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A PROBABILISTIC APPROACH TO DIRAC CONCENTRATION
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This work is devoted to the study of scaling limits in small mutations
and large time of the solutions uε of two deterministic models of phenotypic
adaptation, where the parameter ε > 0 scales the size or frequency of mu-
tations. The second model is the so-called Lotka–Volterra parabolic PDE in
R

d with an arbitrary number of resources and the first one is a version of the
second model with finite phenotype space. The solutions of such systems typ-
ically concentrate as Dirac masses in the limit ε → 0. Our main results are,
in both cases, the representation of the limits of ε loguε as solutions of vari-
ational problems and regularity results for these limits. The method mainly
relies on Feynman–Kac-type representations of uε and Varadhan’s lemma.
Our probabilistic approach applies to multiresources situations not covered
by standard analytical methods and makes the link between variational limit
problems and Hamilton–Jacobi equations with irregular Hamiltonians that
arise naturally from analytical methods. The finite case presents substantial
difficulties since the rate function of the associated large deviation principle
(LDP) has noncompact level sets. In that case, we are also able to obtain
uniqueness of the solution of the variational problem and of the associated
differential problem which can be interpreted as a Hamilton–Jacobi equation
in finite state space.

1. Introduction. We are interested in the dynamics of a population subject to
mutations and selection driven by competition for resources. Each individual in
the population is characterized by a phenotypic trait, or simply trait (e.g., the size
of individuals, their mean size at division for bacteria, their rate of nutrients intake
or their efficiency in nutrients assimilation). The article deals with models with
discrete and continuous trait space. In the case of finite trait space E, we consider
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the system of ordinary differential equations

(1.1)

u̇ε(t, i) = ∑
j∈E

exp
(
−T(i, j)

ε

)(
uε(t, j) − uε(t, i)

)+ 1

ε
uε(t, i)R

(
i, vε

t

)
∀t ∈R+,∀i ∈ E

with uε(0, i) = exp(−h(i)
ε

), with h : E → R+, where uε(t, i) is the density of
population with trait i ∈ E at time t ≥ 0, T(i, j) > 0 for all i �= j ∈ E and vε

t =
(v

1,ε
t , . . . , v

r,ε
t ) is given by

v
p,ε
t =∑

j∈E

uε(t, j)�p(j) ∀1 ≤ p ≤ r,

for some functions �p : E → (0,+∞). The first term of the right-hand side of
(1.1) models the effect of mutations on the population density: exp(−T(i,j)

ε
) can

be interpreted as the mutation rate from trait j to trait i. More precisely, we can
recover the more classical form of mutation as

u̇ε(t, i) = ∑
j∈E

[
e−T(i,j)/εuε(t, j) − e−T(j,i)/εuε(t, i)

]+ 1

ε
uε(t, i)Rε

(
i, vε

t

)
∀t ∈ R+,∀i ∈ E,

by modifying R as

(1.2) Rε(i, v) = R(i, v) + ε
(
e−T(j,i)/ε − e−T(i,j)/ε) ∀i ∈ E,v ∈ R

r .

This modification has no impact on our results, but our analysis is simpler to
present from (1.1).

Growth and competition are modeled through the function R : E ×R
r →R: the

quantity R(i, vε
t ) represents the growth rate of the population with trait i at time t

and competition occurs through the functions v
p,ε
t . A typical example of function

R is given by

(1.3) R(i, v) =
r∑

p=1

cp�p(i)

1 + vp

− d(i) ∀i ∈ E,v = (v1, . . . , vr) ∈R
r+,

where the first term models births which occur through the consumption of r re-
sources, whose concentrations at time t are given by cp/(1 + vp) and with a trait-
dependent consumption efficiency given by the function �p(i). The second term
corresponds to deaths at trait-dependent rate d(i). This form of function R is rel-
evant for populations of microorganisms in a chemostat, and has been studied for
related models in lots of works [10–12, 19].

The parameter ε > 0 in (1.1) introduces a scaling (in the limit ε → 0) of expo-
nentially rare mutations at rate e−T(i,j)/ε and of strong selection in the coefficient
R(i, vε

t )/ε. Similar scalings have been applied to various mutation-competition
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models in continuous trait space, for example, reaction-diffusion equations with
nonlocal density-dependence such as

(1.4) ∂tu
ε(t, x) = ε

2
�uε(t, x) + 1

ε
uε(t, x)R

(
x, vε

t

) ∀t > 0, x ∈ R
d,

where

v
p,ε
t =

∫
Rd

�p(x)uε(t, x) dx, 1 ≤ p ≤ r,

for some functions �p :Rd →R+.
Here, the parameter ε > 0 introduces a scaling of small or rare mutations and

can be interpreted either as a large time scaling or a strong selection scaling. This
parameter scaling has been used to study front propagation in standard (local)
reaction-diffusion problems [2, 23, 24, 26] and was later introduced in models of
adaptive dynamics (with nonlocal competition) in [19]. In this context, the qualita-
tive outcome of this scaling is that solutions to (1.4) concentrate as Dirac masses,
and this concentration is studied using the WKB ansatz

uε(t, x) = exp
(

V ε(t, x)

ε

)
in [3, 4, 10, 19, 31, 34, 39] for different particular cases of (1.4) and also in [17,
27, 31, 40, 41] for models with competitive Lotka–Volterra competition.

Several of these works prove the convergence along a subsequence (εk)k≥1 con-
verging to 0 of V εk to a solution V of the Hamitlon–Jacobi problem

(1.5) ∂tV (t, x) = R(x, vt ) + 1

2

∣∣∇V (t, x)
∣∣2,

where vt is expected to take the form

v
p
t =
∫
Rd

�p(x)μt (dx),

where μt is some (measure, weak) limit of uεk (t, x). Due to the fact that, un-
der general assumptions, the total mass of the population

∫
Rd uε(t, x) dx is uni-

formly bounded and bounded away from 0, the function V satisfies the constraint
supx∈Rd V (t, x) = 0 for all t ≥ 0, and the measure μt is expected to have support
in {V (t, ·) = 0}. In addition, the measure μt is expected to be metastable in the
sense that R(x, vt ) ≤ 0 for all x such that V (t, x) = 0 and R(x, vt ) = 0 for all x in
the support of μt (to preserve the condition supx∈Rd V (t, x) = 0). However, this is
rigorously proved only in the case of a single resource (r = 1) [31, 34, 39] or for a
very specific model when r ≥ 2 [10]. Recently, new works [28] study metastable
behaviors for discrete systems similar to (1.1).

The study of the Hamilton–Jacobi problem (1.5) with (some or all of) the pre-
vious constraints is difficult. For example, uniqueness is only known in general
in the case r = 1 [35, 36] (see also [7, 39]). Yet, the case r ≥ 2 is of particular
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biological interest since it is the only case where a phenomenon of diversification
known as evolutionary branching [18, 33] can occur (see [11], Proposition 3.1).

In this work, our goal is to prove, using a probabilistic approach, the conver-
gence of Vε(t, ·) to a limit V (t, ·) for models (1.1) and (1.4), which is solution to
a variational problem related to the Hamilton–Jacobi equation (1.5) or a discrete
version of this equation.

For the model (1.1), our results take the following form. Under monotonicity
assumptions on R (see Section 2.1) and under the assumption that, for all A ⊂ E,
the dynamical system

u̇i = uiR

(
i;∑

j∈A

�p(j)uj ,1 ≤ p ≤ r

)
, i ∈ A

admits a unique metastable steady state u∗
A (see Hypothesis (H) in Section 4.4),

we prove (see Corollaries 4.14 and 4.12 and Theorem 4.13) that the family
(uε(t, i), t ≥ 0, i ∈ E)ε>0 converges locally weakly to (ui(t), t ≥ 0, i ∈ E) defined
for all i ∈ E and t ≥ 0 by

(1.6) ui(t) =
{
u∗{V (t,·)=0},i if V (t, i) = 0,

0 otherwise,

where V (t, i) is the unique solution to

V (t, i) = sup
ϕ:[0,t]→E càdlàg,ϕ(0)=i

{
−h
(
ϕ(t)
)

+
∫ t

0
R
(
ϕ(u),F

({
V (t − u, ·) = 0

}))
du − It (ϕ)

}
(1.7)

with

F(A) =
(∑

j∈E

�p(j)u∗
A,j

)
1≤p≤r

∀A ⊂ E,

such that V (0, i) = −h(i) for all i ∈ E and t �→ F({V (t, ·) = 0}) is right continu-
ous, and where

It (ϕ) = ∑
0<s≤t

T(ϕs−, ϕs),

with the convention T(i, i) = 0. This function V (t, i) is also the unique solution
such that t �→ F({V (t, ·) = 0}) is right continuous to the problem

(1.8)
V̇ (t, i) = sup

{
Rj

(
F
({

V (t, ·) = 0
})) | j ∈ E,V (t, j) −T(j, i) = V (t, i)

}
,

V (0, i) = h(i) ∀i ∈ E.

Our approach relies on a Feynman–Kac representation of the solution to (1.1),
on a large deviations principle with rate function It when ε → 0 for the Markov
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process whose generator is given by the mutation term in (1.1), and on the appli-
cation of Varadhan’s lemma to characterize the limit V of V ε as the solution of
the optimization problem (1.7). Uniqueness is obtained from the key property that
one can characterize any accumulation point of vε

t+s for small s > 0 only from the
zeroes of V (t, ·), which implies that t �→ F({V (t, ·) = 0}) is right continuous, and
from a careful study of the problems (1.7) and (1.8). An important difficulty comes
from the fact that the rate function It does not have compact level sets, and hence
is not a good rate function, so that the proofs of the large deviations principle and
of Varadhan’s lemma are nonstandard and need some care.

The first part of this proof (Feynman–Kac representation, large deviations prin-
ciple and Varadhan’s lemma) does not rely on the specific structure of the mutation
operator, so it applies to other models, including the partial-differential equation
(1.4). Since it is (surprisingly) substantially simpler in this case, we first present
our method for this model in Section 2. We are able to obtain in Theorem 2.7
the convergence of ε loguε along a subsequence to the solution of the varia-
tional problem associated to the Hamilton–Jacobi equation. In the case of classical
reaction-diffusion equations, this stochastic approach is actually not new since it
goes back to works of Freidlin [24, 26]. In [25], Freidlin also studied similar ques-
tions for models close to (1.4) (with different initial conditions), but only for a
single ressource (r = 1). This condition is also assumed in the more recent works
[3, 31, 34, 39], but is not needed in our study.

We discuss in Section 3 consequences of the last results on the Hamilton–Jacobi
problem (1.5) and possible extensions. In cases where the convergence to the
Hamilton–Jacobi problem is known, we deduce as a side result the equality be-
tween the solution to the Hamilton–Jacobi problem and its variational formulation
(see Section 3.1). Interestingly, this result does not seem to be covered by existing
general results on this topic because of the possible discontinuities of the coef-
ficients of the Hamilton–Jacobi problem. We also take care to avoid the use of
precise properties of the heat semigroup, so that it is easy to extend our results to
other mutation operators than the Laplace operator, as discussed in Section 3.2.

The extension to (1.1) is studied in details in Section 4. The nonstandard large
deviations principle and Varadhan’s lemma are proved in Section 4.3. The charac-
terization of V as the unique solution to (1.7) such that t �→ F({V (t, ·) = 0}) is
right continuous, its equality with the unique solution to the discrete version of the
Hamilton–Jacobi problem (1.8) and the convergence of uε to (1.6) are proved in
Section 4.4.

2. The Lotka–Volterra parabolic PDE with several resources. We first
study in this section the reaction-diffusion model (1.4). We first state our assump-
tions and gather basic preliminary results in Section 2.1. We give the Feynman–
Kac representation in Section 2.2. We finally study the limit of small ε and prove
the main result of the section, Theorem 2.7, giving a variational characterization
of the limit of ε loguε along appropriate subsequences, in Section 2.3.
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2.1. Problem statement and preliminary results. We consider the following
partial differential equation in R+ ×R

d :

(2.1)

⎧⎪⎪⎨⎪⎪⎩
∂tu

ε(t, x) = ε

2
�uε(t, x) + 1

ε
uε(t, x)Rε(x, vε

t

) ∀t > 0, x ∈ R
d

uε(0, x) = exp
(
−hε(x)

ε

)
∀x ∈ R

d

with

(2.2) vε
t = (v1,ε

t , . . . , v
r,ε
t

)
where v

p,ε
t =

∫
Rd

�p(x)uε(t, x) dx,1 ≤ p ≤ r,

Rε is a map from R
d ×R

r to R and �p and hε are maps from R
d to R.

Let us state our assumptions of Rε , �p and hε .

1. Assumptions on �p

• There exist �min and �max, two positive real numbers such that

(2.3)
�min ≤ �p(x) ≤ �max ∀x ∈R

d and

�p ∈ W 2,∞(
R

d) ∀1 ≤ p ≤ r.

2. Assumptions on Rε

(a) When ε → 0, Rε converges in L∞(Rd × R
r ) to a continuous function

R from R
d ×R

r to R.
(b) There exists A a positive real number such that, for all ε > 0,

−A ≤ ∂vpRε(x, v1, . . . , vr) ≤ −A−1

∀p ∈ {1, . . . , r}, x ∈R
d, v1, . . . , vr ∈R.

(c) There exist two positive constants vmin < vmax such that, for all ε > 0,

• if min1≤p≤r vi > vmax, then maxx∈Rd Rε(x, v) < 0,
• if max1≤p≤r vi < vmin, then minx∈Rd Rε(x, v) > 0.

(d) Let H denotes the annulus defined by

H :=
{
v ∈ R

r+ : �minvmin

2�max
≤ ‖v‖1 ≤ 2�maxvmax

�min

}
.

There exists a positive constant M such that, for all ε > 0,

sup
v∈H
∥∥Rε(·, v)

∥∥
W 1,∞ < M.

Note that the constant 2 in the definition of H could be replaced by any constant
strictly larger than 1.

3. Assumptions on hε

(a) hε is Lipschitz-continuous on R
d , uniformly with respect to ε > 0.
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(b) hε converges in L∞(Rd) as ε → 0 to a function h.
(c) For all ε > 0 and all 1 ≤ p ≤ r ,

vmin ≤
∫
Rd

�p(x) exp
(
−hε(x)

ε

)
dx ≤ vmax.

In particular, uε(0, x) is bounded in L1(Rd).

Note that the limit h of hε is continuous, and hence, in order to satisfy Assump-
tion (3c), it must satisfy h(x) ≥ 0 for all x ∈ R

d .
This type of assumptions is standard in this domain [3, 31, 36, 39], but the

previous references only studied the case r = 1. These references also assume
bounds on second-order derivatives of Rε and hε and linear or quadratic bounds at
infinity for these functions (see Corollary 3.1 in Section 3.1). The case r ≥ 2 was
only studied in [10], but for a very specific form of the function R, and in [39] but
without the convergence to the Hamilton–Jacobi problem.

Now, we present some preliminary results which are needed to study the asymp-
totic behavior of the solution of (2.1). The first result, Proposition 2.1, gives pre-
liminary estimates on the solution of (2.1). The second one, Theorem 2.2, provides
the existence and uniqueness of the solution of the equation. These two results are
direct adaptations of the results of [3, 31, 39] and [3], so we omit their proofs.

PROPOSITION 2.1 (A priori estimates). Suppose that there exists a nonnega-
tive weak solution uε in C(R+,L1(Rd)). We have, for all positive time t and all
p ∈ {1, . . . , r},

�min

�max
vmin − Aε2�min

‖�p‖W 2,∞
≤ v

p,ε
t ≤ �max

�min
vmax + Aε2�min

‖�p‖W 2,∞
,

�min

�max
vmin − Aε2�min

inf1≤p≤r ‖�p‖W 2,∞

≤ ∥∥vε
t

∥∥
1 ≤ �max

�min
vmax + Aε2�min

inf1≤p≤r ‖�p‖W 2,∞

(2.4)

and

(2.5)

�−1
max

(
�min

�max
vmin − Aε2�min

inf1≤p≤r ‖�p‖W 2,∞

)

≤
∫
Rd

uε(t, x) dx

≤
(

�max

�min
vmax + Aε2�min

inf1≤p≤r ‖�p‖W 2,∞

)
�−1

min.

THEOREM 2.2. For ε > 0 small enough, there exists a unique nonnegative
solution uε in C(R+,L1(Rd)) of (2.1).
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Since Rε(x, vε
t ) is a Lipschitz function, one can actually get higher regularity

from the regularizing effect of the Laplace operator. However, since we plan to
extend our method to more general mutation operators, we shall only make use in
the sequel of the fact that uε ∈ C(R+,L1(Rd)).

2.2. Feynman–Kac representation of the solution. The purpose of this section
is to prove the following integral representation of the solution of (2.1).

THEOREM 2.3 (Feynman–Kac representation of the solution of (2.1)). Let uε

be the unique weak solution of (2.1), then

(2.6)

uε(t, x) = Ex

[
exp
(
−hε(X

ε
t )

ε
+ 1

ε

∫ t

0
Rε(Xε

t , v
ε
t−s

)
ds

)]
∀(t, x) ∈ R+ ×R

d,

where for all x ∈ R
d , Ex is the expectation associated to the probability measure

Px , under which Xε
0 = x almost surely and the process Bt = (Xε

t − x)/
√

ε is a
standard Brownian motion in R

d .

Such results are classical but, for generalization purposes, we want to give a
proof making only use of the existence of a solution C(R+,L1(Rd)) to (2.1). Let
us first recall usual notions of weak solutions to (2.1) (cf., e.g., [20, 32, 37, 38]).
We say that a function u in C(R+,L1(Rd)) is a mild solution of problem (2.1) if
it satisfies the following integral equation:

(2.7) u(t, x) = P ε
t gε(x) + 1

ε

∫ t

0
P ε

t−s

(
u(s, x)Rε(x, vε

s

))
ds,

where gε(x) = exp(−hε(x)/ε) and (P ε
t )t∈R+ is the standard heat semigroup de-

fined on L1(Rd) by

P ε
t f (x) =

∫
Rd

1

(2πtε)n/2 e
−‖x−y‖2

2tε f (y) dy ∀f ∈ L1(
R

d).
We also say that a function u in C(R+,L1(Rd)) is a weak solution of problem
(2.1) if for any compactly supported test function ϕ of C∞([0,∞)×R

d), we have∫
R+×Rd

u(t, x)

(
−∂tϕ(t, x) − ε

2
�ϕ(t, x)

)
dx dt

= 1

ε

∫
R+×Rd

u(t, x)Rε(x, vε
t

)
ϕ(t, x) dx dt +

∫
Rd

gε(x)ϕ(0, x) dx.

We point out that this notion of weak solution is the one for which existence and
uniqueness hold in Theorem 2.2.
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LEMMA 2.4. Let ūε be defined as the right-hand side of (2.6), where vε is de-
fined by (2.2) and uε is the solution given in Theorem 2.2. The function ūε belongs
to C(R+,L1(Rd)) and is a mild solution of problem (2.1).

PROOF. Let t and h be two positive real numbers:∥∥ūε(t + h, ·) − ūε(t, ·)∥∥L1(Rd )

≤
∫
Rd

Ex

[
exp
(

1

ε

∫ t

0
Rε(Xε

s , v
ε
t+h−s

)
ds

)

×
∣∣∣∣exp
(

1

ε

∫ h

0
Rε(Xε

t+s, v
ε
h−s

)
ds

)
gε

(
Xε

t+h

)− gε

(
Xε

t

)∣∣∣∣]dx

+
∫
Rd

Ex

[
gε

(
Xε

t

)∣∣∣∣exp
(

1

ε

∫ t

0
Rε(Xε

s , v
ε
t+h−s

)
ds

)
− exp

(
1

ε

∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

)∣∣∣∣]dx.

Using Hypothesis (2d), we get∥∥ūε(t + h, ·) − ūε(t, ·)∥∥L1(Rd )

≤
∫
Rd

e
Mt
ε
{
Ex

[
gε

(
Xε

t+h

)(
e

Mh
ε − 1

)]+Ex

[∣∣gε

(
Xε

t+h

)− gε

(
Xε

t

)∣∣]}dx

+ A

ε
e

Mt
ε

∫
Rd

Ex

[
gε

(
Xε

t

)] ∫ t

0

∣∣vε
t+h−s − vε

t−s

∣∣ds dx.

Since (Pt )t∈R+ preserves the L1(Rd) norm, we obtain∥∥ūε(t + h, ·) − ūε(t, ·)∥∥L1(Rd ) ≤ ‖gε‖L1(Rd )e
Mt
ε

(
e

Mh
ε − 1 + A

ε

∫ t

0

∣∣vε
s+h − vε

s

∣∣ds

)
+ e

Mt
ε E

[∫
Rd

∣∣P ε
hgε

(
x + Xε

t

)− gε

(
x + Xε

t

)∣∣dx

]
.

Since vε is continuous, this finally leads to∥∥ūε(t + h, ·) − ūε(t, ·)∥∥L1(Rd ) ≤ oh(1) + e
Mt
ε
∥∥P ε

hgε − gε

∥∥
L1(Rd ) −−−→

h→0
0,

which proves that ūε is in C(R+,L1(Rd)).
We now prove that ūε is a mild solution of problem (2.1). First, Markov property

gives

Ex

[
gε

(
Xε

t

)
exp
(

1

ε

∫ t

t−s
Rε(Xε

θ , v
ε
t−θ

)
dθ

)
Rε(Xε

t−s, v
ε
s

)]
= Ex

[
EXε

t−s

[
gε

(
Xε

s

)
exp
(

1

ε

∫ s

0
Rε(Xε

θ , v
ε
s−θ

)
dθ

)]
Rε(Xε

t−s, v
ε
s

)]
= Ex

[
ū
(
s,Xε

t−s

)
Rε(Xε

t−s, v
ε
s

)]
.
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Using the fact that

exp
(

1

ε

∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

)
− 1

= 1

ε

∫ t

0
exp
(

1

ε

∫ t

t−s
Rε(Xε

u, v
ε
t−u

)
du

)
Rε(Xε

t−s, v
ε
s

)
ds,

we deduce that

ūε(t, x) = Ex

[
gε

(
Xε

t

)]+ 1

ε

∫ t

0
Ex

[
ūε(s,Xε

t−s

)
Rε(Xε

t−s, v
ε
s

)]
ds

= P ε
t gε(x) +

∫ t

0
P ε

t−s

(
ūε(s, x)Rε(x, vε

s

))
ds.

This completes the proof that ūε is a mild solution of problem (2.1). �

LEMMA 2.5. Let u ∈ C(R+,L1(Rd)) be a mild solution of problem (2.1),
then u is a weak solution of problem (2.1).

PROOF. Assume that u is the weak solution of problem (2.1) given by Theo-
rem 2.2, and consider the following Cauchy problem:

(2.8)

⎧⎪⎪⎨⎪⎪⎩
∂tw = ε

2
�w + 1

ε
u(t, x)Rε(x, vε

t

)
,

w(0, x) = exp
(
−hε(x)

ε

)
=: gε(x).

Since the inhomogeneous term belongs to L1(Rd), it is well known that this prob-
lem admits a unique weak solution given by Duhamel’s formula:

w(t, x) = P ε
t gε(x) + 1

ε

∫ t

0
P ε

t−s

[
u(t, x)Rε(x, vε

s

)]
ds.

Because of uniqueness for (2.8), w = u so u is a mild solution to (2.1). Unique-
ness of such a mild solution in C(R+,L1(Rd)) follows easily from the fact that
(P ε

t )t∈R+ is a contraction semigroup in L1(Rd) and from Gronwall’s lemma (see
[32, 37]), so the lemma is proved. �

2.3. Small diffusion asymptotic. Recall from Theorem 2.3 that

(2.9) uε(t, x) = Ex

[
exp
(
−ε−1h

(
Xε

t

)+ 1

ε

∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

)]
,

where Xε
t = x+√

εBt under Px . This formula suggests to apply Varadhan’s lemma
to study the convergence of ε loguε(t, x) as ε → 0. Let us fix t > 0.
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LEMMA 2.6. The function 	ε : C([0, t]) →R defined by

	ε(ϕ) =
∫ t

0
Rε(ϕs, v

ε
s

)
ds

is Lipschitz continuous on C([0, t]) endowed with the L∞-norm, uniformly w.t.r.
to ε for ε small enough.

Moreover, there exists a kernel M on R+ × B(Rk) such that, along a subse-
quence (εk)k≥1 converging to 0, we have

	(ϕ) := lim
k→∞	εk

(ϕ) =
∫ t

0

∫
Rk

R(ϕs, y)Ms(dy) ds ∀ϕ ∈ C
([0, t]).

We recall that a kernel M is a function from R+ × B(Rd) into R+ such that,
for all t ∈ R+, Ms is a measure on B(Rd) and, for all A ∈ B(Rd), the function
s → Ms(A) is measurable.

PROOF. We begin by showing that 	ε(ϕ) is continuous for all ε, uniformly
w.r.t. ε. Since Rε(·, v) lies in W 1,∞, it follows that it is Lipschitz continuous, uni-
formly for v is the annulus H (see Assumption (2d)). Hence, for ψ,ϕ ∈ C([0, t]),
it follows from Morrey’s inequality that∫ t

0

∣∣Rε(ϕs, v
ε
s

)− Rε(ψs, v
ε
s

)∣∣ds ≤
∫ t

0

∥∥Rε(·, vε
s

)∥∥
W 1,∞‖ϕs − ψs‖ds

≤ t sup
s∈[0,t]

∥∥Rε(·, vε
s

)∥∥
W 1,∞‖ϕ − ψ‖L∞([0,t]).

Hence, the result follows from (2.4).
Now, fix T > 0, and let �ε

T , for all ε, be the measure defined on ([0, T ] ×
H,B([0, T ]) ⊗ B(H)) by

�ε
T (A × B) =

∫
A

1vε
s ∈B ds ∀A ∈ B

([0, T ]),B ∈ B(H).

Since (�ε
T )ε>0 is a family of finite measures defined on a compact metric space,

it is weakly precompact. Hence, there exists a subsequence (εT
k )k≥1 such that, the

sequence of measures (�
εT
k

T )k≥1 converges weakly to some measure denoted by
�T . It follows from a diagonal argument that there exists a sequence (εk)k≥1 such
that, for any positive integer n, �

εk
n converges weakly to a measure �n. Now, if

one wants to define a measure on R+ using the family (�n)n≥1, he needs that for
m < n, the restriction of �n on [0,m] coincides with �m.

To prove this we first remark that, for all k ∈ N and δ > 0,

(2.10) �εk
n

(
(m − δ,m + δ) ×H

)= ∫ m+δ

m−δ
1

v
εk
s ∈H ds = 2δ.

Let f be a bounded and continuous function on [0,m]×H and (f
)
≥1 a sequence
of uniformly bounded continuous function on [0, n] ×H such that

f
(t, x) −−−→

→∞ f (t, x)1t∈[0,m] ∀(t, x) ∈ [0, n] ×H,
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and f
 = f on [0,m − δ) × H and fl = 0 on (m + δ, n] × H. Using (2.10) we
have, for all k, 
 ∈N, ∣∣�εk

m (f ) − �εk
n (f
)

∣∣≤ cδ,

where the constant c does not depend on k and 
 and μ(f ) is the integral of a func-
tion f w.r.t. a measure μ on the corresponding space. Since, in addition, �

εk
m (f )

converges to �m(f ), �
εk
n (f
) converges to �n(f
) when k goes to infinity and,

by Lebesgue’s theorem, �n(f
) converges to �n(f ) when 
 goes to infinity, we
deduce ∣∣�m(f ) − �n(f )

∣∣≤ cδ.

Since δ was arbitrary, we have proved that the restriction of �n on [0,m] coin-
cides with �m. As a consequence, we can define on R+ × H a measure � whose
restrictions on [0, n] ×H is �n for all n ∈ N.

In particular, for all t , �
εk
t converges weakly to the restriction of � to [0, t]×H.

In addition, for all function ϕ continuous on [0, t], the map (s, x) �→ R(ϕs, x) is
continuous, and hence, for all t ≤ T ,

	(ϕ) := lim
k→∞

∫ t

0
Rεk
(
ϕs, v

εk
s

)
ds = lim

k→∞

∫ t

0
R
(
ϕs, v

εk
s

)
ds

=
∫
[0,t]×Rd

R(ϕs, x)�(ds, dx).

It remains to show that � can be disintegrated along (R+,B(R+), λ). Let A be
a null set of [0, T ], for a fixed positive time T . It follows that there exists, for all
η > 0, a denumerable family of open ball (B

η
n)n≥1 such that

A ⊂
∞⋃

n=1

Bη
n and λ

( ∞⋃
n=1

Bη
n

)
< η.

Let H be a measurable set of H, then

�(A × H) ≤ �T

(⋃
n≥1

Bη
n ×H

)
≤ lim inf

k→∞ �
εk

T

( ∞⋃
n=1

Bη
n ×H

)
< Cη

which implies that �(A×H) = 0. According to Radon–Nikodym’s theorem, there
exists, for all H , an integrable function s →Ms(H) such that

�(A × H) =
∫
R+

Ms(H)ds.

Usual theory (cf., e.g., [6]) ensures that there exists a modification of this map such
that H ∈ B(H) → Ms(H) is a measure for almost all s ∈ R+. �

Note that (2.9) takes the form uε(t, x) = Ex[exp 1
ε
Fε(X

ε)] for functions Fε

on C([0, t],Rd) which are uniformly Lipschitz for the L∞ norm and converge
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pointwise to a function F because of Lemma 2.6. Therefore, the following result
is a classical extension of the proof of Varadhan’s lemma (cf., e.g., [16]). We omit
its proof.

THEOREM 2.7. For all (t, x) in R+ ×R
d ,

(2.11) V (t, x) := lim
k→∞ εk loguεk (t, x) = sup

ϕ∈Gt,x

{−h(ϕ0) + 	(ϕ) − It (ϕ)
}

with

It (ϕ) =
⎧⎨⎩
∫ t

0

∥∥ϕ′(s)
∥∥2 ds if ϕ is absolutely continuous,

+∞ otherwise,

Gt,x denotes the set of continuous functions from [0, t] to R
d such that ϕt = x, and

	 and (εk)k≥1 are defined in Lemma 2.6.

Thanks to the representation (2.9), the convergence given above can be en-
hanced.

THEOREM 2.8. The convergence stated in Theorem 2.7 holds uniformly on
compact sets and the limit V (t, x) is Lipschitz w.r.t. (t, x) ∈ R+ ×R

d .

This result is an immediate consequence of the following lemma.

LEMMA 2.9. The function

R+ ×R
d →R,

(t, x) �→ ε loguε(t, x),

is Lipschitz w.r.t. (t, x) ∈ R+ ×R
d , uniformly w.r.t. ε (at least for ε small enough).

PROOF. Let (t, x) and (δ, y) in R+ ×R
d . Using (2.9), and writing Xε

t = Xε
0 +√

εBt for a Brownian motion B , we get

uε(t + δ, x + y) = E

[
exp
(
−hε(x + y + √

εBt+δ)

ε

+ 1

ε

∫ t+δ

0
Rε(x + y + √

εBs, v
ε
t+δ−s

)
ds

)]
.

Now, Markov’s property entails

uε(t + δ, x + y) = E

[
exp
(

1

ε

∫ δ

0
Rε(x + y + √

εBs, v
ε
t+δ−s

)
ds

)
× uε(t, x + y + √

εBδ)

]
.
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Hence, using Assumption (2d), we get

(2.12)

e−Mδ
ε E
[
uε(t, x + y + √

εBδ)
]≤ uε(t + δ, x + y)

≤ e
Mδ
ε E
[
uε(t, x + y + √

εBδ)
]
.

In addition, taking into account that x → Rε(x, v) is Lipschitz uniformly w.r.t.
v ∈ H with Lipstchiz norm bounded by M , we have

uε(t, x + y) ≤ E

[
exp
(
−hε(x + √

εBt)

ε
+ 1

ε

∫ t

0
Rε(x + √

εBs, v
ε
t−s

)
ds

)

× exp
(
−hε(x + y + √

εBt) − hε(x + √
εBt)

ε
+ tM‖y‖

ε

)]
.

Since hε is Lipstchiz uniformly w.r.t. ε > 0,

uε(t, x + y) ≤ uε(t, x)e
tM+supε ‖hε‖Lip

ε
‖y‖.

Now, using (2.12), we get

uε(t + δ, x + y) ≤ uε(t, x)e
Mδ
ε E
[
e

tM+supε ‖hε‖Lip
ε

‖y+√
εBδ‖].

Then, using the inequality ‖y + √
εBδ‖ ≤ ‖y‖ + C

√
ε
∑

i |Bi
δ|, we obtain

uε(t + δ, x + y) ≤ uε(t, x)e
Mδ
ε e

tM+supε ‖hε‖Lip
ε

(‖y‖+dCδ).

Hence,

ε loguε(t + δ, x + y) − ε loguε(t, x) ≤ Mδ +
(
tM + sup

ε
‖hε‖Lip

)(‖y‖ + dCδ
)
.

The lower bound is obtained similarly and completes the proof. �

In the last results, one would like to be able to characterize the limit measure
Ms in terms of the zeroes of V (s, ·), in order to obtain a closed form of the op-
timization problem. Results on this question are known in models with a single
resource (r = 1) [3, 31, 39], but the known results when r ≥ 2 [9, 10] require
stringent assumptions on the structure of the model, and indeed, it is possible to
construct examples where there exist several measures Ms satisfying the metasta-
bility condition of [10]. Since our assumptions are more general, we cannot expect
to obtain such results in full generality, so we will focus in Sections 4.3 and 4.4 on
the finite case, where precise results can be obtained, granting uniqueness for the
optimization problem (2.11).

3. Extensions and links between the variational and Hamiltom–Jacobi
problems. In cases where the convergence to the Hamilton–Jacobi problem is
known, Theorem 2.7 gives as a side result the equality between the solution to the
Hamilton–Jacobi problem and its variational formulation. This is discussed in Sec-
tion 3.1. We also study in Section 3.2 extensions of our results to other mutation
operators than the Laplace operator.
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3.1. Links between the variational and Hamiltom–Jacobi problems. The con-
vergence of ε loguε has been studied in various works using PDE approaches, with
a limit solving a Hamilton–Jacobi problem with constraints. With our approach,
instead of a Hamilton–Jacobi equation, we obtain a variational characterization of
the limit, under assumptions on R weaker than those of [3, 31, 39] and valid for any
value of the parameter r , biologically interpreted as a number of resources. There-
fore, we obtain naturally the identification between a solution to Hamilton–Jacobi
problems and a variational problem. For example, the next result is a consequence
of [31], equation (5.8).

COROLLARY 3.1. In addition to the assumptions of Section 2.1, assume that
r = 1, Rε = R does not depend on ε, hε is C2 uniformly in ε > 0 and there exist
constants A, B , C, D such that, for all x ∈ R

d , vmin ≤ ‖v‖1 ≤ vmax and ε > 0,

−A|x|2 ≤ R(x, v) ≤ B − A−1|x|2, −B + A−1|x|2 ≤ hε(x) ≤ B + A|x|2,
−CId ≤ D2R(x, v) ≤ −C−1Id, C−1Id ≤ D2hε(x) ≤ CId,

�(�1R) ≥ −D,

where Id is the d-dimensional identity matrix. Then, vεk converges in L1
loc(R+) to

a nondecreasing limit v̄ along the subsequence εk of Lemma 2.6, the kernel M
satisfies

(3.1) Ms(dy) = δv̄(s)(dy) ∀s ≥ 0,

and the limit V of Theorem 2.7 solves in the viscosity sense

(3.2)

⎧⎪⎨⎪⎩
∂tV (t, x) = R(x, v̄t ) + 1

2

∣∣∇V (t, x)
∣∣ ∀t ≥ 0, x ∈ R

d,

max
x∈Rd

V (t, x) = 0 ∀t ≥ 0.

REMARK 3.2. Note that Hamilton–Jacobi equations are known to be related
to variational problems appearing in control theory. However, this link is only
known in general in cases with continuous and time-independent coefficients in
the Hamilton–Jacobi equation [22, 29]. In our case, v̄ may be discontinuous. Sev-
eral references study Hamilton–Jacobi or variational problems with discontinuous
coefficients [1, 30] but none covers our case: irregular Lagrangian are studied, for
example, in [14], but the link with Hamilton–Jacobi problems is not studied; mea-
surable in time Hamiltonians are studied, for example, in [42], but without the
integral term in the optimization problem.

Other mutation operators were also studied with the PDE approach. Up to our
knowledge, the only work providing the Hamilton–Jacobi limit with several re-
sources is [10]. It is also possible to deduce from our results a result similar to
Corollary 3.1 for this model. Note that this model assumes an integral mutation
operator, so we need to use the extension developed in the next subsection.
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3.2. Extensions of Theorem 2.7. The proof of Theorem 2.7 only makes use
of few properties of the Brownian motion and of the Laplace operator used to
model mutations in (2.1). In particular, one expects that it may hold true for partial
differential equations of the form

(3.3) ∂tu
ε(t, x) = Lεu

ε(t, x) + 1

ε
uε(t, x)R

(
x, vε

t

) ∀t > 0, x ∈ R
d,

where Lε is a linear operator describing mutations and where we assumed that R

does not depend on ε for simplicity.
For our approach to work in this situation, the probabilistic interpretation of

Theorem 2.3 must extend to this case, and Varadhan’s lemma must be applied as
in the proof of Theorem 2.7. For this, one needs that:

1. the operator Lε is the infinitesimal generator of a Markov process (Xε
t , t ≥ 0);

2. existence and uniqueness of a weak solution hold for the partial differ-
ential equation (3.3) in an appropriate functional space, for example, in
C(R+,L1(Rd)), and any C(R+,L1(Rd)) mild solution to the PDE must be
a weak solution;

3. the function

(3.4) ūε(t, x) = Ex

[
exp
(
−hε(X

ε
t )

ε
+ 1

ε

∫ t

0
R
(
Xε

s , v
ε
t−s

)
ds

)]
can be shown to be C(R+,L1(Rd)) (note that the proof that ū is a mild solution
to the PDE only relies on the Markov property, so it is true in general);

4. the family of Markov processes (Xε)ε>0 must satisfy a large deviations princi-
ple with rate ε−1 and a good rate function.

Note that the compactness argument of Lemma 2.6 does not depend on the muta-
tion operator. It only follows from our assumptions on R.

For example, all these points apply to the problem

(3.5) ∂tu
ε(t, x) = 1

ε

∫
Rd

[
uε(t, x + εz) − uε(t, x)

]
K(z)dz + 1

ε
uε(t, x)R

(
x, vε

t

)
,

where K : Rd →R+ is such that∫
Rd

zK(z) dz = 0 and
∫
Rd

e〈a,z〉2
K(z)dz < ∞ for all a ∈ R

d .

This form of mutation operator has already been studied in [3, 4, 10]. Similar
equations are also considered in [17, 27, 41]. In this case, we can check all the
points above as follows:

1. The Markov process Xε is a continuous-time random walk, with jump rate
‖K‖

L1

ε
and i.i.d. jump steps distributed as εZ, where the random variable Z has

law K(z)
‖K‖

L1
dz.
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2. Existence and uniqueness of the solution to (3.5) in C(R+,L1(Rd)) follows
from [3] (this is the point where the finiteness of quadratic exponential moments
of K is needed).

3. Since random walks are shift-invariant as Brownian motion, the regularity of
(3.4) can be proved exactly as in the proof of Theorem 2.3.

4. The family (Xε)ε>0 satisfies a large deviation principle (see [21], Section 10.3)
with good rate function on D([0, t],Rd), the set of càdlàg functions from [0, t]
to R

d , given by

It (ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ t

0
sup

p∈Rd

{
p · ϕ̇s −

∫
Rd

(
e〈z,p〉 − 1

)
K(z)dz

}
ds

if ϕ is absolutely continuous,

+∞ otherwise,

We consider in the next section another example of extension, where the trait
space is finite. We obtain stronger results since we can fully characterize the limit
of ε loguε . This case will raise specific difficulties because the rate function of the
associated large deviations principle has noncompact level sets.

4. The case of finite trait space. We consider here the case of a finite trait
space with exponentially rare mutations. The model is given in Section 4.1. The
large deviations principle is proved in Section 4.2 and we deduce from Varadhan’s
lemma the convergence of ε loguε in Section 4.3. Since in this case the equation
satisfied by the limit V is simpler, we are able to study it in details in Section 4.4.
In particular, we prove uniqueness of the solution to the variational problem and
the associated discrete Hamilton–Jacobi problem.

4.1. Problem statement and preliminary results. We consider a finite set E

and the system of ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u̇ε(t, i) = ∑
j∈E\{i}

exp
(
−T(i, j)

ε

)(
uε(t, j) − uε(t, i)

)
+ 1

ε
uε(t, i)Rε(i, vε

t

) ∀t ∈ [0, T ],∀i ∈ E,

uε(0, i) = exp
(
−hε(i)

ε

)
,

(4.1)

where T(i, j) ∈ (0,+∞] for all i �= j ∈ E, Rε(i, u) : E × R
r �→ R, hε : E → R

and vε
t = (v

1,ε
t , . . . , vr,ε) is defined by

v
p,ε
t =∑

j∈E

uε(t, j)�p(j) ∀1 ≤ p ≤ r,

for some functions �p : E → (0,+∞). The term e−T(i,j)/ε corresponds to the
mutation rate from trait i to trait j . Its value is by convention 0 when T(i, j) =
+∞, which means that mutations are impossible from state i to state j .
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The standing assumptions on � , Rε and hε given in Section 2.1 are still assumed
to hold true here replacing R

d by E (except, of course, for the assumptions of
regularity in the trait space). We also need the following assumption.

Assumption on T. For all distinct i, j, k ∈ E,

(4.2) T(i, j) +T(j, k) > T(i, k)

(with the convention ∞ > ∞) and we set

(4.3) η := inf
i,j,k∈E distinct s.t. T(i,k)<∞T(i, j) +T(j, k) −T(i, k) > 0.

Similarly, as for problem (1.4), the solution of problem (4.1) remains bounded.
This is given in the following lemma, which can be proved similarly as in Propo-
sition 2.1.

LEMMA 4.1. We have, for all t ≥ 0,(
�min

�max
vmin − A−1(|E| − 1

)
e−β/ε

)
�max

−1

≤∑
i∈E

uε(t, i) ≤
(

�max

�min
vmax + A

(|E| − 1
)
e−γ /ε

)
�min

−1

holds true for any positive t as far as it holds for t = 0, where |E| stands for the
cardinality of E,

γ = inf
{
T(i, j) | i, j ∈ E, i �= j

}
> 0, β = sup

{
T(i, j) | i, j ∈ E, i �= j

}
and the constants A, vmin, vmax, �min and �max are defined in Section 2.1.

Hence, we shall also assume in the sequel that(
�min

�max
vmin − A−1(|E| − 1

)
e−β/ε

)
�max

−1

≤∑
i∈E

e−hε(i)/ε ≤
(

�max

�min
vmax + A

(|E| − 1
)
e−γ /ε

)
�min

−1.

We also define the compact set

S :=
{
u ∈ R

E+ : �min

2�2
max

vmin ≤ ‖u‖1 ≤ 2�max

�2
min

vmax

}
which is invariant for the dynamics (4.1), for ε small enough.

Our first goal is to describe the solution uε of the system using an integral repre-
sentation similar to (2.9). Let (Xε

s , s ∈ [0, T ]) be the Markov processes in E with
infinitesimal generator

Lεf (i) =∑
j∈E

(
f (j) − f (i)

)
e−T(i,j)

ε ,
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that is, the Markov process which jumps from state i ∈ E to j �= i with exponen-
tially small rate exp(−T(i, j)/ε).

PROPOSITION 4.2 (Integral representation). For any positive real number t

and any element i of E, we have

uε(t, i) = Ei

[
exp
(
−hε(Xε

t )

ε
+ 1

ε

∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

)]
.

PROOF. First, note that the part of the proof of Lemma 2.4 showing that (2.9)
is a mild solution of problem (2.1) do not rely in any manner on the Brownian
nature of Bε . As a consequence, one can directly deduce that uε(t, i) satisfies

uε(t, i) = P ε
t

(
e−hε/ε)(i) +

∫ t

0
P ε

t−s

(
uε(s, i)Rε(i, vε

s

))
ds,

where (P ε
t , t ∈ R+) now stands for the semigroup generated by Lε (i.e., a sim-

ple exponential of matrix since E is finite). This last expression is the Duhamel
formulation of (4.1). �

4.2. Large deviations principle. Large deviations properties of discrete-time
Markov chains with exponentially small transition probabilities have been the ob-
ject of numerous works, mainly with a perspective of estimates on exit times and
metastability (see [8] or [13] and the references therein). However, we need to
apply Varadhan’s lemma to the continuous-time version of these processes. It ac-
tually appears that the process Xε satisfies a large deviations principle with a rate
function which is not good, which leads to substantial difficulties.

As a first step, the next result proves a weak large deviations principle
(i.e., a large deviations principle with upper bounds only for compact sets of
D([0, T ],E)) for the laws of Xε .

PROPOSITION 4.3 (Weak LDP). (Xε)ε≥0 satisfies a weak LDP with rate func-
tion

IT : D([0, T ],E) �→R,

ϕ →
Nϕ∑
l=1

T(ϕt
ϕ
l −, ϕt

ϕ
l
),

where D([0, T ],E) is the space of càdlàg functions from [0, T ] to E and Nϕ is the
number of jumps of ϕ and (t

ϕ
l )1≤l≤Nϕ the increasing sequence of jump times of ϕ.

We shall also make use of the notation

IT (ϕ) = ∑
0<s≤T

T(ϕs−, ϕs)

with the implicit convention that T(i, i) = 0 for all i ∈ E.
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Before proving this result, we focus on the following lemma which provides a
convenient topological basis of the space D([0, T ],E) equipped with the Skorohod
topology.

LEMMA 4.4. For all ϕ ∈ D([0, T ],E) and δ < 1, define

BSko(ϕ, δ) = {ψ ∈ D
([0, T ],E) | Nϕ = Nψ,

∣∣tϕl − t
ψ
l

∣∣< δ,

ϕ0 = ψ0,and ϕt
ϕ
l

= ψ
t
ψ
l

}
.

Then the set {
BSko(ϕ, ε) | ε ∈ [0,1), ϕ ∈ D

([0, T ],E)}
is a topological basis of D([0, T ],E).

PROOF. To prove the result, it is enough to show that, for all δ < 1 and
ϕ ∈ D([0, T ],E) the set BSko(ϕ, δ) is exactly the δ neighborhood of ϕ for a par-
ticular metric inducing the Skorokhod topology. We recall (see, e.g., [5]) that the
Skorokhod topology can be defined through the metric dS given by

dS(ϕ,ψ) = inf
λ∈�

{
max
(
‖λ − I‖L∞([0,T ]), sup

t∈[0,T ]
d(ϕt ,ψ ◦ λt)

)}
,

where I is the identity function, � is the set of continuous increasing functions
on [0, T ] with λ0 = 0 and λT = T and the distance d on E is defined as d(i, j) =
1i �=j . On one hand, let ψ and ϕ be such that dS(ϕ,ψ) < δ for some δ < 1, then
there exists λ in � such that{|λs − s| < δ ∀s ∈ [0, T ],

d
(
ϕs,ψ(λs)

)
< δ ∀s ∈ [0, T ].

Since infi,j∈E,i �=j d(i, j) = 1, we have ϕt = ψ(λt) for all t ∈ [0, T ]. Hence, it

follows that Nϕ equals Nψ and t
ϕ
l = λ(t

ψ
l ), for all l. Consequently, |tϕl − t

ψ
l | < δ,

for all l, and ϕt
ϕ
l

= ψ
t
ψ
l

.

On the other hand, assume that ψ ∈ BSko(ϕ, δ), then one can consider the func-
tion λ, defined for any t ∈ [tϕn , t

ϕ
n+1], by

λt = tψn + t
ψ
n+1 − t

ψ
n

t
ϕ
n+1 − t

ϕ
n

(
t − tϕn

)
,

and obtain, using similar argument as above, that ψ ◦ λ = ϕ. Moreover, on each
interval [tϕn , t

ϕ
n+1], since λt − t is monotonous, it attains it maximal and minimal

values on either at t
ϕ
n+1 or t

ϕ
n . So, it is easy to see that ‖λ − I‖∞ < δ, which gives

dS(ϕ,ψ) < δ. �

We can now prove the weak large deviations principle for Xε .
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PROOF OF PROPOSITION 4.3. Let (Sl)l≥0 be the discrete time Markov chain
associated to Xε and let Tl be the lth inter-jump time, that is, Tl = Jl+1 − Jl for all
l ≥ 0, where Jl is the lth jump time of Xε , for l ≥ 1 and J0 = 0. We recall that the
Markov chain (Tl, Sl)l≥0 has transition kernel given by

P
(
(t, i), ds, dj

)= exp
(
−T(i, j)

ε

)
exp
(−cε(i)s

)
ds ⊗ C(dj)

∀(t, i) ∈ [0, T ] × E,

where

cε(i) = ∑
j∈E,j �=i

exp
(
−T(i, j)

ε

)

and C(dj) is the counting measure on E and initial value (T0, S0) = (0, i) Pi -
almost surely.

Let ϕ be an element of D([0, T ],E) such that ϕ(0) = i and δ < 1. We set t
ϕ
0 = 0.

According to Lemma 4.4,

Pi

(
Xε ∈ BSko(ϕ, δ)

)
≤ Pi

(Nϕ−1⋂

=0

{
T
 ∈ [tϕ
+1 − t

ϕ

 − 2δ, t

ϕ

+1 − t

ϕ

 + 2δ

]
, S
 = ϕt

ϕ



}

∩ {TNϕ ≥ T − tNϕ − δ, SNϕ = ϕt
ϕ
Nϕ

}
)
.

Hence,

Pi

(
Xε ∈ BSko(ϕ, δ)

)
≤
(Nϕ−1∏


=0

∫ t
ϕ

+1−t

ϕ

 +2δ

(t
ϕ

+1−t

ϕ

 −2δ)∨0

exp
(
−
T(ϕt

ϕ


, ϕt

ϕ

+1

)

ε

)
exp
(−cε(ϕt

ϕ


)s

)
ds


)

×
∫ ∞
(T −t

ϕ
Nϕ

−δ)∨0
cε(ϕt

ϕ
Nϕ

) exp
(−cε(ϕt

ϕ
Nϕ

)s
)
ds

=
Nϕ−1∏

=0

exp
(
−
T(ϕt

ϕ


, ϕt

ϕ

+1

)

ε

)
e
−cε(ϕ

t
ϕ



)(t
ϕ

+1−t

ϕ

 −2δ)∨0

× (1 − e
−4δcε(ϕ

t
ϕ



)
)

cε(ϕt
ϕ


)

e
−cε(ϕ

t
ϕ
Nϕ

)(T −t
ϕ
Nϕ

−δ)∨0
.
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Now, using the facts that cε(i) ≤ e− c
ε with c > 0 and (1 − exp(−4δcε(ϕt

ϕ


)))/

cε(ϕt
ϕ


) → 4δ when ε → 0, we get

lim sup
ε→0

ε logPi

(
Xε ∈ BSko(ϕ, δ)

)≤ −
Nϕ−1∑

=0

T(ϕt
ϕ


, ϕt

ϕ

+1

).

Similarly, for δ > 0 small enough, using the bound

Pi

(
Xε ∈ BSko(ϕ, δ)

)≥ Pi

( Nϕ⋂

=0

{
T
 ∈
(
t
ϕ

+1 − t

ϕ

 − δ

Nϕ

, t
ϕ

+1 − t

ϕ



)
, S
 = ϕt

ϕ



})
,

we obtain

lim inf
ε→0

ε logPi

(
Xε ∈ BSko(ϕ, δ)

)≥ −
Nϕ−1∑

=0

T(ϕt
ϕ


, ϕt

ϕ

+1

).

Hence

lim
ε→0

ε logPi

(
Xε ∈ BSko(ϕ, δ)

)= −
Nϕ−1∑

=0

T(ϕt
ϕ


, ϕt

ϕ

+1

).

This classically entails (see, e.g., [16], Theorem 4.1.11) that Xε satisfies a weak
large deviations principle with rate function IT . �

Usually, a full large deviations principle is deduced from a weak one using ex-
ponential tightness of the laws of Xε . However, in our case, exponential tightness
does not hold. This is due to the fact that the function IT is not a good rate func-
tion, as can be seen from the following example: let i and j be two elements of E

and s a real number in (0, T ). Now, define for any positive integer n large enough,

ϕn(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i if u ∈ [0, s),

j if u ∈
[
s, s + 1

n

)
,

i if u ∈
[
s + 1

n
,T

]
.

Then the subset {ϕn | n ∈ N\{0}} is clearly noncompact in D([0, T ],E) while IT

is bounded on this set.
To prove the full large deviations principle, we need the following lemma.

LEMMA 4.5. For all N ≥ 1 and t > 0, we denote by Nε
t the number of jumps

of Xε before t . There exists a constant CN ≥ 0 such that, for all i ∈ E,

lim sup
ε→0

ε logPi

(
Nε

t ≥ N
)≤ −CN,

and for all t > 0, limN→∞ CN = +∞.
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PROOF. Let us fix x0, x1, . . . , xN ∈ E such that T(xl, xl+1) > 0 for all l. We
compute

Px0

(
Nε

t ≥ N,Xε
Jl

= xl,∀l ∈ {0, . . . ,N})
=
∫ t

0
exp
(
−T(x0, x1)

ε

)
exp
(−cε(x0)s0

)
ds0 · · ·

· · ·
∫ t−s0−···−sN−2

0
exp
(
−T(xN−1, xN)

ε

)
exp
(−cε(xN−1)sN−1

)
dsN−1

≤ exp
(
−T(x0, x1) + · · · +T(xN−1, xN)

ε

)∫ t

0
ds0 · · ·

∫ t−s0−···−sN−2

0
dsN−1

= tN

N ! exp
(
−T(x0, x1) + · · · +T(xN−1, xN)

ε

)
.

Therefore,

lim sup
ε→0

ε logPx0

(
Nε

t ≥ N,Xε
Jl

= xl,∀l ∈ {0, . . . ,N})
≤ −T(x0, x1) − · · · −T(xN−1, xN) ≤ −N inf

i,j∈E
T(i, j).

Since the number of choices of x0, x1, . . . , xN ∈ E is finite, we have proved
Lemma 4.5. �

We can now prove that Xε satisfies (a strong version of) the full LDP.

THEOREM 4.6. For any measurable set F of D([0, T ],E),

lim sup
ε→0

ε logPi

(
Xε ∈ F

)≤ − inf
ϕ∈F

IT (ϕ) ≤ − inf
ϕ∈F̄

IT (ϕ).

In particular, Xε satisfies the large deviation principle with rate ε−1 and rate
function IT .

PROOF. Let F ⊂D([0, T ],E) be measurable. Set, for any positive integer n,

F+
n = {ϕ ∈ F | Nϕ ≥ n} and F−

n = F\F+
n .

We have

Pi

(
Xε ∈ F−

n

)= n−1∑

=0

∑
(x1,...,x
)∈E


Pi

({
Xε

Jk
= xk,∀k ≤ Nε

t ,Nε
t = 

}∩ F

)
.

According to the computations made in the proof of Lemma 4.5, we have

lim sup
ε→0

ε logPi

(
Xε

Jk
= xk,∀k ≤ Nε

T ,Nε
T = 


)≤ −
(
T(i, x1) +


−1∑
k=1

T(xk, xk+1)

)
,
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which leads to

lim sup
ε→0

ε logPi

(
Xε ∈ F−

n

)≤ max

{
−
(
T(i, x1) +


−1∑
k=1

T(xk, xk+1)

)}
,

where the maximum is taken with respect to 
 ∈ {0, . . . , n− 1} and to the elements
(x1, . . . , x
) of

⋃n

=0 E
 such that{

Xε
Jk

= xk,∀k ≤ Nε
T ,Nε

T = 

}∩ F �= ∅.

This implies that

lim sup
ε→0

ε logPi

(
Xε ∈ F−

n

)≤ − inf
ϕ∈F

IT (ϕ).

Finally, using Lemma 4.5, we obtain

lim sup
ε→0

ε logPi

(
Xε ∈ F

)≤ max
(
− inf

ϕ∈F
IT (ϕ),−Cn

)
.

The result is now obtained by sending n to infinity. �

4.3. Varadhan’s lemma and convergence to the variational problem. The next
theorem corresponds to Theorem 2.7 in the discrete case situation. As seen above,
IT is not a good rate function, which prevents us from applying directly Varadhan’s
lemma. This is the place where we need the assumption (4.2) on T. Our result
makes use of the sequence (εk)k≥1 constructed in Lemma 2.6, which holds true
without modification in our discrete case. To avoid heavy notation, we shall write
Ms(i) for Ms({i}), where Ms is the measure constructed in Lemma 2.6.

THEOREM 4.7. For all (t, i) in (0,+∞) × E,

V (t, i) := lim
k→∞ εk loguεk (t, i)

= sup
ϕ∈D([0,t],E) s.t. ϕ0=i

{
−h(ϕt ) +

∫ t

0

∑
j∈E

R(ϕs, j)Mt−s(j) ds

− ∑
0<s≤t

T(ϕs−, ϕs)

}
.(4.4)

PROOF. Let us fix a positive time t . To avoid heavy notation, we shall write ε

instead of εk in this proof. Since the only part of the proof of Varadhan’s lemma
relying on the compactness of the level sets of the rate function is the upper bound,
we restrict ourself to this bound. As in the proof of Theorem 2.7, let a ∈ R be
smaller than the right-hand side of (4.4) and C satisfying |	(ϕ)−h(ϕ(t))| ≤ C(t +
1). We define K as the (nonnecessarily compact) level set

K = {ϕ ∈D
([0, t],E) | ϕ0 = i, It (ϕ) ≤ C(t + 1) − a

}
.
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First, as in the proof of Theorem 2.7, we deduce from the LDP that

lim sup
ε→0

ε logEi

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))
1Xε∈Kc

]
≤ C(t + 1) + lim sup

ε→0
ε logP

(
Xε ∈ Kc)≤ C(t + 1) − inf

x∈Kc
I (x) ≤ a.(4.5)

Second, by the definition of It (ϕ), we have

(4.6) Nϕ ≤ It (ϕ)

mini,j∈E T(i, j)
.

Hence, according to (4.6), there exists N such that for all ϕ in K , Nϕ ≤ N . Fix
γ > 0. We deduce that K = KN,δ ∪ LN,δ , where

KN,γ =
{
ϕ ∈ K

∣∣Nϕ ≤ N and inf
l

(
t
ϕ
l+1 − t

ϕ
l

)≥ γ
}

and

LN,γ =
{
ϕ ∈ K

∣∣Nϕ ≤ N and inf
l

(
t
ϕ
l+1 − t

ϕ
l

)
< γ
}
.

Let �β(T ) be the set of subdivisions of [0, t] with mesh greater that β . Since, for
all ϕ ∈ KN,γ and all β < γ , we have

inf
s∈�β(T )

max
1≤l≤|s| sup

u,v∈[sl ,sl+1)

|ϕu − ϕv| = 0,

we deduce from Arzela–Ascoli’s theorem for the Skorokhod space that KN,γ is
compact.

Fix δ > 0. We deduce that there exist n ≥ 1 and ϕ
γ
1 , . . . , ϕ

γ
n ∈ KN,γ such that

KN,γ =
n⋃

l=1

Gϕ
γ
l
,

where the neighborhood Gϕ
γ
l

of ϕ
γ
l is chosen such that, for ε small enough,

(4.7) −h
(
ϕ

γ
l (t)
)+ 	ε

(
ϕ

γ
l

)+ δ ≥ sup
ϕ∈G

ϕ
γ
l

−hε

(
ϕγ (t)

)+ 	ε(ϕ).

Because of Lemma 4.4, we can also assume without loss of generality that It is
constant on Gϕ

γ
l

for all l. Moreover, for all l in {1, . . . , n} and ε small enough, we
have

(4.8) 	
(
ϕ

γ
l

)− δ ≤ 	ε

(
ϕ

γ
l

)≤ 	
(
ϕ

γ
l

)+ δ.

Following the lines of Theorem 2.7, we obtain

lim sup
ε→0

ε logEi

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))
1Xε∈KN,γ

]
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≤ max
1≤l≤n

{
−h
(
ϕ

γ
l (t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ

γ
l (s), j

)
Mt−s(j) ds + 2δ − It

(
ϕ

γ
l

)}

≤ max
ϕ∈KN,γ

{
−h
(
ϕ(t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ(s), j

)
Mt−s(j) ds − It (ϕ)

}
+ 2δ.(4.9)

We now prove a similar inequality when Xε lies in LN,γ . We first introduce
some notation: for any ϕ ∈ D([0, T ],E), in the case where t

ϕ
Nϕ

≤ t − γ , we define

�γ ϕ(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕ(s) if s ∈ [tϕl , t
ϕ
l+1

)
for 0 ≤ l ≤ Nϕ and t

ϕ
l+1 − t

ϕ
l ≥ γ,

ϕ
(
t
ϕ

inf{l≤j≤Nϕ |tϕj+1−t
ϕ
j ≥γ }
)

if s ∈ [tϕl , t
ϕ
l+1

)
for 0 ≤ l ≤ Nϕ and t

ϕ
l+1 − t

ϕ
l < γ,

with the convention that t
ϕ
0 = 0 and t

ϕ
Nϕ+1 = t . In the case where t − γ < t

ϕ
Nϕ

≤ t ,
we set �γ ϕ := �γ ϕ̃ where

ϕ̃ :=
{
ϕ(t) if s ∈ [t − γ, t],
ϕ(s) if s < t − γ.

Now, for all ϕ in LN,γ , �γ ϕ lies in KN,γ . Indeed, by construction, �γ ϕ has inter-
jumps times larger than γ and, because of Hypothesis (4.3), It (�

γ ϕ) ≤ It (ϕ) since
�γ ϕ is obtained by suppressing jumps in ϕ. Hence, we get

Ei

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))
1Xε∈LN,γ

]

≤
n∑

l=1

E

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))
1Xε∈LN,γ

1�γ Xε∈G
ϕ
γ
l

]
.

For all ϕ in LN,γ , we necessarily have �γ ϕ(t) = ϕ(t), hence, it follows from the
definition of �γ that

− hε

(
ϕ(t)
)+ ∫ t

0
Rε(ϕ(s), vε

t−s

)
ds

= −hε

(
�γ ϕ(t)

)+ ∫ t

0
Rε(�γ ϕ(s), vε

t−s

)
ds

+ ∑
t
ϕ
j+1−t

ϕ
j <γ

∫ t
ϕ
j+1

t
ϕ
j

(
Rε(ϕ(s), vε

t−s

)− Rε(�γ ϕ(s), vε
t−s

))
ds

≤ −hε

(
�γ ϕ(t)

)+ ∫ t

0
Rε(�γ ϕ(s), vε

t−s

)
ds + 2NMγ,
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where the constant M comes from Assumption (2d). Using this last inequality,
(4.7) and (4.8), we get

Ei

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))
1x∈LN,γ

]

≤
n∑

l=1

E

[
exp
(

1

ε

(
−hε

(
�γ Xε

t

)+ ∫ t

0
Rε(�γ Xε

0, v
ε
t−s

)
ds

))

× exp
(

2

ε
NMγ

)
1x∈LN,γ

1�γ Xε∈G
ϕ
γ
l

]

≤
n∑

l=1

exp
(

1

ε

(
−h
(
ϕ

γ
l (t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ

γ
l (s), j

)
Mt−s(j) ds + 2δ

))

× exp
(

2

ε
NMγ

)
P
(
Xε ∈ LN,γ ,�δXε ∈ Gϕ

γ
l

)
.

It follows from Theorem 4.6 that

lim sup
ε→0

ε logEi

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))
1Xε∈LN,γ

]

≤ max
1≤l≤n

(
−h
(
ϕ

γ
l (t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ

γ
l (s), j

)
Mt−s(j) ds

+ 2δ + 2NMγ − inf
ϕ∈A

ϕ
γ
l

It (ϕ)

)

(with the convention infϕ∈∅ It (ϕ) = +∞), with

Aϕ
γ
l

= {ϕ ∈ LN,γ | �γ ϕ ∈ Gϕ
γ
l

}
.

Now, using Lemma 4.4 and It (�
γ ϕ) ≤ It (ϕ), we have for all l such that Aϕ

γ
l

�= ∅,

It

(
ϕ

γ
l

)= inf
ϕ∈A

ϕ
γ
l

It

(
�γ ϕ
)≤ inf

ϕ∈A
ϕ
γ
l

It (x),

which gives

lim sup
ε→0

ε logEi

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))
1Xε∈LN,γ

]

≤ max
1≤l≤n

(
−h
(
ϕ

γ
l (t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ

γ
l (s), j

)
Mt−s(j) ds

+ 2δ + 2NMγ − It

(
ϕ

γ
l

))
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≤ max
ϕ∈KN,γ

{
−h
(
ϕ(t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ(s), j

)
Mt−s(j) ds − It (ϕ)

}
+ 2δ + 2NMγ.

Combining the last inequality with (4.5) and (4.9), we obtain

lim sup
ε→0

ε logEi

[
exp
(

1

ε

(
−hε

(
Xε

t

)+ ∫ t

0
Rε(Xε

s , v
ε
t−s

)
ds

))]

≤ max
{
a; max

ϕ∈KN,γ

[
−h
(
ϕ(t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ(s), j

)
Mt−s(j) ds − It (ϕ)

]

+ 2δ + 2NMγ

}
≤ sup

ϕ∈D([0,t],E) s.t. ϕ0=i

{
−h
(
ϕ(t)
)+ ∫ t

0

∑
j∈E

R
(
ϕ(s), j

)
Mt−s(j) ds − It (ϕ)

}
+ 2δ + 2NMγ.

Since δ and γ are arbitrary, we have proved Theorem 4.7. �

Our next goal is to obtain a version of Theorem 2.8. Since its proof makes
use of the translation invariance of Brownian motion, we cannot use the same
method. In particular, we will see that the function t �→ ε loguε(t, i) may not be
uniformly Lipschitz for particular initial conditions. Hence we shall prove directly
the Lipschitz regularity of the limit V . For this, we first need the following lemma.

LEMMA 4.8. For all subsequence (εk)k≥1 as in Theorem 4.7, the limit V (t, i)

of εk loguε
k(t, i) satisfies, for all t > 0 and all i �= j ∈ E,

V (t, i) ≥ V (t, j) −T(i, j).

In particular, this inequality is satisfied for all t ≥ 0 if and only if h(i) ≤ h(j) +
T(i, j) for all i �= j .

PROOF. Fix i �= j , t > 0 and η > 0. Because of (4.4), we can choose a function
ϕ̂ ∈ D([0, t],E) such that ϕ̂0 = j and

V (t, j) ≤ η − h(ϕ̂t ) +
∫ t

0

∑
k∈E

R(ϕ̂s, k)Mt−s(k) ds − ∑
0<s≤t

T(ϕ̂s−, ϕ̂s).

For all n ∈N such that 1
n

< t
ϕ̂
1 ∧ t , we define ϕ(n) ∈D([0, t],E) as

ϕ(n)
s =

{
i if 0 ≤ s < 1/n,

ϕ̂s if 1/n ≤ s ≤ t.
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Using (4.4) again, we have

T(i, j) + V (t, i)

≥ V
(
t, ϕ

(n)
t

)+ ∫ t

0

∑
k∈E

R
(
ϕ(n)

s , k
)
Mt−s(j) ds − ∑

1/n<s≤t

T
(
ϕ

(n)
s− , ϕ(n)

s

)
≥ V (t, ϕ̂t ) − M

n
+
∫ t

1/n

∑
k∈E

R(ϕ̂s, k)Mt−s(j) ds − ∑
0<s≤t

T(ϕ̂s−, ϕ̂s)

≥ V (t, j) − η − 2
M

n
,

where the constant M comes from Assumption (2d). This concludes the proof
letting η → 0 and n → +∞. �

We can now state our result on the regularity of V .

THEOREM 4.9. For all subsequence (εk)k≥1 as in Theorem 4.7, the limit
V (t, i) of εk loguεk (t, i) is Lipschitz with respect to the time variable t on (0,+∞).
In addition, if h(i) ≤ h(j) + T(i, j) for all i �= j , the function V is Lipschitz on
R+.

PROOF. Fix t ≥ 0 and i ∈ E. We shall write ε for εk to avoid heavy notation.
For all δ > 0 and ε > 0, proceeding as in the proof of Theorem 2.8, Markov’s
property entails

(4.10) e−Mδ
ε Ei

[
uε(t,Xε

δ

)]≤ uε(t + δ, i) ≤ e
Mδ
ε Ei

[
uε(t,Xε

δ

)]
.

We can now estimate the distribution of Xε
δ as follows. Let Nε be the number of

jumps of Xε on the time interval [0, δ]. For all j �= i,

δe−|E|δe−T(i,j)
ε ≤ Pi

(
Xε

δ = j,Nε = 1
)

=
∫ δ

0
e−T(i,j)

ε e−cε(i)se−cε(j)(δ−s) ds ≤ δe−T(i,j)
ε ,

where |E| is the cardinality of E. Similarly,

1 − |E|δ ≤ Pi

(
Xε

δ = i,Nε = 0
)≤ 1

and

0 ≤ Pi

(
Nε ≥ 2

)≤∑
j �=i

cε(j)e−T(i,j)
ε

∫ δ

0
(δ − s) ds ≤ |E|2

2
δ2.
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Putting all these inequalities together, we obtain(
1 − |E|δ)uε(t, i) +∑

j �=i

δe−|E|δe−T(i,j)
ε uε(t, j)

≤ Ei

[
uε(t,Xε

δ

)]≤ uε(t, i) +∑
j �=i

δe−T(i,j)
ε uε(t, j) + δ2C̄

|E|2
2

,

where C̄ is the right-hand side of the main result in Lemma 4.1. Taking ε log of
both sides of (4.10), using the last inequality and sending ε to 0, we obtain

max
{
V (t, i);max

j �=i
V (t, j) −T(i, j)

}
− Mδ

≤ V (t + δ, i) ≤ max
{
V (t, i);max

j �=i
V (t, j) −T(i, j)

}
+ Mδ.(4.11)

Since δ > 0 was arbitrary, the result follows from Lemma 4.8. �

4.4. Detailed study of the variational problem in the finite case. Assume as
above that E is a finite set. Our goal here is to study the limit problem

(4.12)

V (t, i) = sup
ϕ(0)=i

{
−h
(
ϕ(t)
)+ ∫ t

0

∫
Rr

R
(
ϕ(u), y

)
Mt−u(dy) du − It (ϕ)

}
,

(t, i) ∈ R+ × E.

A direct adaptation of Theorem 4.7 allows to obtain the dynamic programming
version of (4.12): for any 0 ≤ s ≤ t , the limit of εk loguεk

satisfies

V (t, i) = sup
ϕ(s)=i

{
V
(
s, ϕ(t)

)+ ∫ t

s

∫
Rr

R
(
ϕ(u), y

)
Ms+t−u(dy) du − Is,t (ϕ)

}
,

where, for all ϕ in D([s, t],E)

Is,t (ϕ) = ∑
u∈(s,t]

T
(
ϕ(u−), ϕ(u)

)
.

In all this section, we shall assume that there exists a constant κ > 0 such that,
when ε → 0,

(4.13)
∥∥Rε − R

∥∥
L∞(E×R+) = o

(
exp
(
−κ

ε

))
.

This is, for example, satisfied for (1.2).
In the sequel, we make use of the following assumptions on the dynamical sys-

tems related to problem (4.1). For all A ⊂ E, we define the dynamical system in
R

A+ := {(ui, i ∈ A) : ui ≥ 0 for all i ∈ A} denoted SA by

(4.14) u̇i = uiRi

(∑
j∈A

�p(j)uj ,1 ≤ p ≤ r

)
, i ∈ A,

where Ri(v) stands for R(i, v).
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HYPOTHESIS (H). For all A ⊂ E, let EqA be the set of steady states of SA. As-
sume that all element of EqA are hyperbolic steady states and SA admits a unique
steady state u∗

A = (u∗
A,i)i∈A such that, for all i in A,

u∗
A,i = 0 =⇒ Ri

(∑
j∈E

�p(j)u∗
A,j ,1 ≤ p ≤ r

)
< 0.

Assume also that there exists a strict Lyapunov function LA : RA+ → R for the dy-
namical system SA, which means that LA is C1, admits a unique global minimizer
on R

A+ and satisfies, for any solution u(t) to SA,

dLA(u(t))

dt
=∑

i∈A

∂LA

∂ui

(
u(t)
)
ui(t)Ri

(∑
j∈A

�p(j)uj (A),1 ≤ p ≤ r

)
< 0

for all t ≥ 0 such that u(t) /∈ EqA.

The hyperbolicity assumption means that for all steady state u∗, u∗
i = 0 implies

that

Ri

(∑
j∈E

�p(j)u∗
j ,1 ≤ p ≤ r

)
�= 0.

For finite dimensional dynamical systems, it is well known that the hyperbolicity
condition is generic under perturbation (see [15]). Since hyperbolic equilibria are
isolated, Hypothesis (H) implies that EqA is finite. The global minimizer of LA

is necessarily a stable steady state of SA, hence it must be u∗
A (since all the other

steady states are not stable). In addition, the equilibrium u∗
A is globally asymp-

totically stable, in the sense that, for all initial condition u(0) = (ui(0))i∈A in
(0,+∞)A, the solution to (4.14) converges to u∗

A. Indeed, since u̇i/ui is uniformly
bounded, u(0) ∈ (0,+∞)A implies that u(t) ∈ (0,+∞)A for all t > 0. Now, the
existence of a strict Lyapunov function implies that u(t) converges to an equilib-
rium u∗. If u∗ �= u∗

A, because of Hypothesis (H), there exists i such that u∗
i = 0 and

u̇i(t)/ui(t) ≥ 1
2Ri(
∑

j∈E �p(j)u∗
j ,1 ≤ p ≤ r) > 0 for all t large enough. This is

a contradiction with the convergence of u(t) to u∗.
General classes of dynamical systems satisfying Hypothesis (H) have been

given in [12]. We give here two examples.

EXAMPLE 1. Our first example corresponds to indirect competition for envi-
ronmental resources and is an extension of the chemostat model (1.3):

Ri(v) = −di + ci

r∑
p=1

αp�p(i)

1 + vp

,
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where di , ci , αp are positive real numbers satisfying ci

∑r
p=1 αp�p(i) > di , for

all i in E. Here, the Lyapounov functions of Hypothesis (H) are given by

L : u ∈ R
|A| →∑

i∈A

ci log
(

ci

1 +∑i∈A �p(i)ui

)
−∑

i∈A

ui.

EXAMPLE 2. This example corresponds to direct competition of Lotka–
Volterra (or logistic) type: we assume that E = {1, . . . , r} and

Ri(v) = ri − vi,

with the hypothesis that there exist positive constants c1, . . . , cr such that

ci�i(j) = cj�j (i) ∀i, j ∈ E and∑
i,j∈E

xixj ci�i(j) > 0 ∀x ∈ R
r \ {0}.

In this example the matrix (�i(j))i,j∈E is interpreted as a competition matrix be-
tween the different types of individuals. Here, the Lyapunov functions of Hypoth-
esis (H) are given by

L : u ∈ R
|A| → 1

2

∑
i,j∈A

ci�i(j)uiuj −∑
i∈A

uirici .

Hypothesis (H) implies a key property given in the next lemma.

LEMMA 4.10. Assume Hypothesis (H). For all A ⊂ E and all ρ > 0 small
enough, the first hitting time t∗A(u(0), ρ) of the ρ-neighborhood of u∗

A by a solution
u(t) to SA satisfies

t∗A
(
u(0), ρ

)≤ C∗
ρ

(
1 + sup

i∈A

− logui(0)
)

for some constant C∗
ρ only depending on ρ.

This lemma means that, when one coordinate ui(0) of u(0) is close to zero, the
time needed to converge to u∗

A grows linearly with the logarithm of (ui(0))−1.

PROOF. Let A be a nonempty subset of E and u be a solution of the dynamical
system SA. Without loss of generality, we can assume that LA(u∗

A) = 0, that is,
minu∈RE+ LA(u) = 0. Let SA be the set of u ∈ R

A+ such that ū ∈ S , where ū ∈ R
E+

is obtained from u by setting to zero the coordinates with indices in E \ A and the
set S was defined in Lemma 4.1. Let U∗ = (EqA ∩ SA) \ {u∗

A}.
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Step 1. Decrease of LA(u(t)) between the visits of two neighborhoods of steady
states.

Let

d := min
u∗,v∗∈U∗∪{u∗

A}
∣∣u∗ − v∗∣∣

and α0 > 0 such that∑
i∈A

∂iLA(x)xiRi

(∑
j∈A

�p(j)xj ,1 ≤ p ≤ r

)
< −α0

∀x /∈ ⋃
u∗∈U∗∪{u∗

A}
B
(
u∗, d/4

)
.

Hence, setting ‖R‖H := supi∈E,x∈H |R(i, x)| with H defined in Assumption (2d),
the decrease of LA(u(t)) between two visits by u(t) of two distinct balls
B(u∗, d/4) for u∗ ∈ U∗ ∪{u∗

A} is at least α0d
2‖R‖H . Now, let δ < d/4 be small enough

to have, for all u∗ ∈ U∗,

sup
u∈B(u∗,δ)

LA(u) − inf
u∈B(u∗,δ)

LA(u) <
α0d

2‖R‖H .

Hence, defining for all k ∈N,

Sk
A :=
{
u ∈ SA

∣∣∣ k α0d

2‖R‖H ≤ LA(u) < (k + 1)
α0d

2‖R‖H
}
,

the solution u(t) can only visit at most one ball of type B(u∗, δ) for some u∗ ∈ U∗
during its travelling time through Sk

A.
Step 2. Time spent in Sk

A.
According to Hypothesis (H), for any steady state u∗ ∈ U∗, we have

Ri

(∑
j∈A

�p(j)u∗
j ,1 ≤ p ≤ r

)
> 0

for at least one i
(
u∗) ∈ A such that u∗

i(u∗) = 0.

Consequently, reducing δ > 0 if necessary, there exists a positive real number R−
such that, for all u∗ ∈ U∗,

(4.15) ∀x ∈ B
(
u∗, δ
)
, Ri(u∗)

(∑
j∈A

�p(j)u∗
j ,1 ≤ p ≤ r

)
> R−.

In addition, since LA is a strict Lyapunov function, there exists a positive real
number α such that

(4.16)

∑
i∈A

∂iLA(x)xiRi

(∑
j∈A

�p(j)xj ,1 ≤ p ≤ r

)
< −α

∀x /∈ ⋃
u∗∈U∗∪{u∗

A}
B
(
u∗, δ
)
.
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Now, let c be a positive real number satisfying c−1 < α−1‖R‖H. Let k0 such that
u0 ∈ Sk0

A . For any 0 ≤ k ≤ k0, let tk be the hitting time of Sk and t−1 the first hitting
time of B(u∗

A, δ), and define for all k ≥ 0,

Fk(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

LA

(
u(t)
)

if u(t) /∈ ⋃
u∗∈U∗∪{u∗

A}
B
(
u∗, δ
)

for all t ∈ [tk, tk−1],
LA

(
u(t)
)− c logui(u∗)(t) if ∃t ∈ [tk, tk+1],∃u∗ ∈ U∗

such that u(t) ∈ B
(
u∗, δ
)
.

Note that Step 1 implies that, for all k ≥ 0, there exists at most one u∗ ∈ U∗
such that u(t) ∈ B(u∗, δ) for some t ∈ [tk, tk+1]. Using (4.16), (4.15), the fact that
d
dt

LA(u(t)) ≤ 0 and the definition of ‖R‖H, we have for all t ∈ [tk, tk+1],
dFk(t)

dt
≤ (−cR−) ∨ (−α + c‖R‖H)< 0.

Therefore, for all t ∈ [tk, tk+1],
Fk(t) ≤ (k + 1)

α0d

2‖R‖H − c inf
i∈A

logui(tk).

In addition it follows from Lemma 4.1 that

Fk(t) ≥ k
α0d

2‖R‖H − log
(

vmax + A(|E| − 1)e−γ /ε

�min

)
.

Setting k = k0, we deduce that there exists a constant Ck0−1 > 0 such that

tk0−1 ≤ Ck0−1

(
1 − inf

i∈A
logui(0)

)
and, since | u̇i

ui
| ≤ ‖R‖H,

− inf
i∈A

logui(tk0−1) ≤ − inf
i∈A

logui(0) + ‖R‖HCk0−1

(
1 − inf

i∈A
logui(0)

)
.

Proceeding by induction, it follows that there exist constants Ck and Dk depending
only on k0 and u(0) such that, for all k ≥ 1,

tk−1 − tk ≤ Ck

(
1 − inf

i∈A
logui(0)

)
and

− inf
i∈A

logui(tk−1) ≤ Dk

(
1 − inf

i∈A
logui(0)

)
.

Similarly, there exist constants Ck and Dk such that

t−1 − t0 ≤ C0

(
1 − inf

i∈A
logui(0)

)
and

− inf
i∈A

logui(t−1) ≤ D0

(
1 − inf

i∈A
logui(0)

)
.
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Since L is a strict Lyapunov function, for all ρ < δ, the time needed to enter
B(u∗

A,ρ) starting from any point in B(u∗
A, δ) is bounded by a constant depend-

ing only on ρ. The result follows. �

This lemma entails the following property.

PROPOSITION 4.11. Assume (4.13) and Hypothesis (H) and let (εk)k≥1 be as
in Theorem 4.9. For any t ≥ 0, let

ui(t) =
{
u∗{V (t,·)=0},i if V (t, i) = 0,

0 otherwise.

Then there exists ρt > 0 such that, for all γ ∈ (0, ρt ),

(4.17) sup
s∈[γ,ρt ],i∈E

∣∣uεk (t + s, i) − ui(t)
∣∣−−−−→

k→+∞ 0.

In particular, for all s ∈ (t, t + ρt ], v
εk
s converges to F({V (t, ·) = 0}), where the

convergence is uniform in all compact subsets of (t, t + ρt ] and where

F(A) =
(

r∑
j=1

�p(j)u∗
A,j

)
1≤p≤r

∀A ⊂ E.

In addition, the weak limit Ms of δvεk
(s) obtained in Lemma 2.6 satisfies

Ms = δF({V (t,·)=0}) for almost all s ∈ (t, t + ρt )

and the function t �→ F({V (t, ·) = 0}) is right continuous.

Note that because the set E is finite, the range of the function F is finite, and
thus, assuming that t �→ F({V (t, ·) = 0}) is right continuous implies that the union
of the time intervals where this function is constant is equal to R+. We emphasize
that this is not true in general for measurable functions taking values in finite sets.

PROOF OF PROPOSITION 4.11. Let us fix t ≥ 0 and define A = {i ∈ E |
V (t, i) = 0}. Since, at time t , we have V (t, i) = limk→∞ εk loguεk (t, i), it follows
that, for all δ > 0, for all k large enough,

(4.18) uεk (t, i) ≥ e
− δ

εk ∀i ∈ A.

In addition, there exists α > 0 such that, for k large enough,

(4.19) uεk (t, i) ≤ e
− α

εk ∀i ∈ E \ A.

We define (u
εk

i (s), s ∈ R+)i∈E such that u
εk

i (s) = 0 for all i ∈ E \ A and
(u

εk

i (s), s ∈ R+)i∈A is the solution of the dynamical system SA, with initial condi-
tions u

εk

i (0) = uεk (t, i), for all i ∈ A. According to (4.14) and (4.1), we have, for
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any time s and any i in A,∣∣uεk (t + s, i) − u
εk

i (s/εk)
∣∣

≤ 1

εk

∫ s

0

∣∣∣∣uεk (t + θ, i)Rεk
(
i, v

εk

t+θ

)
− u

εk

i (θ/εk)Ri

(∑
j∈A

�p(j)u
εk

j (θ/εk),1 ≤ p ≤ k

)∣∣∣∣dθ

+
∫ s

0

∑
j∈E

e
−T(i,j)

εk
∣∣uεk (θ, j) − uεk (θ, i)

∣∣dθ.

Using Hypotheses (2d) and (4.13), in conjunction with Lemma 4.1, we get for all
s ≤ 1∣∣uεk (t + s, i) − u

εk

i (s/εk)
∣∣≤ D

εk

∫ s

0

∣∣uεk (t + θ, i) − u
εk

i (θ/εk)
∣∣dθ + Ce

− γ∧κ
εk ,

with γ defined in Lemma 4.1 and some positive constants C and D. Hence, the
Gronwall lemma entails that∣∣uεk (t + s, i) − u

εk

i (s/εk)
∣∣≤ C

εk

exp
(

Ds − γ

εk

)
.

Proceeding similarly for i ∈ E \ A, we deduce from (4.19) that∣∣uεk (t + s, i) − uεk
(t, i)
∣∣

≤ 1

εk

∫ s

0
uεk (t + θ, i)R

(
i, v

εk

t+θ

)
dθ + Ce

− γ∧κ
εk

≤ M

εk

∫ s

0

∣∣uεk (t + θ, i) − uεk
(t, i)
∣∣dθ + M

εk

e
− α

εk + Ce
− γ∧κ

εk ,

where the constant M comes from Assumption (2d). Using again Gronwall’s
lemma, we deduce (modifying the positive constants D and C if necessary) that

(4.20) sup
i∈E

∣∣uεk (t + s, i) − u
εk

i (s/εk)
∣∣≤ C

εk

exp
(

Ds − ζ

εk

)
,

for some positive constant ζ .
Now, for all i ∈ A, let us compare uεk (t + s, i) with the expected limit u∗

A,i

which gives∣∣uεk (t + s, i) − u∗
A,i

∣∣≤ ∣∣uεk (t + s, i) − u
εk

i (s/εk)
∣∣+ ∣∣uεk

i (s/εk) − u∗
A,i

∣∣.
According to Lemma 4.10, we have, for any positive real number ρ,

s

εk

> C∗
ρ

(
1 + sup

i∈A

− logu
εk

i (0)
)

=⇒ ∣∣uεk

i (s/εk) − u∗
A,i

∣∣< ρ.
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However, according to (4.18), for all δ > 0, for k large enough,

− logu
εk

i (0) ≤ δ

εk

∀i ∈ A.

This last inequality gives, for all k large enough,

s > 2δC∗
ρ =⇒ ∣∣uεk

i (s/εk) − u∗
A,i

∣∣< ρ.

This entails in conjunction with (4.20) that

(4.21) lim sup
k→+∞

sup
s∈[2δC∗

ρ,ζ/2D]
∣∣uεk (t + s, i) − u∗

A,i

∣∣< ρ ∀i ∈ E.

Since ρ and δ were arbitrary, we have proved (4.17). The remaining statements
of Proposition 4.11 follow easily. �

COROLLARY 4.12. Assume (4.13) and Hypothesis (H). Any limit V of
εk loguεk along a subsequence as in Theorem 4.9 satisfies that the function
t �→ F({V (t, ·) = 0}) is right continuous, V (0, i) = −h(i) for all i ∈ E and for all
t ≥ 0,

V (t, i) = sup
ϕ(0)=i

{
−h
(
ϕ(t)
)+ ∫ t

0
R
(
ϕ(u),F

({
V (t − u, ·) = 0

}))
du − It (ϕ)

}
,

and its dynamic programming version

V (t, i) = sup
ϕ(s)=i

{
V
(
s, ϕ(t)

)+ ∫ t

s
R
(
ϕ(u),F

({
V (t + s − u, ·) = 0

}))
du

− Is,t (ϕ)

}
.(4.22)

In addition, the problem (4.22) admits a unique solution such that t �→ F({V (t,

·) = 0}) is right continuous. In particular, the full sequence (ε loguε)ε>0 converges
to this unique solution when ε → 0.

PROOF. The only nonobvious consequence of Proposition 4.11 is the unique-
ness of a solution to (4.22) with t �→ F({V (t, ·) = 0}) right continuous. To prove
this, observe that, by continuity of V for t > 0 and using (4.11) for t = 0, the set

A = {t ≥ 0 | there exists a unique solution up to time t}
cannot have a finite upper bound. �

We can now give the discrete Hamilton–Jacobi formulation of the variational
problem (4.22).
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THEOREM 4.13. Assume (4.13), Hypothesis (H) and that h(i) ≤ h(j) +
T(i, j) for all i �= j . Then the problem

V̇ (t, i) = sup
{
Rj

(
F
({

V (t, ·) = 0
})) | j ∈ E,V (t, j) −T(j, i) = V (t, i)

}
,

V (0, i) = h(i) ∀i ∈ E
(4.23)

(with the convention T(i, i) = 0) admits a unique solution such that t �→
F({V (t, ·) = 0}) is right continuous, which is the unique solution to the varia-
tional problem (4.22).

The result also extends to cases where the condition h(i) ≤ h(j) + T(i, j) is
not satisfied for some i �= j . In this case, one must replace the initial condition in
(4.23) by

V (0, i) = max
{
−h(i);max

j �=i
−h(j) −T(i, j)

}
∀i ∈ E

and the solution of (4.23) coincides with the solution to the variational problem
(4.22) for positive times only.

PROOF. We first prove the uniqueness part and then that the solution of (4.22)
also solves (4.23).

Step 1: Uniqueness for (4.23).
Let t ∈ [0,+∞] be the largest time such that there is uniqueness for (4.23) up

to time t and assume t < ∞. Let i ∈ E be such that V (t, i) = 0. Since T(j, i) > 0
for all j �= i and because of the Lipschitz regularity of any solution V of (4.23),
V̇ (s, i) = Ri(F ({V (t, ·) = 0})) for all s ∈ [t, t +δt ] for some δt > 0. Hence V (s, i)

is uniquely determined for all i such that V (t, i) = 0 and s ∈ [t, t +δt ]. We proceed
similarly for all the i′ ∈ E such that V (t, i ′) ∈ [− infi �=j T(i, j)/2,0): their dynam-
ics is determined only by F({V (t, ·) = 0}) and V (s, i) for all i such that V (t, i) =
0, for s ≥ t in the time interval [t, t + δt ]. We obtain a similar result inductively for
all the i ′ ∈ E such that V (t, i′) ∈ [−k infi �=j T(i, j)/2,−(k − 1) infi �=j T(i, j)/2)

for all k ≥ 1. This contradicts the finiteness of t , and hence uniqueness for (4.23)
is proved.

Step 2: The function V of Corollary 4.12 solves (4.23).
Let t ≥ 0 and i ∈ E be fixed and let us prove that the solution V of (4.22) is

right differentiable with respect to time at (t, i) with derivative given by (4.23).
According to Corollary 4.12, we have for all δ > 0

V (t + δ, i) = sup
ϕ(t)=i

{
V
(
t, ϕ(t + δ)

)
+
∫ t+δ

t
R
(
ϕ(u),F

({
V (t + δ − u, ·) = 0

}))
du − It,t+δ(ϕ)

}
(4.24)

and there exists δt > 0, such that F({V (t + δ, ·) = 0}) = F({V (t, ·) = 0}) for all
δ < δt .
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We know from Lemma 4.8 that V (t, i) ≥ V (t, j) − T(i, j) for all i �= j . If the
inequality is strict for all j �= i, it is clear that the supremum in (4.24) is attained
for the constant function ϕ ≡ i for sufficiently small δ > 0, and hence V̇ (t +δ, i) =
Ri(F ({V (t, ·) = 0}), which entails (4.23).

If there exists j �= i such that V (t, i) = V (t, j)−T(i, j), let j∗ ∈ E be such that
Rj(F ({V (t, ·) = 0}) is maximal among all j ∈ E such that V (t, i) = V (t, j) −
T(i, j). Since the supremum in (4.24) cannot be attained for functions ϕ jumping
two times or more in [t, t + δ] for δ > 0 small enough, considering all possible
choices for ϕ with less than one jump, one easily checks that, for δ > 0 small
enough,

V (t + δ, i) = lim
n→+∞V

(
t, ϕ(n)(t + δ)

)
+
∫ t+δ

t
R
(
ϕ(n)(u),F

({
V (t, ·) = 0

}))
du −T

(
i, j∗)

= V
(
t, j∗)−T

(
i, j∗)+ δRj∗(F

({
V (t, ·) = 0

})
= V (t, i) + δRj∗(F

({
V (t, ·) = 0

})
,

where ϕ
(n)
t+s = i if s < 1/n and ϕ

(n)
t+s = j∗ if 1/n ≤ s ≤ δ. Hence V̇ (t + δ, i) =

Rj∗(F ({V (t, ·) = 0}), which gives the result. �

We conclude with the full characterization of the limit of uε .

COROLLARY 4.14. Assume (4.13), Hypothesis (H) and that h(i) ≤ h(j) +
T(i, j) for all i �= j . Then, the family (uε(t, i), t ≥ 0, i ∈ E)ε>0 converges locally
weakly to (ui(t), t ≥ 0, i ∈ E) defined for all i ∈ E and t ≥ 0 by

ui(t) =
{
u∗{V (t,·)=0},i if V (t, i) = 0,

0 otherwise.

More precisely, for all continuous f :R+ →R
E and all T > 0,

lim
ε→0

∫ T

0

〈
f (t), uε(t, ·)〉dt =

∫ T

0

〈
f (t), u(t)

〉
dt.

PROOF. It follows from Theorem 4.13 that, for all s ≥ 0, the full family
(δvε

s
)ε>0 converges to Ms when ε → 0. Therefore, the proof of Proposition 4.11

is valid replacing the sequence (εk)k≥1 by the family (ε)ε>0. Hence, for all t ≥ 0
and γ ∈ (0, ρt ),

(4.25) sup
s∈[γ,ρt ],i∈E

∣∣uε(t + s, i) − ui(t)
∣∣−−→

ε→0
0.

In addition, one can easily check from the proof of Proposition 4.11 that t �→ ρt is
measurable (indeed, one can take α = αt = 1

2 supi,V (t,i)<0 V (t, i) in this proof).
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We fix T > 0, f :R+ →R
E continuous and δ > 0. We define for all n ≥ 1

In :=
{
t ∈ [0, T ] : ρt >

1

n

}
.

Since
⋃

n≥1 In = [0, T ], we can choose n such that Leb(I c
n) ≤ δ, where Leb de-

notes Lebesgue’s measure on R. Since f is continuous, we can assume, reducing
n if necessary that 1/n < δ and, for all t ∈ [0, T ], |f (t) − f (t + 1/n)| < δ. Now
that n is fixed, we can use (4.25) and Lebesgue’s dominated convergence theorem
to find ε0 > 0 such that, for all ε < ε0,∫

In

∣∣∣∣〈f (t), uε

(
t + 1

n
, ·
)

− u(t)

〉∣∣∣∣dt ≤ δ.

Combining all the previous estimates, we obtain for all ε < ε0,∣∣∣∣∫ T

0

〈
f (t), uε(t, ·)〉dt −

∫ T

0

〈
f (t), u(t)

〉
dt

∣∣∣∣
≤
∣∣∣∣∫ T

0

〈
f (t), uε(t, ·)〉dt −

∫ T

0

〈
f (t), uε

(
t + 1

n
, ·
)〉

dt

∣∣∣∣
+
∣∣∣∣∫

I c
n

〈
f (t), uε

(
t + 1

n
, ·
)〉

dt

∣∣∣∣+ ∣∣∣∣∫
I c
n

〈
f (t), u(t)

〉
dt

∣∣∣∣
+
∫
In

∣∣∣∣〈f (t), uε

(
t + 1

n
, ·
)

− u(t)

〉∣∣∣∣dt

≤ C̄T sup
t∈[0,T ]

∣∣∣∣f (t) − f

(
t + 1

n

)∣∣∣∣+ 2C̄ sup
t∈[0,T ]

∣∣f (t)
∣∣(1

n
+ Leb

(
I c
n

))+ δ

≤ Cδ

for a constant C independent of δ, where C̄ is the right-hand side of the main result
in Lemma 4.1. Hence Corollary 4.14 is proved. �
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