volatil-

ity at time t conditional to regime k, ek is the kth vector of the standard orthonor-
mal basis, pgkt is the posterior probability for the country g of being in regime
k, that is, (Pr)(ξgt = ek | y), and θ̂ is the posterior mean of θ . The error volatil-
ity increases substantially during the 2008–2009 financial crisis, as documented in
other studies [Clark and Ravazzolo (2015)] and returns to precrisis level for several
countries after 2010. There are, however, important differences across countries.
Non-euro countries, such as Japan, Sweden, UK and the US, seem to lead the
increase from the end of 2007 to 2008, whereas euro country estimates had the
highest values in 2009; see, for example, Germany. This confirms evidence that
the US cycle often leads euro country cycles; see Billio et al. (2016b). Moreover,
euro-country estimates remain more volatile after 2010, in conjunction with the
intensification of the European debt crisis.

3.4. Comparison with constrained models. As mentioned in Section 2, our
model extends the work of Kaufmann (2010, 2015) by allowing for mixed-
frequencies. In this section we then compare our results to those which can be ob-
tained by shutting off the mixed-frequency component (i.e., we restrict the model
coefficients to be the same for the months within a quarter). Further, as a second
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FIG. 5. Impact of uncertainty in constrained models. Different plots: impact of forecast disagree-
ment (left) and VIX (right) on GDP for all the countries g = 1, . . . ,G, in the two regimes k = 1,2
(respectively, contraction and expansion) for two constrained models: model without mixed frequency
effects [Panel (a)] and model without regime-switching effects [Panel (b)]. Circles: common impact
δjdk , where j = 1,2 refers to forecast disagreement and VIX, respectively, and d = 0, . . . ,5 to the
lag. Dots: country- and series- specific impact δijdgk as in Eq. (2.6), in the two regimes. Shades of
color: refer different pairs (j, d). Dashed line: the 45◦ line. Black dots: the common factors estimates
for the unconstrained model reported in Figure 1.

comparison, we remove the Markov-switching mechanism and see how a linear
model would fit our experiment.

The results are shown in Figure 5. For the sake of conciseness, we focus on
the impact of forecast disagreement and VIX on GDP only for the different coun-
tries. In Panel (a), we report the results for the case in which the mixed-frequency
component is disregarded, while in Panel (b) we report the results without regime
switching.

Interestingly, when ignoring the mixed frequency component, the effects of
uncertainty appear different. In particular, opposite to the results for the uncon-
strained MIDAS model (indicated by the black dots in the plot), the effects of
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VIX have the same sign across regimes [see dots and circles labelled (2,0 : 2) and
(2,3 : 5)]: negative for the contemporaneous quarter and positive for the one-lag
quarter. For the forecast disagreement, the use of quarterly uncertainty seems to
capture only what happens in the third month of the quarter [with (1,0 : 2) similar
to (1,2) and (1,3 : 5) to (2,5)].

When ignoring the regime switching mechanism, we also weaken our results,
especially in the case of the VIX. Results become more similar to the ones obtained
in the contraction regime when the switching is allowed, losing the asymmetric
effect in expansions. For the VIX case, for example, the effect is negative in the
first and third month of the contemporaneous quarter; see circles (2,0), (2,2), and
positive otherwise.

3.5. Further robustness. We summarize here the results of a set of additional
robustness checks that we conducted in order to strengthen our results. The full set
of results is shown in Supplement E. First, we remove the contemporaneous effect
of financial and macroeconomic uncertainty and only consider the three months of
the one-quarter lag. This choice shall remove any possible remaining effects of en-
dogeneity of the uncertainty variables that the Markov-switching mixed frequency
approach cannot capture. Second, we include in our panel MIDAS model only
the VIX. Third, we include only the forecast disagreement. For both the second
and third cases, we study a model with uncertainty used at higher frequency, but
also as quarterly average, to provide further evidence on the usefulness of mixed
frequency data. Fourth, we investigate different measures of financial uncertainty,
addressing the concern that VIX might not be the best measure to account for such
uncertainty; see, for example, Jurado, Ludvigson and Ng (2015). We consider the
Financial Uncertainty Index developed in Ludvigson, Ma and Ng (2015) and the
Financial Entropy Index proposed in Billio et al. (2016a). The former index is built
on a large set of financial variables using a new methodology called iterative pro-
jection IV. The indicator is only available for the US. The latter index captures
the level of systemic risk and measures the entropy of the loss cascades on the fi-
nancial market. It detects loss cascades by CoVaR, which represents the value at
risk (VaR) of the financial system conditional on institutions being under distress.
Therefore, such measure amplifies the risk premium component of financial un-
certainty by using a systemic risk early warning. The entropy indicator for the EU
is built on a dataset of daily closing price series for the European firms (active and
dead) of the financial sector from January 1990 to December 2014. In both cases,
we follow the same assumption applied to the VIX and use it for all countries.

First, the evidence is qualitatively similar when the model only allows for a one-
quarter lag effect of uncertainty. Financial uncertainty still dominates on macroe-
conomic uncertainty and differences across regimes clearly emerge.

When dropping the VIX from the model, coefficients of forecast disagreement
become larger in absolute value, probably capturing part of the effects that our
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model assigns to financial uncertainty. When we use quarterly uncertainty mea-
sures, the heterogeneity across countries for both VIX and forecast disagreement
increases substantially, and for several variables the total effect of uncertainty is
less pronounced, especially for the second regime, confirming the usefulness of
mixed frequency data.

The main results are also confirmed when using different measures of finan-
cial uncertainty. Both the Financial Uncertainty Index of Ludvigson, Ma and Ng
(2015) and the Financial Entropy Index of Billio et al. (2016a) yield a negative im-
pact (mainly) during the recession regime, thus supporting evidence of asymmetric
effects of uncertainty in different phases of the economic activity.

4. Conclusions. This paper develops a Bayesian multi-country panel Markov-
switching unrestricted mixed-data sampling model. This framework allows to
model a large panel of countries and several variables for each country, to use
an endogenous time-varying transition mechanism, to model nonlinearities, and to
consider variables sampled at mixed frequencies. To avoid overparameterization
issues and overfitting problems, we implement a hierarchical strategy in the spec-
ification of the prior. The hierarchical prior allows to naturally introduce random
effects into the panel model without specifying a Markov-switching mechanism
in the variance of the errors. We develop an MCMC algorithm for sampling from
the joint posterior distribution of the model parameters and test its properties in a
simulation experiment.

We use the model to study the effects of macroeconomic uncertainty, mea-
sured as forecast disagreement, and financial uncertainty, measured as stock mar-
ket volatility, on a set of variables in a multi-country context including the US,
several European countries and Japan. We find that for most of the variables fi-
nancial uncertainty dominates macroeconomic uncertainty. Furthermore, we show
that uncertainty coefficients differ if the economy is in a contraction regime or in
an expansion regime.

APPENDIX A: PROOFS

PROPOSITION 1. The model in equation (2.7) can be written as:

(A.1) yigt = z′
igt (β + ζ g + ηig) + εigt ,

with β = (μ, c1, . . . , cc, δ10, . . . , δNv)
′ the parameter vector, zigt = (ξ ′

gt ,

v′
igt ⊗ ξ ′

gt ,x′
ig,1t ⊗ ξ ′

gt , . . . ,x′
ig,Nt ⊗ ξ ′

gt )
′ the covariate vector of dimension

K(1 + c + N(v + 1)) × 1, ηig = (ημ,ig , ηc,ig1, . . . ,ηc,igc,ηδ,ig10, . . . ,ηδ,igNv)
′

the variable-specific random effects vector, and ζ g = (ζμg , ζ c,g1, . . . , ζ c,gc,
ζ δ,g10, . . . , ζ δ,gNv)

′ the country-specific random effects vector.

PROOF. Let C = (c1, . . . , cc), Zc,g = (ζ c,g1, . . . , ζ c,gc), Ec,ig = (ηc,ig1, . . . ,

ηc,igc) three K × c-matrices, and Dj = (δj1, . . . , δj (v+1)), Zd,gj = (ζ δ,gj1, . . . ,
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ζ δ,gjv+1), Ed,ig = (ηδ,igj1, . . . ,ηδ,igjv+1) three K ×(v+1)-dimensional matrices,
then equation (2.7) can be rewritten as

yigt = (μ + ζμ,g + ημ,ig)
′ξgt + v′

igt (C + Zc,g + Ec,ig)
′ξgt

(A.2)

+
N∑

j=1

x′
ig,j t (Dj + Zd,gj + Ed,igj )

′ξgt + εigt ,

with εigt ∼ N (0, σ 2
ig), where σ 2

ig is defined in equation (2.6).
Let wit = (1,v′

igt ,x′
igt )

′, where xigt = (x′
ig,1t , . . . ,x′

ig,Nt )
′, and the K × (1 +

c + N(v + 1))-matrices B = (μ,C,D1, . . . ,DN), Zg = (ζμ,g,Zc,g,Zd,g1, . . . ,

Zd,gN) and Eig = (ημ,ig,Ec,igEd,ig1, . . . ,Ed,igN). Then equation (A.2) becomes:

yigt = w′
it (B + Zg + Eig)

′ξgt + εigt .

Applying the vec operator, its properties and the properties of the Kronecker’s
product, ⊗, [Magnus and Neudecker (1999), pages 31–32] we obtain:

vec(yigt ) = vec
(
ξ ′

gt (B + Zg + Eig)wit + εigt

)
= (

w′
it ⊗ ξ ′

gt

)
vec

(
(B + Zg + Eig)

) + εigt

= z′
it (β + ζ g + ηig) + εigt ,

where z′
it = w′

it ⊗ ξ ′
it = (ξ ′

it ,v′
igt ⊗ ξ ′

it ,x′
igt ⊗ ξ ′

it ), β = vec((B), ζ g = vec(Zg)

and ηig = vec(Eig). �

PROPOSITION 2. Marginalizing out the random effects in the right-hand side
of equation (A.1) one obtains

(A.3) yigt = z′
igtβ + ε̃igt , ε̃igt ∼ N

(
0, σ 2

igt

)
,

for t = m(c + 1),2m, . . . ,mTq , with σ 2
igt = σ 2λ−1

ig χ−1
g + z′

igt (R + Qg)zigt .

PROOF. From Proposition 1 it follows that β ∼ Nd(0d, S) with d = K(1 +
c + N(v + 1)) and S = diag{(s2

0 ι′K, r2
0 ι′K(c+N(v+1)))} a diagonal covariance

matrix and ιq the q-dimensional country vector. Also, ζ g ∼ Nd(0d,R) with
R = diag{((rμ,1, . . . , rμ,K), ι′c ⊗ (rc,1, . . . , rc,K), ι′N(v+1) ⊗ (rδ,1, . . . , rδ,K))′}, and
ηig ∼ Nd(0d,Qg) where Qg = diag{((qμ,g1, . . . , qμ,gK), ι′c ⊗ (qc,g1, . . . , qc,gK),
ι′N(v+1) ⊗ (qδ,g1, . . . , qδ,gK))}.

Let f (yigt | β, ζ g,ηig) be the density of the dependent variable in equation
(2.7) which is the density of a normal with mean z′

igt (β + ζ g + ηig) and vari-

ance σ 2
ig . We consider the marginal distribution f (y|β) of the observable ob-

tained by integrating out the random effects. Consider the moment generating
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function∫
exp{θy}f (y|β) dy

=
∫

exp{θy}f (y|β, ζ g,ηig)f (ζ g)f (ηig) dζ gdηig dy

=
∫

exp
(
θz′

igt (β + ζ g + ηig) + σ 2
ig

2
θ2

)
f (ζ g)f (ηig) dζ gdηig

= exp
(
θz′

igtβ
)

exp
(
θ2z′

igtRzigt + θ2z′
igtQgzigt + σ 2

ig

2
θ2

)
,

which is the moment generating function of a normal random variable with mean
z′
igtβ and variance σ 2

ig + z′
igt (R + Qg)zigt . �
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Supplement C: Simulation results (DOI: 10.1214/18-AOAS1168SUPPC;
.pdf). This document reports the results of the simulation experiments used to
check the efficiency of the proposed MCMC procedure.

Supplement D: Data description (DOI: 10.1214/18-AOAS1168SUPPD; .pdf).
This document contains a description and a preliminary analysis of the data used
in the empirical application.

Supplement E: Further empirical results (DOI: 10.1214/18-
AOAS1168SUPPE; .pdf). This document provides further empirical results and
robustness checks.
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