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Abstract. We prove that the free Boltzmann quadrangulation with simple boundary and fixed perimeter, equipped with its graph
metric, natural area measure, and the path which traces its boundary converges in the scaling limit to the free Boltzmann Brownian
disk. The topology of convergence is the so-called Gromov–Hausdorff–Prokhorov-uniform (GHPU) topology, the natural analog of
the Gromov–Hausdorff topology for curve-decorated metric measure spaces. From this we deduce that a random quadrangulation
of the sphere decorated by a 2l-step self-avoiding loop converges in law in the GHPU topology to the random curve-decorated
metric measure space obtained by gluing together two independent Brownian disks along their boundaries.

Résumé. Nous démontrons que la quadrangulation de Boltzmann libre avec un bord simple de périmètre fixé, munie de sa métrique
de graphe, de sa mesure d’aire naturelle, et du chemin qui décrit sa frontière, converge dans la limite d’échelle vers le disque
brownien libre de Boltzmann. La topologie de cette convergence est celle de Gromov–Hausdorff–Prokhorov-uniforme (GHPU),
qui est l’analogue naturel de la topologie de Gromov-Hausdroff pour des espaces métriques mesurés décorés par une courbe. Nous
déduisons de cela qu’une quadrangulation aléatoire de la sphère, décorée par une marche aléatoire auto-évitante de longueur 2l,
converge en loi pour la topologie GHPU vers l’espace métrique mesuré et décoré par une courbe que l’on obtient en recollant
ensemble deux disques browniens indépendants le long de leurs bords.
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1. Introduction

1.1. Overview

A planar map is a connected graph embedded in the sphere with two such maps declared to be equivalent if they dif-
fer by an orientation-preserving homeomorphism of the sphere. Random planar maps are a natural model of discrete
random surfaces. In recent years, it has been shown that there exist continuum random surfaces, i.e. random metric
spaces, called Brownian surfaces which arise as the scaling limits of uniform random planar maps of various types
in the Gromov–Hausdorff topology. The convergence of uniform random planar maps toward Brownian surfaces is
expected to be universal in the sense that different uniform random planar map models (e.g., triangulations, quadran-
gulations, general maps) with the same topology all converge in the scaling limit to the same Brownian surface.

The best-known Brownian surface is the Brownian map, which has the topology of the sphere and has been shown
to be the scaling limit of a number of different uniform random planar map models on the sphere in [1,2,7,13,30,31].
In this paper, we will primarily be interested in the Brownian disk [14], which is the scaling limit of uniform random
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planar maps with the topology of the disk. Other Brownian surfaces include the Brownian plane, which is the scaling
limit of the uniform infinite planar quadrangulation [19]; and the Brownian half-plane, which is the scaling limit of
the uniform infinite planar quadrangulation with general or simple boundary [6,24].

A quadrangulation with boundary is a random planar map Q whose faces all have degree four except for one
special face, called the external face, whose degree is allowed to be arbitrary. The boundary ∂Q of Q is the border of
the external face and the perimeter of Q is the degree of the external face. One can consider both quadrangulations with
general boundary, where the boundary is allowed to have multiple edges and multiple vertices; and quadrangulations
with simple boundary, where the boundary is constrained to be simple.

It is shown in [14] that the Brownian disk is the scaling limit of uniform random quadrangulations with general
boundary as both the perimeter and number of internal faces properly rescaled converge to given positive values.
However, [14] does not treat the case of quadrangulations with simple boundary since their proof is based on a variant
of the Schaeffer bijection [15,41] for quadrangulations with boundary which does not behave nicely if one conditions
the boundary to be simple. In [12, Section 8.1], it is left as an open problem to show that the Brownian disk is also the
scaling limit of uniformly sampled quadrangulations with simple boundary.

The main purpose of this paper is to prove a variant of this statement for quadrangulations with simple boundary
having fixed perimeter, but not fixed area. In particular, we will consider the free Boltzmann distribution on quad-
rangulations with simple boundary with fixed perimeter (defined precisely in Definition 1.1 below) and show that a
quadrangulation sampled from this distribution converges in law in the scaling limit to the free Boltzmann Brownian
disk, a variant of the Brownian disk with fixed boundary length, but random area.

We will prove this scaling limit result in a stronger topology than the Gromov–Hausdorff topology. Namely, we
will show that a free Boltzmann quadrangulation with simple boundary equipped with its natural area measure and
the path which traces its boundary converges to a free Boltzmann Brownian disk equipped with its natural area
measure and boundary path in the Gromov–Hausdorff–Prokhorov-uniform (GHPU) topology, the natural analog of
the Gromov–Hausdorff topology for curve-decorated metric measure spaces [24].

Our scaling limit result for free Boltzmann quadrangulations with simple boundary will be deduced from another
theorem which says that a uniform random quadrangulation with general boundary and its simple-boundary core,
which is the largest sub-graph which is itself a quadrangulation with simple boundary, converge jointly in law in the
scaling limit to two copies of the same Brownian disk in the GHPU topology.

Free Boltzmann quadrangulations with simple boundary are particularly natural since these quadrangulations arise
as the bubbles disconnected from ∞ when one performs the peeling procedure on a uniform infinite planar quadran-
gulation either with no boundary or with simple boundary. More precisely, if we reveal the face incident to the root
edge, then the bounded complementary connected components of this face are free Boltzmann quadrangulations with
simple boundary. One also gets free Boltzmann quadrangulations with simple boundary from the peeling procedure
on a free Boltzmann quadrangulation with simple boundary, which gives these quadrangulations a natural Markov
property. Peeling was first introduced in the physics literature by Watabiki [44], was first studied rigorously in [3], and
was developed further in several works including [4,5,8,20,21]. See Section 3 for more on the peeling procedure.

In the course of proving our main results, we obtain several results of independent interest concerning free Boltz-
mann quadrangulations with simple boundary and the uniform infinite half-plane quadrangulation (UIHPQS) which
is their infinite-boundary length limit. We prove half-plane analogs of some of the results in [20] for peeling processes
on the uniform infinite planar quadrangulation as well as estimates which enable us to compare the local behavior of
a free Boltzmann quadrangulation with simple boundary and the UIHPQS (see in particular Lemma 3.6, Lemma 3.7,
and Proposition 4.6).

The results of this paper enable us to prove that various curve-decorated random quadrangulations converge in
the scaling limit to

√
8/3-Liouville quantum gravity surfaces decorated by independent SLE8/3 or SLE6 [42] curves.

For γ ∈ (0,2), a γ -Liouville quantum gravity (LQG) surface is, heuristically speaking, the random Riemann surface
parameterized by a domain D ⊂ C whose Riemannian metric tensor is eγh dx ⊗ dy, where h is some variant of the
Gaussian free field (GFF) on D (see [22,23,43] for more on γ -LQG surfaces). This does not make rigorous sense since
h is a distribution, not a function, so does not take values at points. However, it is shown in [23] that a

√
8/3-LQG

surface admits a natural measure and in [36,38,39], building on [33,35,37], that in the special case when γ = √
8/3, a√

8/3-LQG surface admits a natural metric.
Certain special

√
8/3-LQG surfaces are equivalent as metric measure spaces to Brownian surfaces. In particular,

the Brownian disk (resp. half-plane, map) is equivalent to the quantum disk (resp.
√

8/3-quantum wedge, quantum
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sphere). Moreover, it is shown in [39] that the conformal structure of a
√

8/3-LQG surface (represented by the distri-
bution h) is a.s. determined by its metric measure space structure. This gives us a canonical embedding of a Brownian
surface into a domain in C.

Quadrangulations with simple boundary can be glued together along their boundaries to obtain uniform random
quadrangulations decorated by some form of a self-avoiding walk (SAW); see [14,16] for the case of quadrangulations
with finite simple boundary case and [18] for the case of the UIHPQS. It is shown in [25] that the uniform infinite SAW-
decorated quadrangulations obtained by gluing together UIHPQS’s along their boundaries converge in the scaling
limit in the local GHPU topology to the analogous continuum curve-decorated metric measure spaces obtained by
gluing together copies of the Brownian half-plane along their boundaries. These limiting spaces can be identified with√

8/3-Liouville quantum gravity surfaces decorated by SLE8/3-type curves using the results of [26].
As a consequence of our scaling limit results for free Boltzmann quadrangulations with simple boundary and

the results of [25], we obtain finite-boundary analogs of the results of [25]. In particular, we prove that a random
quadrangulation of the sphere decorated by a self-avoiding loop of length 2l, which can be obtained by identifying the
boundaries of two independent free Boltzmann quadrangulations with simple boundary, converges in the scaling limit
in law as l → ∞ with respect to the GHPU topology to a pair of independent Brownian disks glued together along
their boundaries. Due to local absolute continuity between the Brownian disk and the Brownian half-plane and the
results of [26], this latter metric measure space locally looks like a

√
8/3-Liouville quantum gravity surface decorated

by an independent SLE8/3-type loop.
The results of this paper will also be used in [28] to prove scaling limit results for a free Boltzmann quadrangulation

with simple boundary (resp. the UIHPQS) decorated by a critical (p = 3/4 [5]) face percolation exploration path
toward the Brownian disk (resp. Brownian half-plane), equivalently the quantum disk (resp.

√
8/3-quantum wedge)

decorated by an independent chordal SLE6 [42]. It is shown in [27] that the law of a chordal SLE6 on a quantum
disk with fixed area is uniquely characterized by its equivalence class as a curve-decorated topological measure space
plus the fact that the internal metric spaces corresponding to the complementary connected components of the curve
stopped at each time t ≥ 0 are independent free Boltzmann Brownian disks. The scaling limit results proven in the
present paper allows us to check these conditions for a subsequential scaling limit of face percolation on a free
Boltzmann quadrangulation with simple boundary.

1.2. Preliminary definitions

In this subsection we give precise definitions of the objects involved in the statements of our main results.

1.2.1. Quadrangulations with boundary
Here we state several definitions for quadrangulations; see Figure 1 for an illustration.

A quadrangulation with (general) boundary is a (finite or infinite) planar map Q̂ with a distinguished face f∞,
called the exterior face, such that every face of Q̂ other than f∞ has degree 4. The boundary of Q̂, denoted by ∂Q̂, is
the smallest subgraph of Q̂ which contains every edge of Q̂ incident to f∞. The perimeter Perim(Q̂) of Q̂ is defined

Fig. 1. A rooted quadrangulation (Q̂, ê) with general boundary and its simple-boundary core Core(Q̂) (light blue). Note that the root edge ê can
be in ∂ Core(Q̂) or ∂Q̂ \ ∂ Core(Q̂) (as shown in the figure).
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to be the degree of the exterior face, with edges counted according to multiplicity. We note that the perimeter of a
quadrangulation with boundary is always even.

For n ∈ N0 and l ∈ N, we write Q̂→(n, l) for the set of pairs (Q̂, ê) where Q̂ is a quadrangulation with boundary
having n interior faces and perimeter 2l and ê is an oriented edge of ∂Q̂, called the root edge.

We say that Q̂ has simple boundary if ∂Q̂ is a simple path, i.e. it has no vertices or edges of multiplicity bigger
than 1. We will typically denote quadrangulations with general boundary with a hat and quadrangulations with simple
boundary without a hat.

For n ∈ N0 and l ∈ N, we write Q→
S (n, l) for the set of pairs (Q,e) where Q is a quadrangulation with simple

boundary having 2l boundary edges and n interior edges and e is an oriented edge in ∂Q, called the root edge. By
convention, we consider the trivial quadrangulation with one edge and no interior faces to be a quadrangulation with
simple boundary of perimeter 2 and define Q→

S (0,1) to be the set consisting of this single quadrangulation, rooted at
its unique edge. We define Q→

S (0, l) =∅ for l ≥ 2.
For a quadrangulation Q̂ with general boundary, we define its simple-boundary components to be the maximal

sub-quadrangulations of Q̂ having at least one interior face whose boundary is simple and is a sub-graph of ∂Q̂.
Equivalently, the simple-boundary components of Q̂ are the interior faces of the planar map ∂Q̂. We define the
simple-boundary core Core(Q̂) of Q̂ to be the simple-boundary component of Q̂ with the largest boundary length,
with ties broken by some arbitrary deterministic convention.

A boundary path of a quadrangulation Q̂ with simple or general boundary is a path β̂ from [0,Perim(Q̂)]Z (if ∂Q̂

is finite) or Z (if ∂Q̂ is infinite) to E(∂Q̂) which traces the edges of ∂Q̂ (counted with multiplicity) in cyclic order.
Choosing a boundary path is equivalent to choosing an oriented root edge on the boundary. This root edge is β̂(0),
oriented toward β̂(1).

We define the free Boltzmann partition function by

Z(2l) := 8l (3l − 4)!
(l − 2)!(2l)! , Z(2l + 1) = 0, ∀l ∈ N, (1.1)

where here we set (−1)! = 1.

Definition 1.1. For l ∈ N, the free Boltzmann distribution on quadrangulations with simple boundary and perimeter
2l is the probability measure on

⋃∞
n=0 Q→

S (n, l) which assigns to each element of Q→
S (n, l) a probability equal to

12−nZ(2l)−1.

It is shown in [16] that Z(2l) =∑∞
n=0 12−n#Q→

S (n, l).
The uniform infinite half-plane quadrangulation with simple (resp. general) boundary, abbreviated UIHPQS (resp.

UIHPQ) is the infinite rooted quadrangulation (Q∞,e∞) (resp. (Q̂∞, ê∞)) with infinite simple (resp. general) bound-
ary which is the Benjamini–Schramm local limit [9] in law based at the root edge of a uniform sample from Q̂→(n, l)

(resp. Q→(n, l)) as n, then l, tends to ∞ [17,21].
When we refer to a free Boltzmann quadrangulation with perimeter 2l = ∞, we mean the UIHPQS.

1.2.2. The Brownian disk
For a, l > 0, the Brownian disk with area a and perimeter l is the random curve-decorated metric measure space
(H,d,μ, ξ) with the topology of the disk which arises as the scaling limit of uniform random quadrangulations
with boundary (see [14] for the case of uniform quadrangulations with general boundary). The Brownian disk can
be constructed as a metric space quotient of [0,a] via a continuum analog of the Schaeffer bijection [14], using a
Brownian motion X conditioned to first hit −l at time a and a “label process” Z on the continuum random forest
constructed from the excursions of X above its running minimum. We will not need this construction here so we
will not review it carefully; see [14, Section 2] for the precise definition. The area measure μ is the pushforward of
Lebesgue measure on [0,a] under the quotient map. The path ξ : [0, l] → ∂H , called the boundary path, parameterizes
∂H according to its natural length measure. Precisely, ξ(r) for r ∈ [0, �] is the image under the quotient map of the
first time at which the encoding function X hits −r .

Following [14, Section 1.5], we define the free Boltzmann Brownian disk with perimeter l to be the random curve-
decorated metric measure space (H,d,μ, ξ) obtained as follows: first sample a random area a from the probability
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measure l3√
2πa5

e− l2
2a 1(a≥0) da, then sample a Brownian disk with boundary length l and area a. Note that the law of

the area of the free Boltzmann Brownian disk with perimeter l can be obtained by scaling the law of the area of the
free Boltzmann Brownian disk with perimeter 1 by l2. Consequently, it follows from [14, Remark 3] that the free
Boltzmann Brownian disk with perimeter l can be obtained from the free Boltzmann Brownian disk with perimeter 1
by scaling areas by l2, boundary lengths by l, and distances by l1/2.

1.2.3. The Gromov–Hausdorff–Prokhorov-uniform metric
In this subsection we will review the definition of the Gromov–Hausdorff–Prokhorov-uniform (GHPU) metric from
[24], which is the metric with respect to which our scaling limit results hold.

For a metric space (X,d), we let C0(R,X) be the space of continuous curves η : R → X which are “constant at
∞,” i.e. η extends continuously to the extended real line [−∞,∞]. Each curve η : [a, b] → X can be viewed as an
element of C0(R,X) by defining η(t) = η(a) for t < a and η(t) = η(b) for t > b.

• Let dH
d be the d-Hausdorff metric on compact subsets of X.

• Let dP
d be the d-Prokhorov metric on finite measures on X.

• Let dU
d be the d-uniform metric on C0(R,X).

Let MGHPU be the set of 4-tuples X = (X,d,μ,η) where (X,d) is a compact metric space, μ is a finite Borel
measure on X, and η ∈ C0(R,X).

Given elements X1 = (X1, d1,μ1, η1) and X2 = (X2, d2,μ2, η2) of MGHPU, a compact metric space (W,D), and
isometric embeddings ι1 : X1 → W and ι2 : X2 → W , we define their GHPU distortion by

DisGHPU
X1,X2

(
W,D, ι1, ι2

) := dH
D

(
ι1
(
X1), ι2(X2))+dP

D

(((
ι1
)
∗μ

1,
(
ι2
)
∗μ

2))+dU
D

(
ι1 ◦ η1, ι2 ◦ η2). (1.2)

We define the Gromov–Hausdorff–Prokhorov-uniform (GHPU) distance by

dGHPU(X1,X2)= inf
(W,D),ι1,ι2

DisGHPU
X1,X2

(
W,D, ι1, ι2

)
, (1.3)

where the infimum is over all compact metric spaces (W,D) and isometric embeddings ι1 : X1 → W and ι2 : X2 →
W . It is shown in [24, Proposition 1.3] that dGHPU is a complete separable metric on M

GHPU provided we identify
two elements of MGHPU which differ by a measure- and curve- preserving isometry.

There is also a local variant of the GHPU metric for locally compact curve-decorated length spaces equipped with
a locally finite Borel measure, which is obtained from the GHPU metric by restricting to metric balls centered at η(0),
then integrating over all the possible radii of these balls; see [24] for more details.

Remark 1.2 (Graphs as elements of MGHPU). In this paper we will often be interested in a graph G equipped with
its graph distance dG. In order to study continuous curves in G, we identify each edge of G with a copy of the unit
interval [0,1] and extend the graph metric on G by requiring that this identification is an isometry. If λ is a path from
some discrete interval [a, b]Z into E(G), we extend λ from [a, b]Z to [a − 1, b] by linear interpolation. If G is a finite
graph and we are given a finite measure μ on vertices of G and a curve λ in G and we view G as a connected metric
space and λ as a continuous curve as above, then (G,dG,μ,λ) is an element of MGHPU.

1.3. Main results

1.3.1. Joint convergence of a quadrangulation with general boundary and its simple-boundary core
Our first main result shows that a uniform random quadrangulation with general boundary and its simple-boundary
core converge jointly in the scaling limit in the GHPU topology to the same Brownian disk; note that the boundary
paths are scaled differently.

Let a, l > 0 and let {(an, ln)}n∈N be a sequence of pairs of positive integers such that (2n)−1an → a and
(2n)−1/2ln → l as n → ∞. For n ∈ N, let (Q̂n, ên) be sampled uniformly from Q̂→(an, ln) and view Q̂n as a con-
nected metric space by identifying each edge with an isometric copy of the unit interval as in Remark 1.2.
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For n ∈ N, let d̂n be the graph metric on Q̂n, rescaled by (9/8)1/4n−1/4. Let μ̂n be the measure on V(Q̂n) which
assigns a mass to each vertex equal to (4n)−1 times its degree. Let β̂n : [0,2ln] → ∂Q̂n be the boundary path of Q̂n

started from ên and extended by linear interpolation and let ξ̂ n(t) := β̂n(23/2n1/2t) for t ∈ [0, (2n)−1/2ln].
Also let Qn := Core(Q̂n) be the simple-boundary core of Q̂n, let dn be the graph metric on Qn rescaled by

(9/8)1/4n−1/4, so that dn := d̂n|Qn . Let μn be the measure on Qn which assigns to each vertex a mass equal to (4n)−1

times its degree, and note that μn coincides with μ̂n on Qn \∂Qn. Let βn : [0,#E(∂Qn)] → ∂Qn be the boundary path

of Qn started from the first edge of ∂Qn hit by βn and extended by linear interpolation; and let ξn(t) := βn( 23/2

3 n1/2t)

for t ∈ [0, (3/23/2)n−1/2#E(∂Qn)]. (The reason for the extra factor of 3 in the scaling for ∂Qn as compared to ∂Q̂n

is that, as we will see, typically only about 1/3 of the edges of ∂Q̂n are part of ∂Qn.)
For n ∈N, define the curve-decorated metric measure spaces

Q̂n := (Q̂n, d̂n, μ̂n, ξ̂ n
)

and Qn := (Qn,dn,μn, ξn
)
. (1.4)

Also let H = (H,d,μ, ξ) be a Brownian disk with area a and boundary length l, equipped with its natural metric,
area measure, and boundary path.

Theorem 1.3. We have the joint convergence (Q̂n,Qn) → (H,H) in law with respect to the Gromov–Hausdorff–
Prokhorov-uniform topology as n → ∞.

Since we already know Q̂n → H in law in the GHPU topology [24, Theorem 4.1], the main difficulty in the proof
of Theorem 1.3 is showing the uniform convergence of the rescaled boundary path ξn of Qn; indeed, the “Hausdorff”
and “Prokhorov” parts of the Gromov–Hausdorff–Prokhorov-uniform convergence are easy consequences of [14,
Theorem 1] and the fact that the boundary of the Brownian disk is simple. The convergence of the boundary path
will be deduced from the explicit law of the “dangling quadrangulations” of the UIHPQ with general boundary (see
Section 2.3) and a local absolute continuity argument.

1.3.2. Scaling limit of free Boltzmann quadrangulations with simple boundary
Theorem 1.3 implies in particular that certain quadrangulations with simple boundary having random area and perime-
ter converge to the Brownian disk in the GHPU topology. Our second main result shows that one also has convergence
of random quadrangulations with simple boundary having fixed perimeter, but random area, toward the Brownian
disk.

For l ∈ N, let (Ql,el ) be a free Boltzmann quadrangulation with simple boundary of perimeter 2l (Definition 1.1)
and view Ql as a connected metric space by identifying each edge with an isometric copy of the unit interval as in
Remark 1.2.

For l ∈ N, let dl be the graph metric on Ql , rescaled by (2l)−1/2. Let μl be the measure on V(Ql) which assigns
mass to each vertex equal to 18−1l−2 times its degree. Let βl : [0,2l] → ∂Ql be the boundary path of Ql started
from el and extended by linear interpolation and let ξ l(t) := βl(2lt) for t ∈ [0,1]. Define the curve-decorated metric
measure space Ql := (Ql, dl,μl, ξ l). (Note that the scaling factors are different here than in Theorem 1.3 since we
are fixing the perimeter rather than the area.)

Also let H = (H,d,μ, ξ) be a free Boltzmann Brownian disk with unit perimeter equipped with its natural metric,
area measure, and boundary path.

Theorem 1.4. We have Ql → H in law with respect to the Gromov–Hausdorff–Prokhorov-uniform topology as
l → ∞.

Theorem 1.4 will be deduced from Theorem 1.3 by using the peeling procedure to compare a free Boltzmann
quadrangulation with simple boundary and fixed perimeter to the core of a free Boltzmann quadrangulation with
general boundary.

1.3.3. Quadrangulations of the sphere decorated by a self-avoiding loop
For l ∈ N, let (Ql−,el−) and (Ql+,el+) be independent free Boltzmann quadrangulations with simple boundary of
perimeter 2l. Let βl± be their respective boundary paths, started from the root edges. Let Ql

Glue be the quadrangulation
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of the sphere obtained by identifying the edges βl−(k) and βl+(k) for k ∈ [0,2l]Z and let βl
Glue : [0,2l]Z → E(Ql

Glue)

be the path corresponding to βl± under this identification.
It is easy to see from Definition 1.1 that (Ql

Glue, β
l
Glue(0), βl

Glue) is distributed according to the free Boltzmann
measure on triples (Q, e,b) consisting of an edge-rooted quadrangulation of the sphere and a self-avoiding loop of
length 2l based at the root edge, i.e. the measure which assigns to each such triple a probability proportional to
12−#F(Q), where F(Q) is the set of faces of Q. In particular, the conditional law of βl

Glue given Ql
Glue and βl

Glue(0)

is uniform over the set of all self-avoiding loops of length 2l on Ql
Glue based at βl

Glue(0).
We now state a scaling limit result for this self-avoiding loop-decorated quadrangulation in the GHPU topology,

which is an exact finite-volume analog of [25, Theorem 1.2]. For l ∈ N, let dl
Glue be the graph metric on Ql

Glue
rescaled by (2l)−1/2, let μl

Glue be the measure on Ql
Glue which assigns to each vertex a mass equal to 18−1l−2 times

its degree, and let ξ l
Glue(s) := βl

Glue(2ls) for s ∈ [0,1]Z. Define the curve-decorated metric measure spaces Ql
Glue :=

(Ql
Glue, d

l
Glue,μ

l
Glue, ξ

l
Glue).

Let (H±, d±,μ±, ξ±) be a pair of independent free Boltzmann Brownian disks with unit perimeter equipped with
their natural metrics, area measures, and boundary paths (each started from the root edge). Let (HGlue, dGlue) be the
metric space quotient of (H−, d−) and (H+, d+) under the equivalence relation which identifies ξ−(t) with ξ+(t)

for each t ∈ [0,1] (we recall the definition of the quotient metric in Section 1.4.3). Let μGlue be the measure on
HGlue inherited from μ± and let ξGlue be the two-sided path on μGlue corresponding to the image of ξ± under the
identification map. Define HGlue := (HGlue, dGlue,μGlue, ξGlue).

Theorem 1.5. In the notation just above, Ql
Glue → HGlue in law with respect to the Gromov–Hausdorff–Prokhorov-

uniform topology as l → ∞.

Theorem 1.5 will be a consequence of Theorem 1.4, the scaling limit results for infinite-volume random SAW-
decorated quadrangulations in [25], and a local absolute continuity argument. Using essentially the same argument
used to prove Theorem 1.5, one can also obtain analogous scaling limit results when one instead glues Ql± along a
connected boundary arc rather than along their full boundaries; or when one identifies two l-length boundary arcs of
a single free Boltzmann quadrangulation with simple boundary of perimeter 2l. These statements are finite-volume
analogs of [25, Theorems 1.1 and 1.3]. For the sake of brevity we do not include precise statements here.

In the infinite-volume case treated in [25], the scaling limit of infinite SAW-decorated quadrangulations obtained
by gluing together UIHPQS’s along their boundaries are identified with certain explicit

√
8/3-LQG surfaces decorated

by various forms of SLE8/3. Due to the local absolute continuity between the Brownian disk and Brownian half-plane,
we see that HGlue locally looks like a

√
8/3-LQG surface decorated by an independent SLE8/3 curve.

1.4. Notational conventions

In this subsection, we will review some basic notation and definitions which will be used throughout the paper.

1.4.1. Basic notation
We write N for the set of positive integers and N0 =N∪ {0}.

For a, b ∈ R with a < b and r > 0, we define the discrete intervals [a, b]rZ := [a, b] ∩ (rZ) and (a, b)rZ :=
(a, b) ∩ (rZ).

If a and b are two quantities, we write a � b (resp. a � b) if there is a constant C > 0 (independent of the parameters
of interest) such that a ≤ Cb (resp. a ≥ Cb). We write a � b if a � b and a � b.

If a and b are two quantities depending on a variable x, we write a = Ox(b) (resp. a = ox(b)) if a/b remains
bounded (resp. tends to 0) as x → 0 or as x → ∞ (the regime we are considering will be clear from the context).

1.4.2. Graphs and maps
For a planar map G, we write V(G), E(G), and F(G), respectively, for the set of vertices, edges, and faces of G.

By a path in G, we mean a function λ : I → E(G) for some (possibly infinite) discrete interval I ⊂ Z, with the
property that the edges of λ can be oriented in such a way that the terminal endpoint of λ(i) coincides with the initial
endpoint of λ(i + 1) for each i ∈ I other than the right endpoint.
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For sets A1, A2 consisting of vertices and/or edges of G, we write dist(A1,A2;G) for the graph distance from A1

to A2 in G, i.e. the minimum of the lengths of paths in G whose initial edge either has an endpoint which is a vertex
in A1 or shares an endpoint with an edge in A1; and whose final edge satisfies the same condition with A2 in place of
A1. If A1 and/or A2 is a singleton, we do not include the set brackets. Note that the graph distance from an edge e to
a set A is the minimum distance between the endpoints of e and the set A. We write diam(G) for the maximal graph
distance between vertices of G.

For r > 0, we define the graph metric ball Br(A1;G) to be the subgraph of G consisting of all vertices of G whose
graph distance from A1 is at most r and all edges of G whose endpoints both lie at graph distance at most r from A1.
If A1 = {x} is a single vertex or edge, we write Br({x};G) = Br(x;G).

1.4.3. Metric spaces
Here we introduce some notation for metric spaces and recall some basic constructions. Throughout, let (X,dX) be a
metric space.

For A ⊂ X we write diam(A;dX) for the supremum of the dX-distance between points in A.
For r > 0, we write Br(A;dX) for the set of x ∈ X with dX(x,A) ≤ r . We emphasize that Br(A;dX) is closed (this

will be convenient when we work with the local GHPU topology). If A = {y} is a singleton, we write Br({y};dX) =
Br(y;dX).

Let ∼ be an equivalence relation on X, and let X = X/ ∼ be the corresponding topological quotient space. For
equivalence classes x, y ∈ X, let Q(x, y) be the set of finite sequences (x1, y1, . . . , xn, yn) of elements of X such that
x1 ∈ x, yn ∈ y, and yi ∼ xi+1 for each i ∈ [1, n − 1]Z. Let

dX(x, y) := inf
(x1,y1,...,xn,yn)∈Q(x,y)

n∑
i=1

dX(xi, yi). (1.5)

Then dX is a pseudometric on X (i.e., it is symmetric and satisfies the triangle inequality), which we call the quotient
pseudometric. The quotient pseudometric possesses the following universal property. Suppose f : (X,dX) → (Y, dY )

is a 1-Lipschitz map such that f (x) = f (y) whenever x, y ∈ X with x ∼ y. Then f factors through the metric quotient
to give a 1-Lipschitz map f : X → Y such that f ◦p = f , where p : X → X is the quotient map. To see this, we define
f (x) := f (x), where x is any element of the equivalence class x (this is well-defined by our assumption on f ). To
check that f is one-Lipschitz, observe that for any x, y ∈ X and any ε > 0, we can find (x1, y1, . . . , xn, yn) ∈Q(x, y)

such that the sum on the right side of (1.5) differs from dX(x, y) by at most ε. Since f is 1-Lipschitz and by the
triangle inequality,

dX(x, y) + ε ≥
n∑

i=1

dX(xi, yi) ≥
n∑

i=1

dY

(
f (xi), f (yi)

)≥ dY

(
f (x), f (y)

)
.

Since ε is arbitrary, we conclude.
For a curve γ : [a, b] → X, the dX-length of γ is defined by

len(γ ;dX) := sup
P

#P∑
i=1

dX

(
γ (ti−1), γ (ti)

)
,

where the supremum is over all partitions P : a = t0 < · · · < t#P = b of [a, b]. Note that the dX-length of a curve may
be infinite.

For Y ⊂ X, the internal metric dY of dX on Y is defined by

dY (x, y) := inf
γ⊂Y

len(γ ;dX), ∀x, y ∈ Y, (1.6)

where the infimum is over all curves in Y from x to y. The function dY satisfies all of the properties of a metric on Y

except that it may take infinite values.
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1.5. Outline

The remainder of this paper is structured as follows.
In Section 2, we prove of Theorem 1.3 in the following manner. We first recall the Schaeffer-type bijections for

quadrangulations with general boundary and the UIHPQ and the “pruning” procedure which allows one to recover
the UIHPQS as the simple-boundary core of the UIHPQ. We use these bijections to establish local absolute continuity
estimates for the boundary paths of uniform quadrangulations with general boundary and the UIHPQ. These estimates
together with the explicit description of the laws of the dangling quadrangulations of the UIHPQ enable us to show
that the rescaled paths ξ̂ n and ξn in Theorem 1.3 are typically close in the uniform topology when n is large. We
will then deduce Theorem 1.3 from this statement and the scaling limit result [14, Theorem 1] for the Brownian
disk. In Section 2.6 we explain why Theorem 1.3 implies Proposition 2.9, which is a variant of Theorem 1.4 where
the boundary length of the free Boltzmann quadrangulation with simple boundary is a random variable Ll which is
typically of order (1 + ol(1))l when l is large; in particular, Ll has the law of 1/2 times the perimeter of the core of a
free Boltzmann quadrangulation with general boundary of perimeter 6l.

Most of the remainder of the paper is focused on deducing Theorem 1.4 from Proposition 2.9. The basic idea of
the proof is to use the peeling procedure to remove a small cluster from Ql whose complement has the law of a free
Boltzmann quadrangulation with perimeter Ll

δ , where δ > 0 is small and Ll
δ is a random variable with the law in

Proposition 2.9 with �(1 + δ)l� in place of l, independent from Ql .
In Section 3, we recall the definition of the peeling procedure for quadrangulations with simple boundary, introduce

some notation to describe it, and review some relevant formulas. We then prove several estimates for general peeling
processes. We obtain in Proposition 3.3 a scaling limit result for the joint law of the area and boundary length processes
of an arbitrary peeling process on the UIHPQS analogous to the result [20, Theorem 1] for peeling processes on the
UIPQ; and in Section 3.4 we prove Radon–Nikodym derivative estimates which allow us to compare peeling processes
on free Boltzmann quadrangulations with simple boundary and the UIHPQS.

In Section 4, we introduce the peeling-by-layers process for quadrangulations with simple boundary, which ap-
proximates the growing family of filled metric balls centered at an edge on the boundary. This process is a variant of
the peeling-by-layers process for the UIPQ introduced in [20] (and the analogous process for the UIPT introduced in
[3]). We then prove several estimates for this peeling process in the case of the UIHPQS which will be transferred to
estimates in the case of the free Boltzmann quadrangulation with simple boundary using the estimates of Section 3.4.

In Section 5, we conclude the proof of Theorem 1.4 and use it to deduce Theorem 1.5.

2. Proof of Theorem 1.3 via the Schaeffer bijection

In Sections 2.1 and 2.2 we will review the Schaeffer-type constructions of quadrangulations with general boundary
and of the UIHPQ. We will also review the so-called pruning procedure by which one obtains an instance of the
UIHPQS from an instance of the UIHPQ. In Sections 2.4 and 2.5, we use these constructions together with the results
for the UIHPQ from [24] to prove Theorem 1.3. In Section 2.6, we explain why Theorem 1.3 implies a scaling limit
result for free Boltzmann quadrangulations with simple boundary and certain random perimeter.

We emphasize that this is the only subsection of the paper in which the Schaeffer-type constructions discussed just
below are used.

2.1. Schaeffer bijection for quadrangulations with boundary

For n, l ∈ N, let Q̂•(n, l) be the set of triples (Q̂, ê, v̂) where Q̂ is a quadrangulation with general boundary having n

interior faces and 2l boundary edges (counted with multiplicity), ê ∈ E(∂Q̂) is an oriented root edge, and v̂ ∈ V(Q̂)

is a marked vertex. By Euler’s formula, the number of vertices of an element of Q̂•(n, l) is determined by n and l (in
particular, it is given by n+ l + 1), so a uniform sample from Q̂→(n, l) can be recovered from a uniform sample from
Q̂•(n, l) by forgetting the marked vertex v̂ (cf. [14, Lemma 10]).

In this subsection we review a variant of the Schaeffer bijection for elements of Q̂•(n, l) which is really a special
case of the Bouttier–Di Francesco–Guitter bijection [15]. Our presentation is similar to that in [21, Section 3.3], [14,
Section 3.3], and [24, Section 3.1].
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For l ∈ N, a bridge of length 2l is a function b0 : [0,2l]Z → Z such that b0(j + 1) − b0(j) ∈ {−1,1} for each
j ∈ [0,2l − 1]Z and b0(0) = b0(2l) = 0. A bridge b0 can be equivalently represented by the function b : [0, l]Z → Z

which skips all of the upward steps. More precisely, let j0 = 0, for k ∈ [1, l]Z let jk be the smallest j ∈ [jk−1 + 1,2l]Z
for which b0(j + 1) − b0(j) = −1, and let b(k) := b0(jk).

For n, l ∈ N, a treed bridge of area n and boundary length 2l is an (l + 1)-tuple (b0; (t0,v0,L0), . . . , (tl−1,

vl−1,Ll−1)) such that b0 is a bridge of length 2l; and (tk,vk,Lk) for k ∈ [0, l − 1]Z is a rooted plane tree with a
label function Lk : V(tk) → Z satisfying Lk(v) − Lk(v

′) ∈ {−1,0,1} whenever v and v′ are joined by an edge and
Lk(vk) = b(k), where b is constructed from b0 as above; and the total number of edges in the trees tk for k ∈ [0, l−1]Z
is n. Let T •(n, l) be the set of pairs consisting of a treed bridge of area n and boundary length 2l together with a sign
θ ∈ {−,+} (which will be used to determine the orientation of the root edge).

We now explain how to construct an element of Q̂•(n, l) from an element of T •(n, l). We first construct a rooted,
labeled planar map (F, e0,L) with two faces as follows. For each k ∈ [0, l − 2]Z, draw an edge connecting the root
vertices vk and vk+1. Also draw an edge connecting vl−1 and v0. Embed the cycle consisting of the vertices vk together
with these edges into C in such a way that the vertices vk all lie on the unit circle. We can extend this embedding
to the trees tk in such a way that each is mapped into the unit disk and no two trees intersect. This gives us a planar
map F with an inner face of degree 2n + l (containing all of the trees tk) and an outer face of degree l. Let e0 be the
oriented edge of F from vl−1 to v0 and let L be the label function on V(F ) =⋃l−1

k=0 V(tk) given by restricting each
of the label functions Lk for k ∈ [0, l − 1]Z.

To construct a rooted, pointed quadrangulation with boundary, let p : [0,2n + l]Z → V(F ) be the contour explo-
ration of the inner face of F started from v1, i.e. the concatenation of the contour explorations of the trees t0, . . . , tl−1.
We abbreviate L(i) = L(p(i)). Each i ∈ [0,2n + l]Z is associated with a unique corner of the inner face of F (i.e.
a connected component of Bε(p(i)) \ F for small ε > 0). Let v̂ be an extra vertex not connected to any vertex of
F , lying in the interior face of F . For i ∈ [0,2n + l]Z, define the successor s(i) of i to be the smallest i′ ≥ i (with
elements of [0,2n + l]Z viewed modulo 2n + l) such that L(i′) = L(i) − 1, or let s(i) = ∞ if no such i′ exists. For
i ∈ [0,2n + l]Z, draw an edge from the corner associated with i to the corner associated with s(i), or an edge from
p(i) to v̂ if s(i) = ∞. Then, delete all of the edges of F to obtain a map Q̂. The root edge of Q̂ is the oriented edge
ê ∈ E(∂Q) from v0 to p(s(0)) (if θ = −) or from p(s(0)) to v0 (if θ = +), viewed as a half-edge on the boundary of
the external face.

As explained in, e.g., [21, Section 3.2] and [14, Section 3.3], the above construction defines a bijection from
T •(n, l) to Q̂•(n, l).

We now explain how an element of T •(n, l), and thereby an element of Q̂•(n, l), can be encoded by a pair of
integer-valued functions. For i ∈ [0,2n + l]Z, let ki ∈ [0, l − 1]Z be chosen so that the vertex p(i) belongs to the tree
tki

and let

C(i) := dist
(
p(i),vki

; tki

)− ki, ∀i ∈ [0,2n + l − 1]Z and C(2n + l) = −l, (2.1)

so that C is the concatenation of the contour functions of the trees tk , but with an extra downward step whenever we
move between two trees. Let

I (k) := min
{
i ∈ [0,2n + l]Z : C(i) = −k

}
, ∀k ∈ [0, l]Z, (2.2)

be the first time i for which p(i) ∈ tk (so that p(I (k)) = vk for k ∈ [0, l − 1]Z and p(l) = v0). Also let L0(i) :=
L(i) − b(ki). To describe the law of the pair (C,L0) we need the following definition.

Definition 2.1. Let [a, b]Z be a (possibly infinite) discrete interval and let S : [a, b]Z → Z be a (deterministic or
random) path with S(i) − S(i − 1) ∈ {−1,0,1} for each i ∈ [a + 1, b]Z. The head of the discrete snake driven by S

is the (random) function H : [a, b]Z → Z whose conditional law given S is described as follows. We set H(a) = 0.
Inductively, suppose i ∈ [a + 1, b]Z and H(i) has been defined for j ∈ [a, i − 1]Z. If S(i) − S(i − 1) ∈ {−1,0}, let i′
be the largest j ∈ [a, i − 1]Z for which S(i) = S(i′); or i′ = −∞. If i′ �= −∞, we set H(i) = H(i′). Otherwise, we
sample H(i) − H(i − 1) uniformly from {−1,0,1}.

The following lemma, which also appears in [24], is immediate from the definitions and the fact that the above
construction is a bijection.
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Lemma 2.2. If we sample (Q̂, ê, v̂) uniformly from Q̂•(n, l), then the law of C is that of a simple random walk started
from 0 and conditioned to reach −l for the first time at time 2n + l. The process L0 is the head of the discrete snake
driven by i �→ C(i) − minj∈[1,i]Z C(j). The pair (C,L0) is independent from b0.

2.2. Schaeffer bijection for the UIHPQ

In this subsection we describe an infinite-volume analog of the bijection of Section 2.1 which encodes the UIHPQ
which is alluded to but not described explicitly in [21, Section 6.1] and described in detail in [6,24]. See also [17] for
a different encoding.

We first define the infinite-volume analog of the bridge b0. Let b∞,0 : Z → N0 be given by the absolute value of
a two-sided simple random walk with increments sampled uniformly from {−1,1}. Let {jk}k∈Z be the ordered set of
times j for which b∞,0(j + 1) − b∞,0(j) = −1, enumerated in such a way that j1 is the smallest j ≥ 0 for which
b∞,0(j + 1) − b∞,0(j) = −1. Also let b∞(k) := b∞,0(jk).

Conditional on b∞,0, let {(t∞k ,v∞
k ,L∞

k )}k∈Z be a bi-infinite sequence of independent triples where each (t∞k ,v∞
k )

is a rooted Galton–Watson tree whose offspring distribution is geometric with parameter 1/2; and, conditional on each
tree t∞k , the function L∞

k is uniformly distributed over the set of all functions V(t∞k ) → Z satisfying L∞
k (v∞,k) =

b∞(k) and L∞
k (u) − L∞

k (v) ∈ {−1,0,1} whenever u,v ∈ V(t∞k ) are connected by an edge.
To construct an instance of the UIHPQ from the above objects, we first construct a planar graph F∞ with two

faces. Equip Z with the standard nearest-neighbor graph structure and embed it into the real line in C. For k ∈ Z,
embed the tree t∞k into the upper half-plane in such a way that the vertex v∞

k is identified with k ∈ Z and none of the
trees t∞k intersect each other or intersect R except at their root vertices. The graph F∞ is the union of Z and the trees
t∞k for k ∈ Z with this graph structure. Let L∞ be the label function on the vertices of F∞ satisfying L∞|V(t∞k ) = L∞

k

for each k ∈ Z.
Let p∞ : Z → V(F∞) be the contour exploration of the upper face of F∞ shifted so that p∞ starts exploring the

tree t∞1 at time 0. Define the successor s∞(i) of each time i ∈ Z exactly as in the Schaeffer bijection (here we do not
need to add an extra vertex since a.s. lim infi→∞ L∞(i) = −∞). Then draw an edge connecting each vertex p∞(i) to
p∞(s∞(i)) for each i ∈ Z and delete the edges of F∞. This gives us an infinite quadrangulation with boundary Q̂∞.
The root edge ê∞ of Q̂∞ is the oriented edge ê∞ which goes from v∞

0 to p∞(s∞(0)). Then (Q̂∞, ê∞) is an instance
of the UIHPQ with general boundary.

As in Section 2.1, we re-phrase the above encoding in terms of random paths. For i ∈ Z, let ki be chosen so that
the vertex p∞(i) belongs to the tree t∞ki

and let

C∞(i) := dist
(
p∞(i),v∞

ki
; t∞ki

)− ki, ∀i ∈ Z (2.3)

be the contour function of the upper face of F∞. Also let

I∞(k) := min
{
i ∈ Z : C∞(i) = −k

}
, ∀k ∈ Z (2.4)

so that p(I∞(k)) = vk . Finally, define L∞(i) := L∞(p∞(i)) and L∞,0(i) := L∞(i) − b∞(ki).
The following is [24, Lemma 3.5].

Lemma 2.3. The pair (C∞,L∞,0) is independent from b∞ and its law can be described as follows. The law of C∞|N0

is that of a simple random walk started from 0 and the law of C∞(−·)|N0 is that of a simple random walk started
from 0 and conditioned to stay positive for all time (see, e.g., [10] for a definition of this conditioning for a large class
of random walks). Furthermore, L∞,0 is the head of the discrete snake driven by i �→ C∞(i) − minj∈(−∞,i]Z C∞(j)

(Definition 2.1).

2.3. Pruning the UIHPQ to get the UIHPQS

Recall from Section 1.2.1 that the UIHPQS is the Benjamini–Schramm local limit of uniformly random quadrangu-
lations with simple boundary, as viewed from a uniformly random vertex on the boundary, as the area and then the
perimeter tends to ∞. The simple boundary core (Section 1.2.1) of the UIHPQ has the law of the UIHPQS. More
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precisely, suppose (Q̂∞, ê∞) is a UIHPQ and let Q∞ = Core(Q̂∞) be the quadrangulation obtained from Q∞ by
pruning all of the “dangling quadrangulations” of Q̂∞ which are joined to ∞ by a single vertex. Let e∞ be the edge
immediately to the left of the vertex which can be removed to disconnect ê∞ from ∞ (if such a vertex exists) or let
e∞ = ê∞ if ê∞ belongs to ∂Q∞. Then (Q∞,e∞) is an instance of the UIHPQS.

One obtains a boundary path β∞ : Z → E(∂Q∞) with β∞(0) = e∞ from the boundary path β̂∞ for Q̂∞ by
skipping all of the intervals of time during which β̂∞ is tracing a dangling quadrangulation.

There is also an explicit sampling procedure which reverses the above construction (cf. [21, Section 6.1.2] or [17,
Section 6]). Let (Q∞,e∞) be a UIHPQS and conditionally on Q∞, let {(qv, ev)}v∈V(∂Q∞) be an independent sequence
of random finite quadrangulations with general boundary with an oriented boundary root edge, with distributions
described as follows. Let v0 be the right endpoint of the root edge e∞. Each qv for v �= v0 is distributed according to
the so-called unconstrained free Boltzmann distribution on quadrangulations with general boundary, which is given
by

P
[
(qv, ev) = (q, e)

]= C−1
(

1

12

)n(1

8

)l

(2.5)

for any quadrangulation q with n ∈ N0 interior faces and 2l, l ∈ N, boundary edges (counted with multiplicity) with
a distinguished oriented root edge e ∈ ∂q, where here C > 0 is a normalizing constant. The quadrangulation qv0 is
instead distributed according to

P
[
(qv0, ev0) = (q, e)

]= C̃−1(2l + 1)

(
1

12

)n(1

8

)l

(2.6)

for a different normalizing constant C̃. We note that by [17, Equation (23)], the expected perimeter of qv for v �= v0 is
equal to 2.

If we identify the terminal endpoint of ev with v for each v ∈ V(∂Q∞), we obtain an infinite quadrangulation Q̂∞
with general boundary. We choose an oriented root edge ê∞ for Q̂∞ by uniformly sampling one of the oriented edges
of E(∂qv0) ∪ {e∞}. Then (Q̂∞, ê∞) is a UIHPQ which can be pruned to recover (Q∞,e∞).

2.4. Radon–Nikodym derivative estimates for quadrangulations with general boundary

In the remainder of this section, we assume that we are in the setting of Theorem 1.3, so that (Q̂n, ên) is a uniform
quadrangulation with general boundary with an interior faces and perimeter 2ln. To describe (Q̂n, ên) via the bijection
of Section 2.1, we let v̂n be a marked vertex sampled uniformly from V(Q̂n).

We denote the Schaeffer encoding for (Q̂n, ên) from Section 2.1 with an additional superscript n, so that in partic-
ular Cn is the contour function, Ln is the label process, L0,n is the shifted label process, b0,n is a random walk bridge
independent from (Cn,L0,n), and bn is obtained from b0,n by skipping the upward steps. Also let In be as in (2.2).

We also let (Q̂∞, ê∞) be an instance of the UIHPQ with general boundary and define its Schaeffer encoding
functions C∞, L∞, L∞,0, b∞,0, b∞, and I∞ as in Section 2.2.

The aforementioned Schaeffer encoding functions have easy-to-describe laws and determine the corresponding
quadrangulations in a local manner. This enables us to obtain Radon–Nikodym derivative estimates for the law of
some part of Q̂n with respect to the law of the corresponding part of Q̂∞. This technique has been used in [6,24] to
couple a uniform quadrangulation with general boundary with the UIHPQ in such a way that they agree with high
probability in a small neighborhood of the root edge (see [19] for an analogous statement for quadrangulations without
boundary). In this subsection, we will prove weaker Radon–Nikodym derivative estimates which hold for a larger part
of the quadrangulations in question. We start by proving a Radon–Nikodym estimate for the encoding functions.

Lemma 2.4. For each ε ∈ (0,1), there exists A = A(ε) > 0 and n∗ = n∗(ε) ∈ N such that the following is true for
each n ≥ n∗. On an event of probability at least 1 − ε (for the law of (Cn,Ln)), the law of (Cn,Ln)|[0,In(ln−εn1/2)]Z is
absolutely continuous with respect to the law of (C∞,L∞)|[0,I∞(ln−εn1/2)]Z , with Radon–Nikodym derivative bounded
above by A.
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Proof. The proof is similar to that of [24, Lemma 4.7]. Recall from Lemmas 2.2 and 2.3 that the law of Cn is that of
a simple random walk conditioned to first hit −ln at time 2an + ln and the law of C∞|N0 is that of an unconditioned
simple random walk.

By [24, Lemma 4.6] and Bayes’ rule (cf. the proof of [24, Lemma 4.7]), the Radon–Nikodym derivative of the
law of Cn|[0,In(ln−εn1/2)]Z with respect to the law of C∞|[0,I∞(ln−εn1/2)]Z is given by f n

ε (I∞(ln − εn1/2)) where for
k ∈ [0,2an + ln]Z,

f n
ε (k) = εn1/2(2an + ln − k)−3/2 exp(− ε2n

2(2an+ln−k)
) + on(n

−1)

ln(2an + ln)−3/2 exp(− (ln)2

2(2an+ln)
) + on(n−1)

1(k<2an+ln).

Since (2n)−1/2Cn((2n)−1·) converges in law in the uniform topology to an appropriate conditioned Brownian motion
[11, Lemma 14], we can find ζ = ζ(ε) > 0 and n0 = n0(ε) ∈ N such that for n ≥ n0,

P
[
En

0

]≥ 1 − ε/2, where En
0 := {In

(
ln − εn1/2)≤ 2an + ln − ζn

}
.

Since (2n)−1/2ln → l, we can find A0 = A0(ε) > 0 and n1 = n1(ε) ≥ n0 such that for n ≥ n1 and 1 ≤ k ≤ 2an + ln −
ζn, we have f n

ε (k) ≤ A0.
Hence for n ≥ n1, on the event En

0 the Radon–Nikodym of the law of Cn|[0,In(ln−εn1/2)]Z is absolutely continuous
with respect to the law of C∞|[0,I∞(ln−εn1/2)]Z , with Radon–Nikodym derivative bounded above by A0. Since the con-
ditional law of the shifted label function L0,n|[0,In(ln−εn1/2)]Z given Cn|[0,In(ln−εn1/2)]Z coincides with the conditional
law of L∞,0|[0,I∞(ln−εn1/2)]Z given C∞|[0,I∞(ln−εn1/2)]Z , we get the same Radon–Nikodym derivative estimate with
the pairs (Cn,L0,n) and (C∞,L∞,0) in place of Cn and C∞.

Recall that Ln (resp. L∞) is obtained from (Cn,L0,n) and the bridge b0,n (resp. (C∞,L∞,0) and the walk b∞,0) in
the manner described in Section 2.1 (resp. Section 2.2). Recall also the processes bn and b∞ obtained from b0,n and
b∞,0, respectively, by considering only times when the path makes a downward step. A similar absolute continuity
argument to the one given above shows that there exists n∗ = n∗(ε) ≥ n1, A1 = A1(ε) > 0, and an event En

1 with
P[En

1 ] ≥ 1 − ε/2 such that for n ≥ n∗, the Radon–Nikodym derivative of the law of bn|[0,ln−εn1/2]Z with respect to the
law of b∞|[0,ln−εn1/2]Z on the event En

1 is bounded above by A1.
The pair (Cn,L0,n) (resp. (C∞,L∞,0) is independent from b0,n (resp. b∞,0), so for n ≥ n∗ it holds on En

0 ∩ En
1

that the law of the pair ((Cn,L0,n)|[0,In(ln−εn1/2)]Z , bn|[0,ln−εn1/2]Z) is absolutely continuous with respect to the law
of ((C∞,L∞,0)|[0,I∞(ln−εn1/2)]Z , b∞|[0,ln−εn1/2]Z) with Radon–Nikodym derivative bounded above by A0A1. Since
these processes determine (Cn,Ln)|[0,In(ln−εn1/2)]Z and (C∞,L∞)|[0,I∞(ln−εn1/2)]Z , respectively, via the same deter-
ministic functional and P[En

0 ∩ En
1 ] ≥ 1 − ε, we obtain the statement of the lemma with A = A0A1. �

Let β̂n : [0,2ln]Z → E(∂Q̂n) and β̂∞ : Z → E(∂Q̂∞) be the boundary paths of our finite and infinite quadran-
gulations with general boundary, respectively, started from the root edge at time 0. For k ∈ [0,2ln]Z, we can view
β̂n([0, k]Z) as a planar map and β̂n|[0,k]Z as a path on it. This planar map can have non-trivial structure since β̂n is not
necessarily a simple path. Hence it makes sense to consider the law of β̂n|[0,k]Z , without reference to the underlying
map Q̂n. Similar considerations hold for β̂∞.

From Lemma 2.5, we obtain a Radon–Nikodym estimate for boundary paths, viewed without reference to the
underlying map in the manner described just above.

Lemma 2.5. For each ε ∈ (0,1), there exists A = A(ε) > 0 and n∗ = n∗(ε) ∈ N such that the following is true for
each n ≥ n∗. On an event of probability at least 1 − ε (for the law of β̂n), the law of β̂n|[0,2ln−εn1/2]Z is absolutely
continuous with respect to the law of β̂∞|[0,2ln−εn1/2]Z , with Radon–Nikodym derivative bounded above by A.

Proof. It is clear from the Schaeffer bijection (cf. [24, Remarks 3.1 and 3.4]) and a basic concentration estimate for
the empirical distribution of the times when the simple random walk bridge b0,n and the random walk b∞,0 take
a downward step that with probability tending to 1 as n → ∞ (with respect to the laws of each of β̂n and β̂∞),
β̂n|[0,2ln−εn1/2]Z and β̂∞|[0,2ln−εn1/2]Z are given by the same deterministic functional of (Cn,Ln)|[0,In(ln−(ε/4)n1/2)]Z
and (C∞,L∞)|[0,I∞(ln−(ε/4)n1/2)]Z , respectively. The statement of the lemma therefore follows from Lemma 2.4. �
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2.5. Proof of Theorem 1.3

In this subsection we will prove our scaling limit result for the simple-boundary core Qn of Q̂n. The main difficulty
of the proof is the uniform convergence of the rescaled boundary path ξn of Qn. This will be extracted from the
following proposition, which in turn will follow from the estimates of Section 2.4 and the analogous statement for the
UIHPQ which is proven in [24] using the pruning procedure of Section 2.3. Here we recall that β̂n is the boundary
path of Q̂n.

Proposition 2.6. For each ε ∈ (0,1), there exists n∗ = n∗(ε) ∈ N such that for n ≥ n∗, it holds with probability at
least 1 − ε that the following is true. For each k1, k2 ∈ [0,2ln]Z with k1 ≤ k2, the number of edges in β̂n([k1, k2]Z)

which belong to the simple-boundary core Qn is between 1
3 (k2 − k1) − εn1/2 and 1

3 (k2 − k1) + εn1/2.

For the proof of Proposition 2.6, we will need to consider the pruning procedure described in Section 2.3. Recall
the UIHPQ (Q̂∞, ê∞) and its boundary path β̂∞. Also let (Q∞,e∞) be the UIHPQS with Q∞ = Core(Q̂∞), as in
Section 2.3.

For k ∈ Z, let q∞
k be the dangling quadrangulation of Q̂∞ (i.e., the quadrangulation which can be disconnected

from the core Qn by removing a single vertex) such that either β̂∞(k) ∈ ∂q∞
k or β̂∞(k) ∈ ∂Q∞ and q∞

k is attached to
the right endpoint of β̂∞(k). Similarly, for k ∈ [0,2ln]Z let qn

k be the dangling quadrangulation of Q̂n such that either
β̂n(k) ∈ ∂qn

k or β̂n(k) ∈ ∂ Core(Qn) and qn
k is attached to the right endpoint of β̂n(k). See Figure 2 for an illustration

of these definitions. We note that {q∞
k }k∈Z is the same, as a set, as the set of dangling quadrangulations {q∞

v }v∈V(∂Q∞)

described in Section 2.3. However, the index k in the present section corresponds to the boundary path of Q̂∞, so in
particular it is possible that q∞

k1
= q∞

k2
for k1 �= k2.

The following lemma tells us that the size of a dangling quadrangulation is typically of constant order, indepen-
dently of k and n.

Lemma 2.7. For each ε ∈ (0,1), there exists N = N(ε) ∈N such that the following is true. For each n ∈N and each
k ∈ [0,2ln]Z, we have P[#E(qn

k ) ≤ N ] ≥ 1 − ε and for each k ∈ Z we have P[#E(q∞
k ) ≤ N ] ≥ 1 − ε.

Proof. If we condition on Q̂n, then the root edge ên = β̂n(0) is sampled uniformly from ∂Q̂n. It follows that the law
of (Q̂n, ên) is invariant under the operation of replacing ên with β̂n(k) for any k ∈ [0,2ln]Z. Passing to the local limit
shows that the law of the UIHPQ (Q̂∞, ê∞) is invariant under the operation of replacing ê∞ by β̂∞(k) for any k ∈ Z.
Therefore, the law of qn

k (resp. q∞
k ) does not depend on k. It is clear that q∞

k is a.s. finite, so for each ε ∈ (0,1) there
exists N = N(ε) ∈ N such that for k ∈ Z, we have P[#E(q∞

k ) ≤ N ] ≥ 1 − ε/2.
It remains to prove an upper bound for the size of qn

0 . By [24, Proposition 4.5] there exists α = α(ε) > 0 and
n∗ = n∗(ε) ∈ N such that for n ≥ n∗, we can couple Q̂n and Q̂∞ in such a way that it holds with probability at least
1 − ε/4 that the following is true. The graph metric balls Bαn1/4 (̂en; Q̂n) and Bαn1/4 (̂e∞; Q̂∞) equipped with the

Fig. 2. The UIHPQ Q̂∞ (blue and red) and its UIHPQS core Q∞ (blue). The dangling quadrangulations q̂∞
k

for k ∈ N, used in Section 2.5, are
shown in red. The dangling quadrangulation q̂∞

k
is the one which contains the right endpoint of the boundary edge β̂∞(k) if β̂∞(k) ∈ ∂Q∞ (i.e.,

β̂∞(k) is one of the blue edges) or the one which contains β̂∞(k) if β̂∞(k) is one of the red edges.
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Fig. 3. Left: The quadrangulation Q̂n with general boundary together with a segment β̂n([0, k∗]Z) of its boundary path. The associated loop-erased
path β̂n

k∗ : [0, k∗]Z → E(∂Q̂n) used in the proof of Proposition 2.6 is obtained by replacing the segments of β̂n([0, k∗]Z) when it is tracing the dotted

edges by constant segments. If k∗ is smaller than the time Kn when β̂n finished tracing ∂Qn , then β̂n
k∗ ([0, k∗]Z) contains ∂Qn ∩ β̂n

k∗ ([0, k∗]Z)

and is contained in the union of ∂Qn ∩ β̂n
k∗ ([0, k∗]Z) and the dangling quadrangulations qn

0 and qn
k∗ . Right: The path β̂n|[0,k∗]Z , viewed without

reference to the map Q̂n , is absolutely continuous with respect to the analogous boundary path increment for the UIHPQS.

graph structures they inherit from Q̂n and Q̂∞, respectively, are isomorphic (as graphs) via an isomorphism which
takes ên to ê∞ and ∂Q̂n ∩ Bαn1/4 (̂en; Q̂n) to ∂Q̂∞ ∩ Bαn1/4 (̂e∞; Q̂∞).

By [24, Lemma 4.9], the maximal rescaled diameter n−1/4 maxk∈[0,ln]Z diam(qn
k ) tends to 0 in law as n → ∞.

Hence by possibly increasing n∗, we can arrange that with probability at least 1 − ε/2 our coupling is such that
q∞

0 = qn
0 . By combining this with the first paragraph of the proof we obtain the statement of the lemma. �

Proof of Proposition 2.6. See Figure 3 for an illustration. For k∗ ∈ [0,2ln]Z, let β̂∞
k∗ : [0, k∗]Z → E(∂Q̂∞) be the path

obtained by erasing the loops from β̂∞|[0,k∗]Z in the following manner. Let [a1, b1]Z, . . . , [aN,bN ]Z be the maximal
discrete intervals [a, b]Z in [1, k∗]Z with the property that β̂∞([a, b]Z) is a cycle which is not contained in any larger
cycle in β̂∞([1, k]Z), ordered from left to right. For k ∈ [0, k∗]Z let β̂∞

k∗ (k) = β̂∞(k′) where k′ is the largest s ∈ [0, k]Z
which is not contained in

⋃N
i=1[ai, bi]Z. Similarly construct β̂n

k∗ from β̂n|[0,k∗]Z .

Since the boundary of the UIHPQS Q∞ = Core(Q̂∞) does not contain a cycle and the boundary of each q∞
k is a

cycle traced by β̂∞, it follows that for each 0 ≤ k1 ≤ k2 ≤ k∗,

Q∞ ∩ β̂∞([k1, k2]Z
)⊂ β̂∞

k∗
([k1, k2]Z

)⊂ (Q∞ ∩ β̂∞([k1, k2]Z
))∪ q∞

0 ∪ q∞
k∗ . (2.7)

Similarly, if we let Kn be the time at which βn finishes tracing ∂Qn then for 0 ≤ k1 ≤ k2 ≤ k∗ < Kn,

Qn ∩ β̂n
([k1, k2]Z

)⊂ β̂n
k∗
([k1, k2]Z

)⊂ (Qn ∩ β̂n
([k1, k2]Z

))∪ qn
0 ∪ qn

k∗ . (2.8)

Now fix ε ∈ (0,1) and set

kn∗(ε) := ⌊2ln − εn1/2⌋.
Also fix δ ∈ (0,1) to be chosen later, depending only on ε.

Recall from Section 2.3 that the ordered (from left to right) collection of distinct dangling quadrangulations other
than qn

0 is i.i.d., and the expected perimeter of each of these quadrangulations is 2; note here that the law of the
quadrilateral dangling from the j th edge of Q∞ does not have the same law as qn

k since qn
k is more likely to be one of

the dangling quadrangulations with longer perimeter. From this and the law of large numbers (see [24, Lemma 4.12]
for a careful justification) we infer that there exists n∗ = n∗(ε, δ) ∈ N such that for n ≥ n∗, it holds with probability
at least 1 − δ/2 that the following is true. For each k1, k2 ∈ [0,2ln − εn1/2]Z with k1 < k2, the number of edges in
β̂∞([k1, k2]Z) which belong to Q∞ is between 1

3 (k2 − k1) − 1
2εn1/2 and 1

3 (k2 − k1) + 1
2εn1/2. By Lemma 2.7, by
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possibly increasing n∗ we can arrange that it holds with probability at least 1 − δ/2 that #E(q∞
0 ∪ q∞

kn∗ (ε)
) ≤ 1

2εn1/2.
By (2.7), it holds with probability at least 1 − δ that

1

3
(k2 − k1) − εn1/2 ≤ #β̂∞

kn∗ (ε)

([k1, k2]Z
)≤ 1

3
(k2 − k1) + εn1/2, ∀0 ≤ k1 ≤ k2 ≤ kn∗(ε). (2.9)

By Lemma 2.5, by possibly increasing n∗ we can find A = A(ε) > 0 that for n ≥ n∗, there is an event En with
P[En] ≥ 1 − ε/4 such that on En, the Radon–Nikodym derivative of the law of β̂n|[0,kn∗ (ε)]Z is absolutely continuous
with respect to the law of β̂∞|[0,kn∗ (ε)]Z , with Radon–Nikodym derivative bounded above by A.

Set δ = 1
4A−1ε for this choice of A. By (2.9) for n ≥ n∗, it holds with probability at least 1 − ε/2 that

1

3
(k2 − k1) − εn1/2 ≤ #β̂n

kn∗ (ε)

([k1, k2]Z
)≤ 1

3
(k2 − k1) + εn1/2, ∀0 ≤ k1 ≤ k2 ≤ kn∗(ε). (2.10)

By Lemma 2.7, by possibly increasing n∗ we can arrange that for n ≥ n∗, it holds with probability at least 1− ε/2 that
#E(qn

0 ∪ qn
kn∗ (ε)

) ≤ 1
2εn1/2. If this is the case and (2.10) holds, then necessarily kn∗(ε) ≤ Kn since β̂n([kn∗(ε),2ln]Z) ⊂

qn
0 . By (2.8), for n ≥ n∗ it holds with probability at least 1 − ε that

1

3
(k2 − k1) − 2εn1/2 ≤ #

(
Qn ∩ β̂n

([k1, k2]Z
))≤ 1

3
(k2 − k1) + 2εn1/2, ∀0 ≤ k1 ≤ k2 ≤ kn∗(ε). (2.11)

By the re-rooting invariance of the law of (Q̂n, ên) (which comes from the fact that ên is sampled uniformly
from E(∂Q̂n)), we can apply the same argument with Q̂n rooted at β̂n(�εn1/2�) instead of ên = β̂n(0) to find that
with probability at least 1 − 2ε, (2.11) also holds for each �εn1/2� ≤ k1 ≤ k2 ≤ 2ln. By splitting a given interval
[k1, k2]Z ⊂ [0,2ln]Z into an interval contained in [0, kn∗(ε)]Z and an interval contained in [εn1/2,2ln]Z, we obtain the
statement of the proposition with 4ε in place of ε. Since ε can be made arbitrarily small, we conclude. �

Proof of Theorem 1.3. By [24, Theorem 4.1], Q̂n → H in law in the GHPU topology. By the Skorokhod repre-
sentation theorem, we can couple {(Q̂n, ên)}n∈N with H in such a way that this convergence occurs a.s. By [24,
Proposition 1.5], for any such coupling we can a.s. find a compact metric space (W,D) and isometric embeddings
(Q̂n, d̂n) → (W,D) for n ∈N and (H,d) → (W,D) such that if we identify these spaces with their images under the
corresponding embeddings then a.s. Q̂n → Hn in the D-Hausdorff distance, μ̂n → μ in the D-Prokhorov distance,
and ξ̂ n → ξ in the D-uniform distance. Henceforth fix such a coupling and such a space (W,D). We note that the
isometric embedding (Q̂n, d̂n) → (W,d) restricts to an isometric embedding (Qn, dn) → (W,D), so Qn is identified
with a subset of W .

Since H has the topology of a disk, it follows that the maximal d̂n-diameter of the dangling quadrangulations of
Q̂n tends to zero in probability as n → ∞ (see [24, Lemma 4.9] for a careful justification). By possibly choosing a
different coupling we can take this convergence to occur a.s. From this we infer that a.s. Qn → H in the D-Hausdorff
distance and (since ξ̂ n → ξ uniformly) that Q̂n \ (Qn \ ∂Qn) → ∂H = ξ([0, l]) in the D-Hausdorff distance.

Since each of the measures μ̂n − μn is supported on Q̂n \ (Qn \ ∂Qn), we infer that any subsequential limit of the
measures μ̂n − μn in the D-Prokhorov distances is supported on ∂H and is dominated by μ. Since μ(∂H) = 0 any
such subsequential limit must be the zero measure. Therefore, μn → μ in the D-Prokhorov distance.

To show the uniform convergence ξn → ξ of the re-scaled boundary paths, for n ∈ N and t ∈ [0, (3/23/2)n−1/2 ×
#E(∂Qn)] let τn(t) be the smallest s ∈ [0, (2n)−1/2ln] for which the number of edges of ∂Qn traversed by ξ̂ n between
times 0 and s is at least (23/2/3)n1/2t . Equivalently, 23/2n1/2τn(t) is the smallest time at which the un-scaled boundary
path β̂n has traversed at least (23/2/3)n1/2t edges of ∂Qn. Then

ξ̂ n
(
τn(t)
)= βn

(
23/2

3
n1/2t + on(1)

)
= ξn
(
t + on(1)

)
,

where the on(1) comes from rounding error. Note that the scaling factors in the time parameterizations of ξn and ξ̂ n

differ by a factor of 3. By Proposition 2.6, the function τn converges uniformly to the identity function in probability,
whence ξn → ξ uniformly in probability. From this we infer that Qn →H in probability, as required. �
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2.6. Scaling limit of free Boltzmann quadrangulations with random perimeter

In this brief subsection, we explain why Theorem 1.3 implies a scaling limit result (Proposition 2.9) for a free Boltz-
mann quadrangulation with random boundary length. Most of the remainder of the paper will be devoted to transfer-
ring this result to the case when we specify the exact boundary length of the quadrangulation.

To state our result, we need to recall the definition of a free Boltzmann quadrangulation with general boundary,
which appears, e.g., in [14, Section 1.4]. The free Boltzmann distribution on quadrangulations with general boundary
of perimeter 2l is the probability measure on

⋃∞
n=0 Q̂→(n, l) (defined as in Section 1.2.1) which assigns to each

(Q̂, ê) ∈ Q̂→(l) a probability equal to Ẑ(l)−112−#F(Q̂), where Ẑ(l) =∑∞
n=0 12−n#Q̂→(n, l) is the partition function.

Free Boltzmann quadrangulations with general and simple boundaries are related by the following lemma.

Lemma 2.8. Let l ∈ N and let (Q̂, ê) be a free Boltzmann quadrangulation with general boundary of perimeter
2l. If we condition on the rooted planar map (∂Q̂, ê) then the conditional law of the collection of simple-boundary
components of Q̂, each rooted at an oriented boundary edge which is chosen in a σ(∂Q̂, ê)-measurable manner, is
that of a collection of independent free Boltzmann quadrangulations with simple boundary with perimeters given by
the perimeters of the internal faces of ∂Q̂.

Proof. Let N by the (random) number of simple-boundary components of Q̂ and let Q1, . . . ,QN be these compo-
nents, enumerated in the order in which their boundaries are first hit by the boundary path of Q̂ started from ê. Also
let ek ∈ E(∂Qk) for k ∈ [1,N ]Z be a root edge for Qk chosen in a σ(∂Q̂, ê)-measurable manner.

Let (B̂, ê) be a possible realization of (∂Q̂, ê), let n be the corresponding realization of N , and let (Bk, ek) be the
corresponding realizations of (∂Qk,ek) for k ∈ [1,n]Z. Also let lk := 1

2 #E(Bk) be half the perimeter of Qk .
There is a bijection from the set of possible realizations of (Q̂, ê) with (∂Q̂, ê) = (B̂, ê) to Q→

S (l1)×· · ·×Q→
S (ln):

the forward bijection is obtained by taking the n-tuple of simple-boundary components of such a realization, each
rooted at the corresponding edge ek ; and the inverse bijection is obtained by identifying the boundary of each of the n

components of an element of QS(l1) × · · · ×QS(ln) with the boundary of the corresponding internal face of B̂ via an
orientation-preserving map which takes the root edge to ê.

Suppose now that ((Q1, e
′
1), . . . , (Qn, e′n)) ∈ Q→

S (l1) × · · · × Q→
S (ln) and let Q̂ be the corresponding realization

of Q̂ satisfying ∂Q̂ = B̂. Each internal face of Q̂ is an internal face of precisely one of the Qk’s. Therefore,

P
[
(Qk,ek) = (Qk, e

′
k

)
,∀k ∈ [1,n]Z | (∂Q̂, ê) = (B̂, ê)

]
= P
[
Q̂ = Q̂ | (∂Q̂, ê) = (B̂, ê)

]
= P
[
(∂Q̂, ê) = (B̂, ê)

]−112−#F(Q̂) = P
[
(∂Q̂, ê) = (B̂, ê)

]−1
n∏

k=1

12−#F(Qk). (2.12)

By Euler’s formula, if Q is a quadrangulation with simple boundary then #F(Q) = 1
2 #E(∂Q) − 1 + #V(Q \ ∂Q).

Hence the right side of (2.12) equals

C(B̂, ê)

n∏
k=1

12−#V(Qk\∂Qk),

where C(B̂, ê) is a constant depending only on (B̂, ê). Therefore, the conditional law of {(Qk,ek)}k∈[1,n]Z is as
described in the statement of the lemma. �

From Lemma 2.8 and Theorem 1.3, we obtain the following variant of Theorem 1.4 when we randomize the
perimeter, which will be used in subsequent sections to prove Theorem 1.4.

Proposition 2.9. Fix l ∈ N and for n ∈N let Ll be a random variable whose law is that of 1
2 #E(Core(Q̂l)), where Q̂l

is a free Boltzmann quadrangulation with general boundary of perimeter 6l. Condition on Ll , sample a free Boltzmann
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quadrangulation with simple boundary of perimeter 2Ll and define the curve-decorated metric measure spaces QLl

for l ∈ N as in Theorem 1.4 with Ll in place of l. Then QLl → H in law, where H is the limiting curve-decorated
metric measure space from Theorem 1.4.

Proof. For l ∈ N let (Q̂l, êl ) be a free Boltzmann quadrangulation with general boundary of perimeter 6l and let Ll

be half the perimeter of its core. By Lemma 2.8, the conditional law given Ll of Core(Q̂l) (equipped with an oriented
root edge chosen in a manner which depends only on (∂Q̂l, êl) is that of a free Boltzmann quadrangulation with
simple boundary of perimeter 2Ll . Hence we can couple QLl

with Q̂l in such a way that QLl = Core(Q̂l) a.s.
Let Âl for l ∈ N be the (random) number of faces of Q̂l . The proof of [14, Theorem 8] shows that (2/9)l−2Âl

converges in law as l → ∞ to the law of the area of a free Boltzmann Brownian disk with unit perimeter (alternatively,
this can be extracted from Lemma 3.4 below, which is a re-statement of a result from [20]). By Theorem 1.3 applied
to the conditional law of (Q̂l, êl ) given Âl we obtain the statement of the proposition. �

3. Peeling processes on quadrangulations with simple boundary

In this section we will study general peeling processes on the UIHPQS and on free Boltzmann quadrangulations with
simple boundary, which will be our main tool in the remainder of the paper (we will not have any further occasion to
consider quadrangulations with general boundary or the Schaeffer bijection). In Section 3.1, we review the definition
of the peeling procedure, introduce some notation to describe it, and recall some standard formulas and estimates for
peeling steps in the UIHPQS.

In Section 3.3, we introduce the boundary length processes for a general peeling process on the UIHPQS; this result
is an analog for the UIHPQS of the scaling limit result [5, Theorem 1] for the peeling process on the UIPQ, and is
proven in the same manner.

In Section 3.4, we prove Radon–Nikodym estimates which enable us to compare peeling processes on free Boltz-
mann quadrangulations with simple boundary to peeling processes on the UIHPQS. The results of this latter subsection
(especially Lemma 3.6) will be our main tool for studying peeling processes on free Boltzmann quadrangulations with
simple boundary, both in the present paper and in [24].

Remark 3.1. All of the results of the present section have exact analogs for triangulations with simple boundary of
type I (multiple edges and self-loops are allowed) or type II (multiple edges, but not self-loops, are allowed). The
statements in either of the two triangulation cases are identical, modulo different choices of normalizing constants,
and the proofs are essentially the same but sometimes slightly easier due to the simpler description of peeling in the
triangulation case. See [3–5,40] for more on peeling of triangulations with simple boundary.

3.1. General definitions and formulas for peeling

3.1.1. Peeling at an edge
Let Q be a finite or infinite quadrangulation with simple boundary. For an edge e ∈ E(∂Q), let f(Q, e) be the quadri-
lateral of Q containing e on its boundary or let f(Q, e) = ∅ if Q ∈ Q→

S (0,1) is the trivial one-edge quadrangulation
with no interior faces. If f(Q, e) �=∅, the quadrilateral f(Q, e) has either two, three, or four vertices in ∂Q, so divides
Q into at most three connected components, whose union includes all of the vertices of Q and all of the edges of Q

except for e. These components have a natural cyclic ordering inherited from the cyclic ordering of their intersections
with ∂Q.

If there are m ∈ {1,2,3} connected components of Q \ f(Q, e), we write P(Q, e) ∈ (N0 ∪ {∞})m for the vector
whose ith component for i ∈ {1, . . . ,m} is #E(Qi ∩ ∂Q), where Qi is the ith connected component of Q \ f(Q, e) in
counterclockwise order started from e. We define P(Q, e) =∅ if f(Q, e) =∅. Note that

P(Q, e) ∈ {∅} ∪ (N0 ∪ {∞})∪ (N0 ∪ {∞})2 ∪ (N0 ∪ {∞})3. (3.1)

We refer to P(Q, e) as the peeling indicator. Several examples of quadrilaterals f(Q, e) and their associated peeling
indicators are shown in Figure 4.
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Fig. 4. A finite rooted quadrangulation with simple boundary (Q, e) ∈ Q→
S (n,20) together with four different cases for the peeled quadrilateral

f(Q, e) (shown in light blue). The peeling indicators from left to right are given by P(Q, e) = 19, P(Q, e) = (7,12), P(Q, e) = (9,5,5), and
P(q, e) = (0,19).

Fig. 5. Illustration of various definitions associated with peeling. The peeled quadrilateral f(Q, e) is shown in blue. the connected component
Peele∗ (Q, e) of Q \ f(Q, e) containing the target edge is shown in grey, and the union Fe∗ (Q, e) of the other connected components is shown in
light green. Individual vertices and edges of these components are not shown.

We note that P(Q, e) determines the total boundary lengths of each of the connected components of Q \ f(Q, e),
not just the lengths of their intersections with ∂Q. Indeed, if the ith component of P(Q, e) is k, then the total boundary
length of the ith connected component of Q \ f(Q, e) in counterclockwise cyclic order is equal to

• k + 3 if there is only one such component (Figure 4, leftmost illustration),
• k + 1 if there is more than one component and k is odd (Figure 4, three rightmost illustrations),
• k + 2 if k is even (Figure 4, second to the left and rightmost illustrations), and
• ∞ if k is ∞.

The procedure of extracting f(Q, e) and P(Q, e) from (Q, e) will be referred to as peeling Q at e.
Suppose now that e∗ ∈ ∂Q \ {e} or that ∂Q is infinite and e∗ = ∞.

• Let Peele∗(Q, e) be the connected component of Q \ f(Q, e) with e∗ on its boundary, or Peele∗(Q, e) = ∅ if
f(Q, e) =∅ (equivalently (Q, e) ∈ Q→

S (0,1)).
• Let Fe∗(Q, e) be the union of the components of Q\ f(Q, e) other than Peele∗(Q, e) or Fe∗(Q, e) =∅ if f(Q, e) =

∅.
• Let Exe∗(Q, e) be the number of exposed edges of f(Q, e), i.e. the number of edges of Peele∗(Q, e) which do not

belong to ∂Q (equivalently, those which are incident to f(Q, e)).
• Let Coe∗(Q, e) be the number of covered edges of ∂Q, i.e. the number of edges of ∂Q which do not belong to

Peele∗(Q, e) (equivalently, one plus the number of such edges which belong to Fe∗(Q, e)).

See Figure 5 for an illustration of the above definitions.

3.1.2. Markov property and peeling processes
If (Q,e) is a free Boltzmann quadrangulation with simple boundary of perimeter 2l for l ∈ N∪{∞} and we condition
on P(Q,e), then the connected components of Q\ f(Q,e) are conditionally independent. The conditional law of each
of the connected components, rooted at one of the edges of f(Q,e) on its boundary (chosen by some deterministic
convention in the case when there is more than one such edge), is the free Boltzmann distribution on quadrangulations
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with simple boundary and perimeter 2̃l (Definition 1.1), for a σ(P(Q,e))-measurable choice of l̃ ∈ N ∪ {∞}. These
facts are collectively referred to as the Markov property of peeling.

Due to the Markov property of peeling, one can iteratively peel a free Boltzmann quadrangulation with boundary
to obtain a sequence of quadrangulations with simple boundary with explicitly described laws. To make this notion
precise, let l ∈ N ∪ {∞} and let (Q,e∗) be a free Boltzmann quadrangulation with simple boundary with perimeter
2l; we also allow e∗ = ∞ in the UIHPQS case (when l = ∞).

Suppose we are given a sequence of (possibly empty) quadrangulations with simple boundary Qj ⊂ Q for j ∈ N0

and edges ėj ∈ ∂Qj−1 for each j ∈ N with Qj �=∅ such that

Q0 = Q and Qj =
{

Peele∗(Qj−1, ėj ), Qj−1 �=∅,

∅, Qj−1 =∅.

We refer to the quadrangulations Qj as the unexplored quadrangulations. We also define the peeling clusters by

Q̇j := (Q \ Qj) ∪ (∂Qj \ ∂Q), ∀j ∈ N0, (3.2)

equivalently Q̇0 =∅ and Q̇j = Q̇j−1 ∪ f(Qj−1, ėj ) ∪ F(Qj−1, ėj ). We also define the peeling filtration by

Fj := σ
(
P(Qi−1, ėi ), Q̇i : i ∈ [1, j − 1]Z

)
, ∀j ∈ N0. (3.3)

We say that {Qj }j∈N0 is a peeling process targeted at e∗ if each of the peeled edges ėj for j ∈ N0 is chosen in an
Fj−1-measurable manner. It follows from the Markov property of peeling that in this case, it holds for each j ∈ N0

that the conditional law of (Qj , ėj+1) given the σ -algebra Fj of (3.3) is that of a free Boltzmann quadrangulation
with perimeter 2̃l for some l̃ ∈ N0 ∪ {∞} which is measurable with respect to Fj (where here a free Boltzmann
quadrangulation with perimeter 0 is taken to be the empty set).

We will typically denote objects associated with peeling processes on the UIHPQS by a superscript ∞.

3.2. Peeling formulas for the UIHPQS

As explained in [5, Section 2.3.1], one has explicit formulas for the law of the peeling indicator (3.1) in the case when
(Q∞,e∞) is a UIHPQS. With Z the free Boltzmann partition function from (1.1), one has

P
[
P
(
Q∞,e∞)= ∞]= 3

8
,

P
[
P
(
Q∞,e∞)= (k,∞)

]= 1

12
54(1−k)/2Z(k + 1), ∀k ∈N odd,

P
[
P
(
Q∞,e∞)= (k,∞)

]= 1

12
54−k/2Z(k + 2), ∀k ∈N0 even,

P
[
P
(
Q∞,e∞)= (k1, k2,∞)

]= 54−(k1+k2)/2Z(k1 + 1)Z(k2 + 1), ∀k1, k2 ∈N odd.

(3.4)

We get the same formulas if we replace (k,∞) with (∞, k) or (k1, k2,∞) with either (∞, k1, k2) or (k1,∞, k2).
By Stirling’s formula, the partition function Z satisfies the asymptotics

Z(l) = (c + ol(1)
)
54l/2l−5/2 ∀l ∈ N even, (3.5)

where c > 0 is a universal constant. From this, we obtain approximate versions of the probabilities (3.4).

P
[
P
(
Q∞,e∞)= (k,∞)

]� k−5/2, ∀k ∈ N

P
[
P
(
Q∞,e∞)= (k1, k2,∞)

]� k
−5/2
1 k

−5/2
2 , ∀k1, k2 ∈N odd,

(3.6)
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and similarly with the orders of the components of P re-arranged. One can also write down the exact law of the
peeling indicator variable in the case of a free Boltzmann quadrangulation with simple boundary, which is slightly
more complicated than the formulas (3.4). We will not need this exact law here, however, since all of our estimates
for peeling processes on free Boltzmann quadrangulations with simple boundary will be proven by comparison to the
UIHPQS, using the estimates of Section 3.4.

By [5, Proposition 3], the number of covered and exposed edges (notation as in Section 3.1.1) satisfy

E
[
Ex∞
(
Q∞,e∞)]= E

[
Co∞
(
Q∞,e∞)]= 2, (3.7)

in particular the expected net change in the boundary length of Q∞ under the peeling operation is 0. We always have
Ex∞(Q∞,e∞) ∈ {1,2,3}, but Co∞(Q∞,e∞) can be arbitrarily large. In fact, a straightforward calculation using
(3.4) shows that for k ∈ N,

P
[
Co∞
(
Q∞,e∞)= k

]= (c∗ + ok(1)
)
k−5/2 with c∗ = 58

√
2

81
√

3π
. (3.8)

3.3. Boundary length and area processes and their scaling limits

Definition 3.2 (Boundary length and area processes). Let (Q,e) be a quadrangulation with simple boundary and
let {Q̇j }j∈N0 and {Qj }j∈N0 be the clusters and unexplored quadrangulations of a peeling process of (Q,e). For j ∈N0
we define the exposed, covered, and net boundary length processes, respectively, by

Xj := #E(∂Q̇j ∩ ∂Qj ), Yj := #E(∂Q̇j ∩ ∂Q), and Wj := Xj − Yj .

Note that Q̇j and Qj intersect only along their boundaries, so ∂Q̇j ∩∂Qj = Q̇j ∩Qj . We also define the area process
by Aj := #V(Q̇j ). In the case of a peeling process on the UIHPQS, we include an additional superscript ∞ in the
notation for these objects.

In the remainder of this subsection, we specialize to the case of the UIHPQS. We will prove scaling limit results
for the boundary length and area processes for this peeling process analogous to the scaling limit results for general
peeling processes of the UIPQ and UIPT proven in [20].

Let (Q∞,e∞) be a UIHPQS and let {Q̇∞
j }j∈N0 , {Q∞

j }j∈N0 , {ė∞
j }j∈N0 , and {F∞

j }j∈N0 , respectively, be the clusters,
unexplored quadrangulations, peeled edges, and filtration of a peeling process of the UIHPQS targeted at ∞. We
consider the scaling limit of the joint law of the net boundary length and area processes W∞ and A∞. For n ∈ N and
t ≥ 0, define the scaling constant b∗ := (4/3)

√
πc∗, where c∗ is the constant in (3.8). Define the rescaled boundary

length and area processes by

Z
∞,n
t := b−1∗ n−1/2W∞

�tn3/4� and U
∞,n
t := 2

9
b−2∗ n−1A∞

�tn3/4�. (3.9)

To describe the limit of the joint law of the processes (3.9), let Z∞ be a totally asymmetric 3/2-stable process with
no positive jumps, normalized so that its Lévy measure is 3

4
√

π
|t |−5/21(t<0) dt . Conditionally on Z∞, let {sj }j∈N be

an enumeration of the times when Z has a downward jump and write �Z∞
sj

:= limt→s−
j

Zt − Zsj be the magnitude of

the corresponding jump. Also let {χj }j∈N be an i.i.d. sequence of random variables with the law

1√
2πa5/2

e− 1
2a 1(a≥0) da (3.10)

and for t ≥ 0 define

U∞
t :=

∑
j :sj ≤t

(
�Z∞

sj

)2
χj .
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Proposition 3.3. For any peeling process of the UIHPQS, we have the joint convergence (Z∞,n,U∞,n) → (Z∞,U∞)

in law with respect to the local Skorokhod topology.

For the proof of Proposition 3.3, we will use the following result from [20], which is the quadrangulation version
of [20, Proposition 9] (cf. [20, Section 6.2]).

Lemma 3.4. Let l ∈ N and let (Ql,el ) be a free Boltzmann quadrangulation with simple boundary of perimeter 2l.
Then as l → ∞,

E
[
#V
(
Ql \ ∂Ql

)]= (9

2
+ ol(1)

)
l2 (3.11)

and

l−2#V
(
Ql \ ∂Ql

)→ 9

2
χ (3.12)

in law, where χ is a random variable with the law (3.10).

Proof of Proposition 3.3. This is proven using essentially the same argument as the proof of [20, Theorem 1], but
we give the details for the sake of completeness.

By (3.8) and the heavy-tailed central limit theorem (see, e.g. [29]), Z∞,n → Z∞ in law in the local Skorokhod
topology. Hence it remains to check the joint convergence.

For ε > 0, n ∈N, and t ≥ 0 let

U
≥ε,n
t := 1

21/3n

�tn3/4�∑
j=1

(
A∞

j − A∞
j−1

)
1(W∞

j −W∞
j−1)≤εb∗n1/2 and U

≥ε
t :=

∑
j :sj ≤t

(
�Z∞

sj

)2
χj1(�Z∞

sj
≤ε).

We first argue that for each ε > 0, one has(
Z∞,n,U≥ε,n

)→ (Z∞,U≥ε
)

(3.13)

in law in the local Skorokhod topology. To see this, suppose that we have (using the Skorokhod representation theo-
rem) coupled our UIHPQS with Z∞ in such a way that Z∞,n → Z∞ a.s. in the local Skorokhod topology.

Fix T > 0 and ζ ∈ (0,1/4). We introduce a regularity event which will be used to get around the fact that a single
peeled quadrilateral can disconnect two distinct free Boltzmann quadrangulations with simple boundary from ∞.
For n ∈ N let En = En(ζ,T ) be the event that the following is true: there does not exist j ∈ [1, T n3/4]Z such that the
disconnected quadrangulation F∞(Q

∞
j−1, ė

∞
j ) has more than one connected component with perimeter at least n1/4+ζ .

(Note that 1/4 + ζ < 1/2 due to our choice of ζ .) By (3.6), for each j ∈ N0 and each k1, k2 ∈ N the probability that
F(Q

∞
j−1, ė

∞
j ) has two connected components with perimeters k1 and k2 is bounded above by a universal constant times

k
−5/2
1 k

−5/2
2 . Summing this estimate over all k1, k2 ≥ n1/4+ζ and all j ∈ [1, T n3/4]Z shows that P[En] = 1−On(n

−3ζ ).
For n ∈ N let jn

1 < · · · < jn
Nn for n ∈ N be the times j ∈ [0, T n3/4]Z for which W∞

j − W∞
j−1 ≤ εb∗n1/2 and let

t1 < · · · < tk be the times t ∈ [0, T ]Z for which �Zt ≥ ε. By the local Skorokhod convergence Z∞,n → Z∞, we infer
that a.s. Nn = N for large enough n ∈ N and that n−3/4jn

k → tk for each k ∈ [1,N ]Z.
For k ∈ [1,Nn]Z let Qn

k be the larger simple-boundary component of the disconnected quadrangulation

F∞(Q
∞
jn
k −1, ė

∞
jn
k
). If En occurs, then the conditional law of (Qn

1, . . . ,Qn
Nn) given W∞ and the perimeters of these

quadrangulations is that of a collection of independent free Boltzmann quadrangulations with simple boundary. The
increment A∞

jn
k
−A∞

jn
k −1 is at least #V(Qn

k \∂Qn
k) and is at most 4 plus the total number of vertices in F∞(Q

∞
jn
k −1, ė

∞
jn
k
).

The above estimate for P[En] together with Lemma 3.4 (applied to the smaller component of the disconnected quad-
rangulation) shows that

max
k∈[1,N]Z

1

n

(
A∞

jn
k

− A∞
jn
k −1 − #V

(
Qn

k \ ∂Qn
k

))→ 0
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in probability. From the convergence in law (3.12) in Lemma 3.4 and since T > 0 can be made arbitrarily large, we
obtain (3.13).

We next argue that for ε > 0 and t ≥ 0,

E
[
U

∞,n
t − U

≥ε,n
t

]� tε1/2 (3.14)

with universal implicit constant. For each j ∈ N0, the conditional law of A∞
j − A∞

j−1 given W∞ is stochastically
dominated by 2(W∞

j − W∞
j−1) + 4 plus twice the number of interior vertices of a free Boltzmann quadrangulation

with simple boundary of perimeter W∞
j − W∞

j−1 (the factor of 2 comes from the fact that F∞(Q
∞
j−1, ė

∞
j ) can have

two connected components). By Lemma 3.4,

E
[
A∞

j − A∞
j−1 | W∞]� (W∞

j − W∞
j−1

)2
.

By (3.8), we infer that

E
[(

A∞
j − A∞

j−1

)
1(W∞

j −W∞
j−1)<b∗εn1/2

]� �b∗εn1/2�∑
k=1

k−1/2 � ε1/2n1/4.

Summing over all j ∈ [1, tn3/4]Z shows that (3.14) holds.
It is easy to see that a.s. U∞

t −U
≥ε
t → 0 uniformly on compact intervals as ε → 0 (cf. the proof of [20, Theorem 1]).

Hence the proposition statement follows from (3.13) and (3.14) upon sending ε → 0. �

3.4. Comparing peeling processes on free Boltzmann quadrangulations and the UIHPQS

Let (Q∞,e∞) be a UIHPQS, let β∞ be its boundary path with β∞(0) = e∞, and fix l ∈ N and an initial edge set
A⊂ β∞([1,2l −1]Z). Let {Q̇∞

j }j∈N0 , {Q∞
j }j∈N0 , {ė∞

j }j∈N0 , and {F∞
j }j∈N0 , respectively, be the clusters, unexplored

quadrangulations, peeled edges, and filtration of a peeling process of the UIHPQS targeted at ∞ which satisfies the
following property: for each j ∈ N0, the peeled edge ėj belongs to A or ∂Q̇∞

j ∩ ∂Q
∞
j , so that we never peel at an

edge of ∂Q∞ which is not in A.
In this subsection we will compare unconditional law of the peeling clusters {Q̇∞

j }j∈N0 and the conditional law
of these clusters given the event that the boundary arc β∞([1,2l − 1]Z) is precisely the set of edges of ∂Q∞ which
are disconnected from ∞ by the peeled quadrilateral f(Q∞,e∞). Since the bounded complementary connected com-
ponents of f(Q∞,e∞) are free Boltzmann quadrangulations with simple boundary, the estimates of this subsection
enable us to compare peeling processes on the UIHPQS and peeling processes on free Boltzmann quadrangulations
with simple boundary of perimeter 2l. We remark that similar ideas to the ones appearing in this subsection (but in
the case of triangulations) appear in [4, Section 4].

For the statements of our estimates, we will use the following notation, which is illustrated in Figure 6.

Definition 3.5. Let l ∈ N and consider a peeling process and edge set A⊂ β∞([1,2l − 1]Z) as above.

• We write I l for the smallest j ∈N for which Q̇∞
j contains an edge of E(∂Q∞) \ β∞([1,2l − 1]Z).

• With P(Q∞,e∞) the peeling indicator from Section 3.1.1, we write F l = {P(Q∞,e∞) = (2l − 1,∞)}. Equiva-
lently, F l is the event that the terminal endpoint of β∞(2l − 1) is a vertex of the peeled quadrilateral f(Q∞,e∞),
and this quadrilateral has one vertex which is not in ∂Q∞, so that β∞([1,2l − 1]Z) is precisely the set of edges of
∂Q∞ disconnected from ∞ by f(Q∞,e∞).

We note that if F l occurs, then I l is the same as the first time at which the peeled quadrilateral f(Q∞,e∞) belongs
to Q̇∞

j . Indeed, since we cannot peel any edges in ∂Ql \A, the cluster Q̇I l must contain a path in the dual of Q∞ from
a quadrilateral which contains an edge of A to a quadrilateral which contains an edge of ∂Q∞ \ β∞([1,2l − 1]Z), so
must contain f(Q∞,e∞) if F l occurs. On the other hand, f(Q∞,e∞) contains the edge e∞ ∈ ∂Q∞ \β∞([1,2l−1]Z),
so cannot belong to Q̇∞

j for j < I l .
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Fig. 6. Illustration of the setup considered in Section 3.4. If we condition on the event F l that the blue arc β∞([1,2l − 1]Z) is precisely the arc
disconnected from ∞ by the light blue peeled quadrilateral f(Q∞,e∞) (and this arc lies on the boundary of a single complementary connected
component of the light blue quadrilateral), then the bounded complementary connected component of this peeled quadrilateral (grey and green
regions) is a free Boltzmann quadrangulation with simple boundary of perimeter 2l. We consider a peeling process on Q∞ which does not peel
any edges of ∂Q∞ \ A for an edge set A ⊂ β∞([1,2l − 1]Z) (a cluster of this peeling process is shown in light green). If we stop this process
at a time before the first time I l that it disconnects an edge of ∂Q∞ \ β∞([1,2l − 1]Z) from ∞, then we can apply Bayes’ rule to compute
the Radon–Nikodym derivative of conditional law of the process given F l with respect to its unconditional law (Lemma 3.6). This allows us to
compare peeling processes on the UIHPQS to peeling processes on free Boltzmann quadrangulations with simple boundary.

By the Markov property of peeling if we condition on F l then the conditional law of the disconnected quadrangu-
lation Q := F(Q∞,e∞) is that of a free Boltzmann quadrangulation with simple boundary of perimeter 2l and our
given peeling process run up to time I l is a peeling process of Q. Hence comparing peeling processes of Q and Q∞
is equivalent to comparing the conditional law given I l of our peeling process run up to time I l to its unconditional
law. The main tool which we will use for this purpose is the following elementary lemma.

Lemma 3.6. Suppose we are in the setting described just above. Let ι be a stopping time for {F∞
j }j∈N which is

less than I l with positive probability. Then the conditional law of {Q̇l
j ,P(Q

∞
j−1, ė

∞
j )}j∈[1,ι]Z given F l restricted to

the event {ι < I l} is absolutely continuous with respect to the unconditional law of this same peeling process, with
Radon–Nikodym derivative given by

54−W∞
ι /2Z(W∞

ι + 2l)

Z(2l)
1(ι<I l) = (1 + o(1)

)(W∞
ι

2l
+ 1

)−5/2

1(ι<I l), (3.15)

where here W∞ is the net boundary length process from Definition 3.2, Z is the free Boltzmann partition function as
in (1.1), and the o(1) tends to zero as l ∧ (W∞

ι + 2l) tends to ∞, at a deterministic rate.

Proof. Write S∞
ι = {(Q̇∞

j ,P(Q∞
j−1, ė

∞
j ))}j∈[1,ι]Z and let S∞ be a realization of S∞

ι for which ι < I l (equivalently,

the realization of Q̇∞
ι does not contain any edges outside of β∞([1,2l − 1]Z)). By Bayes’ rule,

P
[
S∞

ι =S∞ | F l
]= P[F l | S∞

ι =S∞]P[S∞
ι =S∞]

P[F l] . (3.16)

By (3.4),

P
[
F l
]= 1

12
541−lZ(2l). (3.17)

By the Markov property of peeling, if we condition on {S∞
ι = S∞}, then the conditional law of the unexplored

quadrangulation (Q
∞
ι ,e∞), with the original root edge, is that of a UIHPQS. Note that since ι < I l , the edge e∞ and

the terminal endpoint of β∞(2l − 1) both belong to ∂Q
∞
ι . The distance along ∂Q

∞
ι from e∞ to the terminal endpoint

of β∞(2l − 1) is equal to W∞
ι + 2l − 1. By (3.4),

P
[
F l | S∞

ι =S∞]= P
[
P
(
Q

∞
ι ,e∞)= (W∞

ι + 2l − 1,∞) | S∞
ι =S∞]

= 1

12
541−l−W∞

ι /2Z
(
W∞

ι + 2l
)
, (3.18)

with universal implicit constants. We obtain the first formula in (3.15) by combining (3.16), (3.17), and (3.18). The
second formula follows from Stirling’s approximation (cf. (3.5)). �
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Lemma 3.6 will be our main tool for estimating the probabilities of events associated with peeling processes on a
free Boltzmann quadrangulation with simple boundary. However, for the sake of completeness we will also record a
slightly different estimate with a deterministic Radon–Nikodym derivative which will be needed in [28]. The reader
who only wants to see the proof of Theorem 1.4 can skip the remainder of this subsection.

Let A = [aL, aR]Z be a discrete interval which is contained in [1,2l − 1]Z and such that β∞(A) contains the initial
edge set A and let

ι(A) := min
{
j ∈ N : E(Q̇∞

j ∩ ∂Q∞) �⊂ β∞(A)
}
.

We note that if F l occurs, then necessarily ι(A) < I l .

Lemma 3.7. For any event E belonging to the σ -algebra F∞
ι(A)−1 ∨ σ(ι(A)),

P
[
E | F l

]� ( l

(2l − aR) ∧ aL

)5/2

P[E] (3.19)

with universal implicit constant.

In the statement of Lemma 3.7, it is crucial that E does not depend on the peeling step at time ι(A). The idea of
the proof of Lemma 3.7 is to prove deterministic estimates for the conditional law of W∞

ι(A) given F∞
ι(A)−1 ∨ σ(ι(A)),

which will in turn lead to estimates for the conditional expectation of the Radon–Nikodym derivative appearing in
Lemma 3.6 at time ι = ι(A) given this σ -algebra.

Lemma 3.8. Suppose we are in the setting of Lemma 3.7. Also let KL (resp. KR) be the largest k ∈ N0 for which
β∞(aL − k) (resp. β∞(aR + k)) belongs to Q̇∞

ι(A), or 0 if no such k ∈ N0 exists (note that either KL or KR must be
positive). Then for kL, kR ∈ N,

P
[
KL = kL,KR = kR | F∞

ι(A)−1 ∨ σ
(
ι(A)
)]� (kL + kR)3/2k

−5/2
L k

−5/2
R

with universal implicit constant.

Proof. Let �L (resp. �R) be the ∂Q
∞
ι(A)−1-graph distance from ė∞

ι(A) to β∞(aL) (resp. β∞(aR)). Note that these

quantities are well-defined since β∞(aL) and β∞(aR) belong to ∂Q
∞
ι(A)−1.

Let i ∈N. By the Markov property of peeling, if we condition on F∞
i−1 and the event {ι(A) = i}, then the conditional

law of the peeled quadrilateral f(Q
∞
i−1, ė

∞
i

) is the same as its conditional law given that it covers up at least �L edges

of ∂Q
∞
i−1 to the left of ė∞

i
or at least �R edges of ∂Q

∞
i−1 to the right or ė∞

i
. By (3.6), the probability that this is the

case is proportional to (�L ∧ �R)−3/2. By combining this with (3.6), we obtain

P
[
KL = kL,KR = kR | ι(A) = i,F∞

i−1

]� (�L ∧ �R)3/2(kL + �L)−5/2(kR + �R)−5/2. (3.20)

Suppose without loss of generality that �L ≤ �R . Then the right side of (3.20) is at most �
3/2
L (kL + �L)−5/2(kR +

�L)−5/2. This quantity is maximized over all possible values of �L at �L = 1
7 (

√
k2
L + 23kLkR + k2

R − kL − kR) where
it equals

344
√

7(

√
k2
L + 23kLkR + k2

R − kL − kR)3/2

(6kR − kL +
√

k2
L + 23kLkR + k2

R)5/2(6kL − kR +
√

k2
L + 23kLkR + k2

R)5/2
� (kL + kR)3/2k

−5/2
L k

−5/2
R .

�

From Lemma 3.7, we deduce estimates for the conditional law given F l of the left and right overshoot quantities
KL and KR appearing in Lemma 3.8. For the statement of the estimates, we recall that on F l , we have ι(A) < I l , so
KL ≤ aL and KR ≤ 2l − 1 − aR .
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Lemma 3.9. Suppose we are in the setting of Lemma 3.9 and let E ∈ F∞
ι(A)−1 ∨ σ(ι(A)). For kL ∈ [1, aL]Z and

kR ∈ [1,2l − 1 − aR]Z,

P
[
E ∩ {KL = kL,KR = kR} | F l

]� l5/2(kL + kR)3/2

k
5/2
L k

5/2
R (2l − aR + aL − kL − kR)5/2

P[E], (3.21)

with universal implicit constant. In particular,

P

[
E ∩
{
KL ≥ 1

2
aL and KR ≥ 1

2
(2l − aR)

} ∣∣∣ F l

]
� l5/2(2l − aR + aL)3/2

a
5/2
L (2l − aR)5/2

P[E] (3.22)

with universal implicit constant.

Proof. To make the symmetry in our formulas more apparent, we define

mL := aL and mR := 2l − 1 − aR. (3.23)

On the event {kL = kL,KR = kR}, the number of covered edges at time ι(A) (Definition 3.2) satisfies

Y∞
ι(A) ≤ aR − aL + kL + kR = 2l − 1 − (mL + mR − kL − kR).

The number of exposed edges always satisfies X∞
ι(A) ≥ 1, so

W∞
ι(A) ≥ mL + mR − kL − kR − 2l. (3.24)

By applying (3.24) to bound the Radon–Nikodym derivative from Lemma 3.6, we find that for E as in the statement
of the lemma,

P
[
E ∩ {KL = kL,KR = kR} | F l

]� ( 2l

mL + mR − kL − kR + 1

)5/2

P
[
E ∩ {KL = kL,KR = kR}]. (3.25)

By Lemma 3.8 and since E ∈ F∞
ι(A)−1 ∨ σ(ι(A)),

P
[
E ∩ {KL = kL,KR = kR}]� (kL + kR)3/2k

−5/2
L k

−5/2
R P[E]. (3.26)

Combining (3.25) and (3.26) yields (3.21). We obtain (3.22) by summing (3.21) over all (kL, kR) ∈ [mL/2,mL]Z ×
[mR/2,mR]Z. �

Proof of Lemma 3.7. Let KL and KR be as in Lemma 3.8 and let

G :=
{
KL ≥ 1

2
aL and KR ≥ 1

2
(2l − 1 − aR)

}
.

For an event E as in the statement of the lemma, we have by Lemma 3.9 that

P
[
E ∩ G | F l

]� l5/2(2l − aR + aL)3/2

a
5/2
L (2l − aR)5/2

P[E] �
(

l

(2l − aR) ∧ aL

)5/2

P[E]. (3.27)

On the other hand, if Gc occurs then either KL ≤ 1
2aL or KR ≤ 1

2 (2l − aR) so by (3.24), W∞
ι(A) ≥ 1

2 (aL ∧ (2l − aR))−
2l. By Lemma 3.7,

P
[
E ∩ Gc | F l

]� ( l

(2l − aR) ∧ aL

)5/2

P
[
E ∩ Gc

]
. (3.28)

Summing (3.27) and (3.28) yields (3.19). �
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4. Peeling by layers

In this section we introduce the peeling-by-layers process of a free Boltzmann quadrangulation with simple boundary,
which is the only peeling process we will consider in the sequel. This peeling process is an analog for quadrangulations
with boundary of the peeling-by-layers process for the UIPQ studied in [20]. (A more complicated two-sided version
of this peeling process for a pair of UIHPQS’s glued together along their boundaries appears in [18,25].)

We will define the peeling-by-layers process in Section 4.1. In Section 4.2, we prove some estimates for the peeling-
by-layers process on the UIHPQS, which can be transferred to estimates for free Boltzmann quadrangulations with
simple boundary using the results of Section 3.4. In Section 4.3, we explain how the estimates of this paper enable us
to couple a UIHPQS and a free Boltzmann quadrangulation with finite simple boundary in such a way that they agree
in a neighborhood of the root edge with high probability.

4.1. The peeling-by-layers process

Let l ∈ N ∪ {∞} and let (Q,e) be a free Boltzmann quadrangulation with simple boundary of perimeter 2l (so that
(Q,e) is a UIHPQS if l = ∞). Also let e∗ ∈ E(∂Q); we also allow e∗ = ∞ in the case when l = ∞. Fix a finite
connected initial edge set A⊂ E(∂Q) which does not contain e∗, in a manner which depends only on (∂Q,e,e∗)

We will inductively define a peeling process for Q targeted at e∗ called the peeling-by-layers process started
from A. Let Q0 = Q, let Q̇0 be the quadrangulation with no internal faces whose edge set is A.

Inductively, suppose j ∈ N and Qi and Q̇i have been defined for i ∈ [0, j − 1]Z. If Qj−1 = ∅, we set Qj = ∅

and Q̇j = Q. Otherwise, let ėj be an edge in E(∂Qj−1 ∩ ∂Q̇j−1) which lies at minimal Q̇j−1-graph distance from A,
chosen in a manner which depends only on ∂Q̇j−1 and ∂Qj−1 ∩ ∂Q̇j−1. Recalling the notation of Section 3.1.1, we
peel Qj−1 at ėj to obtain the quadrilateral f(Qj−1, ėj ) and the planar map F∞(Qj−1, ėj ) which it disconnects from
e∗ in Qj−1. Define

Q̇j := Q̇j−1 ∪ f(Qj−1, ėj ) ∪ Fe∗(Qj−1, ėj ) and Qj := Peele∗(Qj−1, ėj ).

By induction Qj is a quadrangulation with simple boundary, Qj and Q̇j intersect only along their boundaries, and
Q = Qj ∪ Q̇j .

Define the peeling filtration

Fj := σ
(
Q̇i,P(Qi−1, ėi ) : i ∈ [1, j ]Z

)
, ∀j ∈N0, (4.1)

where here P(·, ·) is the peeling indicator variable from Section 3.1.1. Note that Q̇j and ėj+1 are Fj -measurable for
j ∈ N0.

Also define the boundary length processes {Xj }j∈N0 , {Yj }j∈N0 , and {Wj }j∈N0 as in Definition 3.2 for the peeling-
by-layers process.

We record for reference what the Markov property of peeling tells us in the setting of this subsection.

Lemma 4.1. Let ι be an a.s. finite stopping time for the filtration {Fj }j∈N0 from (4.1). The conditional law of
(Qι, ėι+1) given Fι is that of a free Boltzmann quadrangulation with simple boundary with perimeter 2l + Wι, where
W is the net boundary length process from Definition 3.2.

Proof. This is immediate from the Markov property of peeling. �

For r ∈N0, let

Jr := min
{
j ∈N0 : dist(ėj+1,A; Q̇j ) ≥ r

}= min
{
j ∈N0 : dist(∂Qj ∩ ∂Q̇j ,A; Q̇j ) ≥ r

}
, (4.2)

so that Jr for r ∈ N0 is a stopping time for {Fj }j∈N0 . The following lemma is the main reason for our interest in the
peeling-by-layers process.
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Lemma 4.2. For r ∈N0, let B•
r (A;Q) be the filled graph metric ball of radius r centered at A, i.e. the subgraph of Q

which is the union of Br(A;Q) and the set of all vertices and edges which it disconnects from e∗ (or B•
r (A;Q) = Q

if e∗ ∈ Br(A;Q)). For each r ∈ N0,

B•
r (A;Q) ⊂ Q̇Jr ⊂ B•

r+2(A;Q). (4.3)

Proof. It suffices to show inclusion of the vertex sets of the graphs in (4.3), since an edge in either of these graphs is
the same as an edge of Q whose endpoints are both in the vertex set of the graph. We proceed by induction on r . The
base case r = 0 (in which case Jr = 0) is true by definition. Now suppose r ∈ N and (4.3) holds with r − 1 in place
of r .

If we are given a vertex v of Br(A;Q) \ V(Q̇Jr−1), then there is a w ∈ Br−1(A;Q) with dist(w,A;Q) = r − 1.
By the inductive hypothesis, w belongs to V(∂QJr−1

∩ ∂Q̇Jr−1). By the definition (4.2) of Jr , we have w /∈ V(∂QJr
∩

∂Q̇Jr ) so we must have v ∈ V(Q̇Jr ). Hence Br(A;Q) ⊂ Q̇Jr . Since Q̇Jr contains every vertex or edge which it
disconnects from ∞, we obtain the first inclusion in (4.3).

For the second inclusion, we observe that the definition of Jr implies that each of the peeled quadrilaterals
f(Qj−1, ėj ) for j ∈ [Jr−1 + 1, Jr ]Z has a vertex which lies at Q̇j−1-graph distance at most r − 1 from A. Hence
each vertex of this quadrilateral lies at Q̇j−1-graph distance at most r + 2 from A. Every vertex in Q̇Jr is either
contained in Q̇Jr−1 , incident to one of the quadrilaterals f(Qj−1, ėj ) for j ∈ [Jr−1 + 1, Jr ]Z, or disconnected from ∞
in Q by the union of Q̇Jr−1 and these quadrilaterals. By combining these observations with the inductive hypothesis
that Q̇Jr−1 ⊂ B•

r+1(A;Q), we obtain the second inclusion in (4.3). �

4.2. Estimates for the peeling-by-layers process on the UIHPQS

For the proof of Theorem 1.4, we will require several estimates for the peeling-by-layers process introduced in the
preceding subsection. Throughout this subsection, we consider only the case of the UIHPQS (i.e., l = ∞) and we target
our process at e∗ = ∞ (we will eventually transfer these estimates to the case of free Boltzmann quadrangulations
with finite boundary using Lemma 3.6). We use the notation of Section 4.1 but include an additional superscript ∞ to
denote the UIHPQS case.

Our first estimate is a bound for the number of covered edges in the radius-r peeling-by-layers cluster, which is
essentially proven in [25].

Lemma 4.3. Let A⊂ E(∂Q∞) and define the times {J∞
r }r∈N0 when the peeling-by-layers clusters reach radius r , as

in (4.2). Also let Y∞ be the covered boundary length process, as in Definition 3.2. For each p ∈ (1,3/2) and each
r ∈N0, it holds that

E
[(

Y∞
J∞
r

)p]� (r + (#A)1/2)2p

with implicit constant depending only on p.

Proof. For convenience we will deduce the lemma from [25, Proposition 5.1], which gives a moment estimate for
the analog of the peeling-by-layers process in the planar map obtained by gluing together two independent UIHPQS’s
along their boundary. The statement of the lemma can also be obtained directly using an argument which is similar to
but slightly simpler than the proof of [25, Proposition 5.1].

By Lemma 4.2, the peeling-by-layers cluster Q̇∞
J∞
r

is contained in the radius-(r + 2) filled metric ball in Q∞
centered at A (with respect to ∞). If we glue Q∞ to another independent UIHPQS along their positive boundaries
to obtain an infinite quadrangulation with boundary Qzip, then the radius-(r + 2) filled metric ball centered at A in
Q∞ is contained in the radius-(r + 2) filled metric ball centered at A in Qzip. By [25, Lemma 4.3], the radius-(r + 2)

glued peeling cluster for Qzip started from the initial edge set A (as defined in [25, Section 4.1]) contains this latter
filled metric ball. Hence the statement of the lemma follows from [25, Proposition 5.1]. �

We next prove an estimate which enables us to compare filled metric balls in the UIHPQS, which by Lemma 4.2
are essentially the same thing as peeling-by-layers clusters, to ordinary filled metric balls.
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Lemma 4.4. For each ε ∈ (0,1), there exists R = R(ε) > 1 such that the following is true for each r ∈ N. Let
B•

r (e∞;Q∞) be the filled metric ball of radius r centered at the root edge, i.e. the subgraph of Q∞ consisting of
Br(e∞;Q∞) and all of the vertices and edges which it disconnects from ∞. Then

P
[
B•

r

(
e∞;Q∞)⊂ BRr

(
e∞;Q∞)]≥ 1 − ε. (4.4)

The statement of Lemma 4.4 is not immediate from the scaling limit result [24, Theorem 1.12] for the UIHPQS
toward the Brownian half-plane in the local GHPU topology since filled metric balls are not a continuous functional
with respect to the local GHPU topology. We will still use [24, Theorem 1.12] to prove Lemma 4.4, but the argument
is not as straightforward as one might expect.

Proof of Lemma 4.4. Let β∞ be the boundary path of Q∞ satisfying β∞(0) = e∞. By Lemma 4.3, there exists
T = T (ε) > 0 such that for each r ∈ N, it holds with probability at least 1 − ε/2 that Y∞

J∞
r

≤ T r2 which by Lemma 4.2
implies that

β∞([T r2,∞)
Z
) ∩ B•

4r

(
e∞;Q∞)=∅. (4.5)

We will now apply the scaling limit result [24, Theorem 1.12]. Let (H∞, d∞,μ∞, ξ∞) be a Brownian half-
plane equipped with its natural metric, area measure, and boundary path, with ξ∞(0) the root vertex. For ρ > 0,
let B•

ρ(ξ∞(0);d∞) be the continuum filled metric ball, i.e. the union of Bρ(ξ∞(0);d∞) and the set of points in H∞
which are disconnected from ∞ by B•

ρ(ξ∞(0);d∞). Since the Brownian half-plane has the topology of the ordinary
half-plane (see, e.g., [6, Corollary 3.8]), it is one-ended. Consequently, each B•

ρ(ξ∞(0);d∞) has finite diameter.
After possibly increasing the parameter T in (4.5), we can find R = R(ε) > 4 and S = S(ε) > R such that with

probability at least 1 − ε/4, the following hold.

1. B•
2 (ξ∞(0);d∞) ⊂ BR/2(ξ

∞(0);d∞).
2. ξ∞(T ) ∈ BR(ξ∞(0);d∞) \ B•

4 (ξ∞(0);d∞).
3. The diameter of B3R(ξ∞(0);d∞) \ B3(ξ

∞(0);d∞) with respect to the internal metric of d∞ on H∞ \
B•

2 (ξ∞(0);d∞) is at most S.

If this is the case, then for each x ∈ B3R(ξ∞(0);d∞) \ B3(ξ
∞(0);d∞), there is a path of d∞-length at most S

from x to ξ∞(T ) which does not enter B2(ξ
∞(0);d∞). Hence for each such x, there exist k + 1 ≤ 100S points

x0, . . . , xk ∈ H∞ \ B3(ξ
∞(0);d∞) such that d∞(x0, x) ≤ 1/100, d∞(xj , xj−1) ≤ 1/100 for each j ∈ [1, k]Z, and

d∞(xk, ξ
∞(T )) ≤ 1/100.

This latter condition behaves well under Gromov–Hausdorff limits. In particular, GHPU convergence of the
UIHPQS to the Brownian half-plane [24, Theorem 1.12] implies that for large enough r ∈ N, it holds with proba-
bility at least 1 − ε/2 that the following is true. For each vertex v in B2Rr(e∞;Q∞) \ B4r (e∞;Q∞), there exist
k ≤ 2S vertices v0, . . . , vk ∈ V(Q∞ \ B2r (e∞;Q∞)) such that the Q∞-graph distances between each of v0 and v, vj

and vj−1 for j ∈ [1, k]Z, and vk and β∞(�T r2�) are at most r/50. Let Er be the event that this is the case and that
(4.5) holds, so that P[Er ] ≥ 1 − ε for large enough r .

We claim that if Er occurs, then the event in (4.4) holds. Indeed, suppose to the contrary that there is a vertex
v ∈ V(B•

r (e∞;Q∞)) \ BRr(e∞;Q∞)). By possibly replacing v by an appropriate vertex along a geodesic from e∞
to v, we can assume that v belongs to B2Rr(e∞;Q∞). Choose vertices v0, . . . , vk as in the definition of Er for this
choice of v. By (4.5), β∞(�T r2�) is separated from v by the “annulus” B2r (e∞;Q∞) \ Br(e∞;Q∞), so since the
spacing between the vj ’s is at most r/50, one of these vertices has to belong to this annulus, contrary to the definition
of Er .

Thus (4.4) holds with probability at least 1−ε for large enough r . By possibly increasing R (in a manner depending
only on ε), we can arrange that this is the case for every r . �

We next prove an estimate which says that the times J∞
r for the peeling-by-layers process started from the root

edge are typically of order r3. Such an estimate does not follow immediately from [24, Theorem 1.12] since the
time parameterization of the peeling-by-layers process is not encoded in a simple way by the metric measure space
structure of Q∞. We expect that one has a scaling limit result analogous to [20, Theorem 2] for the times J∞

r , but we
do not need such a strong result here. So, for the sake of brevity we will instead prove only the following bound.
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Lemma 4.5. Let {J∞
r }r∈N0 be the radius-r times for the peeling-by-layers process of the UIHPQS with A = {e∞}.

For each ε ∈ (0,1), there exists C = C(ε) > 1 such that for each r ∈N,

P
[
C−1r3 ≤ J∞

r ≤ Cr3]≥ 1 − ε.

Proof. We will use the local GHPU scaling limit result for the UIHPQS to obtain upper and lower bounds for the area
of Br(e∞;Q∞), then use Proposition 3.3, Lemma 4.2, and Lemma 4.4 to argue that these lower bounds are violated
if J∞

r is either too small or too large.
First choose R = R(ε) > 0 such that the conclusion of Lemma 4.4 is satisfied with R/2 in place of R, so that by

Lemma 4.2, for r ≥ 2 it holds that

P
[
Q̇∞

J∞
r

⊂ BRr

(
e∞;Q∞)]≥ 1 − ε/4. (4.6)

Let (H∞, d∞,μ∞, ξ∞) be an instance of the Brownian half-plane, equipped with its natural metric, area measure,
and boundary path, so that ξ∞(0) is the marked boundary point. The measure μ∞ a.s. assigns positive mass to open
subsets of H∞, so for each ρ > 0 there exists C0 = C0(ε, ρ) > 8 such that

P

[
μ∞(Bρ

(
ξ∞(0);d∞))≥ 4C−1

0 and μ∞(BRρ

(
ξ∞(0);d∞))≤ 1

4
C0

]
≥ 1 − ε/4. (4.7)

By [24, Theorem 1.12], the UIHPQS equipped with its graph metric rescaled by (9/8)1/4r−1, the measure which

assigns mass to each vertex equal to 1
4 r−4 times its degree, and its boundary path re-parameterized by t �→ 22/3

3 r3t

converges in the local GHPU topology to (H∞, d∞,μ∞, ξ∞). By Lemma 4.2, (4.6), and (4.7) there exists r0 =
r0(ε) ≥ 2 such that for r ≥ r0,

P
[
C−1

0 r < #V
(
Q̇∞

J∞
r

)
< C0r

]≥ 1 − ε/2. (4.8)

By Proposition 3.3, the number of vertices in Q̇∞
j is typically of order j4/3, i.e. we can find C1 = C1(ε) > 1 and

j∗ = j∗(ε) ∈N0 such that for j ≥ j∗,

P
[
C−1

1 j4/3 < #V
(
Q̇∞

j

)
< C1j

4/3]≥ 1 − ε/2. (4.9)

Set C = (C0C1)
3/4 and r∗ = r0 ∨ (Cj∗)1/3. By (4.8) and (4.9) (the latter applied with j = �C−1r3�), for r ≥ r∗,

P
[
J∞

r < C−1r3]≤ P
[
#V
(
Q̇∞

J∞
r

)≤ C−1
0 r4]+ P

[
#V
(
Q̇∞

�C−1r3�
)≥ C−1

0 r4]≤ ε.

We similarly find that for large enough r , it holds that P[J∞
r > Cr3] ≤ ε. By possibly increasing C to deal with finitely

many small values of r , we obtain the statement of the lemma with 2ε in place of ε. Since ε ∈ (0,1) is arbitrary, we
conclude. �

4.3. Coupling a free Boltzmann quadrangulation with the UIHPQS

In this subsection we will prove a lemma which gives that one can couple a UIHPQS and a free Boltzmann quad-
rangulation with simple boundary in such a way that they agree in a metric neighborhood of the root edge with high
probability. Actually, we will prove a slightly stronger statement with filled metric balls in place of ordinary metric
balls. The result of this subsection is not needed for the proof of Theorem 1.4, but it is of independent interest and is
an easy consequence of our other estimates so we include it for the sake of completeness.

Let (Q∞,e∞) be a UIHPQS and for l ∈N, let (Ql,el ) be a free Boltzmann quadrangulation with simple boundary
of perimeter 2l. Let el∗ be the edge of ∂Ql directly opposite from the root edge el (i.e., if βl is the boundary path
started from el then el∗ = βl(l)). For r ≥ 0, let B•

r (e∞;Q∞) (resp. B•
r (el;Ql)) be the filled metric ball relative to ∞

(resp. el∗).
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Proposition 4.6. For each ε ∈ (0,1) there exists α > 0 and n∗ ∈ N such that for n ≥ n∗, there is a coupling
of (Q∞,e∞) with (Ql,el ) with the following property. With probability at least 1 − ε, the filled metric balls
B•

αl1/2(e
∞;Q∞) and B•

αl1/2(e
l;Ql) equipped with the graph structures they inherit from Q∞ and Ql , respectively, are

isomorphic (as graphs) via an isomorphism which takes e∞ to el and ∂Q∞ ∩B•
αl1/2(e

∞;Q∞) to ∂Ql ∩B•
αl1/2(e

l;Ql).

Proposition 4.6 is an analog in the setting of free Boltzmann quadrangulations with simple boundary of [24, Propo-
sition 4.5] (which treats the case of quadrangulations with general boundary) or [19, Proposition 9] (which treats the
case of quadrangulations without boundary).

Proof of Proposition 4.6. For r ≥ 0, let Q̇∞
J∞
r

(resp. Q̇l
J l
r
) be the radius-r peeling-by-layers cluster of Q∞ (resp. Ql)

started from e∞ (resp. el) and targeted at ∞ (resp. el∗). By Lemma 4.2, it suffices to prove the statement of the lemma
with Q̇∞

J∞
αl1/2

and Q̇l

J l

αl1/2
in place of B•

αl1/2(e
∞;Q∞) and B•

αl1/2(e
l;Ql).

By Lemmas 4.3 and 4.5, there exists C0 = C0(ε) > 0 such that for r ∈N,

P
[
Y∞

J∞
r

≤ C0r
2 and J∞

r ≤ C0r
3]≥ 1 − ε/2.

By Proposition 3.3, the supremum of the net boundary length process W∞ up to time C0r
3 is typically of order

r2, so there exists C = C(ε) ≥ C0 such that for r ∈ N, it holds with probability at least 1 − ε that Y∞
J∞
r

≤ Cr2 and

W∞
J∞
r

≤ Cr2. If this is the case, then the exposed boundary length satisfies X∞
J∞
r

≤ 2Cr2.

Choose α < (2C)−1/2ε1/2. For l ∈ N, applying the above estimate with r = �αl1/2� shows that it holds with
probability at least 1 − ε that Y∞

J∞
αl1/2

∨ X∞
J∞
αl1/2

≤ εl. By Lemma 3.6 (applied with the root edge of Q∞ translated l

units to the left) we infer that on the event that this is the case, the Radon–Nikodym derivative of the law of the triple
(Q̇l

J l
r
, ∂Ql ∩ Q̇l

J l
r
,el ) with respect to the law of (Q̇∞

J∞
r

, ∂Q∞ ∩ Q̇∞
J∞
r

,e∞) is of order (1 + ol(1))(1 + 2ε)−5/2. Since

ε ∈ (0,1) is arbitrary, the statement of the proposition follows. �

5. Proofs of Theorems 1.4 and 1.5

5.1. Proof of Theorem 1.4

In this subsection we assume we are in the setting of Theorem 1.4 so that for l ∈ N, (Ql,el ) is a free Boltzmann
quadrangulation with simple boundary of perimeter 2l and Ql = (Ql, dl,μl, ξ l) is the corresponding rescaled curve-
decorated metric measure space. We will deduce Theorem 1.4 from Proposition 2.9 in the following manner. For
δ > 0, we let Ll

δ be a random variable whose law is as in Proposition 2.9 with �(1 + δ)l� in place of l, independent
from (Ql,el ). We grow the peeling-by-layers process of Ql started from el up to the first time T l

δ that the boundary
length of the unexplored quadrangulation is exactly 2Ll

δ .

On the event {T l
δ < ∞}, this unexplored quadrangulation Q

l

T l
δ

has the law of free Boltzmann quadrangulation

with simple boundary of perimeter 2Ll
δ , so by Proposition 2.9 Q

l

T l
δ

(equipped with its rescaled graph metric, area
measure, and boundary path) converges in the scaling limit in the GHPU topology to a free Boltzmann Brownian disk

of perimeter 1 + δ. We will show in Lemma 5.1 that Q
l

T l
δ

is a good approximation for Ql in the GHPU topology
provided a certain regularity event occurs; and in Lemma 5.3 that this regularity event occurs with high probability.
We will then deduce Theorem 1.4 by combining these statements.

We now proceed with the details. For l ∈N, we consider the peeling-by-layers process of (Ql,el ) with initial edge
set A= {el} targeted at the edge el∗ directly opposite from el in ∂Ql . We define the clusters {Q̇l

j }j∈N0 , the unexplored

quadrangulations {Ql

j }j∈N0 , the peeled edges {ėl
j }j∈N0 , the radius-r times {J l

r }r∈N0 , and the σ -algebras {F l
j }j∈N0 for

this process as in Section 4.1 and we define the boundary length processes Xl , Y l , and Wl as in Definition 3.2.
For δ > 0 and l ∈N, let Ll

δ be a random variable whose law is that of 1
2 #E(Core(Q̂l

δ)), where Q̂l
δ is a free Boltzmann

quadrangulation with general boundary of perimeter 6�(1 + δ)l�, independent from (Ql,el ). Define the time

T l
δ := min

{
j ∈N0 : Wl

j = 2Ll
δ − 2l
}= min

{
j ∈N0 : #E

(
∂Q

l

j

)= 2Ll
δ

}
. (5.1)
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By Lemma 4.1, on the event {T l
δ < ∞}, the conditional law of the unexplored quadrangulation Q

l

T l
δ

given Ll
δ and

the peeling σ -algebra FT l
δ

is that of a free Boltzmann quadrangulation with simple boundary of perimeter 2Ll
δ . Let

d
l

δ be the internal graph metric on Q
l

T l
δ

rescaled by (2/3)−1/2l−1/2, let μl
δ := μl |

Q
l

T l
δ

, let β
l

δ be the boundary path of

Q
l

T l
δ

started from the rightmost edge of ∂Q̇l

T l
δ

∩ ∂Q
l

T l
δ

and extended by linear interpolation, and let ξ
l

δ(t) := β
l
(2lt)

for t ∈ [0, l−1Ll
δ]. Also define the curve-decorated metric measure space

Q
l

δ := (Ql

T l
δ
, d

l

δ,μ
l
δ, ξ

l

δ

)
(5.2)

so that by Proposition 2.9, the conditional law of Q
l

δ converges weakly to the law of a free Boltzmann Brownian disk
of perimeter 1 + δ with respect to the GHPU topology.

The first main input in the proof of Theorem 1.4 tells us that Q
l

δ is a good approximation to Ql
δ in the GHPU sense

on a regularity event which (as we will see below) occurs with high probability. We split this event into two parts, one

which is F l

T l
δ

-measurable and one which is σ(Q
l

T l
δ
)-measurable.

For ε ∈ (0,1), let El
δ(ε) be the event that the following hold:

T l
δ < ∞, Y l

T l
δ

≤ εl, #V
(
Q̇l

T l
δ

)≤ εl2,

max
v∈V(Q̇l

T l
δ

)

dist
(
v,el; Q̇l

T l
δ

)≤ εl1/2, and Ll
δ ≤ (1 + ε)l.

(5.3)

The event El
δ(ε) is in the peeling σ -algebra F l

T l
δ

; this is why we consider internal graph distances in Q̇l

T l
δ

instead of

graph distances in Ql itself.
For α ∈ (0,1), also let

F l
δ (ε,α) := {dl

δ

(
ξ

l

δ(s), ξ
l

δ(t)
)≤ α,∀s, t ∈ [0, l−1Ll

δ

]
with |s − t | ≤ 4ε

}
. (5.4)

Lemma 5.1. For each ε ∈ (0,1) and each α ∈ (0,1), there exists l∗ = l∗(α, ε) ∈N such that for l ≥ l∗ and each δ > 0,

it holds on El
δ(ε) ∩ F l

δ (ε,α) that dGHPU(Ql ,Q
l

δ) ≤ 6α + 18ε.

For the proof of Lemma 5.1, we will use the following general lemma about the GHPU metric.

Lemma 5.2. Let X1 = (X1, d1,μ1, η1) and X2 = (X2, d2,μ2, η2) be elements of MGHPU (recall Section 1.2.3). Let
ε > 0 and suppose there is an injective map f : X1 → X2 (not necessarily continuous) such that the following is true.

1. For each x, y ∈ X1, one has |d1(x, y) − d2(f (x), f (y))| ≤ ε.
2. The d2-Hausdorff distance between f (X1) and X2 is at most ε.
3. The d2-Prokhorov distance between f∗μ1 and μ2 is at most ε.
4. The d2-uniform distance between f ◦ η1 and η2 is at most ε.

Then dGHPU(X1,X2) ≤ 6ε.

Proof. Define a metric d� on the disjoint union X1 � X2 by

d�(x, y) =

⎧⎪⎨⎪⎩
d1(x, y), x, y ∈ X1,

d2(x, y), x, y ∈ X2,

infu∈X1(d1(x,u) + d2(y, f (u)) + ε), x ∈ X1, y ∈ X2,

and define d� in a symmetric manner if x ∈ X2 and y ∈ X1. It is easily verified using condition 1 that d� satisfies the
triangle inequality, so is a metric on X1 � X2. By condition 2 and since d�(x, f (x)) = ε for each x ∈ X1, we infer
that the d�-Hausdorff distance between X1 and X2 is at most 2ε. Condition 3 implies that the d�-Prokhorov distance
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between μ1 and μ2 is at most 2ε (here is the only place where we use injectivity of f ) and condition 4 implies that
the d�-uniform distance between η1 and η2 is at most ε. �

Proof of Lemma 5.1. Suppose El
δ(ε) ∩ F l

δ (l, α) occurs. We will check the hypotheses of Lemma 5.2 with X1 = Q
l

δ ,

X2 =Ql , and f the inclusion map Q
l

T l
δ
→ Ql .

Since Y l

T l
δ

≤ εl and Wl

T l
δ

= Ll
δ − 2l ≤ 2εl, the exposed boundary length process satisfies Xl

T l
δ

≤ 3εl and hence

#E(∂Q̇l
l) ≤ 4εl.

We first check that dl and d
l

δ distances are comparable. Suppose x, y ∈ Q
l

T l
δ
. It is clear that dl(x, y) ≤ d

l

δ(x, y).

To obtain an inequality in the reverse direction, let γ : [0, dl(x, y)] → Ql be a dl-geodesic from x to y (extended

by linear interpolation). If γ does not enter Q̇T l
δ
, then clearly dl(x, y) = d

l

δ(x, y). Otherwise, let t1 (resp. t2) be the

first (resp. last) time that γ enters (resp. exits) Q̇l

T l
δ

. Then γ (t1), γ (t2) ∈ ∂Q̇l

T l
δ

so since Xl
Tδ

≤ 3εl the rescaled Q
l

T l
δ
-

boundary length distance from γ (t1) to γ (t2) is at most 3ε. By definition of F l
δ (l, α), there exists a path γ ′ in Q

l

T l
δ

from γ (t1) to γ (t2) with d
l

δ-length at most α. Concatenating γ |[0,t1], γ ′, and γ |[t2,dl (x,y)] shows that

dl(x, y) ≤ d
l

δ(x, y) ≤ dl(x, y) + α.

Since diam(Q̇l

T l
δ

;dl) ≤ 2ε, the dl-Hausdorff distance from Ql to Q
l

δ is at most 2ε. Since #V(Q̇l

T l
δ

) ≤ εl2 and Q̇l

T l
δ

is

a quadrangulation with simple boundary, an Euler’s formula argument shows that μl(Q̇l

T l
δ

) ≤ 2ε + ol(1) with the rate

of the ol(1) deterministic and universal (it comes from the fact that #E(∂Q̇l
l) ≤ 4εl). Hence the dl-Prokhorov distance

between μl and μl
δ is at most 2ε. By definition of F l

δ (l, α), since #E(∂Q̇l
l) ≤ 4εl, and since diam(Q̇l

T l
δ

;dl) ≤ 2ε, the

dl-uniform distance between ξ l and ξ
l

δ is at most α + ε.
Thus, for large enough l ∈ N, depending only on ε and α, the conditions of Lemma 5.2 are satisfied on El

δ(ε) ∩
F l

δ (l, α) with X1 = Q
l

δ , X2 = Ql , f the inclusion map, and α + 3ε in place of ε. So, the statement of the lemma
follows from Lemma 5.2. �

Before we can deduce Theorem 1.4 from Proposition 2.9 and Lemma 5.1, we need to argue that the regularity
event in Lemma 5.1 occurs with high probability. Actually, we will only explicitly write down an estimate for the
probability of the event El

δ(ε); the estimate for P[F l
δ (ε,α)] is an easy consequence of Proposition 2.9 and is explained

in the proof of Theorem 1.4.

Lemma 5.3. Define the events El
δ(ε) as in (5.3). For each ε,α ∈ (0,1/4), there exists δ∗ = δ∗(ε,α) > 0 such that for

each δ ∈ (0, δ∗] there exists l∗ = l∗(δ, ε,α) ∈N such that for l ≥ l∗,

P
[
El

δ(ε)
]≥ 1 − α.

We will deduce Lemma 5.3 from an analogous estimate for the peeling-by-layers process on the UIHPQS and
local absolute continuity, in the form of Lemma 3.6. Let (Q∞,e∞) be a UIHPQS independent from Ll

δ and consider
the peeling-by-layers process of Q∞ started from e∞ and targeted at ∞. We define the objects associated with this
process as in Section 4.1 and as per usual we denote these objects by a superscript ∞.

In analogy with (5.1), define

T
∞,l
δ := min

{
j ∈ N0 : W∞

j = 2Ll
δ − 2l
}
,

where here W∞ is the net boundary length process for our peeling-by-layers process. For ε ∈ (0,1), let E
∞,l
δ (ε) be

the event that

T
∞,l
δ < ∞, Y∞

T
∞,l
δ

≤ εl, #V
(
Q̇∞

T
∞,l
δ

)≤ εl2,

max
v∈V(Q̇∞

T
∞,l
δ

)

dist
(
v,e∞; Q̇∞

T
∞,l
δ

)≤ εl1/2, and Ll
δ ≤ (1 + ε)l. (5.5)
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Lemma 5.4. For each ε,α ∈ (0,1/4), there exists δ∗ = δ∗(ε,α) > 0 such that for each δ ∈ (0, δ∗] there exists l∗ =
l∗(δ, ε,α) ∈N such that for l ≥ l∗,

P
[
E

∞,l
δ (ε)

]≥ 1 − α.

Proof. Fix ε,α ∈ (0,1/4) to be chosen later. By Lemma 4.3, there is a δ0 = δ0(ε,α) ∈ (0, ε/2] such that for l ∈ N,

P
[
Y∞

�δ0l
3/2� ≤ εl

]≥ 1 − α. (5.6)

Note here that j �→ Y∞
j is non-decreasing. By Proposition 3.3, by possibly shrinking δ0 we can arrange that also

P
[
#V
(
Q̇∞

�δ0l
3/2�
)≤ εl2]≥ 1 − α. (5.7)

By Lemma 4.4, we can find δ1 = δ1(ε,α) ∈ (0, δ0] such that for l ∈ N,

P
[
Q̇∞

J∞
�δ1 l1/2�

⊂ B(ε/2)l1/2−4

(
e∞;Q∞)]≥ 1 − α. (5.8)

By Lemma 4.5, by possibly shrinking δ1 we can arrange that also

P
[
J∞

�δ1l
1/2� ≤ δ0l

3/2]≥ 1 − α. (5.9)

By Proposition 3.3, the process t �→ l−1W∞
�t l3/2� converges in law in the local Skorokhod topology to a totally

asymmetric 3/2-stable process with no upward jumps. In particular, there is a δ2 = δ2(ε,α) > 0 and an l0 = l0(ε,α) ∈
N such that for l ≥ l0,

P

[
max

j∈[0,δ0l
3/2]Z

W∞
j ≥ δ2l

]
≥ 1 − α. (5.10)

By Proposition 2.9, the random variable l−1Ll
δ converges in law to the constant 1 + δ. Hence for δ ∈ (0,1), there

exists l1 = l1(δ, ε,α) ≥ l0 such that for l ≥ l1,

P
[
Ll

δ ∈ [(1 + δ/2)l,
(
1 + (3/2)δ

)
l
]]≥ 1 − α. (5.11)

Now set δ = δ∗/3 and suppose that the events in (5.6)–(5.11) occur, which happens with probability at least 1−6α.
We claim that E

∞,l
δ (ε) occurs. Indeed, since W∞

j −W∞
j−1 ≤ 2 for each j ∈N, the event in (5.10) implies that W∞ hits

every even integer in [0, δ2l]Z before time δ0. The event in (5.11) implies that 2Ll
δ − 2l ∈ [0, δ2l]Z, so T

∞,l
δ ≤ δ0l

3/2.
The events in (5.6), (5.7), and (5.9) immediately imply that

Y∞
T

∞,l
δ

≤ εl, #V
(
Q̇∞

T
∞,l
δ

)≤ εl2, and T
∞,l
δ ≤ J∞�δ1l�.

It remains only to check the distance condition in the definition of E
∞,l
δ (ε). Since T

∞,l
δ ≤ J∞�δ1l�, the event in (5.9)

tells us that each vertex of Q̇∞
T

∞,l
δ

lies at Q∞-graph distance at most (ε/2)l1/2 − 4 from e∞. We need to convert this

to a bound for Q̇∞
T

∞,l
δ

-graph distances. Let v ∈ V(Q̇∞
T

∞,l
δ

) and let γ be a Q∞-geodesic from e∞ to v. If γ stays in

Q̇∞
T

∞,l
δ

, then dist(e∞, v;Q∞) = dist(e∞, v; Q̇∞
T

∞,l
δ

) and we are done. Otherwise, let r∗ be the largest time in [1, |γ |]Z
for which γ (r) does not belong to Q̇∞

T
∞,l
δ

and let v∗ be the terminal endpoint of γ (r∗). Then v∗ ∈ ∂Q̇∞
T

∞,l
δ

so by

Lemma 4.2,

dist
(
e∞, v∗; Q̇∞

T
∞,l
δ

)≤ δ0l
1/2 + 4 ≤ (ε/2)l1/2 + 4.

By concatenating a Q̇∞
T

∞,l
δ

-geodesic from e∞ to v∗ with the path γ |[r∗+1,|γ |]Z from v∗ to v in Q̇∞
T

∞,l
δ

, we obtain the

desired distance bound. �
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Proof of Lemma 5.3. For l ∈ N, let Sl,∞(ε) := min{j ∈ N0 : Y∞
j ≥ εl}. Since j �→ Y∞

j is non-decreasing, the
event E∞

δ (ε) is F∞
Sl(ε)

-measurable. Since W∞
Sl,∞(ε)

≥ −l/4, the statement of the lemma now follows from Lemma 3.6

(applied at time Sl,∞(ε)) and Lemma 5.4. �

Proof of Theorem 1.4. Fix α ∈ (0,1/100) and for l ∈ N and δ > 0, let Q
l

δ be the curve-decorated metric measure
space as in (5.2). For l > 0, let Hl = (Hl, dl,μl, ξl) denote a free Boltzmann Brownian disk with perimeter l. Then with

H as in the statement of the lemma, Hl
d= (H, l1/2d, l2μ,ξ(l·)). From this we infer that there exists δ0 = δ0(α) ∈ (0,1)

such that for δ ∈ (0, δ0], the Prokhorov distance between the laws of H and Hl with respect to the GHPU metric is at
most α.

Since the conditional law of Q
l

Tδ
given Ll

δ and FT l
δ

on the event {T l
δ < ∞} is that of a free Boltzmann quad-

rangulation with simple boundary of perimeter 2Ll
δ , Proposition 2.9 implies that for each δ ∈ (0, δ0] there exists

l0 = l0(δ,α) ∈ N such that for l ≥ l0, the Prokhorov distance between the conditional law of Q
l

δ given {T l
δ < ∞} and

the law of H1+δ with respect to the GHPU metric is at most α. Hence the Prokhorov distance between the law of H

and the conditional law of Q
l

δ given {T l
δ < ∞} with respect to the GHPU metric is at most 2α.

By Proposition 2.9 and the above scaling argument, there exists ε0 = ε0(α) ∈ (0,1/4) such that for each δ ∈ (0, δ0]
and l ∈ N, on the event {T l

δ < ∞} it holds with conditional probability at least 1 − α given Ll
δ and F l

T l
δ

that the event

F l
δ (ε0, α) of (5.4) occurs.

Set ε = ε0 ∧ α. By Lemma 5.3, there exists δ ∈ (0, δ0] and l∗ = l∗(δ, ε,α) such that for l ≥ l∗, the event El
δ(ε)

occurs with probability at least 1 − α.
By combining the preceding two paragraphs with Lemma 5.1 we find that with probability at least 1 − 2α, we have

T l
δ < ∞ and dGHPU(Ql ,Q

l

δ) ≤ 24α. Hence the Prokhorov distance between the law of Ql and the conditional law of

Q
l

δ given {T l
δ < ∞} is at most 100α. Combining this with the conclusion of the second paragraph and using that α

can be made arbitrarily small concludes the proof. �

5.2. Proof of Theorem 1.5

Throughout this subsection we assume we are in the setting of Theorem 1.5, so that for l ∈ N, (Ql±,el±) are free
Boltzmann quadrangulations with simple boundary of perimeter 2l identified along their boundary paths βl± to obtain
the curve-decorated graph (Ql

Glue, β
l
Glue).

Now that Theorem 1.4 has been established, the key difficulty in the proof of Theorem 1.5 is showing that paths
between two given points of Ql

Glue which cross the gluing interface βl
Glue more than a constant order number of times

are not substantially shorter than paths which cross only a constant order number of times (recall from Section 1.4.3
the definition of the quotient metric); this is analogous to the key difficulty in the proofs of [25]. In the present setting,
this difficulty will be resolved using the results of [25] and a local absolute continuity argument. We now state the key
lemma needed for the proof.

For l ∈ N, k0, k1 ∈ [0,2l]Z, and N ∈ N, let F l
N,ζ (k0, k1) be the event that there exists a path γ̃ in Ql

Glue from

βl
Glue(k0) to βl

Glue(k1) which crosses βl
Glue at most N times and has length at most

dist
(
βl

Glue(k0), β
l
Glue(k1);Ql

Glue

)+ ζ l1/2.

Lemma 5.5. For each ε ∈ (0,1), there exists α = α(ε) > 0 and an event El = El(ε,α) such that for each ζ ∈ (0, α],
there exists l∗ = l∗(ε, ζ ) ∈N and N = N(ε, ζ ) ∈N such that for each l ≥ l∗ and each k0, k1 ∈ [0,2l]Z,

P
[
El
]≥ 1 − ε and P

[
El ∩ {dist

(
βl

Glue(k0), β
l
Glue(k1);Ql

Glue

)≤ αl1/2}∩ F l
N,ζ (k0, k1)

c
]≤ ζ.

Lemma 5.5 will be deduced from the infinite-volume scaling limit results of [25] and a local absolute continuity
lemma which follows from Lemma 3.6. Let us first record some consequences of [25, Theorem 1.2], which is the
infinite-volume analog of Theorem 1.5.
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Let (Q∞± ,e∞± ) be a pair of independent UIHPQS’s, let β∞± be their respective boundary paths started from the
root edge, and let Q∞

Glue be the map obtained by identifying β∞− (j) and β∞+ (j) for each j ∈ Z. Also let β∞
Glue : Z →

E(Q∞
Glue) be the path corresponding to β∞− and β∞+ .

By [25, Theorem 1.2], the graph Q∞
Glue, equipped with its rescaled graph metric, its rescaled natural area measure,

and a re-scaling of β∞
Glue converges in law in the local GHPU topology to a curve-decorated metric measure space

H∞
Glue = (H∞

Glue, d
∞
Glue,μ

∞
Glue, ξ

∞
Glue) consisting of a pair of independent Brownian half-planes with their (full) bound-

ary paths identified. By definition of the quotient metric (Section 1.4.3), it follows that graph distances in Q∞± can be
approximated by the lengths of paths which cross the gluing interface β∞

Glue only a constant order number of times, in
the following sense.

Lemma 5.6. For each C > 0 and each ζ ∈ (0,1), there exists l∗ = l∗(C, ζ ) ∈ N and N = N(C, ζ ) ∈ N such that for
l ≥ l∗ and k0, k1 ∈ [−Cl,Cl]Z, it holds with probability at least 1 − ζ that the following is true. There exists a path γ̃

in Q∞
Glue from β∞

Glue(k0) to β∞
Glue(k1) which crosses β∞

Glue at most N times and has length

|γ̃ | ≤ dist
(
β∞

Glue(k0), β
∞
Glue(k1);Q∞

Glue

)+ ζ l1/2.

By [25, Corollary 1.5], H∞
Glue has the same law as a certain

√
8/3-LQG surface (namely a weight-4 quantum

cone) decorated by an independent two-sided SLE8/3-type curve (which can be described in terms of a pair of
GFF flow lines in the sense of [32,34]). This curve is a.s. simple, so for a, b ∈ R with a < b, the intersection⋂

ρ>0 Bρ(ξ∞
Glue([a, b]);d∞

Glue) contains no points of ξ∞
Glue(R \ [a, b]). From this and the above described local GHPU

convergence, we infer the following.

Lemma 5.7. For each a, b ∈ R with a < b, each α0 > 0, and each ε ∈ (0,1), there exists l∗ = l∗(a, b,α0, ε) ∈ N and
α ∈ (0, α0] such that for l ≥ l∗,

P
[
Bαl1/2

(
ξ∞

Glue

([al, bl]Z
);Q∞

Glue

)⊂ Bα0l
1/2

(
ξ∞−
([al, bl]Z

);Q∞−
)∪ Bα0l

1/2

(
ξ∞+
([al, bl]Z

);Q∞+
)]≥ 1 − ε.

The following local absolute continuity statement will be used to transfer the above lemmas to finite-volume state-
ments.

Lemma 5.8. For l ∈ N, let (Ql,el ) be a free Boltzmann quadrangulation with simple boundary of perimeter 2l and let
βl be its boundary path with βl(0) = el . For each δ, ε ∈ (0,1), there exists α = α(δ, ε) > 0 and l∗ = l∗(δ, ε) ∈N such
that the following is true for each l ≥ l∗. On an event of probability at least 1 − ε (with respect to the law of (Ql,el )),
the law of the curve-decorated graph (Bαl1/2(βl([δl, (1 − δ)l]Z);Ql),βl |[δl,(2−δ)l]Z) is absolutely continuous with
respect to the law of its UIHPQS analog (Bαl1/2(β∞([δl, (2 − δ)l]Z);Q∞), β∞|[δl,(1−δ)l]Z), with Radon–Nikodym
derivative bounded above by a universal constant times δ−5/2.

Proof. By Theorem 1.4 and since the boundary path of the Brownian disk has no self-intersections, there exists
α = α(δ, ε) > 0 and l∗ = l∗(δ, ε) ∈N such that for l ≥ l∗,

P
[
El

0

]≥ 1−ε, where El
0 :=
{

dist

(
βl
([

δl, (2−δ)l
]
Z

)
, βl

([
0,

δ

2
l

]
Z

,

[(
2− δ

2

)
l,2l

]
Z

)
;Ql

)
≥ αl1/2 +2

}
.

By Lemma 4.2, on the event El
0 the radius-αl1/2 peeling-by-layers cluster of Ql started from βl([δl, (2 − δ)l]Z) and

targeted at el = βl(0) contains no edge of βl([0, δ
2 l]Z, [(2 − δ

2 )l,2l]Z) so the peeling-by-layers clusters reach radius
αl1/2 before hitting el and its net boundary length process at time J l

αl1/2 (Definition 3.2) satisfies Wl

J l

αl1/2
≥ (2 − δ)l.

The statement of the lemma follows by combining this with Lemma 3.6. �

Proof of Lemma 5.5. Define

I l
1 :=
[

0,
4

3
l

]
Z

, I l
2 :=
[

2

3
l,2l

]
Z

and I l
3 :=
[

0,
1

3
l

]
Z

∪
[

5

3
l,2l

]
Z

.
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Then βl±(I l
i ) for i ∈ {1,2,3} are connected, overlapping arcs of ∂Ql± and any two edges of ∂Ql± are contained in one

of these three arcs. We will prove the lemma by applying Lemma 5.8 on each of the arcs I l
i for i ∈ {1,2,3} to transfer

the estimate of Lemma 5.6 from Q∞ to Ql .
By Lemma 5.8 (applied with δ = 1/4 and ε/6 in place of ε) and the invariance of the law of Ql± under re-

rooting along the boundary, there exists α0 = α0(ε) > 0 and l0 = l0(ε) ∈ N such that the following is true. For
each i ∈ {1,2,3}, there is an event El

i = El
i (ε,α0) such that for l ≥ l0, we have P[El

i ] ≥ 1 − ε/6 and on El
i , the

law of the curve-decorated graph (Bα0l
1/2(βl±(I l

i );Ql),βl±|I l
i
) is absolutely continuous with respect to the law of

(Bα0l
1/2(β∞± (I l

1);Q∞), β∞± |I l
1
), with Radon–Nikodym derivative bounded above by a universal constant.

By combining the preceding Radon–Nikodym derivative estimate with Lemma 5.7, we find that there exists α =
α(ε) ∈ (0, α0/2] and l1 = l1(ε) ≥ l0 such that for l ≥ l1, we have P[El] ≥ 1 − ε where

El :=
3⋂

i=1

El
i ∩ {,B2αl1/2

(
ξ l

Glue

(
I l
i

);Ql
Glue

)⊂ Bα0l
1/2

(
ξ l−
(
I l
i

);Ql−
)∪ Bα0l

1/2

(
ξ l+
(
I l
i

);Ql+
)}

. (5.12)

Note that on El , each path in Ql
Glue between points of ξ l

Glue(I
l
i ) with length at most 2αl1/2 (e.g., the path

γ̃ in the definition of the event F l
N,ζ (k0, k1) just above the lemma statement for ζ ∈ (0, α] and k0, k1 ∈ I l

i if

dist(βl
Glue(k0), β

l
Glue(k1);Ql

Glue) ≤ αl1/2) must stay in Bα0l
1/2(ξ l−(I l

i );Ql−) ∪ Bα0l
1/2(ξ l+(I l

i );Ql+). In particular, for
k0, k1 ∈ I l

i the occurrence of the event {dist(βl
Glue(k0), β

l
Glue(k1);Ql

Glue) ≤ αl1/2} ∩ F l
N,ζ (k0, k1)

c is determined by

what happens inside of Bα0l
1/2(ξ l−(I l

i );Ql−) ∪ Bα0l
1/2(ξ l+(I l

i );Ql+).
By our Radon–Nikodym derivative estimate when we restrict to El

i , the preceding paragraph, and our bound for
the probability of the infinite-volume analogue of F l

N,ζ (k0, k1)
c from Lemma 5.6, for each ζ ∈ (0, α], there exists

l∗ = l∗(ε, ζ ) ∈N and N = N(ε, ζ ) ∈N such that for l ≥ l∗, each i ∈ {1,2,3}, and each k0, k1 ∈ I l
i ,

P
[
El ∩ {dist

(
βl

Glue(k0), β
l
Glue(k1);Ql

Glue

)≤ αl1/2}∩ F l
N,ζ (k0, k1)

c
]≤ ζ.

Since any two integers k0, k1 ∈ [0,2l]Z are both contained in one of I l
1, I l

2, or I l
3, we obtain the statement of the

lemma. �

Proof of Theorem 1.5. For l ∈ N, let dl± be the graph metric on Ql± rescaled by (2l)−1/2, let μl± be the measure on
Ql± which assigns to each vertex a mass equal to 18−1l−2 times its degree, and let ξ l±(s) := βl±(2ls) for s ∈ [0,1]Z.
Define the one-sided curve-decorated metric measure spaces Ql± := (Ql±, dl±,μl±, ξ l±).

Since the restriction of the graph metric on Ql
Glue to each of Ql± is bounded above by the graph metric on Ql±,

we easily deduce GHPU tightness of Q∞
Glue from GHPU tightness of Ql± (Theorem 1.4) and the GHPU compactness

criterion [24, Lemma 2.6]. Hence for any sequence of positive integers tending to ∞, there exists a subsequence L and
a coupling of a random curve-decorated metric measure space H̃ = (H̃ , d̃, μ̃, ξ̃ ) with two independent free Boltzmann
Brownian disks H± = (H±, d±,μ±, ξ±) with unit boundary length such that(

Ql
Glue,Q

l−,Ql+
)→ (H̃,H−,H+)

in law with respect to the GHPU topology on each coordinate as L � l → ∞. By the Skorokhod representation
theorem, we can couple so that this convergence occurs a.s.

Let HGlue = (HGlue, dGlue,μGlue, ξGlue) be the curve-decorated metric measure space obtained by metrically gluing
H− and H+ together along their boundary paths as in the theorem statement. By elementary limiting arguments
directly analogous to those in [25, Section 7.3] (but somewhat simpler, since we are working with compact spaces
so there is no need to “localize”) and the universal property of the quotient metric, we infer that there a.s. exists a
surjective 1-Lipschitz map fGlue : HGlue → H̃ such that (fGlue)∗μGlue = μ̃, fGlue ◦ ξGlue = ξ̃ , and the restrictions
fGlue|H±\∂H± are isometries from (H± \ ∂H±, d±) to f (H± \ ∂H±), equipped with the internal metric induced by d̃ .
We need to show that fGlue is itself an isometry. We will accomplish this by taking a limit of the estimate of Lemma 5.5.

To this end, fix ε ∈ (0,1), let α = α(ε) be as in Lemma 5.5, and for l ∈ L let El = El(ε,α) be the event of that
lemma. Also let {(tk0 , tk1 )}k∈N be an enumeration of the pairs of rational times (t0, t1) ∈ [0,1] and (using Lemma 5.5
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with ζ = ε2−k) choose for each k ∈N a Nk ∈ N and an lk∗ ∈N such that for l ≥ l∗,

P
[
El ∩ {dist

(
βl

Glue

(⌊
2ltk0
⌋)

, βl
Glue

(⌊
2ltk1
⌋);Ql

Glue

)≤ αl1/2}∩ F l
N,ζ

(⌊
2ltk0
⌋
,
⌊

2ltk1
⌋)c]≤ ε2−k.

For l ∈ N, let Ẽl be the event that El occurs and F l
N,ζ (�2ltk0 �, �2ltk1 �) occurs for each k ∈ N with l ≥ lk∗ and

dist(βl
Glue(�2ltk0 �), βl

Glue(�2ltk1 �);Ql
Glue) ≤ αl1/2, so that P[Ẽl] ≥ 1 − 2ε.

Let Ẽ be the event that Ẽl occurs for infinitely many l ∈ L, so that P[Ẽ] ≥ 1 − 2ε. Passing to the limit in the
definition of Ẽl shows that on Ẽ, it is a.s. the case that for each pair of rational times (tk0 , tk1 ) for k ∈ N such that with
d̃ (̃ξ (tk0 ), ξ̃ (tk1 )) ≤ (2/3)1/2α, there exists points ξ̃ (tk0 ) = z0, z1, . . . , zNk = ξ̃ (tk1 ) ∈ H̃ and signs χ0, . . . , χNk ∈ {−,+}
with

Nk∑
j=1

dχj
(zj−1, zj ) ≤ d̃

(̃
ξ
(
tk0
)
, ξ̃
(
tk1
))+ ε2−k.

Hence dGlue(ξGlue(t
k
0 ), ξGlue(t

k
1 )) ≤ d̃ (̃ξ (tk0 ), ξ̃ (tk1 )) + ε2−k .

Since {(tk0 , tk1 ) : k ≥ k∗} is dense in [0,1]2 for each k∗ ∈ N, fGlue is a curve-preserving isometry, and ξGlue and ξ̃

are continuous, we infer that on Ẽ,

dGlue
(
ξGlue(t0), ξGlue(t1)

)= d̃
(̃
ξ(t0), ξ̃ (t1)

)
, ∀t0, t1 ∈ [0,1] with d̃

(̃
ξ(t0), ξ̃ (t1)

)≤ (2/3)1/2α. (5.13)

By breaking up a d̃-geodesic between two arbitrary points in H̃ into segments of time length (hence diameter) at most
α and recalling that fGlue is an isometry for the internal metrics on the two sides of the curves ξGlue and ξ̃ , we see that
(5.13) implies that fGlue is an isometry. Therefore HGlue = H̃ as curve-decorated metric measure spaces, so since our
initial choice of subsequence was arbitrary we obtain the theorem statement. �
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