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MARKED SELF-EXCITING POINT PROCESS MODELLING
OF INFORMATION DIFFUSION ON TWITTER

BY FENG CHEN AND WAI HONG TAN
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Information diffusion occurs on microblogging platforms like Twitter as
retweet cascades. When a tweet is posted, it may be retweeted and hence-
forth further retweeted, and the retweeting process continues iteratively and
indefinitely. A natural measure of the popularity of a tweet is the number
of retweets it generates. Accurate predictions of tweet popularity can assist
Twitter to rank contents more effectively and facilitate the assessment of po-
tential for marketing and campaigning strategies. In this paper, we propose a
model called the Marked Self-Exciting Process with Time-Dependent Exci-
tation Function, or MaSEPTiDE for short, to model the retweeting dynamics
and to predict the tweet popularity. Our model does not require expensive
feature engineering but is capable of leveraging the observed dynamics to ac-
curately predict the future evolution of retweet cascades. We apply our pro-
posed methodology on a large amount of Twitter data and report substantial
improvement in prediction performance over existing approaches in the liter-
ature.

1. Introduction. The advancement of technology has dramatically changed
the ways people connect to each other over the past few years. This contributes to
the increasing popularity of microblogging platforms, which integrate the features
of instant messaging and blogging, enabling users to conveniently share contents
like short sentences, images or videos. Twitter is a microblogging service that al-
lows the users to share information in the form of 140-character messages called
tweets. As a tweet is posted by a user, it may be shared by the followers of the orig-
inal poster through an action known as retweeting, which involves the publication
of a tweet that explicitly refers to the original tweet via its unique identification
number, or a retweet. This retweeting process can iterate indefinitely, resulting in
a cascade of retweets.

Information diffusion modelling in Twitter has been an active field of research.
Tumasjan et al. (2010) considered Twitter as a platform used for political delib-
eration and analyzed tweet sentiments by machine learning to forecast the results
of elections. By learning the features, one can also find the likelihood of retweets
based on the interestingness of contents [Naveed et al. (2011)]. Matsubara et al.
(2012) proposed a model to account for the rise and fall of influence propagation
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whereas Alves, Assunção and de Melo (2016) recently modelled random series of
events prevalent in Twitter by Poissonian and self-feeding processes. These stud-
ies, however, do not emphasize on popularity prediction, which is our primary
concern.

The popularity of a tweet is naturally measured by the size of the retweet cas-
cade, or the number of retweets it generates. The predictions of tweet popularity
are important as they can assist Twitter to rank contents more effectively and fa-
cilitate the assessment of potential for marketing and campaigning strategies. As
such, many models have been proposed to capture the retweeting dynamics and
to predict the popularity. One noticeable work is by Zaman, Fox and Bradlow
(2014), who proposed a Bayesian approach which predicts tweet popularity using
network information. Models based on the theory of point processes [Zhao et al.
(2015), Kobayashi and Lambiotte (2016)], which do not require network informa-
tion, were also shown to have good prediction performances. The model proposed
by Mishra, Rizoiu and Xie (2016), on the other hand, combines the point process
models with feature based approaches to predict the popularity. Other models like
the growth-adoption model by Lymperopoulos (2016), the spatial-temporal het-
erogeneous Bass model by Yan et al. (2016), and the concept drift model by Li
et al. (2016), were all proposed for the purpose of popularity predictions.

Some models employed on other online social networks (OSNs) with the same
purpose of popularity predictions are also relevant as the proposed methodologies
may be applicable to predictions on Twitter network. Notably, Agarwal, Chen and
Elango (2009) proposed a dynamic linear regression model to predict the click-
through rate for Today Module on Yahoo! Front Page. Activities on platforms like
Youtube and Digg were also modelled, for instance using linear regression models
[Szabo and Huberman (2010)] and classification models [Ahmed et al. (2013)].
Other related works include the reinforced Poisson model [Gao, Ma and Chen
(2015)] applied on Sina Weibo and the model by Wu et al. (2016) that incorporates
temporality and seasonality, applied on Flickr image data.

Recently Zhao et al. (2015) proposed a model termed the SEISMIC (Self-
Exciting Model of Information Cascades) to model the retweeting dynamics on
Twitter. The model describes the retweet intensity of a tweet, or the expected num-
ber of retweets per unit time, as a product of the infectivity of the original tweet
and the accumulated excitation effect of all previous retweets. Zhao et al. (2015)
estimated the infectivity as a function of time using a kernel smoothing estimator,
and the excitation function, or memory kernel, using a graphical approach under
the assumption that some retweeting processes follow an inhomogeneous Poisson
process with the excitation function as its intensity function. They also proposed to
predict the future popularity of a tweet based on calculating the expected number
of future retweets by first assuming that the infectivity remains constant since the
censoring time, and a subsequent ad hoc adjustment to the expectation to incor-
porate the decaying trend of the infectivity. They reported that the predictions of
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tweet popularity using their approach outperformed those based on competing ap-
proaches, under several performance measures. Kobayashi and Lambiotte (2016)
proposed another model termed the TiDeH (Time-Dependent Hawkes) model,
which models the retweet intensity similar to the SEISMIC, and estimated the
infectivity and memory kernel using similar nonparametric kernel smoothing es-
timators. Kobayashi and Lambiotte (2016) fitted a circadian rhythmic function to
the nonparametrically estimated infectivity function up to the censoring time, and
extrapolated it beyond the censoring time to predict the number of future retweets.
With certain choices of the smoothing parameters, the tweet popularity predictions
based on the TiDeH model are superior to those based on the SEISMIC, especially
on long cascades. However, Kobayashi and Lambiotte’s approach requires suffi-
ciently long observation time on a retweet sequence to have reliable estimation of
the infectivity function, and the prediction performance depends critically on the
window size parameter used in the estimation of the infectivity function.

In this work, we propose a marked self-exciting point process model to capture
the retweeting dynamics and to predict tweet popularity. Our model is motivated
by the SEISMIC and the TiDeH model, and bears some similarities to them. How-
ever, our model has some important advantages. First, the intensity process in our
model has a linear form similar to that of the original self-exciting process of
Hawkes (1971), and therefore the resulting point process is interpretable as a clus-
ter Poisson process, which means our model can be simulated using a cascading
algorithm similar to that used for the efficient simulation of Hawkes processes.
Second, the estimation of our model and the assessment of the goodness-of-fit can
be implemented using principled approaches from point process theory, and the
predictions based on our model can also be done properly by exploiting the prob-
abilistic properties of the model, without resorting to ad hoc assumptions such as
those needed by the SEISMIC. Moreover, our model is found to be able to capture
the retweeting dynamics and make accurate popularity predictions based on much
shorter observation times than those required by the TiDeH model.

The rest of the paper is organized as follows. In Section 2 we describe the tweet
data and previous models for tweet popularity predictions which motivated our
work, and show how our model is built, how we estimate the parameters and eval-
uate the goodness-of-fit, and finally how to make predictions. In Section 3 we apply
the proposed model to the tweet data and compare the prediction performance of
our model with that of the SEISMIC and the TiDeH model, to show the superior
performance of our model. Finally, in Section 4, we conclude the paper with a
discussion.

2. The data, the model, and the methodology.

2.1. Twitter data. The data1 which motivated our work and which will be used
to demonstrate our modelling and prediction methodology is that used recently by

1Available from http://snap.stanford.edu/seismic/.
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FIG. 1. Times of retweets and the corresponding numbers of followers of the retweeting accounts
on the log scale, for five randomly selected retweet cascades from the training data set.

Zhao et al. (2015). The data contains a total of 166,069 reasonably popular tweets
published from October 7 to November 7, 2011, each with at least 49 retweets
within seven days of publishing. For each tweet, the data includes the Twitter ID
of the original tweeter, the posting times of the original tweet and all the retweets
within seven days, and the numbers of followers of the original poster and of the
retweeters. Following Zhao et al. (2015), we use data on the 71,815 tweets pub-
lished in the first seven days of the study period as training data and the remaining
94,254 tweets published in the next eight days as test data. See Figure 1 for 5
randomly selected retweet cascades from the training data set.

Note that the data lacks the complete Twitter network information, that is, for
a retweet, the data only has its publishing time and the number of followers of
the retweeting account, without information on whether the original tweet or any
previous retweet is being retweeted. This implies that the methodology of Zaman,
Fox and Bradlow (2014), which assumes the complete Twitter network informa-
tion, does not apply here. The contents of the original tweets and of the retweets
are also not included in the data, and therefore methodologies depending on fea-
tures of the tweet contents or features of the posters (other than their numbers of
followers) do not apply either.

From Figure 1 we observe that the retweets tend to occur in clusters or bursts.
This suggests that self-exciting processes like the SEISMIC of Zhao et al. (2015)
are potentially suitable for such data. In the next subsection we present our model
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for the retweeting dynamics, which is a marked self-exciting process model similar
to that of the SEISMIC.

2.2. Model formulation. Let (τi,mi), i = 0,1, . . . be a marked point process
where 0 = τ0 < τ1 < · · · denote the event times and m0,m1, . . . denote the respec-
tive event marks. In the context of information diffusion modelling on Twitter,
the event times shall refer to the retweeting times, except that τ0 = 0 denotes
the posting time of the original tweet, and the event marks refer to the num-
bers of followers of the retweeting (or tweeting, in the case of m0) accounts. Let
N(t) = ∑∞

i=1 I{τi ≤ t}, t ≥ 0 be the associated counting process of retweets, and
F = {Ft ; t ≥ 0}, with Ft = σ {N(t),m0, (τj ,mj ), j = 1, . . . ,N(t)}, be the natu-
ral filtration of the marked point process. The (conditional) intensity process of
N relative to the filtration F is an F -predictable process λ(t), t ≥ 0, such that
M(t) = N(t) − ∫ t

0 λ(s)ds, t ≥ 0 is a mean zero F -martingale. In an informal but
intuitive notation, the intensity can be written as λ(t) = E[dN(t)|Ft−]/dt , from
which we note that the intensity at any time point is the expected number of events
per unit time given the history of the process prior to that time point.

As the evolution of a point process over time is fully determined by its intensity
process, a commonly used approach to specify a point process model is to specify
the form of the dependence of its intensity process on the prior-t history of the
process Ft−. In particular, the SEISMIC of Zhao et al. (2015) assumes that the
intensity of the retweeting process N(t) takes this form,

(1) λ(t) = p(t)

N(t−)∑
i=0

miφ(t − τi), t > 0,

where p(t) is an unspecified positive function, called the infectivity function,
which typically decreases in t , and φ(·) is a positive function called the mem-
ory kernel. Zhao et al. (2015) proposed to estimate the infectivity function p(·)
nonparametrically using a kernel smoothing estimator with a triangular kernel. To
estimate the memory kernel, they assumed that it is of a power law decaying form
and that 15 “carefully chosen” retweet cascades follow inhomogeneous Poisson
processes with intensity functions proportional to the memory kernel. They then
estimated the parameters using histogram and complementary cumulative distribu-
tion function plots of the retweeting times in those 15 cascades. As for the TiDeH
model of Kobayashi and Lambiotte (2016), it assumed an intensity process of the
same form as (1), except the further assumption that the infectivity function p(·) is
also parametric, and takes a dampened circadian oscillation form. To estimate the
infectivity function p(·), Kobayashi and Lambiotte (2016) proposed a two-step ap-
proach where a preliminary estimate p̂(·) was obtained first using a kernel method
and then the parametric form of p(·) was fitted to the preliminary estimate by a
least squares method.
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The point process model we propose in the current work for the purpose of
retweeting dynamics modelling is given by

(2) λ(t) = ν(t) +
N(t−)∑
i=1

ω(τi,mi, t − τi),

where ν(·) is the baseline intensity function, with ν(t) denoting the part of the
event intensity at time t that is due to the initial event at time 0; and ω(·, ·, ·) is
the excitation function, with ω(τ,m, t − τ) denoting the impact of an event at
time τ with mark m on the event intensity at time t , where t is the time since the
initial tweet was posted. Furthermore, both the baseline intensity and the excitation
functions are time-dependent and take multiplicatively separable forms as follows:

ν(t) = αφ(t),

ω(τ,m, t − τ) = p(τ)r(m)φ(t − τ).
(3)

Here α > 0 is a constant giving the direct excitation effect of the original tweet,
that is, how many retweets it is expected to generate directly. The function φ(·)
is called the memory kernel function, which describes how the excitation effect
due to the original tweet or a retweet is distributed over time. Similar to Zhao
et al. (2015), we require φ(·) to be a probability density function, so that φ(·) ≥ 0
and

∫ ∞
0 φ(t)dt = 1. The function p(·) indicates how the “infectivity” of a retweet

varies over time and is also called the infectivity function, although its influence
on the intensity process λ(t) is different than that of the infectivity function p(·)
in (1). For identifiability, we assume that p(0) = 1. The function r(·) is called the
impact function, and describes the total excitation effect of a retweet attributed
to the number of followers of the retweeter. Note, we do not require α = r(m0),
to allow for the potentially different influences of the original tweet and of the
retweets.

More specifically, the functions in (3) are assumed to take the following para-
metric forms:

p(τ ;β) = e−βτ ,

r(m;γ ) = γ log(m + 1),

φ(t; δ) = δ2(δ1 − 1)

δ1

(
1 + δ2t

δ1

)−δ1

(4)

for parameters β ≥ 0, γ ≥ 0, δ1 > 1, and δ2 > 0. Here we have adopted an ex-
ponential decay form for the infectivity function, based on the intuition that the
infectivity, or newsworthiness of a retweet should decay very quickly over time.
We further assume that the impact function is linear in the number of followers on
a log scale, rather than on the original scale as in Zhao et al. (2015), because of
the high degree of right skewness for the distribution of the number of followers
[Cha et al. (2010), Kwak et al. (2010), Bakshy et al. (2011)]. Our choice of the
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power law decay form for the memory kernel is motivated by Zhao et al. (2015)
and the empirical findings of the heavy tailed distributions for the human response
time in social networks, reported in the literature [Barabasi (2005), Crane and Sor-
nette (2008), Zaman, Fox and Bradlow (2014)]. Finally, as in Zhao et al. (2015)
and Kobayashi and Lambiotte (2016), we also assume the event marks mi are i.i.d.
with a common density function f (·) relative to a suitable reference measure on
the space M of event marks, and moreover, mi is independent of τi and Fτi− for
all i. As the excitation function associated with an event is allowed to depend on
the time of that event, the model will be called a Marked Self-Exciting Process
with Time-Dependent Excitation Function, or MaSEPTiDE for short.

At this point we emphasize an important difference between the MaSEPTiDE
we propose in this work and the SEISMIC of Zhao et al. (2015). From (2), we note
that, unlike the SEISMIC, the MaSEPTiDE has an intensity process that is of a
linear form similar to the self-exciting process of Hawkes (1971), whose intensity
process takes the form

λ(t) = ν +
N(t−)∑
i=1

g(t − τi).

In fact, if we choose p(τ) ≡ 1 and r(m) ≡ r for a constant r in (3), then (2) re-
duces to the time-varying version of the Hawkes process considered by Chen and
Hall (2013, 2016). The linear structure of the intensity process implies that the
MaSEPTiDE can also be interpreted as a Poisson cluster process, as the origi-
nal Hawkes process or the generalized version with a time-varying background
intensity. By this interpretation, immigrants arrive according to a marked inho-
mogeneous Poisson process with its intensity function equal to the baseline in-
tensity function ν(·), and event mark distributed according to the density func-
tion f (·). Once an immigrant with mark m arrives at τ , it starts to independently
produce children according to a marked inhomogeneous Poisson process with in-
tensity function ω(τ,m, ·) = p(τ)r(m)φ(·) and event marks distributed accord-
ing to f (·), so that the total number of children is Poisson distributed with mean∫ ∞

0 ω(τ,m, t)dt = p(τ)r(m), and given the total number of children, the waiting
times to births of the children are i.i.d. with common density function φ(·) if the
order of births is ignored. Moreover, once an offspring of any generation is born,
say at time τ ′ and with mark m′, it starts to independently produce children of its
own according to a similar marked inhomogeneous Poisson process with intensity
function ω(τ ′,m′, ·) and event marks distributed according to f (·). The events of
the MaSEPTiDE process by time t consist of all immigrants and offspring of any
generation that have arrived by time t . This Poisson cluster process interpretation
implies an efficient recursive cascading algorithm to simulate the MaSEPTiDE
process as described in Section 2.5, which has important implications for simula-
tion based predictions by the MaSEPTiDE process.
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Because of the Poisson cluster interpretation, the memory kernel function φ(·)
in the MaSEPTiDE can also be called the offspring density function, and the func-
tion p(·)r(·) might be interpreted as the branching ratio function which specifies
how the branching ratio, that is, the average number of direct (or generation 1)
offspring from an individual (be it an immigrant or an offspring), depends on the
birth time and event mark of the individual. In contrast, the functions p(·) and φ(·)
in the SEISMIC or the TiDeH model do not permit such a neat interpretation.

It might also be of interest to note the difference between the treatments of the
background intensity in the MaSEPTiDE model and in the Hawkes process model
with a general time-varying background intensity. In the former model, we require
the baseline intensity function to be proportional to the memory kernel φ(·), while
in the latter, the background intensity and the memory kernel can take different
shapes. The advantage of our treatment is that it leads to a more parsimonious
model, while the time-varying background intensity model can easily accommo-
date nonstationarity, such as that due to the diurnal patterns of human activity
levels.

2.3. Parameter estimation. Before we can use the MaSEPTiDE model for fu-
ture events prediction, we need to first estimate the model parameters. Since the
event marks are assumed to be i.i.d., their distribution can simply be estimated by
the empirical distribution of mi , for i = 1, . . . ,N(T ). The main estimation prob-
lem is to estimate the parameter vector θ = (α,β, γ, δ1, δ2)

�. To this end, we shall
use the maximum likelihood (ML) approach. By the point process theory [Daley
and Vere-Jones (2003), Proposition 7.3.III] the likelihood of the MaSEPTiDE pro-
cess based on observations over the interval [0, T ], where T denotes the censoring
time, takes the following form:

(5) L(θ) =
{

N(T )∏
i=1

λ(τi)

}
exp

(
−

∫ T

0
λ(t)dt

) N(T )∏
i=1

f (mi),

where λ(·) depends on the parameters through (2)–(4), and f (·) denotes the event
mark density, which is assumed to be free of the parameters θ .

To compute the ML estimator of the parameter vector θ using general-purpose
numerical optimization routines, the efficient evaluation of the likelihood function
or its logarithm is very important. For this purpose, we need to be able to evaluate
the definite integral of the intensity function in (5) efficiently. Due to the linear
structure of the intensity function, the integral of the intensity function can be
shown to take an explicit form similar to the intensity function itself, and therefore
can be exactly computed without resorting to numerical quadrature routines. To
show this, it is convenient to use the random measure interpretation of a marked
point process. That is, we interpret

N(dτ,dm) =
∞∑
i=1

δ(τi ,mi)(dτ,dm)
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as a random measure on [0,∞) ×M, so that the intensity in (2) can be written as

λ(t) = ν(t) +
N(t−)∑
i=1

ω(τi,mi, t − τi) = ν(t) +
∫
(0,t)×M

ω(τ,m, t − τ)N(dτ,dm).

Therefore, by Fubini’s theorem, a change of variables, and the assumed forms of
the functions ν, ω and φ, we have∫ T

0
λ(t)dt =

∫ T

0
ν(t)dt +

∫ T

0

∫
(0,t)×M

ω(s,m, t − s)N(ds,dm)dt

=
∫ T

0
ν(t)dt +

∫
(0,T )×M

∫ T

s
ω(s,m, t − s)dtN(ds,dm)

=
∫ T

0
ν(t)dt +

∫
(0,T )×M

∫ T −s

0
ω(s,m, t)dtN(ds,dm)

= α
(T ) +
N(T −)∑

i=1

p(τi)r(mi)
(T − τi),

(6)

where 
(t) = 
(t; δ) = ∫ t
0 φ(s; δ)ds = 1 − (1 + δ2t/δ1)

−δ1+1, t ≥ 0.
From the separable form of the likelihood function in (5) and the assumption

that the event mark distribution does not depend on the parameter vector θ , the
ML estimation of the parameters θ can be based on maximizing the logarithm of
the part of the likelihood that does not involve f (·), that is

�(θ) =
N(T )∑
i=1

logλ(τi) −
∫ T

0
λ(t)dt.

In practice, the maximization can be done numerically using various general-
purpose optimization routines. In our numerical experiments, we have used the
downhill simplex method of Nelder and Mead (1965), which is the default method
used by the function optim in the R software environment for statistical comput-
ing [R Core Team (2016)].

2.4. Goodness-of-fit assessment. The assessment of the goodness-of-fit of
models to historical data can guide us to seek models that can describe the ob-
served data well and therefore serves as the basis of predictions for future ob-
servations. To assess the goodness-of-fit of the MaSEPTiDE, we shall use the
residual point process approach based on Papangelou’s random time change the-
orem [Daley and Vere-Jones (2003), Theorem 7.4.I]. By the time change theo-
rem, with �(t) = ∫ t

0 λ(s)ds denoting the cumulative intensity process, the trans-
formed process N(�−1(t)) is a Poisson process with unit rate or equivalently, the
random times �(τi), i = 1,2, . . . , will be the event times of a unit rate Poisson
process. Therefore, if the MaSEPTiDE with the parameters θ set to their ML es-
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timates θ̂ is a sufficient model for the observed event times up to the censoring
time T , then the transformed event times, �̂(τi), i = 1, . . . ,N(T ) should be ap-
proximately equal in distribution to the event times of a unit rate Poisson process
up to time �̂(T ), where �̂(t), t > 0 is the plugin estimate of the cumulative inten-
sity �(t; θ) = ∫ t

0 λ(s; θ)ds, that is,

�̂(t) = �(t; θ̂ ) = α̂
(t; δ̂) +
N(t−)∑
i=1

p(τi; β̂)r(mi; γ̂ )
(t − τi; δ̂),

with p(·) and r(·) defined in (4), and 
(·) defined as in (6). As the conditional
distribution of the event times of a Poisson process in a fixed interval given the
total number of events in the interval is equal in distribution to the order statistics
of the same number of i.i.d. random variables uniformly distributed in the interval,
to assess the goodness-of-fit of the MaSEPTiDE (or any point process model spec-
ified via the intensity process), we can assess the uniformity of the transformed
event times �̂(τi), i = 1, . . . ,N(T ), in the interval (0, �̂(T )], informally using
graphical approaches such as the histogram or the Q-Q (quantile–quantile) plots,
or formally using statistical tests like the K-S (Kolmogorov–Smirnov) test. A sim-
ilar residual analysis was performed by Ogata (1988) to assess the goodness-of-fit
of point process models on earthquake data.

2.5. Predicting future number of events. Given observations up to T , to pre-
dict the number of events from T to a future time point T̃ > T , one commonly uses
its conditional expectation or its conditional median, which is optimal relative to
the mean squared error or the mean absolute error accordingly [Gneiting (2011)].
To obtain the conditional expectation, we can use either a solve-the-equation ap-
proach or a simulation based approach. The former approach involves deriving a
functional equation satisfied by the conditional expectation as a function of a future
time point, solving the equation, and evaluating the solution function at the desired
time point. The latter approach involves simulating the sample path of the MaSEP-
TiDE on the time interval (T , T̃ ] conditional on the observations up to time T for
a large number of times, counting the number of events on each simulated sample
path, and using the average of the simulated event counts to approximate its ex-
pectation. While the first approach is computationally less expensive, the solution
of the functional equation is not always easy to obtain. For the second approach,
although it is relatively less efficient, especially if the process to be simulated has a
large expected number of events, it is more robust than the first approach. To obtain
the conditional median, the only option seems to be a simulation based approach,
which involves simulating the conditional sample path of the MaSEPTiDE pro-
cess a large number of times and extracting the median of the resultant empirical
distribution of the number of events in the prediction interval.

Both solve-the-equation approach and simulation based approach rely on the
observation that, conditional on the history of the MaSEPTiDE process up to time
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T , its future evolution is the same as that of another MaSEPTiDE process with a
different baseline intensity function and a similar excitation function. Let Ñ(t) =
N(T + t) − N(T ), for t ≥ 0, τ̃j = τN(T )+j − T , m̃j = mN(T )+j for j = 1,2, . . . ,
and F̃t = FT +t , t ≥ 0. Then, the F̃ -intensity process of Ñ(t) is given by

λ̃(t) = λ(T + t) = ν(T + t) +
N(T )∑
j=1

ω(τj ,mj , T + t − τj )

+
N(T +t−)∑

j=N(T )+1

ω(τj ,mj , T + t − τj )

= ν̃(t) +
Ñ(t−)∑
j=1

ω̃(τ̃j , m̃j , t − τ̃j ),

where ν̃(·) denotes the function

(7) ν̃(t) = ν(T + t) +
N(T )∑
j=1

ω(τj ,mj , T + t − τj ),

and ω̃(·, ·, ·) denotes the function

(8) ω̃(τ,m, t) = ω(T + τ,m, t) = p(T + τ)r(m)φ(t) ≡ p̃(τ )r(m)φ(t).

Therefore, Ñ(t), t ≥ 0 is a MaSEPTiDE process with baseline intensity function ν̃

and excitation function ω̃ given as above in (7) and (8) respectively. The excitation
function ω̃ has a similar separable form as ω, with r and φ the same as before, and
infectivity function p̃ equal to a time shift of the previous infectivity function, that
is, p̃(τ ) = p(T + τ).

To calculate the expected number of events E[N(T̃ ) − N(T )|FT ] without re-
sorting to simulations, we first note from the definition of the conditional intensity
that

E
[
N(T̃ ) − N(T )|FT

] = E
[
Ñ(T̃ − T )|FT

] = E

[∫ T̃ −T

0
λ̃(s)ds

∣∣∣FT

]

=
∫ T̃ −T

0
E

[
λ̃(s)|FT

]
ds =

∫ T̃ −T

0
λ̄(s)ds,

(9)

with λ̄(s) = E[λ̃(s)|FT ] denoting the mean intensity function of Ñ(t) given FT .
By the independence between event marks and previous event times, we have

λ̄(t) = E
[
λ̃(t)|FT

]
= E

[
ν̃(t) +

∫
(0,t)×M

ω̃(τ,m, t − τ)Ñ(dτ,dm)
∣∣∣FT

]
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= E

[
ν̃(t) +

∫
(0,t)×M

p̃(τ )r(m)φ(t − τ)λ̃(τ )dτ dF(m)
∣∣∣FT

]
(10)

= ν̃(t) +
∫
M

r(m)dF(m)

∫ t

0
p̃(τ )φ(t − τ)E

[
λ̃(τ )|FT

]
dτ

= ν̃(t) + R

∫ t

0
p̃(τ )φ(t − τ)λ̄(τ )dτ,

where we have also used Ñ(dτ,dm) to denote the associated random mea-
sure again, and F denotes the distribution of the i.i.d. event marks, while R =
E[r(mi)] = ∫

M r(m)dF(m) is the expected total excitation effect due to an event.
In general, we need to solve the integral equation in (10) numerically to ob-

tain λ̄(t) on [0, T̃ − T ] and use it in finding the conditional expectation of the
number of events in (9). One method to solve (10) is to approximate λ̄(t) by a flex-
ible parametric function and identify the parameters by requiring both sides of the
equation to be equal or approximately equal at sufficiently many points in the inter-
val [0, T̃ − T ]. Examples of the flexible parametric functions to approximate λ̄(t)

include a B-spline function with a specified order and knot sequence, or a trun-
cated Fourier series. In both cases, the unknown parameters of the approximating
function can be obtained by solving a linear equation of the unknown parame-
ters. In practice, we would try approximating functions with increasing flexibility
until convergence in the solution is achieved. We select the B-spline function in
this work as a method to find λ̄(t) for its ease of implementation and computa-
tional stability. Specifically, we let B(t) = (B1(t), . . . ,Bk(t))

� denote the set of
B-spline basis functions of a certain order on the interval (0, T̃ − T ], and assume
that λ̄(t) ≈ B(t)�η for a k-vector η. Plugging this into (10), we have the following
equation of η:

B(t)�η = ν̃(t) +
{
R

∫ t

0
p̃(τ )φ(t − τ)B(τ)�η dτ

}
.(11)

To solve (11) for η, we evaluate both sides of (11) at sufficiently many (≥ k)
t values in the interval (0, T̃ − T ], and solve the resulting overdetermined linear
system using the method of least squares to get η. Once η is obtained, the predicted
value is calculated as

{
N(T̃ ) − N(T )

}
pred =

(∫ T̃ −T

0
B(t)dt

)�
η.

In evaluating the integrals in (11), we often need to use numerical quadrature rou-
tines. In our case, we have used the R function integrate for this purpose.

To simulate the MaSEPTiDE process Ñ over the interval (0, T̃ −T ], we can use
the following cascading algorithm, which is a generalization of that used for the
simulation of nonstationary self-exciting point processes [Chen and Hall (2013,
2016)]. A similar algorithm has been used by Chen and Stindl (2018) to simulate
renewal Hawkes processes.
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1. Simulate an inhomogeneous Poisson process N0 with time-varying inten-
sity function ν̃(t) on (0, T̃ − T ] and denote the event times of N0 by τ 0

j , j =
1, . . . ,N0(T̃ − T ).

2. Generate the associated event marks m0
j independently from the event mark

distribution F and call the events (τ 0
j ,m0

j ), j = 1, . . . ,N0(T̃ − T ) generation 0
events.

3. For each generation 0 event (τ 0
j ,m0

j ), simulate an inhomogeneous marked

Poisson process N1
j , with intensity function ω̃(τ 0

j ,m0
j , ·) and event mark distribu-

tion F , on the interval (0, T̃ − T − τ 0
j ] and denote the corresponding events by

(τ 1
jk,m

1
jk), k = 1, . . . ,N1

j (T̃ −T − τ 0
j ). The collection of events {(τ 0

j + τ 1
jk,m

1
jk);

k = 1, . . . ,N1
j (T̃ − T − τ 0

j ), j = 1, . . . ,N0(T̃ − T )} are referred to as generation
1 events.

4. Continue generating events of generations 2, 3, . . . similarly on intervals of
decreasing lengths, until a generation has no events.

5. The events of all generations are pooled together to form the collection of all
events of the MaSEPTiDE Ñ process on the interval (0, T̃ − T ].
The algorithm shown above requires the simulation of inhomogeneous Poisson
processes, which can be achieved using the thinning algorithm of Lewis and
Shedler (1979). In our numerical experiments, we have used the R implementation
simPois from the IHSEP package. Our implementation of the above cascading
algorithm is based on a simple modification of the function simHawkes1 from
the R package IHSEP.

To predict the number of events in the interval (T , T̃ ], we simulate the sample
path of the process Ñ(t) over the interval (0, T̃ − T ] for a large number (say 100)
of times, and count the number of events on each simulated sample path. The mean
or median of these simulated event numbers will then be our point prediction of
the number of events of the MaSEPTiDE process N in the interval (T , T̃ ].

In practice, when we use the fitted model to make predictions, whether by using
the solve-the-equation approach or by using the simulation based approach, the
unknown functions ν̃ and ω̃, and the event mark distribution F need to be replaced
by their respective estimators. In our numerical experiments, we use the plugin es-
timators ν̃(t; θ̂ ) and ω̃(·, ·, ·; θ̂ ) for ν̃ and ω̃, and the empirical distribution function
F̂ of the event marks m1, . . . ,mN(T ) for F . One implication is that the constant

R in (10) is set to R̂ = ∫
M r(m)dF̂ (m) = ∑N(T )

i=1 r(mi)/N(T ). Finally, we note
that, if the target of prediction is the total number of events of the process N in the
interval (0, T̃ ], then we simply add the observed number in the interval (0, T ], that
is, N(T ), to the predicted number in the interval (T , T̃ ].

3. Application to the tweet data. In this section, we report the results of
applying the proposed model and inference methodologies to the tweet data. The
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performance of our prediction methods is also compared to those of the SEISMIC
and the TiDeH model.

3.1. The model fit. We fitted the MaSEPTiDE model to the 71,815 retweet
cascades in the training data set described in Section 2.1 with different censoring
times, using the maximum likelihood method described in Section 2.3. The es-
timated parameter values with censoring time of seven days are highly skewed,
with the median estimates of α, β , γ , δ1, and δ2 equal to 48.349, 0.072, 7.209,
1.416, and 0.007 respectively. To have some idea about the typical parameter val-
ues found in practice, we display in Table 1 the estimated parameter values for the
five sample cascades shown in Figure 1, together with their final popularity.

The estimated values of the parameter β suggest very fast decays of infectiv-
ity, with the times taken for the infectivity to drop to 1% of the initial levels vary
from about 19 seconds [log(100)/0.246 = 18.7 seconds] in sample cascade 3 to
about 4 minutes [log(100)/0.019 = 242.4 seconds] in sample cascade 5. While
the estimated values of the shape parameter of the memory kernel δ1 are more or
less similar to each other, the scale parameter δ2 is substantially more variable.
In particular, the extremely small δ̂2 value of 0.001 in sample cascade 3 implies
a very long range memory effect, which, together with a relatively large β̂ value,
suggest that the later retweets are more likely to be generated by the original tweet
or retweets within the first few seconds of the original tweet (if any), while in sam-
ple cascade 1, where the δ̂2 value is 0.173, the later retweets are more likely to
be generated by more recent retweets. The estimated values of the scale parameter
α of the baseline intensity function, together with the values of the δ parame-
ters and the final popularity, suggest highly variable proportions of generation 0
retweets, ranging from 3.4% [= 5.711
(T̃ ;1.254,0.173)/159] in sample cascade
1 to nearly 100% [= 58.136
(T̃ ;1.490,0.001)/55] in sample cascade 3. Also,
the estimated γ values on the five sample cascades have quite substantial varia-
tion, with the increase in the excitation effect associated with one unit increase in
the number of followers (on the log scale) of a retweeting account vary from 1.144
to 6.351 units.

TABLE 1
Fitted parameter values on the sample cascades shown in Figure 1

Sample cascade α̂ β̂ γ̂ δ̂1 δ̂2 N(T̃ )

1 5.711 0.024 1.455 1.254 0.173 159
2 3.075 0.021 6.351 1.414 0.029 85
3 58.136 0.246 1.144 1.490 0.001 55
4 8.209 0.031 2.095 1.444 0.040 74
5 4.173 0.019 5.049 1.229 0.046 89
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TABLE 2
The percentages of cascades in the training data set where the MaSEPTiDE model passes the

goodness-of-fit test at different significance levels and censoring times

Censoring time (hours)

Significance level 2 4 6 8 10 12 168

0.01 92.0% 88.2% 85.8% 84.2% 82.8% 81.8% 74.9%
0.05 89.3% 84.7% 81.9% 80.1% 78.5% 77.5% 69.2%

By the goodness-of-fit assessment method described in Section 2.4, we tested
the uniformity of the point process residuals �̂(τi) over the interval (0, �̂(T )]
using the K-S test. At significance levels of 0.01 and 0.05 with different censoring
times, the percentages of the 71,815 cascades where the estimated MaSEPTiDE
model passes the residual uniformity test are shown in Table 2.

From this table we note that the percentage of cascades from which the esti-
mated model passes the test decreases when the censoring time increases. This is
to be expected as the amount of data increases with the censoring time, implying
that the difficulty of finding a fitting model also increases. At significance level of
0.01, when fitted to the complete cascade data, that is, with the censoring time of
168 hours (seven days), the MaSEPTiDE model passes the goodness-of-fit test on
roughly 75% of the cascades. By the censoring time of 12 hours, the MaSEPTiDE
model passes the goodness-of-fit test on the majority (approximately 82%) of the
cascades. Given that the majority of the retweets, or 80% on average, have already
happened within 12 hours of the posting of the original tweets, we conclude that
the MaSEPTiDE model is able to describe the retweeting dynamics reasonably
well.

3.2. Popularity prediction. For each of the 94,254 tweets in the test data set,
we applied the fitted MaSEPTiDE model with the retweet cascades censored at
different times to predict their final popularity, using the prediction methods dis-
cussed in Section 2.5. For the purpose of comparison, we also obtained the pre-
dictions based on the SEISMIC of Zhao et al. (2015) and the TiDeH model of
Kobayashi and Lambiotte (2016). We only report the results of comparison with
these two methods, because they were found to outperform other methods in the
literature, such as those reported in Crane and Sornette (2008), Agarwal, Chen
and Elango (2009), Szabo and Huberman (2010), and Gao, Ma and Chen (2015),
both in our own numerical experiments and in the works of Zhao et al. (2015) and
Kobayashi and Lambiotte (2016).

Our point prediction of the “final” popularity of a tweet, or the total number
of retweets by time T̃ = 7 days, using the MaSEPTiDE model estimated with the
retweet cascade observed up to the censoring time T , is given by N(T̃ )pred =
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N(T ) + (N(T̃ ) − N(T ))pred, where (N(T̃ ) − N(T ))pred is obtained either as the
conditional expectation using the solve-the-equation approach or the simulation
based approach, or as the conditional median using the simulation based approach.
Our numerical experiments have confirmed that in the case of conditional expec-
tation, the two approaches produce identical predictions up to a negligible numer-
ical error, as expected. When using the simulation based approach, we note that,
for some very popular tweets, the retweeting cascades are very long and the num-
bers of retweeting events to be simulated in the prediction intervals are very large,
and therefore simulations can take a long time to complete. This issue was also
noted by Kobayashi and Lambiotte (2016). A trick we used to mitigate this issue
is to simulate the process Ñ with a smaller baseline intensity function, say ν̃(·)/S
with S = 100 or larger, and inflate the simulated event numbers by the factor S.
For the majority of the cascades, a moderately large number of simulation replica-
tions, such as 100 or even 50, was enough to produce a prediction consistent with
that by the solve-the-equation approach. The same set of simulations were used to
calculate the median based prediction.

To assess the performance of the conditional mean based predictions, we first
follow the recent literature [Zhao et al. (2015), Kobayashi and Lambiotte (2016)]
and use the Absolute Percentage Error (APE),

APE =
∣∣∣∣N(T̃ )pred − N(T̃ )

N(T̃ )

∣∣∣∣,
to compare the accuracy of prediction by different models. Each prediction method
under evaluation was applied to each of the 94,254 retweet cascades in the test data
set with censoring times T = 2,4, . . . ,12 hours as most retweeting events would
have occurred within the first few hours, based on our analysis on the training data
set. For each censoring time, we calculated the APEs of the conditional mean pre-
dictions by the proposed model and by the two competing models. The predictions
by the SEISMIC approach were calculated using the R package seismic. The
predictions by the TiDeH model approach were calculated using the algorithm de-
scribed in Kobayashi and Lambiotte (2016) with the window size parameter �obs
[cf. Kobayashi and Lambiotte (2016), page 194] in the estimation step set to one
hour. Due to the lack of a principled approach to select the window size, we chose
this value based on experimenting with different values and selecting the one that
produced reasonable estimates of the infectivity function by visual inspection.

The boxplots of the APEs of conditional mean predictions by the three models
(MaSEPTiDE, SEISMIC, and TiDeH) with different censoring times are shown
in Figure 2. In each boxplot, the horizontal thick bar indicates the median APE,
and the circular point indicates the mean APE. The actual values of the median
and mean APE are given in Table 3. From Figure 2 and Table 3, the MaSEPTiDE
prediction has consistently smaller median APE and mean APE for each T than
the SEISMIC prediction. Compared to the TiDeH prediction, the MaSEPTiDE
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FIG. 2. Boxplots of the Absolute Percentage Errors (APEs) of predictions by the MaSEPTiDE
model, the SEISMIC and the TiDeH model, for censoring times T = 2,4, . . . ,12 hours. The hori-
zontal thick bar in each boxplot indicates the median while the circular point indicates the respective
mean of APEs. Both the mean and median of APEs demonstrate the superior performance and sta-
bility of the MaSEPTiDE model.

prediction has clearly better performances when T = 2,4,6 hours, either by the
median APE or by the mean APE. The performances of these two models are
comparable when T = 8 hours, but the MaSEPTiDE is at a slight disadvantage
when T = 10,12 hours.

Despite its widespread use in evaluating prediction performance, the APE as a
prediction error measure is not consistent with the feature of the predictive distribu-

TABLE 3
Median APEs and mean APEs of the popularity predictions by different approaches with

observations up to various censoring times T

Median APE (%) Mean APE (%)

T (hours) MaSEPTiDE SEISMIC TiDeH MaSEPTiDE SEISMIC TiDeH

2 19.1 22.8 23.7 26.1 29.3 33.8
4 13.9 18.6 17.1 19.8 24.8 27.8
6 11.2 15.1 12.7 16.5 21.2 21.6
8 9.5 13.1 9.3 14.3 18.9 15.8

10 8.2 11.7 7.4 12.7 17.1 12.2
12 7.3 10.6 5.9 11.4 15.5 9.6
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FIG. 3. Left: squared prediction errors when the mean of the predictive distribution is used as the
point prediction. Right: absolute prediction errors when the median is used. The thick horizontal bar
in each boxplot shows the median of the errors, and the circular point shows the mean of the errors.

tion used as a point prediction here, which is the expectation/mean; see Gneiting
(2011) for a systematic discussion of this issue. A more appropriate prediction
error measure when the conditional mean is used as the point prediction is the
squared error. Therefore, we also calculated the squared errors of the predictions
by the three models. The boxplots of the squared errors by the three models at
different censoring times are shown in the left panel of Figure 3.

As the models can occasionally produce extremely large predictions, and even
infinity in the case of SEISMIC, the outlying values were not shown in the box-
plot for better visualization. The mean squared prediction errors (MSEs) at differ-
ent censoring times are indicated by the circular points in the boxplots, and their
squared roots, that is, the root mean squared errors (RMSEs), are shown in Table 4.
From Figure 3 and Table 4, we note that, using the RMSE as the performance mea-
sure, the MaSEPTiDE prediction outperforms the SEISMIC prediction at all the
censoring times, and similar to the conclusion drawn based on the median APEs,

TABLE 4
Root mean squared errors (RMSEs) and mean absolute errors (MAEs) of predictions

at different censoring times

RMSE MAE

T (hours) MaSEPTiDE SEISMIC TiDeH MaSEPTiDE TiDeH

2 36.3 42.2 45.1 32.0 40.2
4 28.5 36.5 49.1 25.0 43.0
6 24.5 33.4 29.2 21.3 25.6
8 21.1 29.8 20.9 18.4 18.2

10 18.8 26.5 16.3 16.5 14.1
12 17.3 23.6 13.2 14.6 11.5
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the MaSEPTiDE again, outperforms the TiDeH model when T = 2,4,6 hours but
slightly underperforms when T = 8,10,12 hours. In comparison, the SEISMIC
only outperforms the TiDeH model when T = 2,4 hours.

To compare the prediction performances when using the conditional median by
different models, we use the mean absolute error (MAE) as the criterion of com-
parison, as advised by Gneiting (2011). The conditional median prediction by the
MaSEPTiDE model was calculated by the simulation based approach described
in Section 2.5. The conditional median prediction by the TiDeH model was sim-
ilarly calculated using a simulation based approach, although the simulation of
the TiDeH model was achieved by a less efficient method where the events have
to be simulated serially one after another, using the rejective method of Lewis and
Shedler (1979). The conditional median prediction by the SEISMIC is not included
in this comparison because this model does not specify the form of the intensity
process beyond the censoring time, and therefore we cannot calculate the condi-
tional median using the simulation based approach. The right panel of Figure 3
shows the absolute errors of the conditional median predictions by the MaSEP-
TiDE and the TiDeH models at different censoring times, where, as before, the cir-
cular points indicate the MAEs of the predictions at the corresponding censoring
times. See also Table 4 for MAE values. By the MAE, the conditional median pre-
diction by the MaSEPTiDE model is clearly superior to that by the TiDeH model
at the censoring times T = 2,4,6 hours, and is comparable albeit slightly inferior
at the larger censoring times T = 8,10,12 hours.

By all the performance evaluation criteria considered, the prediction by the
MaSEPTiDE model is clearly more accurate than by the two competing models,
especially when prediction needs to be made based on shorter observation times,
for example, within six hours or shorter of the posting of the original tweet.

4. Conclusion and discussion. In this work, we have proposed a marked self-
exciting point process model, called the MaSEPTiDE, to model the retweeting
dynamics and to predict tweet popularity. The MaSEPTiDE is able to model a
large number of retweet cascades adequately, and its prediction performance is
superior to those of the competing models and approaches in the literature that
require the same input.

When the prediction is based on observing a cascade for a long period of time,
the approach based on the TiDeH model by Kobayashi and Lambiotte (2016) is
found to outperform our model by a small margin. However, considering the fact
that this small advantage of the TiDeH model is not realized until the retweet cas-
cades are observed for eight hours or longer, when the majority of the retweets
would have already happened, its practical significance is rather limited. On the
contrary, the approach based on the MaSEPTiDE is able to provide accurate pre-
dictions of the final popularity based on observations within two hours of posting
of the original tweet. Another issue with the TiDeH model is that the nonparamet-
ric estimation step to obtain the initial raw estimate of the infectivity curve needs
a large amount of data to work well. In fact, in their numerical experimentation,
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Kobayashi and Lambiotte (2016) only verified the superior performance of their
prediction approach relative to the SEISMIC on 738 very long cascades (contain-
ing 2,000 or more retweets), which account for less than 0.5% of all the cascades.
In contrast, the approach based on the MaSEPTiDE is fully parametric and does
not require as much data to estimate.

The specific parametric forms of the functions in the MaSEPTiDE model have
been selected from a class of candidate models by comparing their goodness-of-fit
on the retweet cascades in the training data set and identifying the model that can fit
most of the cascades. In the class of candidate models, we have considered other
parametric forms of the component functions, such as infectivity functions that
decay at polynomial rate, and memory kernel functions that decay exponentially
fast. The model with the specific forms of the component functions reported herein
has the best goodness-of-fit on the training data.

To further improve the MaSEPTiDE model, more complex models, such as
those that incorporate the calendar time effects [Fox et al. (2016), Kobayashi and
Lambiotte (2016)] are worth considering. Another aspect of our approach that can
be improved is that our approach still requires the observation of the retweet cas-
cade for a substantial amount of time to accumulate enough data to identify the
model, even though the required observation time is much less compared to ap-
proaches based on other models such as the TiDeH model. If we make stronger
assumptions on the model parameters across the cascades, then parameter estima-
tion might be achieved using only training data, which will allow us to predict its
final popularity as soon as a tweet is published, or even before it is published.

Finally, an important limitation of the data considered in our work, originally
collected by Zhao et al. (2015), is that the data contains only cascades with at
least 49 retweets. Such data is by no means representative of all tweets published
by Twitter users, as vast majority of the tweets do not get even a single retweet.
Therefore, models developed based on such data are only useful for popularity
predictions of reasonably popular tweets. To develop models suitable for the pre-
dictions of the popularity of average tweets, one would need to collect suitable
random samples of tweets and their retweet cascades, and build models accord-
ingly.
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