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Abstract. In this paper we study the problem of pointwise density estimation from observations with multiplicative measurement
errors. We elucidate the main feature of this problem: the influence of the estimation point on the estimation accuracy. In particular, we
show that, depending on whether this point is separated away from zero or not, there are two different regimes in terms of the rates of
convergence of the minimax risk. In both regimes we develop kernel-type density estimators and prove upper bounds on their maximal
risk over suitable nonparametric classes of densities. We show that the proposed estimators are rate-optimal by establishing matching
lower bounds on the minimax risk. Finally we test our estimation procedures on simulated data.

Résumé. Dans cet article, nous étudions le problème de l’estimation de densité ponctuelle à partir d’observations avec erreurs mul-
tiplicatives. Nous clarifions l’élément essentiel de ce problème: l’influence du point d’estimation sur la précision de l’estimation. En
particulier, nous montrons que, selon que le point est éloigné de zéro ou pas, il y a deux régimes différents qui s’expriment en termes de
la vitesse de convergence d’un risque minimax. Dans les deux régimes, nous développons des estimateurs de type noyau et prouvons
des bornes supérieures sur leur risque maximal, ceci sur une classe convenable non paramétrique de densités. Nous montrons que les
estimateurs proposés sont d’ordres optimaux en établissant des bornes inférieures correspondantes sur le risque minimax. Enfin, nous
testons notre procédé d’estimation sur des données simulées.
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1. Introduction

Problem formulation and background. In this paper we study the problem of nonparametric density estimation from ob-
servations with multiplicative measurements errors. In particular, assume that we observe a sample Y1, . . . , Yn generated
by the model

Yi = Xiηi, i = 1, . . . , n, (1.1)

where X1, . . . ,Xn are independent identically distributed (i.i.d) random variables with density fX , and η1, . . . , ηn are
i.i.d. random variables, independent of X1, . . . ,Xn, with known density g. Our goal is to estimate the value of fX at a
single given point x0 from observations Y1, . . . , Yn. If fY stands for the density of Y = Xη, then

fY (y) = [fX � g](y) :=
∫ ∞

−∞
1

x
fX(y/x)g(x)dx

=
∫ ∞

−∞
1

x
g(y/x)fX(x)dx, y ∈ R. (1.2)

Thus fY is a scale mixture of g, and estimation of fX from observations Y1, . . . , Yn can be viewed as the problem of
demixing of a scale mixture.
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The outlined estimation problem appears in the literature in various contexts. First, the model (1.1) with normal errors
ηi and positive random variables Xi represents a stochastic volatility model without drift. In this context estimation of the
volatility density fX from observations Y1, . . . , Yn was studied by Van Es et al. [19], Van Es & Speij [18] and Belomestny
& Shoenmakers [6].

Second, if (ηi) are uniformly distributed on [0,1] then the corresponding model (1.1) is referred to as the multiplica-
tive censoring model. In this setting Vardi [20] studied the problem of estimating the distribution function of X under
the assumption that two samples Y1, . . . , Yn and Xn+1, . . . ,Xn+m are available. The aforementioned paper develops a
nonparametric maximum likelihood estimator; large sample properties of this estimator are studied in Vardi & Zhang
[21]. The problem of density estimation in the multiplicative censoring model was considered in Andersen & Hansen
[1] and Comte & Dion [8], where estimators based on orthogonal series have been developed. Kernel density estimators
were studied in Asgharian et al. [4] and Brunel et al. [7]. We also refer the reader to the recent work by Belomestny et al.
[5] where a generalized multiplicative censoring model with (ηi) being beta-distributed random variables was introduced
and studied; see also references therein.

Third, as mentioned above, the outlined problem can be viewed as the problem of demixing of a scale mixture. Closely
related problems of estimating mixing densities were considered by Zhang [23,24] and Loh & Zhang [15]. In particular,
the paper [23] develops Fourier techniques for estimating mixing densities in location models, while [24] and [15] focus
on estimating mixing densities in discrete exponential family models. However we are not aware of works on estimating
mixing densities in the context of scale models. Finally, we also mention related results on estimating regression functions
with multiplicative errors-in-variables that are reported in Iturria et al. [13].

A naive approach to the problem of density estimation in the model with multiplicative errors is based on reduction
to the additive measurement error model. In particular, assuming that Xi ’s and ηi ’s are positive random variables and
taking logarithms of the both sides of (1.1), we come to the additive model Y ′

i = X′
i + η′

i , where Y ′
i = lnYi , X′

i =
lnXi and η′

i = lnηi . In this model, the density fX′ of X′ can be estimated using the well developed methodology for
additive deconvolution problems (see, e.g., [23] and [10]), and then an estimator for fX can be obtained using the inverse
transformation fX(x) = (1/x)fX′(lnx). This idea has been utilized in Van Es & Spreij [18] and Van Es et al. [19].
However, several questions about applicability of this approach arise. First, it can be used only if X and η are nonnegative
random variables. Second, it does not provide an estimator of fX at the origin x = 0 since the inverse transformation is
not well-defined there. Third, even if this approach is applicable, it is not clear whether the resulting estimator possesses
the desired optimality properties.

In contrast to voluminous literature on density deconvolution in the model with additive measurement errors, the
problem of density estimation from observations with multiplicative errors was studied to a much lesser extent. In fact, it
was considered only for specific distributions of errors (ηi) such as normal, uniform or beta, and the estimators proposed
in the literature are tailored to a specific form of the error density g. In this context the following natural questions arise.
How to estimate fX under general assumptions on the error density g? Which properties of the error density g do affect
the estimation accuracy, and what is the achievable accuracy in estimating fX? What can be said about properties of the
deconvolution estimators based on the logarithmic transformation of the data?

The main goal of the present paper is to develop optimal estimators of fX in a principled way under general assump-
tions on the error density g and to provide answers to the questions raised above. Our approach makes use of the Mellin
transform which, in view of its properties, is an appropriate tool for constructing estimators in this setting.

We adopt minimax framework for measuring estimation accuracy. Specifically, accuracy of an estimator f̂X(x0) of
fX(x0) is measured by the maximal risk

Rn[f̂X;�] := sup
fX∈�

[
EfX

∣∣f̂X(x0) − fX(x0)
∣∣2]1/2

,

where � is a class of densities. Here and in what follows, EfX
denotes the expectation with respect to the distribution of

the observations Y1, . . . , Yn when the unknown density of X is fX . The minimax risk is defined by

R∗
n[�] := inf

f̂X

Rn[f̂X;�] = inf
f̂X

sup
fX∈�

[
EfX

∣∣f̂X(x0) − fX(x0)
∣∣2]1/2

,

where inf is taken over all possible estimators. Our goal is to develop an estimator f̂X(x0) which is rate-optimal, i.e.,

Rn[f̂X;�] ≤ CnR∗
n[�], sup

n
Cn < ∞.

Main contributions. The main contributions of this work are as follows.
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We elucidate the main feature of the multiplicative measurement errors setting: the influence of the estimation point
x0 on the achievable estimation accuracy. In particular, assuming that unknown density fX belongs to a local Hölder
functional class in a vicinity of x0, we show that, depending on the value of x0, there are two different regimes in terms of
the rates of convergence of the minimax risk. We develop a general method for estimating fX(x0) in these two regimes.

The first regime corresponds to the situation when the value of x0 is separated away from zero. Here the achievable
rate of convergence is primarily determined by the value of x0, by the local smoothness of fX , and by the ill-posedness of
the integral transform in (1.2). The latter is characterized in terms of the rate at which the Mellin transform of g decreases
at infinity on a line parallel to the imaginary axis in the complex plane. It is worth noting that this characteristic is global
in the sense that it is determined by the global behavior of the error density g on its support. We construct a kernel-
type estimator of fX(x0) and prove that it is rate-optimal in terms of dependence on the sample size n, parameters of the
considered functional class � and x0. It turns out that the deconvolution estimator based on the logarithmic transformation
of the data is a special case of the proposed estimation procedure. As a by-product of our general results, we demonstrate
that if x0 is separated away from zero, the random variables X and η are nonnegative, and fX belongs to a local Hölder
class in a vicinity of x0, then under certain conditions on g the deconvolution estimator is rate-optimal. However, if fX

satisfies some additional constraints, e.g., a moment condition, then the accuracy of the deconvolution estimator can be
improved.

In the second regime, where x0 = 0, completely different phenomena are observed. It turns out that in this case the
achievable accuracy in estimating fX(0) is determined by smoothness of fX and by local behavior of g in vicinity of
the origin. Thus, in contrast to the first regime, the minimax rate depends only on local characteristics of g and is not
affected by the ill-posedness of the integral transform in (1.2). In particular, our results imply that if g is bounded and
does not vanish in a vicinity of the origin, then the minimax rate of convergence is only by a lnn-factor worse than the
one achievable in the problem of density estimation from direct observations. We also construct a rate-optimal estimator
of fX(0) and prove a matching lower bound on the minimax risk.

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we introduce notation, discuss
some properties of the Mellin transform that are used throughout the paper and present an identifiability result. Section 3
deals with the setting when x0 is separated away from zero; we construct estimators under different assumptions on the
error density g and present results on their accuracy over suitable classes of densities. Section 4 is devoted to the problem
of estimating fX(0). A simulation study of the proposed estimators is presented in Section 5. Finally, proofs of main
results are presented in Section 6 while proofs of auxiliary statements are given in Section 7.

2. Preliminaries

In this section we introduce notation and discuss basic properties of the Mellin transform that will be extensively used
throughout the paper. This material can be found, e.g., in [16] and [22]. In addition, we present a result on identifiability
of the distribution of X in the model (1.1).

The Mellin transform. For a generic locally integrable function u on (0,∞) the Mellin transform of u is defined by

ũ(z) =M[u; z] :=
∫ ∞

0
xz−1u(x)dx (2.1)

for all z ∈ C such that the integral on the right hand side is absolutely convergent. The region of convergence �u is an
infinite vertical strip in the complex plane C,

�u = {
z ∈ C : a < Re(z) < b

}
, a < b,

or a vertical line �u = {z : Re(z) = c} if u(x)xc−1 ∈ L1(R+) for one c ∈R. For example, if u(x) = O(x−a+ε) as x → 0+
and u(x) = O(x−b−ε) as x → ∞ for some ε > 0, then the integral in (2.1) converges absolutely and defines an analytic
function ũ(z) on �u = {z : a < Re(z) < b}.

The inversion formula for the Mellin transform is

u(x) = 1

2πi

∫ c+i∞

c−i∞
x−zũ(z)dz, c ∈ �u ∩ (−∞,∞).

Let u(x) and v(x) be functions such that the integral I = ∫ ∞
0 u(x)v(x)dx exists. Assume also that the Mellin trans-

forms ũ(1 − z) = M[u;1 − z] and ṽ(z) = M[v; z] have a common strip of analyticity, which will be the case when I is
absolutely convergent. Then for any line {z : Re(z) = c} in this common strip the Parseval formula is valid:∫ ∞

0
u(x)v(x)dx = 1

2πi

∫ c+i∞

c−i∞
ũ(1 − z)̃v(z)dz.
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In particular, we get for u = v and c = 1
2 ,∫ ∞

0
u2(x)dx = 1

2π

∫ ∞

−∞

∣∣∣∣̃u(
1

2
+ iω

)∣∣∣∣2

dω.

It also holds∫ ∞

0
u2(x)x2s−1 dx = 1

2π

∫ ∞

−∞
∣∣̃u(s + iω)

∣∣2 dω. (2.2)

Let us mention the relation of the Mellin transform to a multiplicative convolution integral (1.2); this property is central
in subsequent developments. Let u and v be defined on [0,∞), and let

[u � v](y) :=
∫ ∞

0

1

x
u(x)v(y/x)dx;

then

[̃u � v](z) = M[u � v; z] =M[u; z]M[v; z] = ũ(z)̃v(z).

We shall use the Mellin transform techniques for functions defined on the whole real line. To this end, for a function u

on (−∞,∞) we set

u+(x) :=
{

u(x), x ≥ 0,

0, x < 0
and u−(x) :=

{
u(−x), x > 0,

0, x ≤ 0.
(2.3)

It is evident that with this notation u(x) = u+(x) for x ≥ 0 and u(x) = u−(−x) for x < 0. The one-sided Mellin trans-
forms of function u defined on (−∞,∞) are given by

ũ+(z) =
∫ ∞

0
xz−1u+(x)dx =

∫ ∞

0
xz−1u(x)dx,

ũ−(z) =
∫ ∞

0
xz−1u−(x)dx =

∫ 0

−∞
(−x)z−1u(x)dx.

The Laplace and Fourier transforms. The bilateral Laplace transform of function u on (−∞,∞) is defined as

ǔ(z) = L[u; z] :=
∫ ∞

−∞
u(x)e−zx dx,

and if the integral absolutely converges on a line {z : Re(z) = c}, then the inverse Laplace transform is given by

u(x) = 1

2πi

∫ c+i∞

c−i∞
ǔ(z)ezx dz.

The Fourier transform of u is û(ω) =F[u;ω] := L[u; iω] = ǔ(iω).
Identifiability. In the model (1.1) we do not assume that the random variables X and η are nonnegative. This fact

raises the question whether the distribution of X is identifiable from the distribution of Y . The next statement provides a
necessary and sufficient condition for the identifiability.

Lemma 1. The probability density fX is identifiable from fY if and only if g(x) 
= g(−x) on a set of positive Lebesgue
measure.

The proof of Lemma 1 is given in Section 7. It shows that the identifiability condition is equivalent to the requirement
that |[̃g+(z)]2 − [̃g−(z)]2| is not zero for almost all z in the common strip of analyticity of g̃+ and g̃−. Finally, we note
that if one of the variables X or η is nonnegative, then the condition of identifiability is trivially fulfilled.

3. Estimation at a point separated away from zero

In this section we consider the problem of estimation of fX at a point x0 separated away from zero.
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3.1. Construction of estimator

We adopt the linear functional strategy for constructing our estimators. This strategy has been frequently used for solving
ill-posed inverse problems (see, e.g., [12] and [2]). In our context, the main idea of this method is to find a pair of kernels,
say, K(x,y) and L(x, y) such that:

(i)
∫ ∞
−∞ K(x,y)fX(y)dy approximates “well” the value fX(x) to be recovered;

(ii) kernel L(x, y) is related to K(x,y) via the equation∫ ∞

−∞
K(x,y)fX(y)dy =

∫ ∞

−∞
L(x, y)fY (y)dy. (3.1)

Then under (i) and (ii), the empirical estimator of the integral on the right hand side of (3.1) provides a sensible estimator
for fX(x).

Kernel construction. Let K :R→ R be a kernel function and for any positive real number h define

Kh(x, y) =
{

1
xh

K(
ln(y/x)

h
), y/x > 0,

0, y/x < 0.
(3.2)

Let g̃+(z) =M[g+; z] and g̃−(z) =M[g−; z] be the one-sided Mellin transforms of g, and let

�g+ ∩ �g− =: {z ∈ C : a < Re(z) < b
}

(3.3)

be the common strip of their analyticity. Since g is a probability density, we always have a < 1 < b; hence �g+ ∩ �g− is
non-empty – it always contains the line {z ∈ C : Re(z) = 1}. We note that �g+ and/or �g− can degenerate to this line. In
this case, by convention, we put a = 1, b = 1, and corresponding open interval should be replaced by a singleton.

For s ∈ (1 − b,1 − a) define

Ls,h(x, y)

:=
⎧⎨⎩

1
2πix

∫ s+i∞
s−i∞ | x

y
|z Ǩ(−zh)g̃+(1−z)

[̃g+(1−z)]2−[g̃−(1−z)]2 dz, y/x > 0,

− 1
2πix

∫ s+i∞
s−i∞ | x

y
|z Ǩ(−zh)g̃−(1−z)

[̃g+(1−z)]2−[g̃−(1−z)]2 dz, y/x < 0.
(3.4)

For the time being, we suppose that the kernel K and the error density g are such that the function Ls,h is well defined;
the corresponding conditions on K and g will be formulated later. Several remarks on this definition are in order.

Remark 1. (i) We can assume that the Laplace transform Ǩ(·) of kernel K is an entire function. This does not restrict
generality since K can be always chosen to satisfy this assumption.

(ii) If [̃g+(z)]2 − [̃g−(z)]2 
= 0 for all z ∈ �g+ ∩ �g− then the integrands in (3.4) are analytic functions in {z ∈ C :
1 − b < Re(z) < 1 − a}. In this case the integrals in (3.4) do not depend on the integration path, and Ls,h(x, y) does
not depend on s ∈ (1 − b,1 − a). If function [̃g+(z)]2 − [̃g−(z)]2 has zeros in �g+ ∩ �g− then the functions under the
integral sign in (3.4) are meromorphic, and Ls,h(x, y) depends on parameter s.

The relationship between kernels Ls,h(x, y) and Kh(x, y) in (3.4) and (3.2) is revealed in the following statement.

Lemma 2. Let Kh(x, y) be given by (3.2). Let s ∈ (1 − b,1 − a) where a and b are given in (3.3), and suppose that the
integrals on the right hand side of (3.4) are absolutely convergent. Then it holds that∫ ∞

−∞
Ls,h(x, y)fY (y)dy =

∫ ∞

−∞
Kh(x, t)fX(t)dt. (3.5)

The proof of Lemma 2 is given in Section 7. We note that relationship (3.5) is in full accordance with the linear functional
strategy [cf. (3.1)]. Because a < 1 < b, it holds that 0 ∈ (1 − b,1 − a); hence one can always choose s = 0 in (3.4). This
choice yields

L0,h(x, y) =
⎧⎨⎩

1
2πx

∫ ∞
−∞ | x

y
|iω K̂(−ωh)g̃+(1−iω)

[̃g+(1−iω)]2−[g̃−(1−iω)]2 dω, y/x > 0,

− 1
2πx

∫ ∞
−∞ | x

y
|iω K̂(−ωh)g̃−(1−iω)

[̃g+(1−iω)]2−[g̃−(1−iω)]2 dω, y/x < 0.
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If g is supported on [0,∞), then g̃− = 0, g̃+ = g̃; in this case

Ls,h(x, y) = 1

2πix

∫ s+i∞

s−i∞

∣∣∣∣xy
∣∣∣∣z Ǩ(−zh)

g̃(1 − z)
dz, y/x > 0, (3.6)

and Ls,h(x, y) = 0 whenever x/y < 0. In particular, for s = 0 we have

Lh(x, y) := L0,h(x, y) = 1

2πx

∫ ∞

−∞

∣∣∣∣xy
∣∣∣∣iω K̂(−ωh)

g̃(1 − iω)
dω, y/x > 0. (3.7)

Estimator. For |x0| > 0 we define the estimator of fX(x0) by

f̂s,h(x0) = 1

n

n∑
j=1

Ls,h(x0, Yj ), (3.8)

where Ls,h is given in (3.4), h > 0 and s ∈ (1 − b,1 − a) are two tuning parameters to be specified. In what follows with
a slight abuse of notation we shall write f̂h(x0) := f̂0,h(x0) and Lh(x, y) := L0,h(x, y).

Note also that (3.5) implies

EfX

[
f̂s,h(x0)

] =
∫ ∞

−∞
Kh(x0, t)fX(t)dt.

The latter formula is crucial for the analysis of the bias of f̂s,h(x0).

3.2. Relation to the additive deconvolution problem

There is close connection between the kernel Lh(x, y) = L0,h(x, y) defined in (3.7) and kernels used in the additive
deconvolution problems. Specifically, suppose that X and η are positive random variables, and let η′ = lnη. If g is the
density of η, and ĝ is the corresponding characteristic function, then gη′(x) = exg(ex) is the density of η′, and the
characteristic function of η′ is ĝη′(ω) = F[gη′ ;ω] = M[g;1 − iω] = g̃(1 − iω). Therefore the expression for Lh(x, y)

in (3.7) can be rewritten as

Lh(x, y) = 1

2πx

∫ ∞

−∞
K̂(−ωh)

ĝη′(ω)
e−iω(lny−lnx) dω, x > 0, y > 0,

and the corresponding estimator of fX(x0) [cf. (3.8)] is

f̂X(x0) = 1

n

n∑
j=1

Lh(x0, Yj ) = 1

2πx0n

n∑
j=1

∫ ∞

−∞
K̂(−ωh)

ĝη′(ω)
e−iω(lnYj −lnx0) dω. (3.9)

On the other hand, consider the additive deconvolution model for the logarithms, Y ′ = X′ + η′, where Y ′ = lnY ,
X′ = lnX and η′ = lnη. Then the standard deconvolution estimator of fX′(t0) is of the form

f̂X′(t0) = 1

2πn

n∑
j=1

∫ ∞

−∞
K̂(−ωh)

ĝη′(ω)
e
−iω(Y ′

j −t0) dω.

Since fX′(t0) = et0fX(et0), we can estimate fX(x0) = 1
x0

fX′(lnx0) by

f̂X(x0) = 1

x0
f̂X′(lnx0)

= 1

2πx0n

n∑
j=1

∫ ∞

−∞
K̂(−ωh)

ĝη′(ω)
e
−iω(Y ′

j −lnx0) dω, (3.10)

which coincides with (3.9).
We conclude that if random variables X and η are positive, and the parameter s of the estimator f̂s,h(x0) in (3.8) is set

to zero, then both approaches lead to the same estimator. Thus, the estimator (3.10) is a particular case of our estimator
f̂s,h(x0) defined in (3.8). We note however that tuning parameter s adds some flexibility, and its proper choice can improve
accuracy of f̂s,h(x0) under suitable assumptions (see, e.g., Theorem 3 below).
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3.3. Convergence analysis

We proceed with convergence analysis of the risk of the proposed estimator f̂s,h(x0). In order to avoid unnecessary
technicalities, from now on we will assume that X and η are nonnegative random variables, i.e.,

supp(g) ⊆ [0,∞), �g = {
z ∈ C : a < Re(z) < b

}
, supp(fX) ⊆ [0,∞) (3.11)

for some a > 0 and b > a. Under these conditions the kernel Ls,h(x, y) is given by (3.6).
Assumption (3.11) streamlines the presentation and, in fact, does not lead to loss of generality. In particular, the ensuing

analysis of the risk of f̂s,h(x0) remains valid for general random variables X and η, provided that the conditions imposed
in the sequel on the Mellin transform g̃ of g are replaced by the corresponding conditions on ([̃g+]2 − [̃g−]2)/g̃+ and
([̃g+]2 − [̃g−]2)/g̃− [cf. (3.4)].

The risk of f̂s,h(x0) will be analyzed under a local smoothness assumption on fX and two different sets of assumptions
on the error density g.

Definition 1. Let β > 0, A > 0, x0 > 0 and r > 1. We say that f ∈ Hx0,r (A,β) if f is a probability density, that is,

 = �β := max{k ∈ N0 : k < β} times continuously differentiable, and maxk=1,...,
 |f (k)(x)| ≤ A,∣∣f (
)(x) − f (
)

(
x′)∣∣ ≤ A

∣∣x − x′∣∣β−

, ∀x, x′ ∈ [

r−1x0, rx0
]
.

As for the conditions on the error density g, some assumptions characterizing the rate of decay of the Mellin transform
g̃(σ + iω) as |ω| → ∞ for a fixed σ ∈ �g will be considered. Depending on the tail behavior of g̃, we distinguish between
the following two cases:

• smooth error densities, when the tails of g̃ are polynomial, i.e.,

g̃(σ + iω) � |ω|−γ , |ω| → ∞, σ ∈ �g

• super-smooth error densities, when the tails of g̃ are exponential, i.e.,

g̃(σ + iω) � exp
{−γ |ω|}, |ω| → ∞, σ ∈ �g.

Our terminology here is similar to that used in the additive deconvolution problem, even though the words smooth and
super-smooth should not be understood literally.

3.3.1. Smooth error densities
The class of smooth error densities is determined by the following assumption.

[G1] For some σ ∈ (a, b), there exist real numbers ω0 > 0, c0 > 0, B2 > B1 > 0 and γ > 0 such that

min|ω|≤ω0

∣∣̃g(σ + iω)
∣∣ ≥ c0 > 0,

B1|ω|−γ ≤ ∣∣̃g(σ + iω)
∣∣ ≤ B2|ω|−γ , ∀|ω| ≥ ω0.

(3.12)

We will require Assumption [G1] for a particular choice of σ ∈ (a, b), and parameters c0, ω0, B1, B2 and γ may
depend on σ . Assumption [G1] stipulates the rate of decay of g̃ on the line {z : Re(z) = σ } as | Im(z)| → ∞ and implies
that g̃ does not have zeros on this line. This requirement is similar to standard assumptions in the additive deconvolution
problem on the rate of decay of the error characteristic function. The following examples show that [G1] holds for many
well-known distributions.

Example 1 (a Beta distribution). Let g(x) = (ν + 1)xν/θν+1, 0 < x < θ with ν > −1; then

g̃(z) = (ν + 1)θz−1/(ν + z), Re(z) > −ν,

a = −ν, b = ∞, and∣∣̃g(σ + iω)
∣∣ = θσ−1(ν + 1)

[
(ν + σ)2 + ω2]−1/2

, σ > −ν.

Then Assumption [G1] is verified for any σ > −ν with γ = 1, ω0 = 2(σ + ν), c0 = (1/5)1/2θσ−1(ν + 1)/(ν + σ)

and B1 = (4/5)1/2θσ−1(ν + 1), B2 = θσ−1(ν + 1). The case ν = 0, θ = 1 corresponds to the uniform distribution with
g̃(z) = 1/z and |̃g(σ + iω)| = (σ 2 + ω2)−1/2 for σ > 0.
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Example 2 (Pareto’s distribution). Let g(x) = (ν − 1)θν−1/xν , x > θ with θ > 0 and ν > 1. Then

g̃(z) = (ν − 1)θz−1/(ν − z), Re(z) < ν,

a = −∞, b = ν, and∣∣̃g(σ + iω)
∣∣ = (ν − 1)θσ−1[(ν − σ)2 + ω2]−1/2

, σ < ν.

Hence Assumption [G1] is verified for any σ < ν with γ = 1, ω0 = 2(ν − σ), c0 = (1/5)1/2(ν − 1)θσ−1/(ν − σ),
B1 = (4/5)1/2(ν − 1)θσ−1, B2 = (ν − 1)θσ−1.

Example 3. Natural examples of random variables whose distributions satisfy Assumption [G1] with γ > 1 can be
obtained by multiplication of independent random variables with densities as in Examples 1 and 2. For instance, the
probability density of a random variable which is a product of two independent random variables uniformly distributed
on [0,1] is g(x) = ln(1/x), 0 ≤ x ≤ 1. For this density g̃(z) = 1/z2 and |̃g(σ + iω)| = (σ 2 + ω2)−1, so that Assumption
[G1] holds with γ = 2.

Bounds on the risk. We begin with establishing an upper bound on the risk of the estimator f̂s,h(x0) under Assumption
[G1].

In this case the kernel K is chosen to satisfy the following conditions. Assume that K : R → R is a bounded function
that vanishes outside [−1,1] and satisfies

(i) for a positive integer number m,∫ 1

−1
K(t)dt = 1,

∫ 1

−1
tkK(t)dt = 0, k = 1, . . . ,m; (3.13)

(ii) for a positive integer number q , function K is q times continuously differentiable on R and for j = 0,1, . . . , q

max
x∈[−1,1]

∣∣K(j)(x)
∣∣ ≤ CK < ∞. (3.14)

Theorem 1. Fix some β > 0, r > 0, A > 0, x0 > 0 and consider the class Hx0,r (A,β). Suppose that Assumption [G1]
holds with σ = 1 and some γ > 1. Let f̂h∗(x0) = f̂0,h∗(x0) be the estimator defined in (3.7)–(3.8) and associated with a
kernel K satisfying (3.13)–(3.14) with parameters m ≥ �β + 1, q > γ + 1, and

h = h∗ := [
A2x2

0

(
x

β

0 + 1
)2

n
]− 1

2β+2γ+1 . (3.15)

Then for h∗ < min{ln r,1} it holds that

Rn

[
f̂0,h∗ ;Hx0,r (A,β)

] ≤ C1
[
A

(
x

β

0 + 1
)] 2γ+1

2β+2γ+1
(
x2

0n
)− β

2β+2γ+1 , (3.16)

where C1 depends on β only.

Several remarks on the result of Theorem 1 are in order.

Remark 2. (i) If γ ≤ 1, then the result of Theorem 1 holds for a slightly smaller set of functions than Hx0,r (A,β). In
particular, if

fX ∈ Hx0,r (A,β) ∩
{
fX :

∫ ∞

−∞
|f̃X(1 + iω)|
(1 + |ω|)γ dω ≤ c < ∞

}
, (3.17)

for some c > 0, then f̃Y (1 + iω) is integrable, and the statement of Theorem 1 is still valid. Note that this additional
condition on f̃X is very mild: by the Riemann–Lebesgue lemma f̃X(1 + iω) → 0 as |ω| → ∞.

(ii) The above upper bound critically depends on the value of x0. If x0 is separated away from zero by a constant, then
for large enough n the bound takes the form

Rn

[
f̂h∗;Hx0,r (A,β)

] ≤ C2A
2γ+1

2β+2γ+1
(
x

2γ−1
0 n−1) β

2β+2γ+1 . (3.18)

In particular, this shows that estimation accuracy gets worse for larger values of x0.
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Now we establish a lower bound on the minimax risk under Assumption [G1]. We require the following additional
condition on the error density g.

[G1′] For σ ∈ (a, b) the first derivative of g̃ satisfies

|̃g′(σ + iω)
∣∣ ≤ B|ω|−γ , ∀|ω| ≥ ω0.

Assumption [G1′] is similar to standard conditions on derivatives of the characteristic function of the measurement
error distribution in the proofs of lower bounds for density deconvolution; cf., e.g., Theorem 5 in [10].

Theorem 2. Let x0 ≥ C3 > 0 for some constant C3, and suppose that Assumptions [G1] and [G1′] hold with σ = 1 and
γ > 1/2. Then

lim inf
n→∞

{
φ−1

n R∗
n

[
Hx0,r (A,β)

]} ≥ C4,

where

φn := A
2γ+1

2β+2γ+1
(
x

2γ−1
0 n−1) β

2β+2γ+1 ,

and C4 depends on β and r only.

Remark 3. (i) Note that the lower bound of Theorem 2 coincides with the upper bound (3.18) in terms of its dependence
on n, x0 and A. This implies that for x0 separated away from zero, the estimator f̂h∗(x0) is rate-optimal, and dependence
of the risk on x0 over the functional class Hx0,r (A,β) cannot be improved.

(ii) In view of the interpretation of f̂h∗(x0) given in Section 3.2, Theorems 1 and 2 assert rate-optimality of the stan-
dard deconvolution estimator in the additive measurement error model based on the log-transformed data, provided
that the bandwidth parameter h∗ is selected as in (3.15). Note however that the standard choice of h in additive
deconvolution does not involve x0.

(iii) The proof of the lower bound in Theorem 2 is based on the reduction to a two-point hypotheses testing problem
when under the null hypothesis

fX(x) = f
(0)
X (x) := 1

πx(1 + ln2(x/x0))
, x > 0.

The convergence region of the Mellin transform f̃
(0)
X (z) of f

(0)
X (x) is the line {z : Re(z) = 1}, and this fact is essential

for the result of Theorem 2. If the Mellin transform is analytic in a non-degenerating strip around {z : Re(z) = 1}
then, under certain assumptions on measurement error density g, the estimation accuracy can be improved in terms
of dependence on x0. This issue is a subject of the next paragraph.

Choice of parameter s and improvements. It is important to realize the interplay between conditions on g and fX that
lead to the results of Theorems 1 and 2. In particular, the following two facts are essential for the stated results.

(a) Since fX is a probability density, the Mellin transform f̃X(z) always exists on the vertical line {z : Re(z) = 1}. Note
however that the local smoothness assumption fX ∈ Hx0,r (A,β) is not sufficient in order to guarantee the existence
of f̃X(z) outside this line in the complex plane.

(b) The premise of Theorems 1 and 2 stipulates behavior of g̃ on the line {z : Re(z) = 1} only; in particular, g̃(z) does
not vanish on this line.

Under (a) and (b) the only possible choice of parameter s is s = 0, and as pointed out in Remark 3(ii), the form of the
corresponding estimator f̂s,h(x0) coincides with that of the deconvolution estimator in the additive model based on the
log-transformed data.

As discussed in Remark 3(iii), the facts (a) and (b) are essential for the proof of the lower bound of Theorem 2, which
is achieved on a least favorable two-point testing problem for alternatives f

(0)
X and f

(1)
X satisfying∫ ∞

0
f

(i)
X (x)x2α dx = ∞, i = 0,1,∀α 
= 0.
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It turns out, however, that if f̃X(z) is analytic in a strip around {z : Re(z) = 1} then the upper bound of Theorem 1 can
be improved in terms of dependence on x0. As we demonstrate below, this improvement is achieved by the choice of
parameter s.

Let α > 0, M > 0, and consider the functional class

Fα,M(A,β) := Hx0,r (A,β) ∩
{
f :

∫ ∞

0
x2αf (x)dx ≤ M

}
.

Note that for fX ∈ Fα,M(A,β) it holds that

�fX
⊃ {

z ∈ C : 0 ≤ Re(z) ≤ 2α + 1
}
.

The following statement holds.

Theorem 3. For arbitrarily small ε > 0, let

s∗ := max

{
−α,

1

2
(1 − b) + ε

}
. (3.19)

Suppose that Assumption [G1] holds with σ = 1 − s∗ and γ > 1. Let f̂s∗,h∗(x0) be the estimator associated with kernel
K as in Theorem 1 and

s = s∗, h = h∗ := C5
[
M−1A2x

−2s∗+2
0

(
x

β

0 + 1
)2

n
]− 1

2β+2γ+1 .

If n is large enough so that h∗ < min{ln r,1}, then

Rn

[
f̂s∗,h∗ ;Fα,M(A,β)

] ≤ C6
[
A

(
x

β

0 + 1
)] 2γ+1

2β+2γ+1
(
Mx

2s∗−2
0 n−1) β

2β+2γ+1 , (3.20)

where C6 depends on β only.

Remark 4. (i) If γ ≤ 1 then the result of Theorem 3 holds for a slightly smaller set of functions than Hx0,r (A,β), as
discussed in Remark 2(i).

(ii) For x0 separated away from zero by a constant, the upper bound (3.20) takes the form

Rn

[
f̂s∗,h∗ ;Fα,M(A,β)

] ≤ C8A
2γ+1

2β+2γ+1
(
Mx

2γ−1+2s∗
0 n−1) β

2β+2γ+1 . (3.21)

Because s∗ ≤ 0, this bound is better than (3.18) in terms of its dependence on x0, provided x0 > 1. For instance, let η be
uniformly distributed random variable on [0,1]; then γ = 1, a = 0 and b = ∞. If fX has bounded second moment, i.e.,
fX ∈ F1,M(A,β), and the condition in (3.17) holds, then in view of (3.19) the best choice of s is s = s∗ = −1, and the

right hand side of (3.21) is proportional to x
−β/(2β+3)

0 . Thus, the accuracy improves for large x0. This fact is in contrast
to the result of Theorem 1 stated for the functional class Hx0,r (A,β).

3.3.2. Super-smooth error densities
Now we turn to the convergence analysis of the risk of f̂s,h(x0) in the case of super-smooth error densities characterized
by the following assumption.

[G2] For some σ ∈ (a, b), there exist constants c0 > 0, ω0 > 0, γ > 0, ν ∈ R, B2 ≥ B1 > 0 such that

min|ω|≤ω0

∣∣̃g(σ + iω)
∣∣ ≥ c0 > 0,

B1|ω|νe−γ |ω| ≤ ∣∣̃g(σ + iω)
∣∣ ≤ B2|ω|νe−γ |ω|, ∀|ω| ≥ ω0.

(3.22)

The probability densities on [0,∞) with exponential tails are the prototypes of densities satisfying Assumption [G2].

Example 4 (Gamma distribution). Let g(x) = μαxα−1e−μx/�(α), α > 0, μ > 0, x > 0; then

g̃(z) = μ−z+1�(z + α − 1)/�(α), Re(z) > −α + 1.
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As a result a = −α + 1, b = ∞. Furthermore, it is well known [3, Corollary 1.4.4] that for any σ ≥ −2, there exist
positive constants C and C′ such that uniformly for |ω| ≥ 2,

C|ω|σ−1/2e−|ω|π/2 ≤ ∣∣�(σ + iω)
∣∣ ≤ C′|ω|σ−1/2e−|ω|π/2. (3.23)

Thus, (3.22) is verified for large enough ω0 with some c0 = c0(ω0) > 0, ν = σ + α − 3/2 and γ = π/2.

Example 5 (Half-normal distribution). Let g(x) = √
2/π(1/υ) exp{−x2/(2υ2)} with v > 0. As can be easily seen,

g(x) is a probability density on R+ and it holds

g̃(z) = π−1/2(
√

2υ)z−1�(z/2).

In view of (3.23), Assumption [G2] holds for large enough ω0 with ν = (σ − 1)/2 and γ = π/4.

Estimator and bounds on the risk. Now we analyze the accuracy of f̂s,h(x0) under Assumption [G2]. In this case the
kernel K is to be constructed in a different way. Specifically, let λ ≥ 2 be a fixed natural number, and let w be a function
defined via its Fourier transform,

ŵ(ω) = exp
{−|ω|2λ/2λ

}
. (3.24)

Note that
∫ ∞
−∞ w(x)dx = 1. For a positive integer number m let

K(t) =
m+1∑
j=1

(
m + 1

j

)
(−1)j+1 1

j
w

(
t

j

)
. (3.25)

It is well-known that (3.25) defines kernel K satisfying condition (3.13) (see, e.g., [14]). Although functions w and K

depend on the parameter λ, for the sake of brevity we shall not indicate this in our notation. For h > 0, let Kh(x, y) and
Ls,h(x, y) be defined by (3.2) and (3.6), respectively. Consider the corresponding estimator

f̂s,h(x0) = 1

n

n∑
j=1

Ls,h(x0, Yj ).

Theorem 4. Suppose that Assumption [G2] holds with σ = 1. Let x0 > 0, and let f̂h∗(x0) = f̂0,h∗(x0) be the estimator
associated with kernel K given in (3.24) and (3.25) with parameters

m ≥ �β + 1, h∗ = C1γ
[
ln

(
A2x

2β+2
0 n

)]−1+ 1
2λ .

Then

lim sup
n→∞

{
ϕ−1

n Rn

[
f̂h∗;Hx0,r (A,β)

]} ≤ C2, (3.26)

where ϕn = Aγ β(lnn)−β(1− 1
2λ

)x
β

0 , and C2 = C2(β,λ) depends on λ and β .

Remark 5. Theorem 4 shows that for any fixed λ ≥ 2, the maximal risk of f̂h∗ converges to zero at the rate
O((lnn)−β(1−(1/2λ))) as n → ∞. It may seem advantageous to let λ → ∞ as n → ∞. However, the constant C2(β,λ) on
the right hand side of (3.26) explodes as λ → ∞.

A simple modification of the proof of Theorem 2 shows that under Assumption [G2] and under suitable condition on
the derivative g̃′(1 + iω) (similar to Assumption [G1′]) one has

lim inf
n→∞

{
φ−1

n R∗
n

[
Hx0,r (A,β)

]} ≥ C3, φn := Aγ βx
β

0 (lnn)−β,

where C3 depends on β only. Thus the estimator f̂h∗ can be regarded as nearly rate-optimal. It is worth noting that the
result of Theorem 4 remains valid for the class Fα,M(A,β), and the choice of the parameter s 
= 0 does not lead to
improvements in the rate of convergence in terms of its dependence on x0.
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4. Estimation at zero

Now we turn to the problem of estimating fX(0) in the model (1.1). The following modification of the definition of
Hx0,r (A,β) will be considered.

Definition 2. Let β > 0, A > 0 and r > 0. We say that f ∈ Hr (A,β), if f is 
 = �β := max{k ∈ N0 : k < β} times
continuously differentiable on (0, r] and maxk=1,...,
 |f (k)(x)| ≤ A,∣∣f (
)(x) − f (
)

(
x′)∣∣ ≤ A

∣∣x − x′∣∣β−

, ∀x, x′ ∈ (0, r].

We define also

H̄r (A,β,M) := Hr (A,β) ∩
{
f : sup

t∈R+

∣∣f (t)
∣∣ ≤ M

}
. (4.1)

First we note that if Ig := ∫ ∞
0 [g(x)/x]dx < ∞, i.e., if {z : Re(z) = 0} ⊆ �g , then fY is finite at the origin, and in view

of (1.2) fY (0) = fX(0)Ig . In this case a natural estimator of fX can be defined as f̂X(0) = f̂Y (0)/Ig , where f̂Y (0) is
a suitable estimator of fY (0), say, a kernel-type estimator with bandwidth h, from direct observations Y1, . . . , Yn. As a
result, under the choice h � n−1/(2β+1) (see e.g. Theorem 1.1 in [17]), we get

Rn

[
f̂h;Hr (A,β)

] ≤ O
(
n−β/(2β+1)

)
.

It is also clear that this rate is minimax over the class Hr (A,β). Note, however, that the condition {z : Re(z) = 0} ⊆ �g is
too restrictive and does not hold in many situations of interest. For instance, it does not hold for the uniform distribution
on [0,1]. Thus, in the case when {z : Re(z) = 0} is not a subset of �g , we need to propose an alternative method of
estimating fX(0).

4.1. Kernel construction and estimator

In order to construct an estimator of f at zero, we use the following kernel. For a fixed real number s ≥ 0, consider the
function

ψs(x) = 1√
2π

e− 1
2 (1−s)2

x−s exp

{
−1

2
[lnx]2

}
, x ≥ 0. (4.2)

It is easily checked that
∫ ∞

0 ψs(x)dx = 1 and ψ̃s(s + iω) = 1√
2π

e− 1
2 (1−s)2

e− 1
2 |ω|2 . Fix positive integer number m, and

define the kernel

Ks(x) =
m+1∑
j=1

(
m + 1

j

)
(−1)j+1 1

j
ψs

(
x

j

)
, x ≥ 0. (4.3)

By construction, Ks satisfies condition (3.13). Another attractive property of the kernel K is that the Mellin transform

K̃s(z) decreases at the rate e− 1
2 |ω|2 as |ω| → ∞ along the line {z : Re(z) = s} [see the proof of Theorem 5].

Having defined the function Ks , let us consider its scaled version, Ks,h(x) := (1/h)Ks(x/h) for h > 0, and note that

K̃s,h(z) =
∫ ∞

0
tz−1Ks,h(t)dt = hz−1K̃s(z).

According to the linear functional strategy, the kernel Ls,h(y) corresponding to Ks,h(x) is given by

Ls,h(y) := 1

2πi

∫ s+i∞

s−i∞
K̃s,h(z)

g̃(1 − z)
y−z dz

= 1

2πh1−sys

∫ ∞

−∞

(
h

y

)iω
K̃s(s + iω)

g̃(1 − s − iω)
dω, (4.4)

provided that the expression on the right hand side is well defined.
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Consider now the following estimator

f̂s,h(0) = 1

n

n∑
i=1

Ls,h(Yi). (4.5)

The tuning parameters s and h will be specified below in Theorem 5.

4.2. Bounds on the risk

First we establish an upper bound on the maximal risk of the estimator f̂s,h(0). It is done under the following assumptions
on the error density g.

[G3] For some p ∈ [0,1), q ≥ 0 and δ ∈ (0,1)

c0x
−p

[
ln(1/x)

]q ≤ g(x) ≤ C0x
−p

[
ln(1/x)

]q
, x ∈ (0, δ). (4.6)

Assumption [G3] prescribes behavior of the density g in a vicinity of the origin. If p < 0 then the integral∫ ∞
0 [g(x)/x]dx is finite, and, as discussed above, the problem reduces to the density estimation from direct observations.

Moreover, since g is a probability density, it must hold p < 1. That is why in [G3] we restrict our attention to the case
p ∈ [0,1). Note also that [G3] implies that g̃ is well defined in the strip {z : p < Re(z) ≤ 1}, i.e., �g ⊇ {z : p < Re(z) ≤ 1}.

In addition to Assumption [G3], we impose some mild conditions on g that guarantee existence of the estimator f̂s,h(0)

under the following specific choice of the parameter s,

s∗ := 1

2
(1 − p); (4.7)

here p is the parameter appearing in Assumption [G3].

[G4] Suppose that |̃g(1 − s∗ + iω)| > 0 for all ω ∈ R, and∫ ∞

−∞
e−ω2/2

|̃g(1 − s∗ + iω)| dω ∨
∫ ∞

−∞
e−ω2

|̃g(1 − s∗ + iω)|2 dω ≤ C1 < ∞. (4.8)

In addition,∫ ∞

−∞

∣∣∣∣ dl

dωl

(
e−ω2/2

g̃(1 − s∗ + iω)

)∣∣∣∣2

dω ≤ C2 < ∞, (4.9)

where l := �(q + 1)/2�, and q appears in (4.6).

The conditions of Assumption [G4] are rather mild. First we note that under Assumption [G3] the line {z : Re(z) =
1 − s∗ = 1

2 (1 + p)} belongs to the convergence region of g̃. The first condition in [G4] bounds from below the rate of
decay of g̃ along this line. It ensures that under the choice s = s∗ the integrand in (4.4) is absolutely integrable and
square integrable; thus the estimator f̂s∗,h(0) in (4.5) is well defined [see the proof of Theorem 5 for details]. The second
condition of [G4] is stated for the derivatives of the integrand in (4.4) and is used to bound the variance of f̂s∗,h(0). Note
that (4.8) holds both for the smooth and super-smooth error densities.

We are now in a position to state an upper bound on the risk of the estimator f̂s∗,h(0) under a suitable choice of the
bandwidth h.

Theorem 5. Fix some positive real numbers A, β , M and consider the class of functions H̄r (A,β,M) defined in (4.1).
Let Assumptions [G3] and [G4] hold, and let f̂∗(0) = f̂s∗,h∗(0) denote the estimator (4.5) associated with parameters
m ≥ �β + 1, s = s∗ given by (4.7) and

h = h∗ := [
MA−2(lnn)q+κn−1] 1

2β+1+p , κ :=
{

0, p ∈ (0,1),

1, p = 0.
(4.10)

Then for n large enough such that h∗ < min{r,1} one has

Rn

[
f̂∗;H̄r (A,β,M)

] ≤ C3A
1+p

2β+1+p
[
M(lnn)q+κn−1] β

2β+1+p ,

where C3 may depend on β only.
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Remark 6. (i) Note that the upper bound of Theorem 5 holds both for smooth and super-smooth error densities, provided
that the mild conditions of Assumption [G4] are fulfilled. This is in contrast to the results on estimating density fX at a
point separated away from zero.

(ii) It is instructive to consider particular cases corresponding to different error densities. For instance, if g is the
uniform density on [0,1], or an exponential density then p = 0, q = 0 and κ = 1. So in these cases the upper bound is of
the order (lnn/n)β/(2β+1) which is only by a logarithmic factor worse than the standard nonparametric rate.

Our next result is the lower bound on the minimax risk. To that end, we introduce the following condition on g.

[G5] Suppose that {z ∈ C : 1 ≤ Re(z) ≤ 1 + ε} ⊂ �g for some ε > 0, and∣∣̃g(1 + ε + iω)
∣∣ ≤ C4 < ∞, ∀ω. (4.11)

Assumption [G5] is rather mild; it holds if
∫ ∞

0 xεg(x)dx ≤ C4 for some ε > 0. Note also that [G5] together with [G3]
imply that g̃ is analytic in the strip {z : p < Re(z) ≤ 1 + ε}.

Theorem 6. Let Assumptions [G3] and [G5] hold, then for the functional class H̄r (A,β,M) with M ≥ 1 one has

lim inf
n→∞

{
φ−1

n R∗
n

[
H̄r (A,β,M)

]} ≥ C5,

where

φn := A
p+1

2β+1+p
[
M1−p(lnn)q+κn−1] β

2β+1+p ,

and C5 depends on β only.

The lower bound on the minimax risk of Theorem 6 matches the bound of Theorem 5 up to a minor discrepancy in
terms of dependence on M . Note, however, that in the practically important case of p = 0 the bounds coincide. Thus the
estimator f̂∗(0) is rate-optimal on the class H̄r (A,β,M).

5. Numerical experiments

In this section we demonstrate that in many cases of interest the developed estimators are given by analytic formulas and
can be easily implemented. We also illustrate numerically theoretical results on performance of the estimators.

5.1. Estimation outside zero

First we study numerically the accuracy of the estimator (3.8) for points separated away from zero. Assume that errors
(ηi) are beta-distributed with the density

g(x) = νxν−1, 0 ≤ x ≤ 1, ν > 0, (5.1)

then

g̃(z) = ν

∫ 1

0
xν−1xz−1 dx = ν/(ν + z − 1). (5.2)

Furthermore, consider the case of exponentially distributed X, that is, fX(x) = e−x for x > 0. Let w(x) = e−x2/2/
√

2π ,
and for a fixed natural number m let

K(t) =
m+1∑
j=1

(
m + 1

j

)
(−1)j+1 1

j
w

(
t

j

)
. (5.3)
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The bilateral Laplace transform of K is defined for any z ∈ C and given by

Ǩ(z) =
m+1∑
j=1

(
m + 1

j

)
(−1)j+1 1√

2πj

∫ ∞

−∞
e−t2/(2j2)−tz dt

=
m+1∑
j=1

(
m + 1

j

)
(−1)j+1ej2z2/2 = Ǩ(−z).

Let us now compute the kernel Ls,h(x, y),

Ls,h(x, y) := 1

2πix

∫ s+i∞

s−i∞

(
x

y

)z
Ǩ(zh)

g̃(1 − z)
dz.

Using (5.2), we obtain

1

2πix

∫ s+i∞

s−i∞

(
x

y

)z
ej2h2z2/2

g̃(1 − z)
dz

= 1

2πνx1−sys

∫ ∞

−∞
eiu ln(x/y)(ν − s − iu)ej2h2(s+iu)2/2 du

= 1√
2πx1−sys

exp

{
j2s2h2

2
− 1

2j2h2

[
j2sh2 + ln(x/y)

]2
}

×
{

ν − s

(j2h2)1/2
+ j2sh2 + ln(x/y)

(j2h2)3/2

}
.

Thus

Ls,h(x, y) = 1√
2π

m+1∑
j=1

(
m + 1

j

)
(−1)j+1 exp

{
− ln2(x/y)

2j2h2

}
1

xjh

[
ν + ln(x/y)

j2h2

]
.

Note that the kernel does not depend on s and this corresponds to the fact that the function Ǩ(zh)/g̃(1−z) is holomorphic.
In Figure 1 we present box plots of the quantity |f̂h�(x) − fX(x)| for different sample sizes n and different points

x > 0 over 200 simulation runs, where in each run we construct the estimate f̂h�(x) associated with the above kernel Ls,h

and a precomputed bandwidth h�. The latter is found by minimizing EN [|f̂h(x) − fX(x)|2] over h with the empirical
expectation EN computed using N = 300 independent simulation runs. The left graph in Figure 1 demonstrates conver-
gence of the estimation error for x0 = 1 as the sample sample grows, while the right graph shows dependence of the error
for a given sample size n = 500 on x0. As can be seen the error decreases as x0 grows, which is in accordance with the
results of Theorem 3.

5.2. Estimation at zero

Now we illustrate behavior of the developed estimator for the case x0 = 0. We consider again beta-distributed errors
as in (5.1) and (5.2). Let w(x) = e−x , and let K be given by (5.3). Using the fact that w̃(z) = �(z), we have for any
s > max(0, ν)

1

2π

∫ ∞

−∞
e−iωy w̃(s + iω)

g̃(1 − s − iω)
dω = 1

2π

∫ ∞

−∞
e−iωy�(s + iω)

(
1 − s + iω

ν

)
dω

= 1

2π

∫ ∞

−∞
e−iωy�(s + iω)dω − 1

2πν

∫ ∞

−∞
e−iωy�(1 + s + iω)dω.

The well-known identity

1

2π

∫ ∞

−∞
e−iωy�(s + iω)dω = esy exp

(−ey
)
, y ∈R
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Fig. 1. Left: boxplots of the distance |f̂h� (1)−fX(1)|, where the estimate f̂h� (1) is based on n ∈ {100,300,500,1000,5000} observations of the r.v. Y

under uniformly distributed errors. Right: boxplots of the distance |f̂h� (x)−fX(x)| for x ∈ {0.3,0.5,0.8,1.0,1.2,1.5,1.7}, where the estimate f̂h� (x)

is based on n = 500 observations of the r.v. Y under uniformly distributed errors. The bandwidth h� is precomputed using 300 independent runs.

leads to

1

2π

∫ ∞

−∞
e−iωy

(
1 − s + iω

ν

)
�(s + iω)dω = esy exp

(−ey
)(

1 − ey

ν

)
.

Then using (4.4) and a straightforward algebra, we obtain

Ls,h(y) =
m+1∑
j=1

(
m + 1

j

)
(−1)j+1 1

jh
exp

{
− y

jh

}(
1 − y

jhν

)
.

The corresponding estimator is f̂h(0) := 1
n

∑n
i=1 Ls,h(Yi).

In our simulation study we take fX(x) = 2 exp(−2x) so that fX(0) = 2 and the distribution of η as in (5.1) with
ν ∈ {1, 1

2 }. In Figure 2 we present box plots of the quantity |f̂h(0)−fX(0)| over 200 simulation runs, where in each run we

construct the estimate f̂h�(0) using a precomputed bandwidth h�. The latter is found by minimizing EN [|f̂h�(0)−fX(0)|2]
over h with empirical expectation EN computed using N = 300 independent simulation runs. As expected, in the case
ν = 1 the estimator is more accurate than in the case ν = 1/2.

6. Proofs of main results

In the proofs below c0, c1, c2, . . . denote positive constants depending on the parameters appearing in Assumptions [G1]–
[G5] and on β only unless specified otherwise.

6.1. Proof of Theorem 1

Note that under Assumption [G1] condition (3.14) with q > γ + 1 guarantees that the estimator f̂h(x0) = f̂0,h(x0) is
well-defined. Indeed, under this condition K̂(− · h)/g̃(1 − i·) ∈ L1(R) ∩L2(R).

10. The next statement establishes an upper bound on the bias of f̂s,h(x0).

Lemma 3. Let Kh(·, ·) be given by (3.2), where K satisfies (3.13) with m ≥ �β + 1; then for any x > 0 and h ∈ (0, ln r)

sup
f ∈Hx,r (A,β)

∣∣∣∣∫ ∞

−∞
Kh(x, y)f (y)dy − f (x)

∣∣∣∣ ≤ c0A‖K‖1

[
hβ |x|β + h
+1


∑
k=0

|x|k
]
,



52 D. Belomestny and A. Goldenshluger

Fig. 2. Boxplots of the distance |f̂h(0)−fX(0)|, where the estimate f̂h(0) is based on n ∈ {100,300,500,1000,5000} observations of the r.v. Y under
beta-distributed errors with density (5.1) with parameters ν = 1 (left) and ν = 1/2 (right).

where c0 depends on β only, and ‖K‖1 = ∫ 1
−1 |K(x)|dx.

The proof of Lemma 3 is given in Section 7.
20. Now we derive an upper bound on the variance. Using the Cauchy–Schwarz inequality we obtain

EfX

[
L2

h(x0, Yj )
]

= 1

4π2x2
0

∫ ∞

−∞

∫ ∞

−∞
|x0|i(ω−μ)f̃Y

(
1 − i(ω − μ)

) K̂(−ωh)

g̃(1 − iω)
· K̂(−μh)

g̃(1 − iμ)
dω dμ

≤ 1

4π2x2
0

∫ ∞

−∞
∣∣f̃Y (1 − iμ)

∣∣dμ

∫ ∞

−∞
|K̂(−ωh)|2
|̃g(1 − iω)|2 dω.

If γ > 1 then f̃Y (1 − iμ) is integrable:∫ ∞

−∞
∣∣f̃Y (1 − iμ)

∣∣dμ =
∫ ∞

−∞
∣∣f̃X(1 − iμ)

∣∣ · ∣∣̃g(1 − iμ)
∣∣dμ

≤
∫ ∞

−∞
∣∣̃g(1 − iμ)

∣∣dμ ≤ c1 < ∞,

where the upper bound in (3.12) has been used. Moreover, in view of (3.14) and the lower bound in (3.12) we have∫ ∞

−∞
|K̂(−ωh)|2
|̃g(1 − iω)|2 dω ≤ c2h

−2γ−1.

Combining these bounds we obtain varfX
{f̂h(x0)} ≤ c3x

−2
0 h−2γ−1n−1.

On the other hand, Lemma 3 and h ≤ 1 imply that

sup
fX∈Hx0,r (A,β)

∣∣EfX

[
f̂h(x0)

] − fX(x0)
∣∣ ≤ c3A

(
x

β

0 + 1
)
hβ.

Then (3.16) follows from substitution of h∗ in the bounds for the bias and the variance.
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6.2. Proof of Theorem 2

The proof is based on the standard technique for proving lower bounds (see [17, Chapter 2]). Recall that for two generic
functions u and w on [0,∞) we write [w � u](y) := ∫ ∞

0 (1/x)w(x)u(y/x)dx.
00. Let ψ : R→ R be a function such that its Fourier transform ψ̂ is an infinitely differentiable function satisfying for

some δ ∈ (0, 1
4 )

F[ψ;ω] = ψ̂(ω) =
{

1, ω ∈ [−2 + δ,−1 − δ] ∪ [1 + δ,2 − δ],
0, ω ∈ (−∞,−2] ∪ [−1,1] ∪ [2,∞).

Let x0 ≥ c0 > 0 for some constant c0, and define

f
(0)
X (x) := 1

πx[1 + ln2(x/x0)]
, x > 0.

Define

f
(1)
X (x) = f

(0)
X (x) + θψh(x), ψh(x) := 1

x
ψ

(
ln(x/x0)

h

)
,

where h ∈ (0,1) and θ > 0 are the parameters to be specified.
10. First we show that if θ is small enough, θ ≤ min{ 1

2 , c1h
−2} then f

(1)
X is a probability density on [0,∞). Indeed,

since ψ̂(0) = 0∫ ∞

0
ψh(x)dx =

∫ ∞

0

1

x
ψ

(
ln(x/x0)

h

)
dx = h

∫ ∞

−∞
ψ(t)dt = 0.

Thus, f
(1)
X integrates to one. Moreover, by construction ψ is rapidly decreasing as t → ∞; in particular, |ψ(t)| ≤

π−1 min{1, c1t
−2}, ∀t ∈ R with some absolute constant c1. Therefore, the conditions θ ≤ 1

2 and c1θh2 ≤ 1
2 imply that

θ |ψ(t/h)| ≤ [π(1 + t2)]−1, which, in turn shows that f
(1)
X is non-negative. Therefore f

(1)
X is the probability density.

20. First we note that if x0 ≥ c0 > 0 for some c0 large enough then f
(0)
X ∈ Hx0,r (A/2, β). Now we show that if

θ = c2Ax
β+1
0 hβ for some constant c2 then f

(1)
X ∈ Hx0,r (A,β).

For simplicity and without loss of generality assume that β is integer, β ≥ 1. Then by the Faá di Bruno formula

ψ
(β)
h (x) =

β∑
j=0

(
β

j

)
(−1)j j !
xj+1

dβ−j

dxβ−j
ψ

(
ln(x/x0)

h

)

=
β∑

j=0

(
β

j

)
(−1)j j !
xj+1

∑ (β − j)!
k1! · · ·kβ−j !ψ

(k)

(
ln(x/x0)

h

)
h−kx−(β−j)

β−j∏
i=1

[
(−1)i+1

i!
]ki

,

where the second summation is over all partitions of β −j , and k := k1 +· · ·+kβ−j , k1 +2k2 +· · ·+(β −j)kβ−j = β −j .
It follows from this expression and the fact that h < 1 that∣∣ψ(β)

h (x)
∣∣ ≤ c3x

−β−1h−β max
k=1,...,β

∣∣∣∣ψ(k)

(
ln(x/x0)

h

)∣∣∣∣, ∀x > 0,

where c3 depends on β only. Since ψ is an infinite differentiable rapidly decreasing function, we obtain∣∣ψ(β)
h (x)

∣∣ ≤ c4x
−β−1
0 h−β, r−1x0 ≤ x ≤ rx0,

where c4 depends on β . Then setting θ = c2Ax
β+1
0 hβ , by choice of c2 we obtain f

(1)
X ∈ Hx0,r (A,β).

30. Next we bound the χ2-divergence between f
(1)
Y and f

(0)
Y . We have

f
(0)
Y (y) = [

f
(0)
X � g

]
(y) = 1

πy

∫ ∞

0

g(x)

1 + [ln(y/x0) − ln(x)]2
dx

≥ 1

πy[1 + 2 ln2(y/x0)]
∫ ∞

0

g(x)

1 + 2 ln2(x)
dx ≥ c5

y[1 + 2 ln2(y/x0)]
.
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Furthermore,

f
(1)
Y (y) − f

(0)
Y (y) = θ [g � ψh](y) = θ

∫ ∞

0

1

x
g(x)ψh(y/x)dx

= θ

2πy

∫ ∞

−∞
g̃(1 + iω)ψ̃h(1 + iω)y−iω dω, (6.1)

where in the second line we have applied the inverse Mellin transform formula. By definition of ψh,

ψ̃h(1 + iω) =
∫ ∞

0
xiωψh(x)dx =

∫ ∞

0
xiω−1ψ

(
ln(x/x0)

h

)
dx

= hxiω
0

∫ ∞

−∞
eithωψ(t)dt = hxiω

0 ψ̂(−ωh).

Substituting this expression in (6.1) we obtain

f
(1)
Y (y) − f

(0)
Y (y) = θh

2πy

∫ ∞

−∞
g̃(1 + iω)ψ̂(−ωh)e−iω ln(y/x0) dω =: θh

2πy
ρ
(
ln(y/x0)

)
.

The χ2-divergence between f
(1)
Y and f

(0)
Y is bounded as follows

χ2(f (1)
Y , f

(0)
Y

) =
∫ ∞

0

(f
(1)
Y (y) − f

(0)
Y (y))2

f
(0)
Y (y)

dy

≤ c6θ
2h2

∫ ∞

0

[
1 + 2 ln2(y/x0)

] 1

y
ρ2(ln(y/x0)

)
dy = c6θ

2h2
∫ ∞

−∞
(
1 + 2t2)ρ2(t)dt.

By Parseval’s identity, definition of ψ and Assumption [G1]∫ ∞

−∞
ρ2(t)dt =

∫ ∞

−∞
∣∣̃g(1 + iω)

∣∣2∣∣ψ̂(−ωh)
∣∣2 dω ≤ 2

∫ 2/h

1/h

∣∣̃g(1 + iω)
∣∣2 dω ≤ c7h

2γ−1. (6.2)

Moreover, using Assumptions [G1] and [G1′]∫ ∞

−∞
t2ρ2(t)dt =

∫ ∞

−∞

∣∣∣∣ d

dω
g̃(1 + iω)ψ̂(−ωh)

∣∣∣∣2

dω

≤ 2
∫ ∞

−∞
∣∣̃g′(1 + iω)

∣∣2∣∣ψ̂(−ωh)
∣∣2

dω + 2
∫ ∞

−∞
∣∣̃g(1 + iω)

∣∣2∣∣ψ̂ ′(−ωh)
∣∣2

h2 dω

≤ c8h
2γ−1 + c9h

2γ+1.

Combining these bounds with (6.2) for h small enough we obtain

χ2(P (1),P (0)
) ≤ c9θ

2h2γ+1 = c10A
2x

2β+2
0 h2β+2γ+1.

40. Now we complete the proof. Let

h = h∗ := c11x
− 2β+2

2β+2γ+1
0

(
A2n

)− 1
2β+2γ+1 .

With this choice θ = c2Ax
β+1
0 h

β∗ ≤ 1
2 for n large enough so f

(1)
X ∈ Hx0,r (A,β). We obtain χ2(f

(1)
Y , f

(0)
Y ) ≤ 1/n so that

the hypotheses fX = f
(0)
X and fX = f

(1)
X are indistinguishable from the observations Y1, . . . , Yn. Moreover, with this

choice of the parameter h∣∣f (1)
X (x0) − f

(0)
X (x0)

∣∣ = θ
∣∣ψh∗(x0)

∣∣ = c12Ax
β+1
0 h

β∗x−1
0

∣∣ψ(0)
∣∣

= c13A
2γ+1

2β+2γ+1 x

β(2γ−1)
2β+2γ+1
0 n

− β
2β+2γ+1 .

This completes the proof of the theorem.
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6.3. Proof of Theorem 3

The bound on bias of f̂s,h(x0) given in Lemma 3 remains intact. We consider only the variance term. For

Ls,h(x, y) = 1

2πx

∫ ∞

−∞

(
x

y

)s+iω
Ǩ(−(s + iω)h)

g̃(1 − s − iω)
dω

we have

EfX

[
L2

s,h(x0, Yj )
]

= 1

4π2x2−2s
0

∫ ∞

−∞

∫ ∞

−∞
x

i(ω−μ)
0 f̃Y

(
1 − 2s − i(ω − μ)

) Ǩ(−(s + iω)h)

g̃(1 − s − iω)
· Ǩ(−(s + iμ)h)

g̃(1 − s − iμ)
dω dμ

≤ 1

4π2x2−2s
0

∫ ∞

−∞
∣∣f̃Y (1 − 2s − iμ)

∣∣dμ

∫ ∞

−∞

∣∣∣∣ Ǩ(−(s + iω)h)

g̃(1 − s − iω)

∣∣∣∣2

dω.

Since fX ∈ Fα,M(A,β), |f̃X(1 − 2s − iμ)| ≤ 1 + M < ∞ for all μ ∈R and −α ≤ s ≤ 0. For such s∫ ∞

−∞
∣∣f̃Y (1 − 2s − iμ)

∣∣dμ ≤ (1 + M)

∫ ∞

−∞
∣∣̃g(1 − 2s − iμ)

∣∣dμ ≤ c1(1 + M),

provided that a < 1 − 2s < b. Setting s = s∗ = max{−α, 1
2 (1 − b) + ε} for any ε > 0 we obtain

EfX

[
L2

s∗,h(x0, Yj )
] ≤ c2(1 + M)

4π2x
2−2s∗
0

∫ ∞

−∞

∣∣∣∣ Ǩ(−(s∗ + iω)h)

g̃(1 − s∗ − iω)

∣∣∣∣2

dω. (6.3)

Furthermore,

Ǩ
(−(s∗ + iω)h

) =
∫ 1

−1
K(x)es∗hxeiωhx dx =F[vs∗,h;−ωh] = v̂s∗,h(−ωh),

where vs,h(x) := K(x)e−shx1[−1,1](x). Therefore

∫ ∞

−∞

∣∣∣∣ Ǩ(−(s∗ + iω)h)

g̃(1 − s∗ − iω)

∣∣∣∣2

dω =
∫ ∞

−∞

∣∣∣∣ v̂s∗,h(−ωh)

g̃(1 − s∗ − iω)

∣∣∣∣2

dω

≤ c3

h2γ+1

∫ ∞

−∞
∣∣̂vs∗,h(ω)

∣∣2(1 + |ω|2γ
)

dω, (6.4)

where c3 may depend on s∗. In view of (3.14), vs,h is q times continuously differentiable on its support, and v
(q)
s,h(x) =∑q

j=0

(
q
j

)
K(j)(x)(−sh)q−j e−shx . Therefore

∥∥v
(q)
s∗,h

∥∥
2 ≤

q∑
j=0

(
q

j

)
e2|s∗|h|s∗h|q−j

[∫ 1

−1

∣∣K(j)(x)
∣∣2 dx

]1/2

≤ c4 max
j=0,...,q

∥∥K(j)
∥∥

2 ≤ c5CK.

Taking into account that q > γ + 1 and combining this inequality with (6.4) and (6.3) we obtain

varfX

{
f̂s∗,h(x0)

} ≤ c6(1 + M)x
−2+2s∗
0 h−2γ−1n−1.

This bound together with the bound on the bias leads to the announced result.
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6.4. Proof of Theorem 4

The proof goes along the same lines as the proof of Theorem 1. In the proof below c1, c2, . . . stand for positive constants
depending on β and λ only.

It is immediate to verify that∣∣K̂(ω)
∣∣ ≤ c1 exp

{−ω2λ/2λ
}
, ∀ω ∈R. (6.5)

This fact together with Assumption [G2] guarantees that the estimator f̂h∗(x0) is well-defined. In addition, by [11, Chapter
IV, §7] as |t | → ∞

w(t) = 2

√
1

2λ − 1
|t |−(λ−1)/(2λ−1) exp

{
−

(
2λ − 1

2λ

)
sin

(
π

2(2λ − 1)

)
|t |2λ/(2λ−1)

}
×

[
cos

(
2λ − 1

2λ
|t |2λ/(2λ−1) cos

(
π

2(2λ − 1)

))
+ O

(|t |−2λ/(2λ−1)
)]

.

Therefore, it follows from (3.25) that for large |t | one has∣∣K(t)
∣∣ ≤ c2|t |−(λ−1)/(2λ−1) exp

{−c3|t |2λ/(2λ−1)
}
. (6.6)

First we bound the bias of the estimator f̂h∗(x0). To that end we note that the proof of Lemma 3 applies verbatim; the
only difference is that now the integration in (7.10) is over the whole real line because K is not compactly supported.
However, since K is a bounded function and in view of (6.6) we have∫ ∞

−∞
|t |
+1e
|th|∣∣K(t)

∣∣dt ≤
∫ ∞

−∞
|t |
+ λ

2λ−1 exp
{

|t | − c3|t |− 2λ

2λ−1
}

dt ≤ c4.

This inequality and reasoning of the proof of Lemma 3 yield

sup
f ∈Hx,r (A,β)

∣∣∣∣∫ ∞

−∞
Kh(x, y)f (y)dy − f (x)

∣∣∣∣ ≤ c5A

[
hβ |x|β + h
+1


∑
k=0

|x|k
]
. (6.7)

To bound the variance we follow the lines of the proof of Theorem 1. In particular, in view of (6.5) and Assumption
[G2] we have for small enough h

EfX

[
L2

h(x0, Yj )
] ≤ c6

x2
0

∫ ∞

−∞
|K̂(−ωh)|2
|̃g(1 − iω)|2 dω ≤ c6

x2
0

exp
{
c7

(
γ h−1)2λ/(2λ−1)}

. (6.8)

Indeed, in view of (6.5) and [G2] we have∫
|ω|≤ω0

|K̂(−ωh)|2
|̃g(1 − iω)|2 dω ≤ c2

1c
−2
0 ,

where constants ω0 and c0 appear in [G2]. Let ω1 := c8(λγ )1/(2λ−1)h−2λ/(2λ−1) for sufficiently large constant c8 that can
depend on ν. Then we have∫

|ω|>ω0

|K̂(−ωh)|2
|̃g(1 − iω)|2 dω ≤ c9

∫
|ω|>ω0

|ω|−2ν exp
{
2|ω|γ − |ωh|2λ/λ

}
dω

≤ c10

{∫
ω0≤|ω|≤ω1

exp
{
c11|ω|γ }

dω +
∫

|ω|≥ω1

exp
{−c12|ωh|2λ

}
dω

}
≤ c13 exp

{
c12

(
γ h−1)2λ/(2λ−1)

)
}
,

which leads to (6.8). Then the result of the theorem follows from balancing the bounds in (6.7) and (6.8).
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6.5. Proof of Theorem 5

In the proof below c1, c2, . . . stand for positive constants; they can depend on parameters appearing in assumptions [G3]
and [G4] and on parameter β only. The proof proceeds in steps.

10. First we show that under the premise of the theorem the estimator f̂s∗,h(0) is well defined. It follows from the
definition of function ψs(x) that

ψ̃s(s + iω) = 1√
2π

e− 1
2 (1−s)2

∫ ∞

0
xs+iω−1x−s exp

{
−1

2
[lnx]2

}
dx

= 1√
2π

e− 1
2 (1−s)2

e− 1
2 ω2;

therefore∫ ∞

0
ψs

(
x

j

)
xs+iω−1 dx = j s+iωψ̃s(s + iω) = j s+iω

√
2π

e− 1
2 (1−s)2

e− 1
2 ω2

,

and

K̃s(s + iω) = 1√
2π

e− 1
2 (1−s)2

e−ω2/2
m+1∑
j=1

(
m + 1

j

)
(−1)j+1j s−1+iω.

The last expression implies that∣∣K̃s(s + iω)
∣∣ ≤ c1m

se− 1
2 (1−s)2

e−ω2/2, (6.9)

where c1 depends on m only. Next we observe that Assumption [G3] implies 1 − s∗ = 1 − 1
2 (1 − p) ∈ �g , so that

g̃(1−s∗ + iω) is well defined. Then in view of (6.9) and condition (4.8) of Assumption [G4], K̃s∗(s∗ + i·)/g̃(1−s∗ − i·) ∈
L1(R) ∩L2(R) so that f̂s∗,h(0) is well defined.

20. Our next step is to prove the following statement about local behavior of the density fY near the origin. This result
is instrumental in establishing an upper bound on the variance term.

Lemma 4. Let Assumption [G3] hold, and assume that fX(t) ≤ M , ∀t .

(i) If p = 0 then for all y ≤ δ

fY (y) ≤ C1(1 + M)| lny|q+1 + Mδ−1,

where C1 depends on q only.
(ii) If p ∈ (0,1) then for all y ≤ δ

fY (y) ≤ C2
(
1 + Mp−1)y−p| lny|q + Mδ−1,

where C2 depends on q only.

The proof of the lemma is given in Section 7.
30. Now we are ready to establish an upper bound on the variance term. Define

ρs(x) := 1

2π

∫ ∞

−∞
e−iωx K̃s(s + iω)

g̃(1 − s − iω)
dω.

With this notation Ls,h(y) = hs−1y−sρs(ln(y/h)) [cf. (4.4)], and therefore

EfX

[
L2

s,h(Y )
] = 1

h2−2s

∫ ∞

0

|ρs(ln(y/h))|2
y2s

fY (y)dy.

Now we bound the last integral which can be written as a sum J1 + J2, where

J1 := 1

h2−2s

∫ δ

0

|ρs(ln(y/h))|2
y2s

fY (y)dy, J2 := 1

h2−2s

∫ ∞

δ

|ρs(ln(y/h))|2
y2s

fY (y)dy.
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Using Lemma 4 for p = 0 and s = s∗ = 1
2 by straightforward algebra we obtain

J1 ≤ c1M

h

∫ δ

0
y−1

∣∣ρs∗
(
ln(y/h)

)∣∣2[| lny|q+1 + δ−1]dy

≤ c2M

h

(
| lnh|q+1

∫ ∞

−∞
∣∣ρs∗(t)

∣∣2 dt +
∫ ∞

−∞
∣∣ρs∗(t)

∣∣2|t |q+1 dt

)
≤ c3Mh−1| lnh|q+1,

where the last inequality follows from Parseval’s identity, properties of the kernel Ks and condition [G4] [cf. (4.8)
and (4.9)]. If p ∈ (0,1) then using Lemma 4 for s = s∗ = 1

2 (1 − p) we have similarly

J1 ≤ c4M

h2−2s∗

∫ δ0

0

1

y

∣∣ρs∗
(
ln(y/h)

)∣∣2 y−p| lny|q+κ

y2s∗−1
dy

≤ c5M

h1+p

(
| lnh|q

∫ ∞

−∞
∣∣ρs∗(t)

∣∣2 dt +
∫ ∞

−∞
∣∣ρs∗(t)

∣∣2|t |q dt

)
≤ c6Mh−1−p

[
ln(1/h)

]q
.

Combining the last two upper bounds on J1 in cases p = 0 and p ∈ (0,1) we can write

J1 ≤ c7Mh−1−p
[
ln(1/h)

]q+κ
,

where κ is defined in (4.10).
In order to bound J2 we note that (4.8) implies |ρs∗(x)| ≤ c8 < ∞, ∀x; therefore

J2 ≤ c2
8h

−1−p

∫ ∞

δ0

yp−1fY (y)dy ≤ c9h
−1−p.

Combining the bounds on J1 and J2 we obtain

EfX

[
L2

s∗,h(Y )
] ≤ c10Mh−1−p

[
ln(1/h)

]q+κ
.

40. We proceed with bounding the bias of f̂s∗,h(0). By construction of Ks∗,h(x) we have∫ ∞

0
(1/h)Ks∗(x/h)

[
fX(x) − fX(0)

]
dx

=
∫ ∞

0
Ks∗(u)

[
fX(uh) − fX(0)

]
dx

=
∫ r/h

0
Ks∗(u)

[

−1∑
j=1

1

j !f
(j)
X (0)(uh)j + 1


!f
(
)
X (ξuh)(uh)


]
du

+
∫ ∞

r/h

Ks∗(u)
[
fX(uh) − fX(0)

]
du.

Since fX(x) ≤ M , ∀x, by (4.2) and (4.3)

∣∣∣∣∫ ∞

r/h

Ks∗
[
fX(uh) − fX(0)

]
du

∣∣∣∣ ≤ 2M

m+1∑
j=1

(
m + 1

j

)∫ ∞

r/h

ψs∗(x)dx

≤ c1M exp
{−c2

[
ln(r/h)

]2}
.

Furthermore, it is readily verified that for small enough h∣∣∣∣∫ r/h

0
Ks∗(u)uj du

∣∣∣∣ =
∣∣∣∣∫ ∞

r/h

Ks∗(u)uj du

∣∣∣∣ ≤ c3 exp

{
−c4

[
ln

(
r

mh

)]2}
.
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Using these facts we finally obtain that∣∣∣∣∫ ∞

0
(1/h)Ks∗(x/h)

[
fX(x) − fX(0)

]
dx

∣∣∣∣
≤ c5Ahβ + c6(1 + M) exp

{
−c7

[
ln

(
r

mh

)]2}
.

We complete the proof by noting that the choice h = h∗ indicated in the statement of the theorem provides a balance for
the bounds on the bias and on the variance.

6.6. Proof of Theorem 6

The proof is based on the standard technique for proving lower bounds (see [17, Chapter 2]). Throughout the proof
constants c0, c1, . . . may depend only on β and parameters appearing in Assumptions [G3] and [G5].

10. Let M0 = πM/4, and without loss of generality assume that M0 ≥ 1. Let

f
(0)
X (x) := 2M0

π(1 + M0x)(1 + ln2(1 + M0x))
, x ≥ 0.

It is evident that f
(0)
X (x) ≤ M/2, ∀x and f

(0)
X ∈ H̄r (A,β,M) provided that A is large enough.

For h > 0 define

f
(1)
X (x) = f

(0)
X (x) + c0Ahβϕ(x/h), ϕ(x) := (1 − x)e−x, x ≥ 0.

In what follows parameter h will be chosen going to zero as n → ∞; in the subsequent proof we use this fact. It is evident
that function f

(1)
X is a probability density, and under appropriate choice of constant c0 and for h small enough it belongs

to H̄r (A,β,M). We note also that

ϕ̃(z) =
∫ ∞

0
xz−1ϕ(x)dx = �(z) − �(z + 1), z ∈ �ϕ = {

z : Re(z) > 0
}
. (6.10)

Our current goal is to bound the χ2-divergence between the corresponding densities of observations f
(0)
Y and f

(1)
Y . For

any s such that {z : Re(z) = s} ⊆ �g ∩ �ϕ we have

f
(1)
Y (y) − f

(0)
Y (y) = c0Ahβ

∫ ∞

0

1

x
ϕ

(
y

hx

)
g(x)dx

= c0Ahβ

2πi

∫ s+i∞

s−i∞

(
h

y

)z

ϕ̃(z)g̃(z)dz

= c0Ahβ+s

2πys

∫ ∞

−∞

(
h

y

)iω

ϕ̃(s + iω)g̃(s + iω)dω = c0Ahβ+sy−sρs

(
ln(y/h)

)
,

where we have used the Mellin transform inversion formula, and we have denoted

ρs(t) := 1

2π

∫ ∞

−∞
e−iωt ϕ̃(s + iω)g̃(s + iω)dω = est

2π

∫ s+i∞

s−i∞
e−zt ϕ̃(z)g̃(z)dz. (6.11)

Thus

χ2(f (0)
Y , f

(1)
Y

) = c2
0A

2h2(β+s)

∫ ∞

0

y−1ρ2
s (ln(y/h))

y2s−1f
(0)
Y (y)

dy, (6.12)

and now we will bound the integral on the right hand side under a particular choice of parameter s.
20. Let s = s∗ := 1

2 (p + 1). Note that by the upper bound in (4.6) and by definition of s∗

∣∣̃g(s∗ + iω)
∣∣ ≤

∫ ∞

0
xs∗−1g(x)dx =

∫ ∞

0
x(p−1)/2g(x)dx ≤ c1;
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thus {z : Re(z) = s∗} ⊆ �g . Let ν := 1
2 (1 − p) + ε, where ε is given in Assumption [G5]. Then s∗ + ν = 1 + ε, and

according to Assumptions [G3] and [G5], function e−zt g̃(z)ϕ̃(z) is analytic in {z : s∗ ≤ Re(z) ≤ s∗ + ν}. Therefore the
line of integration in the last integral on the right hand side of (6.11) can be replaced by {z : Re(z) = s∗ + ν}. This yields

ρs∗(t) = es∗t

2π

∫ s∗+ν+i∞

s∗+ν−i∞
e−zt g̃(z)ϕ̃(z)dz

= e−νt

2π

∫ ∞

−∞
e−iωt g̃(1 + ε + iω)ϕ̃(1 + ε + iω)dω.

Then it follows from Assumption [G5] that

∣∣ρs∗(t)
∣∣ ≤ c2e

−νt

∫ ∞

−∞
∣∣ϕ̃(1 + ε + iω)

∣∣dω ≤ c3e
−νt , (6.13)

where the last inequality follows from (6.10) and bounds on the Gamma function as presented in (3.23) in Example 4.
30. Now we derive lower bounds on f

(0)
Y (y). Note that f

(0)
X (x) = M0f̄

(0)
X (M0x) where

f̄
(0)
X (x) := 2

π(1 + x)(1 + ln2(1 + x))
, x ≥ 0.

Therefore f
(0)
Y (y) = M0f̄

(0)
Y (M0y), f̄

(0)
Y (y) := [f̄ (0)

X � g](y) and the lower bounds on f
(0)
Y (y) can be obtained in an

evident way from the corresponding bounds on f̄
(0)
Y (y).

First we note that the lower bound in (4.6) and the arguments as in the proof of (7.14) in Lemma 4, yield for all y < δ/2∫ δ

y

[
g(t)/t

]
dt ≥ c4y

−p| lny|q+κ, (6.14)

where κ is defined in (4.10). In view of (6.14) for y < δ/2

f̄
(0)
Y (y) ≥

∫ δ

y

2g(x)

πx(1 + y/x)(1 + ln2(1 + y/x))
dx

≥ 1

π(1 + ln2(2))

∫ δ

y

g(x)

x
dx ≥ c5y

−p| lny|q+κ .

Thus,

f
(0)
Y (y) ≥ c5M

1−p

0 y−p
∣∣ln(M0y)

∣∣q+κ
, ∀y < δ/(2M0). (6.15)

On the other hand, for any y we have

f̄
(0)
Y (y) =

∫ ∞

0

2g(x)

πx(1 + y/x)(1 + ln2(1 + y/x))
dx

≥
∫ 1

0

2g(x)

π(x + y)(1 + 2 ln2(x + y) + 2 ln2(x))
dx

≥ 2

π(1 + y)(1 + 2 ln2(1 + y))

∫ 1

0

g(x)

1 + 2 ln2(x)
dx

≥ c6

(1 + y)(1 + 2 ln2(1 + y))
,

so that

f
(0)
Y (y) ≥ c6M0

(1 + M0y)(1 + 2 ln2(1 + M0y))
, ∀y. (6.16)

40. Now we bound from above the integral on the right hand side of (6.12).
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Let ξ ∈ (h, δ/(2M0)) be a parameter that will be specified later; then we can write the integral on the right hand side
of (6.12) in the following form∫ ∞

0

y−1ρ2
s (ln(y/h))

y2s−1f
(0)
Y (y)

dy

=
∫ ξ

0

y−1ρ2
s (ln(y/h))

y2s−1f
(0)
Y (y)

dy +
∫ ∞

ξ

y−1ρ2
s (ln(y/h))

y2s−1f
(0)
Y (y)

dy =: I1 + I2. (6.17)

Our current goal is to bound I1 and I2 when s = s∗ = 1
2 (p + 1).

Using (6.15) we obtain

I1 ≤ c6

M
1−p

0

∫ ξ

0

y−1ρ2
s∗(ln(y/h))

| ln(M0y)|q+κ
dy ≤ c6| ln(M0ξ)|−q−κ

M
1−p

0

∫ ln(ξ/h)

−∞
ρ2

s∗(t)dt. (6.18)

It follows from (6.11) that∫ ∞

−∞
ρ2

s∗(t)dt = 1

2π

∫ ∞

−∞
∣∣ϕ̃(s∗ + iω)

∣∣2∣∣̃g(s∗ + iω)
∣∣2 dω

≤ c7

∫ ∞

−∞
∣∣ϕ̃(s∗ + iω)

∣∣2 dω = c7

∫ ∞

0
x2s∗−1ϕ2(x)dx ≤ c8,

where the equality in the last line follows from the Parseval identity (2.2), and the last inequality is by definition of ϕ.
This inequality together with (6.18) leads to

I1 ≤ c9M
−1+p

0

∣∣ln(M0ξ)
∣∣−q−κ

. (6.19)

Now consider the integral I2 on the right hand side of (6.17). Using (6.16) we write (remind that 2s∗ − 1 = p)

I2 ≤ c10

M0

∫ ∞

ξ

y−p−1ρ2
s∗

(
ln(y/h)

)
(1 + M0y)

[
1 + ln2(1 + M0y)

]
dy

= c10

M0

{∫ ∞

ξ

y−p−1[1 + ln2(1 + M0y)
]
ρ2

s∗
(
ln(y/h)

)
dy

+ M0

∫ ∞

ξ

y−p
[
1 + ln2(1 + M0y)

]
ρ2

s∗
(
ln(y/h)

)
dy

}
=: c10

M0

{
I

(1)
2 + I

(2)
2

}
. (6.20)

Applying (6.13), using a simple inequality ln(1 + x) ≤ ln 2 + | lnx|, x ≥ 0, and assuming that h is small so that M0h ≤ 1
we derive

I
(1)
2 = h−p

∫ ∞

ln(ξ/h)

e−ptρ2
s∗(t)

[
1 + ln2(1 + M0het

)]
dt

≤ c11h
−p

∫ ∞

ln(ξ/h)

e−(p+ν)t e−νt
(
1 + t2)dt

≤ c12h
νξ−p−ν

∫ ∞

0
e− 1

2 (1−p)t
(
1 + t2)dt ≤ c13h

νξ−p−ν, (6.21)

and similarly

I
(2)
2 ≤ c14M0h

−p+1
∫ ∞

ln(ξ/h)

et (1−p)e−2νt
[
1 + t2]dt ≤ c15M0h

−p+1, (6.22)

where we have used that ν = 1
2 (1 − p) + ε. Combining inequalities (6.22), (6.21), (6.20) and (6.19) we conclude that for

small enough h and for ξ ∈ (h, δ/(2M0)) one has∫ ∞

0

y−1ρ2
s∗(ln(y/h))

y2s−1f
(0)
Y (y)

dy ≤ c16

M0

{
M

p

0

[
ln(M0/ξ)

]−q−κ + hνξ−p−ν + M0h
−p+1}.
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Let ν0 ∈ (0, ν); then we set ξ = h(ν−ν0)/(p+ν). First, we note that with this choice ξ ≥ h as required. Second, it is
immediately verified that the second term in the figure brackets on the right hand side of the previous display formula is
bounded above by hν0 , and the first term is dominant as h → 0. Combining this result with (6.12) we conclude that for h

small enough

χ2(f (0)
Y , f

(1)
Y

) = c16A
2M−1+ph2(β+s∗)[ln(1/h)

]−q−κ
,

where we took into account that M0 = πM/4.
50. Now we complete the proof of the theorem. Let

h = h∗ = [
c17A

−2M1−p(lnn)q+κn−1]1/(2β+1+p)
.

With this choice and appropriately small constant c16 the χ2-divergence χ2(f
(0)
Y , f

(1)
Y ) is less than 1/n, and the hypothe-

ses fX = f
(0)
X and fX = f

(1)
X cannot be distinguished from the observations. Under these circumstances

∣∣f (0)
X (0) − f

(1)
X (0)

∣∣ = c1Ah
β∗ = c18A

p+1
2β+1+p

[
M1−p(lnn)q+κn−1] β

2β+1+p .

This completes the proof.

7. Proofs of auxiliary results

7.1. Proof of Lemma 1

Considering the integral (1.2) for y ≥ 0 and y < 0 and using notation (2.3) we obtain

f +
Y (y) =

∫ ∞

0

1

x
f +

X (y/x)g+(x)dx −
∫ ∞

0

1

x
f −

X (y/x)g−(x)dx (7.1)

f −
Y (y) = −

∫ ∞

0

1

x
f +

X (y/x)g−(x)dx +
∫ ∞

0

1

x
f −

X (y/x)g+(x)dx. (7.2)

Applying the Mellin transform to the both sides of (7.1)–(7.2), we have

f̃ +
Y (z) = f̃ +

X (z)g̃+(z) − f̃ −
X (z)g̃−(z),

f̃ −
Y (z) = −f̃ +

X (z)g̃−(z) + f̃ −
X (z)g̃+(z).

(7.3)

Note that the line {z : Re(z) = 1} is in the strip of analyticity of f̃ ±
X and g̃± because fX and g are probability densities.

Thus the Mellin transforms in (7.3) are well-defined in an infinite strip containing the line {z : Re(z) = 1}.
The system of equations (7.3) has a unique solution (f̃ +

X (z), f̃ −
X (z)) if and only if∣∣∣∣det

[
g̃+(z) −g̃−(z)

−g̃−(z) g̃+(z)

]∣∣∣∣ = ∣∣[g̃+(z)
]2 − [

g̃−(z)
]2∣∣ 
= 0.

Under this condition, with f̃ +
X (z) and f̃ −

X (z) satisfying (7.3) in the common region of analyticity containing the line
{z : Re(z) = 1}, functions f +

X and f −
X are uniquely determined by the inversion formula

f ±
X (x) = 1

2π

∫ ∞

−∞
x−(1+iv)f̃ ±

X (1 + iv)dv.

Therefore the necessary and sufficient conditions for identifiability are

g̃+(z) − g̃−(z) =
∫ ∞

0
xz−1[g(x) − g(−x)

]
dx 
= 0, g̃+(z) + g̃−(z) 
= 0 (7.4)

for almost all z in the common strip of analyticity of g̃+ and g̃−. Note that g̃+(z)+ g̃−(z) is an analytic function; therefore
the second condition in (7.4) holds for any density g. Then the statement of the lemma follows from the uniqueness
property of the Mellin transform.
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7.2. Proof of Lemma 2

By (1.2) we have∫ ∞

−∞
Ls,h(x, y)fY (y)dy =

∫ ∞

−∞

[∫ ∞

−∞
Ls,h(x, ty)g(t)dt

]
fX(y)dy;

therefore, in order to prove (3.5) it suffices to show that Ls,h(·, ·) solves the equation∫ ∞

−∞
Ls,h(x, ty)g(t)dt = Kh(x, y). (7.5)

To this end, we will show that for any fixed x the one-sided Mellin transforms of expressions on the both sides of (7.5)
coincide in a common vertical strip of the complex plane. This will imply the lemma statement.

It follows from (3.2) that for x > 0∫ ∞

0
yz−1Kh(x, y)dy = xz−1

∫ ∞

−∞
K(t)ethz dt = xz−1Ǩ(−zh), (7.6)

and for x < 0∫ 0

−∞
(−y)z−1Kh(x, y)dy = −(−x)z−1

∫ ∞

−∞
K(t)ethz dt

= −(−x)z−1Ǩ(−zh). (7.7)

Let

L+
s,h(·, y) :=

{
Ls,h(·, y), y > 0

0, y < 0,
L−

s,h(·, y) :=
{

Ls,h(·,−y), y > 0

0, y < 0.

Remind that with this notation, Ls,h(·, y) = L+
s,h(·, y) for y ≥ 0 and Ls,h(·, y) = L−

s,h(·,−y) for y < 0. Integrating the
left hand side of (7.5) we obtain∫ ∞

0
yz−1

∫ ∞

−∞
Ls,h(x, ty)g(t)dt dy

=
∫ ∞

0
yz−1

∫ 0

−∞
Ls,h(x, ty)g(t)dt dy +

∫ ∞

0
yz−1

∫ ∞

0
Ls,h(x, ty)g(t)dt dy

=
∫ ∞

0
yz−1

∫ ∞

0
Ls,h(x,−ty)g(−t)dt dy +

∫ ∞

0
yz−1

∫ ∞

0
Ls,h(x, ty)g(t)dt dy

= L̃−
s,h(x, z)g̃−(1 − z) + L̃+

s,h(x, z)g̃+(1 − z),

where we denoted L̃+
s,h(x, z) =M[L+

s,h(x, ·); z] and L̃−
s,h(x, z) =M[L−

s,h(x, ·); z]. Similarly,∫ 0

−∞
(−y)z−1

∫ ∞

−∞
Ls,h(x, ty)g(t)dt dy

=
∫ ∞

0
yz−1

∫ 0

−∞
Ls,h(x,−ty)g(t)dt dy +

∫ ∞

0
yz−1

∫ ∞

0
Ls,h(x,−ty)g(t)dt dy

=
∫ ∞

0
yz−1

∫ ∞

0
Ls,h(x, ty)g(−t)dt dy +

∫ ∞

0
yz−1

∫ ∞

0
Ls,h(x,−ty)g(t)dt dy

= L̃+
s,h(x, z)g̃−(1 − z) + L̃−

s,h(x, z)g̃+(1 − z).

Comparing these expressions with (7.6) and (7.7), we set

L̃−
s,h(x, z)g̃−(1 − z) + L̃+

s,h(x, z)g̃+(1 − z) =
{

xz−1Ǩ(−zh), x > 0,

0, x < 0,
(7.8)
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and

L̃+
s,h(x, z)g̃−(1 − z) + L̃−

s,h(x, z)g̃+(1 − z) =
{

0, x > 0

−(−x)z−1Ǩ(−zh), x < 0.
(7.9)

It is immediate to verify that solution to equations (7.8)–(7.9) is given by

L̃+
s,h(x, z) = Ǩ(−zh)

[̃g+(1 − z)]2 − [̃g−(1 − z)]2
×

{
xz−1g̃+(1 − z), x > 0

(−x)z−1g̃−(1 − z), x < 0,

L̃−
s,h(x, z) = Ǩ(−zh)

[̃g+(1 − z)]2 − [̃g−(1 − z)]2
×

{
xz−1g̃−(1 − z), x > 0

−(−x)z−1g̃+(1 − z), x < 0.

Applying the inverse Mellin transform we obtain

L+
s,h(x, y) = 1

2πix

∫ s+i∞

s−i∞

(
x

y

)z
Ǩ(−zh)g̃+(1 − z)

[̃g+(1 − z)]2 − [̃g−(1 − z)]2
dz, x > 0, y > 0,

L+
s,h(x, y) = − 1

2πix

∫ s+i∞

s−i∞

(−x

y

)z
Ǩ(−zh)g̃−(1 − z)

[̃g+(1 − z)]2 − [̃g−(1 − z)]2
dz, x < 0, y > 0,

and

L−
s,h(x, y) = − 1

2πix

∫ s+i∞

s−i∞

(
x

y

)z
Ǩ(−zh)g̃−(1 − z)

[̃g+(1 − z)]2 − [̃g−(1 − z)]2
dz, x > 0, y > 0,

L−
s,h(x, y) = 1

2πix

∫ s+i∞

s−i∞

(−x

y

)z
Ǩ(−zh)g̃+(1 − z)

[̃g+(1 − z)]2 − [̃g+(1 − z)]2
dz, x < 0, y > 0.

Comparing these with (3.4) and taking into account that Ls,h(x, y) = L+
s,h(x, y) when y ≥ 0 and Ls,h(x, y) = L−

s,h(x,−y)

when y < 0 for fixed x, we complete the proof.

7.3. Proof of Lemma 3

Below c1, c2, . . . stand for positive constants depending on 
 only. By the change of variables, t = 1
h

ln(y/x), we have∫
1

xh
K

(
ln(y/x)

h

)
f (y)dy − f (x) =

∫ 1

−1
K(t)

[
wx(th) − wx(0)

]
dt,

where we have denoted wx(t) := etf (xet ). Since f ∈ Hx,r (A,β), the function wx(·) is 
 times continuously differen-
tiable on [− ln r, ln r]. Expanding wx(·) in Taylor’s series around zero we have for any t ∈ [− ln r, ln r]

wx(t) = wx(0) +

−1∑
k=1

1

k!w
(k)
x (0)tk + 1


!w
(
)
x (ξ t)t
, ξ = ξ(t) ∈ [0,1].

Therefore if h < ln r then∣∣∣∣∫ 1

−1
K(t)

[
wx(th) − wx(0)

]
dt

∣∣∣∣ ≤ h



!
∫ 1

−1
|t |
∣∣K(t)

∣∣∣∣w(
)
x (ξ th) − w(
)

x (0)
∣∣dt. (7.10)

It follows from the Faá di Bruno formula that for s > 0

w(
)
x (s) =

∑
π∈�

[(
uf (xu)

)(|π |)]
u=es e

|π |s

=
∑
π∈�

[
esx|π |f (|π |)(xes

) + |π |x|π |−1f (|π |−1)
(
xes

)]
e|π |s ,
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where the summation runs over the set � of all partitions of the set {1, . . . , 
}, and |π | is the number of subsets in partition
π . Thus

w(
)
x (ξ th) − w(
)

x (0) =
∑
π∈�

e(|π |+1)ξ thx|π |[f (|π |)(xeξth
) − f (|π |)(x)

]
+

∑
π∈�

x|π |f (|π |)(x)
[
e(|π |+1)ξ th − 1

]
+

∑
π∈�

e|π |ξ th|π |x|π |−1[f (|π |−1)
(
xeξth

) − f (|π |−1)(x)
]

+
∑
π∈�

(
e|π |ξ th − 1

)|π |x|π |−1f (|π |−1)(x).

In view of f ∈ Hx,r (A,β) and by elementary inequality |ex − 1| ≤ |x|e|x|,∣∣∣∣∑
π∈�

e(|π |+1)ξ thx|π |[f (|π |)(xeξth
) − f (|π |)(x)

]∣∣∣∣ ≤ c1A|x|β |th|β−
e(β+1)|th|,

∣∣∣∣∑
π∈�

x|π |f (|π |)(x)
[
e(|π |+1)ξ th − 1

]∣∣∣∣ ≤ c2A|th|e(
+1)|th|

∑

k=1

|x|k,

∣∣∣∣∑
π∈�

e|π |ξ th|π |x|π |−1[f |π |−1(xeξth
) − f (|π |−1)(x)

]∣∣∣∣ ≤ c3A|th|e
|th|

∑

k=1

|x|k,

∣∣∣∣∑
π∈�

(
e|π |ξ th − 1

)|π |x|π |−1f (|π |−1)(x)

∣∣∣∣ ≤ c4A|th|e
|th|

−1∑
k=0

|x|k.

Combining these inequalities and substituting them in (7.10) completes the proof.

7.4. Proof of Lemma 4

We have

fY (y) =
∫ ∞

0

1

x
fX(y/x)g(x)dx

=
∫ y

0

1

x
fX(y/x)g(x)dx +

∫ ∞

y

1

x
fX(y/x)g(x)dx =: I1 + I2.

Using [G3] for any y ≤ δ and p ∈ [0,1) we obtain

I1 ≤ C0

∫ y

0

1

x
fX(y/x)x−p| lnx|q dx = C0y

−p

∫ ∞

1
tp−1fX(t)

∣∣ln(y/t)
∣∣q dt

≤ 2(q−1)+C0y
−p| lny|q

[∫ ∞

1
tp−1fX(t)dt +

∫ ∞

1
tp−1fX(t)| ln t |q dt

]
≤ c1y

−p| lny|q . (7.11)

Since fX(t) ≤ M , ∀t ≥ 0,

I2 ≤ M

∫ ∞

y

g(x)

x
dx ≤ Mδ−1 + M

∫ δ

y

g(x)

x
dx

≤ Mδ−1 + C0M

∫ δ

y

x−p−1| lnx|q dx. (7.12)
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If p = 0 then the last integral on the right hand side is bounded from above by | lny|q+1, and

I2 ≤ Mδ−1 + MC0| lny|q+1.

This inequality together with (7.11) completes the proof of statement (i).
Now we bound the expression on the right hand side of (7.12) in the case p ∈ (0,1). Using the following formula (see,

e.g., [9, 616.2])∫
xp−1(lnx)q dx = 1

p
xp(lnx)q − q

p

∫
xp−1(lnx)q−1 dx, ∀p 
= 0, q 
= −1,

we obtain∫ δ

y

x−p−1| lnx|q dx =
∫ 1/y

1/δ

tp−1(ln t)q dt =
[
tp(ln t)q

p

]1/y

1/δ

− q

p

∫ 1/y

1/δ

tp−1(ln t)q−1 dt. (7.13)

Hence it follows from (7.13) that∫ δ

y

xp−1| lnx|q dx ≤
[
tp(ln t)q

p

]1/y

1/δ

≤ y−p

p

[
ln(1/y)

]q
. (7.14)

Thus, we obtain

I2 ≤ Mδ−1 + C0Mp−1y−p| lny|q .

Combining this inequality with (7.11) we complete the proof of (ii).
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