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ON THE POLYNOMIAL CONVERGENCE RATE
TO NONEQUILIBRIUM STEADY STATES

BY YAO LI

University of Massachusetts, Amherst

We consider a stochastic energy exchange model that models the 1-D
microscopic heat conduction in the nonequilibrium setting. In this paper,
we prove the existence and uniqueness of the nonequilibrium steady state
(NESS) and, furthermore, the polynomial speed of convergence to the NESS.
Our result shows that the asymptotic properties of this model and its deter-
ministic dynamical system origin are consistent. The proof uses a new tech-
nique called the induced chain method. We partition the state space and work
on both the Markov chain induced by an “active set” and the tail of return
time to this “active set.”

1. Introduction. As a ubiquitous process, heat conduction has been studied
for over two hundred years. However, from a mathematical point of view, many
microscopic aspects of heat conduction in solids and gas are still unclear. For
example, the derivation of macroscopic heat conduction laws like Fourier’s law
from microscopic Hamiltonian dynamics is a well-known challenge in statistical
mechanics for the past over a century. Over the last several decades, numerous
mathematical models of 1-D microscopic heat conduction have been proposed and
studied. Some of these models have purely deterministic dynamics [10, 12, 20,
35], while others are defined by stochastic differential equations [3, 11, 27, 32–
34] or Markov jump processes [15, 23, 24, 36]. These models give mathematical
frameworks for studying nonequilibrium phenomena including basic properties of
nonequilibrium steady states (NESS), thermal conductivity, local thermodynamic
equilibrium (LTE), fluctuation theorems, and eventually Fourier’s law.

This paper focuses on fundamental properties of nonequilibrium phenom-
ena including the existence and uniqueness of the NESS and, furthermore, the
polynomial-speed convergence to the NESS, for a class of 1-D microscopic heat
conduction models. The model we study is a stochastic energy exchange model
that is inspired by the KMP model introduced in [19], in which a chain of N sites
are coupled with two heat baths. Each site carries a certain amount of energy. An
exponential clock is associated with each pair of adjacent sites. When the clock
rings, these two sites exchange energy in a “random halves” fashion. The energy
exchange with the bath follows a similar rule. Different from the model in [19], the
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FIG. 1. Locally confined particle system.

rate of an exponential clock here is energy-dependent. In this paper, the clock rate
between two adjacent sites, called the stochastic energy exchange rate, depends on
the square root of the minimum of two site energies. We refer Section 2.2 for the
precise description of the model.

The motivation of letting the stochastic energy exchange rate depend on the
minimum of site energy comes from the study of a deterministic dynamical sys-
tem heat conduction model, called the locally confined particle system. Introduced
in [4], the locally confined particle system is a chain of locally confining cells in
R2 like in Figure 1. An identical rigid disk-shaped moving particle is contained in
each cell. A particle cannot pass through the “bottleneck” between adjacent cells
but can collide with its neighbors. Therefore, kinetic energy can be exchanged by
particle-particle collisions. Studying such a purely deterministic dynamical sys-
tem, especially in the nonequilibrium setting, is very challenging. Only very lim-
ited rigorous results are known. On the other hand, it is well known that chaotic
billiard systems like the Lorentz gas have many stochastic properties due to the
quick decay of correlation [1, 5–7]. Hence a natural approach is to only record
the kinetic energy of each particle and approximate this model by the stochastic
energy exchange model described above. Let Ei and Ei+1 be kinetic energies of
adjacent particles. Assume the geometry of the cell allows a particle to be able to
completely “hide” from its neighbors, that is, neighboring particles cannot collide
with a particle when it is located at some area of its cell. Our numerical simulations
in [21] show that when starting from a fixed energy configuration (Ei,Ei+1), the
first particle-particle collision time is well approximated by an exponential distri-
bution. Heuristically, this is an expected result because for a sufficiently chaotic
dynamical system, the rescaled “return time” and “hitting time” to asymptotically
small set both converge to the same exponential distribution [17]. The numerical
simulation in [21] further shows that the rate of the exponential distribution for
the first collision time can be approximated by ∼ √

min{Ei,Ei+1} when one of Ei

and Ei+1 is sufficiently small. The heuristic reason of this rate is that when one
particle is sufficiently slow and out the reach of its neighbors, the next particle-
particle collision time should be primarily determined by the kinetic energy of the
slow particle.

We remark that at a certain time rescaling limit, the locally confined particle sys-
tem may have a different stochastic energy exchange rate. In a nonrigorous study
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of the locally confined particle system [13, 14], a rate function ∼ √
Ei + Ei+1

is obtained at a certain rare interaction limit and time rescaling limit. Assuming
this rate of interaction, the mixing rate is known to be exponential [15, 23, 36].
Without any time rescaling limit, it is a simple mathematical fact that the speed of
mixing in the locally confined particle system cannot be faster than t−2, provided
particles can “hide” from their neighbors. (See Lemma 3.1 of [21].) This ∼ t−2

speed of mixing is also one of the main result of this paper. Therefore, the approx-
imate interaction rate ∼ √

min{Ei,Ei+1} computed in [21] is consistent with the
asymptotical dynamics of the locally confined particle system at its original time
scale.

In this paper, among other results, we proved that when the stochastic rate of
energy exchange between two sites are ∼ √

min{Ei,Ei+1}, the Markov chain gen-
erated by our model has ∼ t−2 rate of mixing and ∼ t−2 rate of contraction. These
results completely match our analytical and numerical results about the locally
confined particle system in [21]. As shown in the proof later in this paper, the
main source of the slow-speed mixing comes from the rate ∼ √

min{Ei,Ei+1}.
When one site acquires a very low amount of energy from an energy exchange,
the rates of two corresponding clocks become very low and cannot be “rescued”
by other “faster clocks.” Hence the next energy exchange at this site will not hap-
pen within a long time period, which obviously slows down the speed of mixing
and convergence. We remark that this is also consistent with the mechanism of
slow-speed mixing phenomenon of the locally confined particle system.

In addition to the ergodicity, the quantitative property of the NESS is also of
great interest. Our result shows the absolute continuity of the NESS with respect
to the Lebesgue measure. In addition, we obtain the tail of the first passage time to
a certain uniform reference set. This helps us to show that the tail of the marginal
distribution of NESS with respect to each site is ≥E−1/2 when E � 1. Since the
explicit formulation of the NESS usually cannot be given, a detailed study on the
properties of the NESS will rely heavily on numerical simulations. We will write a
separate paper to numerically study the NESS, the long-range correlation, and the
thermal conductivity of the generalized KMP model studied in this paper.

Despite the straightforward heuristic argument, a rigorous proof of the slow-
speed mixing of a Markov process is known to be difficult. To the best of our
knowledge, our result is the first polynomial convergence result in nonequilibrium
settings. We prove that the Markov process generated by the generalized KMP
model has a mixing rate ∼ t−2 and a convergence rate ∼ t−1 to the NESS. The
closest related results we know are the slower-than-exponential convergence to the
NESS in [8, 9, 37, 38] and the polynomial convergence to the equilibrium in [25].
In addition to the upper bound of convergence, we also showed that the speed
of convergence to NESS has a lower bound t−1−γ for any γ > 0. This further
confirms the polynomial ergodicity.

The method of proving the polynomial-speed convergence to the steady-state is
called the induced chain method. Since the source of slow convergence is the low-
energy site, we partition the phase into two parts: the “active” set and the “inactive”
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set, where the “active” set means all site energies are above a certain threshold.
Then we work on the Markov chain induced by the “active” set. Different from the
model in [25], where the “active” set satisfies a Doeblin-type condition, in this pa-
per we need some extra work to show the stochastic stability of the induced chain.
The induced chain method consists of three steps. We first show that the induced
chain admits a uniform reference set, on which trajectories can be coupled with
strictly positive probability. Then we control the first passage time to this uniform
reference set for the induced chain, this is done by constructing a Lyapunov func-
tion as we have done in [25]. Last, we show that the time duration of one step of
the induced chain has a polynomial tail by a technical construction of Lyapunov
functions. A global Lyapunov function is obtained from a “tower construction” of
local Lyapunov functions with respect to nearest neighbor interactions. The three
steps above imply that the first passage time of the full system to the uniform ref-
erence set has a polynomial tail. Then we can apply results from discrete renewal
theory and prove the polynomial-speed convergence and mixing.

We remark that a common way of proving polynomial-speed convergence is to
construct a Lyapunov function [16, 25]. However, in this model such a construction
is too complicated to be practical. One needs to consider both the lack of tightness
and the possible inactive clocks in the construction of a Lyapunov function. By
using the induced chain method, we can treat these two problems separately, and
eventually give the tail of the first passage time to a uniform reference set. This
method is useful in proving the polynomial (or subexponential) convergence of
other models. In addition, we believe the induced chain technique can be extended
into a hierarchy of finitely many induced chains and be applied to a wider range of
problems.

The paper is organized in the following way: Section 2 introduces the model
and states the main result. The main strategy of proof, that is, the induced chain
method, is introduced in Section 3. Estimations for the time duration of one step
of the induced chain are given in Section 4. The first entry time to the uniform
reference set of the induced chain is done in Section 5. Finally, we complete the
whole proof in Section 6.

2. Model and result.

2.1. Stochastic approximation of deterministic dynamics. We start with a
short review of the locally confined particle system and its stochastic approxi-
mation. Consider a chain of cells in R2 that are formed by finitely many piecewise
C3 curves. A rigid disk-shaped moving particle is confined in each cell, as shown
in Figure 1. Two adjacent cells are connected by a “bottleneck” opening such that
particles cannot pass the opening but can collide with each other. A particle moves
freely until it collides with the cell boundary or its neighbor particles. In addition,
we assume each cell forms a strongly chaotic billiard table. In the absence of other
particles, the billiard map of one particle is exponentially mixing. We refer to [4]



POLYNOMIAL CONVERGENCE RATE TO NESS 3769

for the ergodicity of the locally confined particle system under suitable conditions
and [6] for major results of dynamic billiards.

In the locally confined particle system, a particle has a quick decay of corre-
lation due to frequent collisions with the cell boundary. Therefore, it is natural to
simplify the model by assuming that the geometry within a cell is forgotten by the
particle. More precisely, we only record the kinetic energy carried by a particle and
assume that the time to the next energy exchange is exponentially distributed. The
rate of this exponential distribution is called the stochastic energy exchange rate,
denoted by R(Ei,Ei+1), where Ei and Ei+1 are kinetic energies of particles. If in
addition, we assign a suitable rule for the energy redistribution in a particle-particle
collision, a Markov jump process is obtained.

In [21], we numerically showed that the time to the next particle-particle col-
lision always has an exponential tail that depends on the energy configuration
of particles. This further supports the idea of approximating the locally con-
fined particle system by a Markov jump process. The rate R(Ei,Ei+1) can be
computed numerically as the slope of the exponential tail of the waiting time
to the next particle-particle collision. Our numerical result in [21] showed that
R(Ei,Ei+1) ∼ √

min{Ei,Ei+1} when at least one of Ei or Ei+1 is sufficiently
small.

As stated in the Introduction, the slow convergence phenomenon comes from
the slow clock rate when one of Ei or Ei+1 is very small. To preserve this
qualitative property of the model, it is sufficient to let the stochastic energy ex-
change rate be

√
min{Ei,Ei+1} for all small min{Ei,Ei+1}. Hence we assume

R(Ei,Ei+1) = min{K,
√

min(Ei,Ei+1)} in this paper for the sake of simplicity.
We idealize the energy exchange in a particle-particle collision by choosing it as a
“random halves” energy redistribution. Our numerical simulation shows that this
is a reasonable choice, as the amount of redistributed energy has a strictly positive
probability density function. In addition, the system is coupled with two heat baths
and we prescribe a similar rule for the energy exchange with the heat bath. This
gives rise to the stochastic energy exchange model as will be described in the next
subsection.

2.2. Description of the stochastic energy exchange model. Now we give a pre-
cise description of the stochastic energy exchange model. Consider a chain of N

lattice sites connected to two heat baths at the ends. The energy at each site is de-
noted by E1, . . . ,EN , respectively. The temperature of heat baths are TL and TR .
An exponential clock is associated with each pair of adjacent sites. The rate of
the clock depends on the energy at both sites, denoted by R(Ei,Ei+1). When the
clock rings, the energy at two sites are pooled together and redistributed randomly
as

(2.1)
(
E′

i ,E
′
i+1

)= (
p(Ei + Ei+1), (1 − p)(Ei + Ei+1)

)
,
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where p is a uniform random variable distributed on (0,1) that is independent
of everything else. In addition, an exponential clock is associated with the first
(resp., last) site and the left (resp., right) heat bath, whose rate is R(TL,E1) [resp.,
R(EN,TR)] for the same rate function used above. When the clock rings, the en-
ergy at the first (resp., last) site exchanges energy with an exponential random
variable:

E′
1 = p(E1 + XL)

(
resp. E′

N = p(EN + XR)
)
,

where p is a uniform random variable on (0,1) that is independent of everything
else, XL (resp., XR) is an exponential random variable with mean TL (resp., TR).
All exponential clocks are assumed to be mutually independent. We remark that
the uniform random variable p is chosen to simplify the proof. Our method works
for other choices of p with uniformly positive and bounded density on (0,1).

The rate R(Ei,Ei+1), called the stochastic energy exchange rate between sites
i and i + 1, has the following form:

R(Ei,Ei+1) = min
{
K,

√
min(Ei,Ei+1)

}
,

where K � 1 is a sufficiently large constant. As explained above, the stochastic
energy exchange rate is assumed to be the square root of the minimum of site
energies when either of the site energies is sufficiently small. The maximum of
stochastic energy exchange rate is set as K < ∞ for technical reasons. Without
such an assumption, the Lyapunov function is not in the domain of the infinitesimal
generator of the Markov chain, which imposes certain technical complexity [28].
As the aim of this paper is to show that the property of the rate function at low
energy leads to polynomial rate of convergence to NESS, we choose to cap the
energy exchange rate by K . K is assumed to be sufficiently large so that it will not
significantly affect the dynamics at any “normal configuration.” In particular, we
assume K � TL,TR .

It is easy to see from the description that this model generates a Markov jump
process Et = (E1(t), . . . ,EN(t)) on RN+ . For any measurable function f , the in-
finitesimal generator of Et is

Lf (E1, . . . ,EN)

=
N−1∑
i=1

R(Ei,Ei+1)

×
∫ 1

0

{
f
(
E1, . . . ,Ei−1,p(Ei + Ei+1), (1 − p)(Ei + Ei+1),Ei+2, . . . ,EN

)
.

− f (E1, . . . ,EN)
}

dp

+ R(TL,E1)

×
∫ ∞

0

∫ 1

0

{
1

TL

e−s/TLf
(
p(E1 + s),E2, . . . ,EN

)− f (E1, . . . ,EN)

}
dp ds
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+ R(EN,TR)

×
∫ ∞

0

∫ 1

0

{
1

TR

e−s/TRf
(
E1, . . . ,EN−1,p(EN + s)

)− f (E1, . . . ,EN)

}
dp ds.

We denote the transition kernel of Et by P t(E, ·), where E ∈ RN+ . The left and
right operator generated by P t are

(
P tζ

)
(E) =

∫
RN+

P t(E,dx)ζ(x)

for a measurable function ζ(E) on RN+ , and

(
μP t )(B) =

∫
RN+

P t(E,B)μ(dE)

for a probability measure μ on RN+ . We also use the notation PE and EE for condi-
tional probability and conditional expectation with respect to the initial condition
E0 = E.

In this paper, we will use energy exchange events frequently. The event that
the exponential clock between Ei−1 and Ei rings at a time t (resp., at a stopping
time τ ) is denoted by Ci (t) [resp., Ci (τ )] for all i = 1, . . . ,N + 1. In addition, for
the sake of simplicity we denote E0 = TL and EN+1 = TR .

2.3. Main result. To state our main result precisely, the following functions
and measure classes are necessary. Let

W(E) =
N∑

i=1

Ei.

For any 0 < η � 1, let

V (E) = Vη(E) =
N∑

m=1

N−m+1∑
i=1

(
m−1∑
j=0

Ei+j

)amη−1

,

where am = 1 − (2m−1 − 1)/(2N − 1) for m = 1, . . . ,N . Note that 0 < am < 1
for each m, hence all powers amη − 1 are negative. Let Mη be the collection of
probability measure μ on RN+ such that∫

RN+

(
W(E) + V (E)

)
μ(dE) < ∞.

Mη covers a large class of probability measures. For example, if X is a random
energy configuration that has finite expectation and its density at the neighborhood
of the “boundary” {E = (E1, . . . ,EN) | Ei = 0 for some i = 1 ∼ N} is uniformly
bounded, then the probability measure induced by X belongs to Mη for any suffi-
ciently small η > 0.

We have the following results regarding the stochastic stability of Et .
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THEOREM 1 (Polynomial contraction of the Markov operator). For any γ > 0,
there exists η > 0 such that

lim
t→∞ t2−γ

∥∥μP t − νP t
∥∥

TV = 0

for any μ, ν ∈ Mη, where ‖ · ‖TV is the total variation norm.

THEOREM 2 (Properties of the invariant measure). There exists a unique in-
variant measure π that is absolutely continuous with respect to the Lebesgue mea-
sure. In addition, for any γ > 0 there exists η > 0 such that

lim
t→∞ t1−γ

∥∥μP t − π
∥∥

TV = 0

for any μ ∈Mη.

Note that π may not be in Mη, which leads to a different rate in Theorem 2.
A corollary of polynomial contraction of Markov operator is the rate of corre-

lation decay.

THEOREM 3 (Polynomial correlation decay). Let functions ξ and ζ be in
L∞(RN+). For any γ > 0, there exists η > 0 such that for any μ ∈ Mη∣∣∣∣

∫
RN+

(
P tζ

)
(E)ξ(E)μ(dE) −

∫
RN+

(
P tζ

)
(E)μ(dE)

∫
RN+

ξ(E)μ(dE)

∣∣∣∣
≤ O(1) · ‖ξ‖L∞‖ζ‖L∞

(
1

t2−γ

)

as t → ∞, where the O(1) term depends on γ,N , and μ.

Finally, the following proposition gives the lower bound of convergence speed.

PROPOSITION 4 (Lower bound of convergence). There exists a probability
measure ν satisfying dν � dπ such that∥∥νP t − π

∥∥
TV ≥ c(t + 1)−1−γ

for any sufficiently small γ > 0.

3. Approach toward polynomial ergodicity. The purpose of this section is
to introduce a general approach, called the induced chain method, toward the
polynomial ergodicity of a Markov process. We introduce this method under the
generic setting, as it can be potentially applied to other models. Our aim is to make
this section self-contained. When citing results from references, we will explain
how statements of those theorems are rephrased.

Throughout this section, we let 	n be a discrete-time Markov chain on a mea-
surable space (X,B). The transition kernel of 	n is P(x, ·).
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For A ∈ B, we let τA be the first passage time to A:

τA = inf{n > 0 | 	n ∈ A}.
A set A ∈ B is said to be accessible if Px[τA < ∞] = 1 for every x ∈ X.

We say a Markov chain is irreducible with respect to a measure φ on B if for
any A ∈ B with φ(A) > 0 and any x ∈ X, there exists n such that Pn(x,A) > 0.
In other word, every set with positive φ-measure is accessible. We refer readers to
Chapter 4 of [29] for the well-definedness of irreducibility. In fact, if 	n is irre-
ducible with respect to some measure φ, then there exists a “maximal irreducible
measure” ψ that is unique up to equivalence class.

3.1. Splitting, coupling and moments of return times. By the polynomial er-
godicity of 	n, we mean the polynomial rate of contraction of the Markov opera-
tor P , the polynomial rate of convergence to the invariant measure of 	n and the
polynomial rate of correlation decay of 	n. To prove the polynomial ergodicity,
the bound on return times to a certain uniform reference set C ∈ B is crucial.

DEFINITION 3.1. A set C ∈ B is said to be a uniform reference set if it satisfies

inf
x∈CP(x, ·) ≥ δθ(·),

where θ is a probability measure on (X,B) and δ is a strictly positive real number.

A uniform reference set is a special case of small set or petite set defined in
[29].

We call C a uniform reference set because processes starting from C have some
uniform “common future.” If such a uniform reference set C exists, 	n can be
converted to a new process 	̃n on a modified state space X̃ = X ∪C1, where C1 is
an identical copy of C0 := C. B can be extended to B̃ on X̃ accordingly. Then we
can split a probability measure μ on (X,B) to a probability measure μ∗ on (X̃, B̃):{

μ∗|X = (1 − δ)μ|C0 + μ|X\C0,

μ∗|C1 = δμ|C0, C0 ∼= C1 via the natural identification.

Then we can “lift” 	n to a new Markov process 	̃n on X̃ with a transition kernel
P̃(x, ·): ⎧⎪⎨

⎪⎩
P̃(x, ·) = (

P(x, ·))∗, x ∈ X \ C0,

P̃(x, ·) = [(
P(x, ·))∗ − δθ∗(·)]/(1 − δ), x ∈ C0,

P̃(x, ·) = θ∗(·), x ∈ C1.

It is straightforward to check that 	̃n has an atom α := C1, that is, P̃(x, ·) is the
same for all x ∈ α. In addition, if the initial distribution of 	̃n is split from some
μ on (X,B) as described above, 	̃n projects to 	n through the natural projection
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from X̃ to X. This transformation is called the Nummelin splitting [30]. We refer
to [29, 30] for the details.

If 	n admits an accessible uniform reference set, many results about the
stochastic stability of 	n can be implied by estimates about τC. To state the re-
sults, we need the aperiodicity of 	n.

Let C be a uniform reference set. Define EC ⊂ Z+ be the set of integers such
that M ∈ EC if and only if

inf
x∈CP

M(x, ·) ≥ δθ(·), θ(C) > 0

for a probability measure θ and a strictly positive number δ. The greatest common
divisor of EC is called the period of 	n with respect to C.

DEFINITION 3.2. An irreducible Markov process 	n is said to be aperiodic
if the period of 	n with respect to any uniform reference set C is 1.

DEFINITION 3.3. An irreducible Markov process 	n is said to be strongly
aperiodic if 	n admits a uniform reference set C such that θ(C) > 0.

If 	n is strongly aperiodic, 	n must be aperiodic such that no cyclic decompo-
sition is possible. We refer to Theorem 5.4.4 of [29] for the precise result about the
cyclic decomposition for Markov processes on measurable state spaces.

DEFINITION 3.4. A probability measure π is said to be invariant if

π(A) =
∫
X

π(dx)P(x,A)

for any A ∈ B.

THEOREM 3.5. Let 	n be an irreducible Markov chain on (X,B) with tran-
sition kernel P . If C ∈ B is an accessible uniform reference set such that

sup
x∈C

Ex[τC] < ∞,

then there exists an invariant probability measure π .

PROOF. Define

L(x,A) = Px[τA < ∞].
Then obviously L(x,C) = 1 for every x ∈ C. By Theorem 8.3.6 of [29], 	n is
recurrent. The theorem then follows from Theorem 10.0.1 of [29]. �

The polynomial ergodicity of 	n follows from the finiteness of moments of τC.
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THEOREM 3.6 (Theorem 2.6 and 2.7 in [31]). Let 	n be an aperiodic Markov
chain on (X,B) with transition kernel P . Let π be an invariant probability mea-
sure of 	n. If C ∈ B is an accessible uniform reference set and

sup
x∈C

Ex

[
τ

β
C

]
< ∞

for some β > 0, then for any probability measures μ,ν on X that satisfy

Eμ

[
τ

β
C

]
< ∞ and Eν

[
τ

β
C

]
< ∞,

we have

lim
n→∞nβ

∥∥μPn − νPn
∥∥

TV = 0.

In addition, if β > 1, then

lim
n→∞nβ−1∥∥μPn − π

∥∥
TV = 0

for any μ which satisfies

Eμ

[
τ

β
C

]
< ∞.

REMARK 3.7. We rephrased statements of Theorem 2.6 and 2.7 in [31] to
make the notation consistent. Functions ψ(n) and ψ0(n) defined in [31] corre-
spond to nβ−1 and nβ . Then by Theorem 2.7(i) of [31],

sup
x∈C

Ex

[
τ

β
C

]
< ∞

implies that 	n is ergodic of order ψ . By Theorem 2.6, we have

Eπ

[
τ

β−1
C

]
< ∞.

The rest of the results follows from Theorem 2.7(iii) of [31].

Below we give a short self-contained proof for Theorem 3.6 based on the dis-
crete renewal theory in [26]. We refer to [25, 31] for the full details, and [16] for a
modern treatment of continuous time Feller processes.

PROOF OF THEOREM 3.6. We first apply the Nummelin splitting to 	n to
obtain 	̃n on X̃. 	̃n possesses an accessible atom α.

Let 	̃1
n and 	̃2

n be two independent copies of 	̃n starting from μ∗ and ν∗, re-
spectively. Let Y 1

0 , Y 1
1 , Y 1

2 , . . . and Y 2
0 , Y 2

1 , Y 2
2 , . . . be the passage times to α for the

two independent processes, respectively. Since α is an atom, {Y 1
i }∞i=1 and {Y 2

i }∞i=1
are i.i.d. random variables. Therefore,

S1
n :=

n∑
i=0

Y 1
i and S2

n :=
n∑

i=0

Y 2
i
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form two delayed renewal processes. Y 1
0 and Y 2

0 are called the delay distributions
of the renewal processes. Let T be the first simultaneous renewal time

T = inf
{
m ≥ 0 | S1

k1
= S2

k2
= m for some k1, k2

}
.

Since 	n (and 	̃n) is aperiodic, the renewal processes S1
n and S2

n are aperiodic.
Then it is easy to see that after T , 	̃1

n and 	̃2
n become indistinguishable. T is

called the coupling time of 	̃1
n and 	̃2

n . It is well known that∥∥μPn − νPn
∥∥

TV ≤ ∥∥μ∗P̃n − ν∗P̃n
∥∥

TV ≤ 2Pμ∗,ν∗[T > n].
Therefore, it is sufficient to show the polynomial tail of P[T > n]. Instead of the

polynomial tail, we first prove the finiteness of moments of T by using the delayed
renewal processes constructed above and the following two lemmas.

LEMMA 3.8. Let 	n be an aperiodic Markov chain on (X,B) with transition
kernel P . If C ∈ B is an accessible uniform reference set and

sup
x∈C

Ex

[
τ

β
C

]
< ∞

for some β > 0, then for any probability measure μ such that

Eμ

[
τ

β
C

]
< ∞,

there exists a constant C < ∞, such that

Eμ∗
[
τβ
α

]≤ CEμ

[
τ

β
C

]
< ∞.

PROOF. Apply Nummelin splitting to 	n with respect to C. Define the stop-
ping time τ = τC0∪α for 	̃n. Let {τn}∞n=1 be the sequence of iterates of τ , that
is,

τ 0 = 0, τ 1 = τ, τn+1 = τn + τ ◦ �τn

,

where � is the usual shift operator. Further let Zn be a sequence of {0,1} random
variables such that Zn = 1 if and only if 	̃τn ∈ α. According to the definition of
	̃n, the probability of 	̃τn = α is at least δ whenever the split chain 	̃n jumps to
C0 ∪ α at the step τn. Hence Zn is Fn = σ {	̃0, . . . , 	̃τn} measurable and

P[Zn = 1 |Fn−1] ≥ δ > 0.

Let ζ = inf{n > 0 | Zn = 1}. Then τα = τ ζ . The lemma then follows from
Lemma 3.1(iii) of [31]. From the proof of Lemma 3.1 of [31], we can see that
there exists a constant C < ∞, such that

Eμ∗
[
τβ
α

]≤ CEμ

[
τ

β
C

]
< ∞. �
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LEMMA 3.9. Let S1
n and S2

n be the delayed renewal processes as above. If
there exists β > 1 such that E[(Y 1

0 )β],E[(Y 2
0 )β], and E[(Y 1

1 )β] are all finite, then
there exists a constant C < ∞ depending on E[(Y 1

1 )β], such that

E
[
T β]< C

(
E
[(

Y 1
0
)β]+E

[(
Y 2

0
)β])

< ∞.

In addition, there exists a delay distribution Y c
0 with E[(Y c

0 )β−1] < ∞ such that

Sc
n := Y c

0 +
n∑

i=1

Y c
i , n ≥ 1

is a stationary renewal process, where {Y c
i }ni=1 are independent random variables

that have the same distribution as Y 1
1 .

PROOF. This lemma follows from Section II of [26]. The finiteness of E[T β]
follows from Theorem 4.2 of [26]. Tracking the proof, we can see that E[T β] is
actually bounded by a constant times E[(Y 1

0 )β] +E[(Y 2
0 )β ].

Let pk = P[Y 1
1 = k]. Choose a suitable normalizer λ such that

ck = λ

∞∑
i=k+1

pi, k ≥ 0

is a probability distribution. Then the delay distribution Y c
0 with P[Y c

0 = k] = ck

gives a stationary renewal process (Section II.2 of [26]). Further, it is easy to see
that E[(Y c

0 )β−1] < ∞ (Section II.5 of [26]). �

Bounds of E[(Y 1
0 )β ],E[(Y 2

0 )β ], and E[(Y 1
1 )β], that is, Eμ∗[τβ

α ], Eν∗[τβ
α ], and

Eα[τβ
α ], are given in Lemma 3.8. Bounds of E[T β ] when starting from μ and ν

follow from Lemma 3.9. When starting from π , passage times to α form a (de-
layed) stationary renewal process. The delay distribution of the corresponding re-
newal process must be Y c

0 , as the delay distribution that lead to a stationary renewal
process is unique ([2], Chapter 2). Therefore, bounds of E[T β] when starting from
μ and π also follow from Lemma 3.9.

Theorem 3.6 is then implied by the following simple probability fact (see
Lemma 3.12). Let Z be any nonnegative integer-valued random variable. For any
β > 0,

E
[
Zβ]< ∞ ⇒ lim

n→∞nβP[Z > n] = 0. �

We remark that the bounds in Lemma 3.8 and Lemma 3.9 now depend on the
corresponding initial conditions. One needs to track the proof of theorems in [26]
and [31] to see such dependence. The dependence on initial conditions implies the
following corollary, which is used in the proof of Theorem 3.
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COROLLARY 3.10. Let 	n and C be as in Theorem 3.6, then for any proba-
bility measures μ,ν on X that satisfy

Eμ

[
τ

β
C

]
< ∞ and Eν

[
τ

β
C

]
< ∞,

there exists a constant C depending on μ,ν, and C such that

sup
n

nβ
∥∥μPn − νPn

∥∥
TV ≤ C

(
Eμ

[
τ

β
C

]+Eν

[
τ

β
C

])
.

PROOF. We have

sup
n

nβ
∥∥μPn − νPn

∥∥
TV ≤ 2 sup

n
nβP[T > n] ≤ 2Eμ∗,ν∗

[
T β].

The corollary then follows immediately from Lemma 3.8 and Lemma 3.9. �

3.2. Induced chain method. As discussed above, a crucial step toward poly-
nomial ergodicity is to estimate the moments of τC, that is, the first passage time
to a certain uniform reference set. In some simple cases, such as the model in [25],
this can be done by constructing a Lyapunov function. However, in our model and
many other problems, it is extremely difficult to find a single Lyapunov function to
complete this task. Here, we introduce a method, called the induced chain method,
that can be used to estimate the moments of τC under more general settings.

Let X = G ∪ B be a partition of the state space of 	n, where G is the “good
set” on which 	n is sufficiently “active”, while B is the “bad set” on which 	n

may hover for a long time. Define 0 = T0 < T1 < · · · < Tn < · · · to be return times
to G such that

Tn+1 = inf{k > Tn | 	k ∈ G}
and let 	̂n = 	Tn . Then it is easy to check that 	̂n is a Markov chain induced
by G.

Assume C ⊂ G. The tail of τC can be estimated by the following two assump-
tions:

(i) Tn+1 − Tn has a polynomial tail for each Tn. There exists a constant α > 0
such that

P[Tn+1 − Tn > k | 	Tn] ≤ ξ(	Tn)k
−α,

where 1 ≤ ξ(	Tn) < ∞ is a constant depending on 	Tn . Furthermore, ξ(	Tn) is
uniformly bounded by ξ1 < ∞ for 	Tn ∈ G.

(ii) τ̂C = inf{n > 0 | 	̂n ∈ C} has an exponential tail. There exist constants ω,
η = η(	0) > 0 such that

P	0[τ̂C > k] ≤ η(	0)e
−ωk,

where η(	0) depends on 	0.
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THEOREM 3.11. Assuming (i) and (ii) above, for any ε > 0, there exists a
constant c such that

P	0[τC > n] ≤ c
(
η(	0) + ξ(	0)

)
n−(α−ε)

for any 	0 ∈ X.

PROOF. For any small δ > 0, we have

{
τC > k1+δ}⊂ {

τ̂C > kδ} �kδ�⋃
n=0

{Tn+1 − Tn > k, τ̂C > n}.

This implies

P	0

[
τC > k1+δ]≤ P	0

[
τ̂C > kδ]

+
�kδ�∑
n=0

P	0[Tn+1 − Tn > k | τ̂C > n].

By assumption (i) and the Markov property, we have

P	0[T1 − T0 > k | τ̂C > 0] ≤ ξ(	0)k
−α

for n = 0 and

P	0[Tn+1 − Tn > k | τ̂C > n]
=
∫
G
P[Tn+1 − Tn > k | 	Tn = x, τ̂C > n]P	0[	Tn = dx | τ̂C > n]

≤ ξ1k
−α

for n ≥ 1.
By assumption (ii), we have

P	0

[
τ̂C > kδ]≤ η(	0)e

−ωkδ

.

Therefore,

P	0

[
τC > k1+δ]
≤ η(	0)e

−ωkδ + max
{
ξ(	0), ξ1

}
kδk−α

≤ c(δ)
(
η(	0) + ξ(	0)

)
k−(α−δ)

for some c(δ) > 0 that depends on δ, as e−ωkδ
decays faster than k−α when k →

∞.
Let k = n

1
1+δ . The theorem then follows by making δ > 0 sufficiently small and

letting c = c(δ) for the δ we choose. �
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The finiteness of moments of a random variable is closely related to its polyno-
mial tails. We finish this subsection by proving two simple probabilistic facts that
will be used frequently in this paper.

Let Z be a random variable that takes nonnegative integer values, and let β > 1.

LEMMA 3.12. For any β > 0, E[Zβ] < ∞ =⇒ limn→∞ nβP[Z > n] = 0.

PROOF. First,
∞∑

n=0

nβ−1P[Z > n] =
∞∑

n=0

nβ−1
∞∑

m=n+1

P[Z = m]

=
∞∑

m=1

(
m−1∑
n=0

nβ−1

)
P[Z = m]

≤ constant ·E[Zβ].
Then, letting an = P[Z > n] so that a0 ≥ a1 ≥ · · · , we claim that

if
∞∑

n=0

ann
β−1 < ∞ then ann

β → 0 as n → ∞.

To see that, write
∞∑

n=0

(n + 1)β(an − an+1) =
∞∑

n=0

[
(n + 1)β − nβ]an.

Since an is monotone, our hypothesis implies the sum on the left-hand side con-
verges. Since∑

n≥N

(n + 1)β(an − an+1) = aN(N + 1)β + ∑
n≥N+1

an

(
(n + 1)β − nβ),

it follows that both terms on the right tend to 0 as N → ∞. �

LEMMA 3.13. If P[Z > n] ≤ C(n + 1)−β for β > 1, then for any β − 1 >

ε > 0, there exists a constant K that depends on β and ε, such that E[Zβ−ε] <

KC.

PROOF. There exists a constant K0 that only depends on ε and β , such that

E
[
Zβ−ε]=

∞∑
n=0

nβ−εP[Z = n]

≤ K0

∞∑
n=0

n∑
m=0

mβ−1−εP[Z = n]
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= K0

∞∑
n=0

(n + 1)β−1−εP[Z > n]

≤ K0

∞∑
n=0

(n + 1)β−1−εC(n + 1)−β.

Hence there exists a constant K that depends on β and ε, such that the last
quantity is less than KC. �

We remark that the induced chain method can be extended to a hierarchical set-
ting. Let X = B∪G be the same partition as above. If we have C := Gm ⊂ Gm−1 ⊂
· · · ⊂ G0 := G for m ≥ 1, and the first return time to Gi+1 for the Gi-induced
chain has exponential tail for each i = 0 ∼ m − 1, then the similar argument in
Theorem 3.11 still follows.

3.3. Lyapunov function and moments of the return time. In the induced chain
argument above, it remains to find sufficient conditions to estimate tails of τ̂C and
Tn+1 − Tn. This can be done by constructing Lyapunov-type functions. We intro-
duce the following two theorems that will be used later.

THEOREM 3.14 (Theorem 15.2.5 of [29]). Let 	n be a Markov chain on
(X,B) with transition kernel P . We assume that there exist a function W : X →
[1,∞], a set A ∈ B, constants b > 0 and 0 ≤ β < 1 such that

PW − W ≤ −βW + b1A.

Then for any r ∈ (1, (1 − β)−1), there exists ε > 0 such that

Ex

[
τA−1∑
k=0

W(	k)r
k

]
≤ ε−1r−1W(x) + ε−1b1A.

THEOREM 3.15 (Modified from Theorem 3.6 of [18]). Let 	n be a Markov
chain on (X,B) with transition kernel P . We assume that there exist a function
W : X → [1,∞], a set A ∈ B, constants b, c > 0 and 0 ≤ β < 1 such that

PW − W ≤ −cWβ + b1A.

Then there exists a constant ĉ such that

Ex

[
τA−1∑
k=0

(k + 1)β̂−1

]
≤ ĉW(x), β̂ = (1 − β)−1

for any x ∈ X
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REMARK 3.16. This theorem follows from equation (37) in the proof of The-
orem 3.6 of [18]. It is actually a special case of equation (37) when B = C. In this
special case, the quantity

τB−1∑
k=0

(k + 1)i1C(	k)

in the proof of Theorem 3.2 of [18] is 1C(	0). Therefore, we only need to estimate
the first passage time to A by using Proposition 11.3.3 of [29]. (See the proof of
Theorem 3.2 of [18] for details.) The original theorem in [18] estimates

Ex

[
τB−1∑
k=0

(k + 1)β̂−1

]

for any set B , hence more assumptions are needed than in our case.

4. Excursion time on low energy set. It is obvious that for Et , the “bad set”
B (see Section 3.2) should consist of energy configurations at which at least one
of Ei is sufficiently small. It remains to estimate the excursion time on this “bad
set.” To do so, we define the following sequence and function. Let 0 < η � 1 be
a parameter that will be determined later. Let a1, . . . , aN be the sequence as in
Section 2.3:

ai = 1 − 2i−1 − 1

2N − 1
.

Then it is easy to see that 1 = a1 > a2 > · · · > aN > 0 and 2ai−1 − ai > a1 for
each 2 ≤ i ≤ N .

Define functions

Vn,k =
(

n−1∑
j=0

Ek+j

)anη−1

,

V1(E) =
N∑

i=1

V1,i =
N∑

i=1

E
a1η−1
i ,

V2(E) =
N−1∑
i=1

V2,i =
N−1∑
i=1

(Ei + Ei+1)
a2η−1,

...

Vn(E) =
N−n+1∑

k=1

Vn,k =
N−n+1∑

k=1

(
n−1∑
j=0

Ek+j

)anη−1

,

...
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VN(E) = VN,1 =
(

N∑
i=1

Ei

)aNη−1

,

and

V (E) =
N∑

i=1

Vi(E).

The motivation of constructing V is to control the entire chain through nearest
neighbor interactions. V1,i(E) is the “first level Lyapunov function” with respect
to Ei , whose value decreases when Ei increases. V2,i is the “second level,” which
is dominantly larger than the “first level” functions V1,i and V1,i+1, such that its
decrease can compensate the possible increase of V1,i and V1,i+1. Higher levels
can be constructed analogously. This tower construction of Lyapunov functions
stops at the N th level that covers the entire chain.

Our aim is to show that V (E) is a Lyapunov function when the value of V (E)

is sufficiently large. The excursion time on low energy set then follows from The-
orem 3.15.

The main theorem in this section is as follows.

THEOREM 4.1. For any η > 0 and h > 0 small enough, there exist c0 > 0,
M0 > 1 depending on η, N and h, such that(

P h)V (E) − V (E) ≤ −c0V
α(E)

for every E ∈ {V > M0}, where α = 1 − 1
2(1−η)

.

Let E = (E1, . . . ,EN) be the initial condition. For the sake of simplicity, we let
Ri = R(Ei−1,Ei) for all i = 1, . . . ,N + 1. Et is given by the following equiva-
lent description: Starting from t = 0, a clock rings at an exponentially distributed
random time τ1 with rate

∑N
i=0 Ri . When the clock rings, one and only one energy

exchange occurs between site i and i + 1 with probability

Ri∑N
i=0 Ri

:= Ri/R.

In other words, PE[Ci (τ1)] = Ri/R.
Let Eτ+

1
be the energy configuration immediately after the first energy exchange

occurs at τ1. We use V (Eτ+
1
) to estimate P hV (E). The strategy of proving The-

orem 4.1 is as follows. In Lemma 4.2 and Lemma 4.3, we show that an energy
exchange event can increase a Vn,k by at most multiplying with a constant. How-
ever, if Vn,k is sufficiently large and the energy stored at its “boundary site,” that
is, Ek−1 or Ek+n, is sufficiently large, then in Lemma 4.4 we prove that the cor-
responding energy exchange event will reduce the value of such a Vn,k by at least
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one-half. Then in Lemma 4.5 we manage to prove that if Vn,k is sufficiently large,
the “expected jump” of Vn,k at τ1 can be compensated by the “expected drop”
of Vn′,k′/4N2 for some Vn′,k′ . This can always be achieved because Vn′,k′ is sig-
nificantly greater than Vn,k when Vn′,k′ “covers” Vn,k . Finally, in Lemma 4.6 we
prove that the “expected drop” of V at τ1 is proportional to V α for α = 1 − 1

2(1−η)
.

The heuristics of Lemma 4.6 is that for every sufficiently large Vn,k , the “expected
jump” is compensated by 1/4N2 of the “expect drop” of some Vn′,k′ (Lemma 4.5).
Therefore, at τ1 the total “expected jump” of those large Vn,ks is compensated by
1/4 of the largest “expected drops” on the left and right side, denoted by VnR,kR

and VnL,kL
, respectively. Because the “expected drop” of at least one Vn,k is pro-

portional to V α , we know that the “expected drop” contributed by VnR,kR
and

VnL,kL
minus the total “expected jump” of all large Vn,ks, is also proportional to

V α . On the other hand, Lemma 4.2 implies the “expected jump” of small Vn,ks at
τ1 can be controlled by a constant.

LEMMA 4.2. For any E ∈ RN+ , 1 ≤ n ≤ N , 1 ≤ k ≤ N −n+1, and 0 < η < 1
2 ,

we have

EE
[
Vn,k(Eτ+

1
)1Ck(τ1)

]≤ C

R

(
n−1∑
i=0

Ek+i

)anη− 1
2

and

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]≤ C

R

(
n−1∑
i=0

Ek+i

)anη− 1
2

for some C > 0 depending on N and η.

PROOF. At the first energy exchange, if k �= 1 and k + n �= N + 1, we have

EE
[
Vn,k(Eτ+

1
)1Ck(τ1)

] = EE
[
Vn,k(Eτ+

1
) | Ck(τ1)

]
PE

[
Ck(τ1)

]

= min{K,
√

min{Ek−1,Ek}}
R

×
∫ 1

0

[
p(Ek−1 + Ek) + Ek+1 + · · · + Ek+n−1

]anη−1 dp

:= I1.

Notice that anη is small so anη − 1
2 < 0. If Ek ≥ 1

2
∑n−1

i=1 Ek+i , then

I1 ≤ E
1/2
k

R · Eanη−1
k

∫ 1

0
panη−1 dp ≤ 2

anηR

(
n−1∑
i=0

Ek+i

)anη− 1
2

.
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Otherwise,

I1 ≤ E
1/2
k

R · (Ek+1 + · · · + Ek+n−1)
anη−1

≤ 2
(Ek + · · · + Ek+n−1)

1/2

R · (Ek + · · · + Ek+n−1)
anη−1

≤ 2

R

(
n−1∑
i=0

Ek+i

)anη− 1
2

.

The same argument holds for

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]

= min{K,
√

min{Ek+n−1,Ek+n}}
R

∫ 1

0

[
Ek + · · · + p(Ek+n−1 + Ek+n)

]anη−1 dp

by discussing cases Ek+n−1 ≥ 1
2
∑n−2

i=1 Ek+i and Ek+n−1 < 1
2
∑n−2

i=1 Ek+i .
If Vk,n involves the boundary, say k = 1, then

EE
[
Vn,k(Eτ+

1
)1Ck(τ1)

]

=
√

min{TL,E1}
R

∫ ∞
0

∫ 1

0

1

TL

[
p(x + E1) + E2 + · · · + En

]anη−1
e−x/TL dp dx.

It is easy to check that the same argument above still holds. The case of k + n =
N + 1 can be estimated analogously.

The proof is completed by letting C = 2
aNη

≥ 2
anη

. �

The calculation in the proof of Lemma 4.2 gives the following lemma.

LEMMA 4.3. For any E ∈ RN+ , η > 0, 1 ≤ n ≤ N , and 1 ≤ k ≤ N − n + 1,

EE
[
Vn,k(Eτ+

1
) | Ck(τ1)

]≤ CVn,k(E)

and

EE
[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]≤ CVn,k(E),

where C > 0 is the same as that in Lemma 4.2.

PROOF. We have

EE
[
Vn,k(Eτ+

1
) | Ck(τ1)

]=
∫ 1

0

[
p(Ek−1 + Ek) + Ek+1 + · · · + Ek+n−1

]anη−1 dp.
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It follows from the same argument as in the proof of Lemma 4.2 that
∫ 1

0

[
p(Ek−1 + Ek) + Ek+1 + · · · + Ek+n−1

]anη−1 dp

≤ max
{

2

anη
,2
}
(Ek + · · · + Ek+n−1)

anη−1 := CVn,k(E).

The proof of

EE
[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]≤ CVn,k(E)

is similar. �

LEMMA 4.4. For any E ∈ RN+ and any 0 < η � 1, there exists a constant C′
depending on N , TL, TR and η, such that whenever Ek+n > C′(Ek +· · ·+Ek+n−1)

[resp. Ek−1 > C′(Ek + · · · + Ek+n−1)], we have

EE
[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]
<

1

2
Vn,k(E)

(
resp. EE

[
Vn,k(Eτ+

1
) | Ck(τ1)

]
<

1

2
Vn,k(E)

)
.

PROOF. First, assume k + n �= N + 1, then we have

EE
[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]

=
∫ 1

0

(
Ek + · · · + Ek+n−2 + p(Ek+n−1 + Ek+n)

)anη−1 dp

< E
anη−1
k+n

∫ 1

0
panη−1 dp.

If Ek+n > C′(Ek + · · · + Ek+n−1), we have

E
anη−1
k+n

∫ 1

0
panη−1 dp ≤ C′anη−1

anη
Vn,k(E).

To make

C′anη−1

anη
≤ 1

2
,

one needs

C′ ≥
(

1

2
anη

) 1
anη−1

.
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If k + n = N + 1, then

EE
[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]

=
∫ 1

0

∫ ∞
0

1

TR

(
Ek + · · · + Ek+n−2 + p(Ek+n−1 + x)

)anη−1
e−x/TR dp dx

<

∫ ∞
0

1

TR

xanη−1e−x/TR dx

∫ 1

0
panη−1 dp

= T
anη−1
R

�(anη)

anη
,

where �(·) is the Gamma function. Therefore, to make

EE
[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]
<

1

2
Vn,k(E),

we need

Vn,k(E) = (Ek + · · · + Ek+n−1)
anη−1 > 2T

anη−1
R

�(anη)

anη
.

Since EN+1 = TR , this is equivalent to

EN+1 > TR

[
2T

anη−1
R · �(anη)

anη

]− 1
anη−1

(Ek + · · · + Ek+n−1)

=
(

2�(anη)

anη

)− 1
anη−1

(Ek + · · · + Ek+n−1).

The case for Ck is symmetric and can be calculated in the same way. By combining
all cases, it is easy to check that if

C′ = max
1≤n≤N

{(
1

2
anη

) 1
anη−1

,

(
2�(anη)

anη

)− 1
anη−1

}
,

we have the desired property for all n and k. �

LEMMA 4.5. For any E ∈ RN+ and any 0 < η � 1, there exists a M < ∞
depending on η,TL,TR and N , such that for any Vn,k(E) > M , if

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]≥ Vn,k(E)PE
[
Ck+n(τ1)

]
(
resp. EE

[
Vn,k(Eτ+

1
)1Ck(τ1)

]≥ Vn,k(E)PE
[
Ck(τ1)

])
,

then there exists k′ and n′, such that

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]− Vn,k(E)PE
[
Ck+n(τ1)

]
≤ 1

4N2

{
Vn′,k′(E)PE

[
Ck′+n′(τ1)

]−EE
[
Vn′,k′(Eτ+

1
)1Ck′+n′ (τ1)

]}
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resp. EE

[
Vn,k(Eτ+

1
)1Ck(τ1)

]− Vn,k(E)PE
[
Ck(τ1)

]

≤ 1

4N2

{
Vn′,k′(E)PE

[
Ck′(τ1)

]−EE
[
Vn′,k′(Eτ+

1
)1Ck′ (τ1)

]})
.

PROOF. By symmetry, it is sufficient to consider the case of

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]≥ Vn,k(E)PE
[
Ck+n(τ1)

]
.

Let k′ = k and n′ be the first n′ > n − 1 such that

Ek+n′ > C′(Ek + · · · + Ek+n′−1),

where C′ is the constant defined in Lemma 4.4. When M is large, the sum Ek +
· · ·+Ek+n′−1 is small. Note that EN+1 = TR . Hence when M is sufficiently large,
for any Vn,k(E0) > M , one can always find such an n′.

By Lemma 4.4, if n′ = n, the energy exchange event Ck+n(τ1) will only bring
the expected value of Vn,k down. Therefore, it is sufficient to consider the case of
n′ ≥ n + 1. The lemma follows if one can prove either

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]− Vn,k(E)PE
[
Ck+n(τ1)

]
≤ 1

4N2

{
Vn′,k(E)PE

[
Ck+n′(τ1)

]−EE
[
Vn′,k(Eτ+

1
)1Ck+n′ (τ1)

]}

:= 1

4N2 I1

or

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]− Vn,k(E)PE
[
Ck+n(τ1)

]
≤ 1

4N2

{
V1,k+n′−1(E)PE

[
Ck+n′(τ1)

]−EE
[
V1,k+n′−1(Eτ+

1
)1Ck+n′ (τ1)

]}

:= 1

4N2 I2.

Let x = Ek + · · · + Ek+n′−2, y = Ek+n′−1, and z = Ek+n′ . Since an′ < an, if x

is sufficiently small, by Lemma 4.2,

EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

] ≤ C

R (Ek + · · · + Ek+n−1)
anη− 1

2

≤ C

R

(
1

NC′N−1 (Ek + · · · + Ek+n′−2)

)anη− 1
2

≤ 1

Rxan′−1η− 1
2 · (C · C′( 1

2 −anη)(N−1) · N 1
2 −anη · x(an−an′−1)η

)

≤ 1

Rxan′−1η− 1
2 ,
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where C is the constant in Lemma 4.2. The second inequality above follows from

Ek+m ≤ C′(Ek + · · · + Ek+m−1)

for each n ≤ m < n′.
The requirement of small x can be satisfied by making M = M(η) sufficiently

large, because

x ≤ NC ′N−1(Ek + · · · + Ek+n−1) ≤ NC ′N−1M
1

anη−1 .

Similarly, we can make M = M(η) sufficiently large such that

y ≤ NC′N−1M
1

anη−1 < K.

Notice that y < z because C′ in Lemma 4.4 is greater than 1 [C′ >(1
2anη)(anη−1)−1

,
an < 1, η < 1]. Therefore, we have R(Ek+n′−1,Ek+n′) = √

y. Hence we have

I1 =
{
(x + y)an′η−1 −

∫ 1

0

[
x + p(y + z)

]an′η−1 dp

}√
y

R
and

I2 =
{
ya1η−1 −

∫ 1

0

[
p(y + z)

]a1η−1 dp

}√
y

R .

Since z > C′(y + x) > C′y and y < C′x, by Lemma 4.4, we have

I1 ≥ 1

2
(x + y)an′η−1

√
y

R ≥ 1

2(1 + C′)
xan′η−1√y

R

and

I2 ≥ 1

2
ya1η−1

√
y

R .

We claim that

max
{

1

2
ya1η− 1

2 ,
1

2(1 + C′)
xan′η−1√y

}
> 4N2xan′−1η− 1

2 .

It is easy to see that the lemma follows from this claim.

PROOF OF THE CLAIM. Let ε = η2. The proof is split to two cases.
Case 1: y < x1+2(an′−1−an′ )η−ε , then

1

2
ya1η− 1

2 >
1

2
x(a1η− 1

2 )[1+2(an′−1−an′ )η−ε].
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Note that 2an′−1 − an′ > a1 and η � 1, we have(
a1η − 1

2

)[
1 + 2(an′−1 − an′)η − ε

]

= −1

2
+ an′−1η − ε + (a1 + an′ − 2an′−1)η

+ ε + ε

(
1

2
− a1η

)
+ 2a1(an′−1 − an′)η2

< −1

2
+ an′−1η − ε

if

(2an′−1 − an′ − a1)η >
3

2
ε + 2a1(an′−1 − an′)η2,

which can be achieved by making η sufficiently small (because ε = η2).
Therefore,

1

2
ya1η− 1

2 >
1

2
x−ε · xan′−1η− 1

2 > 4N2xan′−1η− 1
2 ,

when x is sufficiently small, which can be made by letting M large enough.
Case 2: y ≥ x1+2(an′−1−an′ )η−ε . Recall that we have ε = η2, we have

1

2C′ x
an′η−1√y ≥ 1

2C′ x
an′η−1 · x 1

2 +an′−1η−an′η− ε
2

= 1

2C′ x
an′−1η− 1

2 · x− ε
2

> 4N2xan′−1η− 1
2

if x is sufficiently small. Again, this can be achieved by letting M sufficiently
large. � �

LEMMA 4.6. For any E ∈ RN+ and any 0 < η � 1, there exist constants α =
1 − 1

2(1−η)
, C1 and M ′ depending on N and η, such that

EE
[
V (Eτ+

1
)
]≤ V (E) − C1

R V α(E)

for all V (E) > M ′.

PROOF. Step 1. First, we show that there exists ñ, k̃ such that the “expected
drop” of V

ñ,k̃
at τ1 is proportional to V α(E). Let V

ñ,k̃
(E) be the maximum of

{Vi,j (E)}. Therefore, V
ñ,k̃

(E) ≥ 1
N(N+1)

V (E). Since V
ñ,k̃

(E) is the maximum, we
have

(E
k̃
+ · · · + E

k̃+ñ−1)
añη−1 > (E

k̃−1 + · · · + E
k̃+ñ−1)

añ+1η−1
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and

(E
k̃
+ · · · + E

k̃+ñ−1)
añη−1 > (E

k̃
+ · · · + E

k̃+ñ
)añ+1η−1.

Since añ+1 < añ, when M ′ is sufficiently large, we have

E
k̃−1 > C′(E

k̃
+ · · · + E

k̃+ñ−1)

and

E
k̃+ñ

> C′(E
k̃
+ · · · + E

k̃+ñ−1),

where C′ is as in Lemma 4.4. In addition, we have

E
a1η−1
k̃

≤ (E
k̃
+ · · · + E

k̃+ñ−1)
añη−1

and

E
a1η−1
k̃+ñ−1

≤ (E
k̃
+ · · · + E

k̃+ñ−1)
añη−1.

Since M ′ is assumed to be sufficiently large, we have min{K,min{E
k̃−1,Ek̃

}} =
E

k̃
and min{K,min{E

k̃+ñ−1,Ek̃+ñ
}} = E

k̃+ñ−1. Therefore,

EE
[
V

ñ,k̃
(Eτ+

1
)
]− V

ñ,k̃
(E)

=
√

E
k̃

R

{∫ 1

0

[
p(E

k̃−1 + E
k̃
) + · · · + E

ñ+k̃−1

]añη−1 dp

− (E
k̃
+ · · · + E

k̃+ñ−1)
añη−1

}

+
√

E
k̃+ñ−1

R

{∫ 1

0

[
E

k̃
+ · · · + p(E

ñ+k̃−1 + E
ñ+k̃

)
]añη−1 dp

− (E
k̃
+ · · · + E

k̃+ñ−1)
añη−1

}

:= I1 + I2.

It follows from the same calculation as in Lemma 4.4 that

(4.1)
Ii ≤ −1

2
(E

k̃
+ · · · + E

ñ+k̃−1)
añη−1 · (E

k̃
+ · · · + E

ñ+k̃−1)
añη−1

2(a1η−1) · 1

R

= − 1

2RV α

ñ,k̃
(E)

for i = 1,2, where

α = 1 − 1

2(1 − a1η)
.
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Step 2. Let M be as in Lemma 4.5. Let {(ni, ki)}mi=1 be indices for which
Vni,ki

(E) ≥ M . The aim of this step is to prove that the total “expected jump” of
these Vni,ki

at τ1 is dominated by the “expected drop” of some VnR,kR
and VnL,kL

from left-hand and right-hand side, respectively.
By Lemma 4.5, we can construct sequences {(n̂′

i , k̂
′
i)}mi=1 and {(n̂′′

i , k̂
′′
i )}mi=1 such

that if

EE
[
Vni,ki

(Eτ+
1
)1Cki+ni

(τ1)

]≥ Vni,ki
(E)PE

[
Cki+ni

(τ1)
]
,

then

EE
[
Vni,ki

(Eτ+
1
)1Cki+ni

(τ1)

]− Vni,ki
(E)PE

[
Cki+ni

(τ1)
]

≤ 1

4N2

{
V

n̂′
i ,k̂

′
i
(E)PE

[
C

k̂′
i+n̂′

i
(τ1)

]−EE
[
V

n̂′
i ,k̂

′
i
(Eτ+

1
)1C

k̂′
i
+n̂′

i
(τ1)

]}
and if

EE
[
Vni,ki

(Eτ+
1
)1Cki

(τ1)

]≥ Vni,ki
(E)PE

[
Cki

(τ1)
]
,

then

EE
[
Vni,ki

(Eτ+
1
)1Cki

(τ1)

]− Vni,ki
(E)PE

[
Cki

(τ1)
]

≤ 1

4N2

{
V

n̂′′
i ,k̂′′

i
(E)PE

[
C

k̂′′
i
(τ1)

]−EE
[
V

n̂′′
i ,k̂′′

i
(Eτ+

1
)1C

k̂′′
i
(τ1)

]}
.

When condition

EE
[
Vni,ki

(Eτ+
1
)1Cki+ni

(τ1)

]≥ Vni,ki
(E)PE

[
Cki+ni

(τ1)
]

(
resp. EE

[
Vni,ki

(Eτ+
1
)1Cki

(τ1)

]≥ Vni,ki
(E)PE

[
Cki

(τ1)
])

is not satisfied, we simply let n̂′
i = ni, k̂

′
i = ki (resp., n̂′′

i = ni, k̂
′′
i = ki ). Therefore,

the “expected jump” of Vni,ki
at τ1 is dominated by the right and left “expected

drop” of V
n̂′

i ,k̂
′
i

and V
n̂′′

i ,k̂′′
i
, respectively.

Let (nR, kR) be the index for which VnR,kR
(E) has biggest “right drop” at τ1,

that is,

Vn,k(E)PE
[
Ck+n(τ1)

]−EE
[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]
≤ VnR,kR

(E)PE
[
CkR+nR

(τ1)
]−EE

[
VnR,kR

(Eτ+
1
)1CkR+nR

(τ1)

]
for all n, k, and (nL, kL) be the index for which VnL,kL

(E) has the biggest “left
drop,” that is,

Vn,k(E)PE
[
Ck(τ1)

]−EE
[
Vn,k(Eτ+

1
)1Ck(τ1)

]
≤ VnL,kL

(E)PE
[
CkL

(τ1)
]−EE

[
VnL,kL

(Eτ+
1
)1CkL

(τ1)

]
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for all n, k. Both terms should be positive when M ′ is sufficiently large because of
the argument about V

ñ,k̃
in Step 1.

Since there is only 1
2N(N + 1) Vn,k’s, we have m ≤ 1

2N(N + 1). Hence
m∑

i=1

{
EE

[
Vni,ki

(Eτ+
1
)
]− Vni,ki

(E)
}

=
m∑

i=1

{
EE

[
Vni,ki

(Eτ+
1
)1Cki+ni

(τ1)

]− Vni,ki
(E)PE

[
Cki+ni

(τ1)
]

+EE
[
Vni,ki

(Eτ+
1
)1Cki

(τ1)

]− Vni,ki
(E)PE

[
Cki

(τ1)
]}

≤ 1

4N2

m∑
i=1

{
max

{
V

n̂′
i ,k̂

′
i
(E)PE

[
C

k̂′
i+n̂′

i
(τ1)

]−EE
[
V

n̂′
i ,k̂

′
i
(Eτ+

1
)1C

k̂′
i
+n̂′

i
(τ1)

]
,0
}

+ max
{
V

n̂′′
i ,k̂′′

i
(E)PE

[
C

k̂′′
i
(τ1)

]−EE
[
V

n̂′′
i ,k̂′′

i
(Eτ+

1
)1C

k̂′′
i
(τ1)

]
,0
}}

≤ 1

4

{
VnR,kR

(E)PE
[
CkR+nR

(τ1)
]−EE

[
VnR,kR

(Eτ+
1
)1CkR+nR

(τ1)

]
+ VnL,kL

(E)PE
[
CkL

(τ1)
]−EE

[
VnL,kL

(Eτ+
1
)1CkL

(τ1)

]}
.

Step 3. Then we can finalize the entire proof. We have

EE
(
V (Eτ+

1
)
)− V (E)

=∑
n,k

{
EE

[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]− Vn,k(E)PE
[
Ck+n(τ1)

]

+EE
[
Vn,k(Eτ+

1
)1Ck(τ1)

]− Vn,k(E)PE
[
Ck(τ1)

]}
(Law of total expectation)

=
m∑

i=1

{
EE

[
Vni,ki

(Eτ+
1
)1Cki+ni

(τ1)

]− Vni,ki
(E)PE

[
Cki+ni

(τ1)
]

+EE
[
Vni,ki

(Eτ+
1
)1Cki

(τ1)

]− Vni,ki
(E)PE

[
Cki

(τ1)
]}

+ ∑
k,n Vn,k<M

{
EE

[
Vn,k(Eτ+

1
)
]− Vn,k(E)

}
(by Lemma 4.5)

≤ 3

4

{
EE

[
VnR,kR

(Eτ+
1
)1CnR+kR

(τ1)

]− VnR,kR
(E)PE

[
CnR+kR

(τ1)
]

+EE
[
VnL,kL

(Eτ+
1
)1CkL

(τ1)

]− VnL,kL
(E)PE

[
CkL

(τ1)
]}

+ ∑
k,n Vn,k<M

{
EE

[
Vn,k(Eτ+

1
)
]− Vn,k(E)

}
(by Step 2)

≤ 3

4
(I3 + I4) + I5,
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where

I3 = EE

[
VnR,kR

(Eτ+
1
)1CnR+kR

(τ1)

]− VnR,kR
(E)PE

[
CnR+kR

(τ1)
]
,

I4 = EE
[
VnL,kL

(Eτ+
1
)1CkL

(τ1)

]− VnL,kL
(E)PE

[
CkL

(τ1)
]
,

and

I5 = ∑
k,n Vn,k<M

{
EE

[
Vn,k(Eτ+

1
)
]− Vn,k(E)

}
.

It follows from Lemma 4.3 that

I5 = ∑
k,n Vn,k<M

{
EE

[
Vn,k(Eτ+

1
)1Ck+n(τ1)

]− Vn,k(E)PE
[
Ck+n(τ1)

]

+EE
[
Vn,k(Eτ+

1
),1Ck(τ1)

]− Vn,k(E)PE
[
Ck(τ1)

]}
≤ ∑

k,n Vn,k<M

{
EE

[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]
PE

[
Ck+n(τ1)

]

+EE
[
Vn,k(Eτ+

1
) | Ck(τ1)

]
PE

[
Ck(τ1)

]}
≤ ∑

k,n Vn,k<M

{
EE

[
Vn,k(Eτ+

1
) | Ck+n(τ1)

]+EE
[
Vn,k(Eτ+

1
) | Ck(τ1)

]} · 2K

R

≤ N(N + 1)CMK · 1

R .

In addition, by the definition of nR, kR and nL, kL, we have

V
ñ,k̃

(E)PE
[
C

k̃+ñ
(τ1)

]−EE
[
V

ñ,k̃
(Eτ+

1
)1C

k̃+ñ
(τ1)

]
≤ VnR,kR

(E)PE
[
CkR+nR

(τ1)
]−EE

[
VnR,kR

(Eτ+
1
)1CkR+nR

(τ1)

]
and

V
ñ,k̃

(E)PE
[
C

k̃
(τ1)

]−EE
[
V

ñ,k̃
(Eτ+

1
)1C

k̃
(τ1)

]
≤ VnL,kL

(E)PE
[
CkL

(τ1)
]−EE

[
VnL,kL

(Eτ+
1
)1CkL

(τ1)

]
,

where ñ and k̃ are from Step 1.
By inequality (4.1) in Step 1, we have

I3 + I4 ≤ (
EE

[
V

ñ,k̃
(Eτ+

1
)1C

k̃+ñ
(τ1)

]− V
ñ,k̃

(E)PE
[
C

k̃+ñ
(τ1)

])
+ (

EE
[
V

ñ,k̃
(Eτ+

1
)1C

k̃
(τ1)

]− V
ñ,k̃

(E)PE
[
C

k̃
(τ1)

])
= EE

[
V

ñ,k̃
(Eτ+

1
)
]− V

ñ,k̃
(E)

≤ − 1

RV α

ñ,k̃
(E) ≤ − 1

R ·
(

1

N(N + 1)

)α

V α(E).
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One can then further choose M ′ > M such that

1

4R ·
(

1

N(N + 1)

)α

M ′α > I5.

Therefore, for every E such that V (E) > M ′, we have

EE
(
V (Eτ+

1
)
)− V (E) ≤ − 1

R · 1

2

(
1

N(N + 1)

)α

V α(E) := −C1

R V α(E).

This completes the proof. �

PROOF OF THEOREM 4.1. Let 0 = τ0 < τ1 < τ2 < · · · be the times of clock
rings. Let B0 = {E | V (E) > M ′} where M ′ is the constant in Lemma 4.6. By the
Markov property and Lemma 4.6, for any E ∈ RN+ we have

(4.2) EE
[
V (Eτ+

n+1
) | Eτ+

n

]= EE
τ
+
n

[
V (Eτ+

1
)
]≤ V (Eτ+

n
) − C1

R V (Eτ+
n
)α

if Eτ+
n

∈ B0. Otherwise, for each Eτ+
n

/∈ B0, by the Markov property we have the
uniform bound

(4.3)

EE
[
V (Eτ+

n+1
) | Eτ+

n

]

=
N∑

m=1

N−m+1∑
k=1

{
EE

τ
+
n

[
Vm,k(Eτ+

1
) | Ck(τ1)

]
PE

τ
+
n

[
Ck(τ1)

]

+EE
τ
+
n

[
Vm,k(Eτ+

1
) | Ck+m(τ1)

]
PE

τ
+
n

[
Ck+m(τ1)

]}

≤
N∑

m=1

N−m+1∑
k=1

CVm,k(Eτ+
n
)
(
PE

τ
+
n

[
Ck(τ1)

]+ PE
τ
+
n

[
Ck+m(τ1)

])

(by Lemma 4.3)

≤ C

N∑
m=1

N−m+1∑
k=1

Vm,k(Eτ+
n
) ≤ CM ′,

where C is the constant in Lemma 4.2.
Let S = inf{n | τn > h}, and define τ̂n = min{τn, τS−1}. Then

P hV (E) = lim
n→∞EE

[
V (Eτ̂+

n
)1{S≤n+1}

]≤ lim sup
n→∞

EE
[
V (Eτ̂+

n
)
]
.

We will prove a uniform bound for EE[V (Eτ̂+
n
)]. Equation (4.2) implies the expec-

tation of V drops when starting from B0. Equation (4.3) means the expectation of
V can grow with CM ′ at most. By assuming the worse of (4.2) and (4.3), we have

EE
[
V (Eτ̂+

n+1
) | τn+1 ≤ h

]≤ EE
[
V (Eτ̂+

n
) | τn+1 ≤ h

]+ CM ′
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for every n ≥ 0. Notice that for given Eτ+
n

, Eτ+
n+1

is independent of τn+1 − τn.
Therefore conditioning on τn+1 ≤ h does not affect the bounds in (4.2) and (4.3).
Since R ≤ (N + 1)K , for each Eτ+

n
, we have

P[τn+1 ≤ h|Eτ+
n
, τn ≤ h] ≤ (

1 − e−hNK).
Therefore, inductively we have

PE[τn+1 ≤ h] ≤ (
1 − e−hNK)n+1

for all n ≥ 0. This implies

(4.4)

EE
[
V (Eτ̂+

n+1
)
]

= EE
[
V (Eτ̂+

n+1
) | τn+1 > h

] · PE[τn+1 > h]
+EE

[
V (Eτ̂+

n+1
) | τn+1 ≤ h

] · PE[τn+1 ≤ h]
≤ EE

[
V (Eτ̂+

n
) | τn+1 > h

] · PE[τn+1 > h]
+ (

EE
[
V (Eτ̂+

n
) | τn+1 ≤ h

]+ CM ′) · PE[τn+1 ≤ h]
≤ EE

[
V (Eτ̂+

n
)
]+ CM ′(1 − e−hNK)n+1

.

Adding up from n = 1 to ∞, this gives

P hV (E) ≤ EE
[
V (Eτ̂+

1
)
]+ CM ′

e−hNK
.

Let h > 0 be small enough so that

PE[τ1 ≤ h] = 1 − e−hR >
h

2
R.

This is the only condition we impose on h. There exists such an h independently
of E because of the bound R ≤ NK .

Notice that the energy exchange at τ1 is independent of τ1. We have, by
Lemma 4.6,

EE
[
V (Eτ̂+

1
)
]= EE

[
V (Eτ+

1
) | τ1 ≤ h

] · PE[τ1 ≤ h] + V (E) · PE[τ1 > h]

≤
(
V (E) − C1

R V (E)α
)

· PE[τ1 ≤ h] + V (E) · PE[τ1 > h]

≤ V (E) − C1
h

2
V (E)α.

This gives

P hV (E) ≤ V (E) − C1
h

2
V (E)α + CM ′ehNK

for any E ∈ B0.



POLYNOMIAL CONVERGENCE RATE TO NESS 3797

To complete the proof of Theorem 4.1, it suffices to replace M ′ by a large
enough number M0 > 1 so that for E ∈ {V (E) > M0}, the constant CM ′ehNK

is absorbed into c0V (E)α for c0 := C1
h
4 . �

The same calculation in the proof of Theorem 4.1 also yields the following.

LEMMA 4.7.

sup
{E:V (E)≤M̂}

P hV (E) ≤ M̂ + CM ′ehNK < ∞

for any M̂ > 0.

PROOF. The calculation in (4.4) gives

EE
[
V (Eτ̂+

n+1
)
]≤ EE

[
V (Eτ̂+

n
)
]+ CM ′(1 − e−hNK)n+1

.

Adding up from n = 0 to ∞, this gives

P hV (E) ≤ V (E) + CM ′ehNK ≤ M̂ + CM ′ehNK. �

5. Excursion time for the induced chain. For sufficiently small given pa-
rameters h > 0 and η > 0, let M0 be the constant defined in Theorem 4.1 and
B := {E | V (E) > M0}. Define G = RN+ \ B . The previous section together with
Theorem 3.11 gives bounds on the excursion time in B . As introduced in Sec-
tion 3.2, now one should work on the G-induced chain. G is not a compact set as
the energy at each site can be arbitrarily high. A common way to show the tight-
ness of a Markov process on noncompact state space is to construct a Lyapunov
function, as we do in this section for the G-induced chain.

Let h > 0 be the given size of a time step (defined in Theorem 4.1). We consider
the time-h sampling chain {Enh}∞n=0 of Et . For the sake of simplicity, we use the
notation En to represent Enh when it does not lead to a confusion.

Let 0 = T0 < T1 < T2 < · · · be discrete stopping times such that

T1 = inf{k > 0 | Ek ∈ G}
and

Tn+1 = inf{k > Tn | Ek ∈ G}
for n = 1,2, . . . . We define

Ên = ETn

for n = 1,2, . . . as the G-induced chain. It is easy to see that Ên is also a Markov
chain. We denote the transition kernel of Ên by P̂ .
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As in [25], a natural Lyapunov function is the total energy in the system. Let

W(E) =
N∑

n=1

En.

The main theorem of this section reads the following.

THEOREM 5.1. There exist constants M1 > 1 and δ > 0, such that

P̂W(E) ≤ (1 − δ)W(E)

for every E ∈ G with W(E) > M1.

To prove Theorem 5.1, the first task is to bound the length of the time step for
Ên. Such estimate follows from Theorem 4.1 and Theorem 3.15 immediately.

PROPOSITION 5.2. There exists a constant C5 such that

E
[
(Tn+1 − Tn)

α̂ | Ên

]≤ C5V̂ (Ên)

for any Ên and any n ≥ 0, where α̂ = (1 − α)−1 = 2 − 2η for the constant α given
in Theorem 4.1, and V̂ (E) = max{V (E),1}. In particular, if n ≥ 1, then

E
[
(Tn+1 − Tn)

α̂ | Ên

]≤ C5M0,

where M0 is as in Theorem 4.1.

PROOF. By the definition of Ên, Ên = ETn is the energy configuration at the
stopping time Tn. Notice that

E
[
(Tn+1 − Tn)

α̂ | Ên

]≤ 2 ·EETn

[
τG−1∑
k=0

(k + 1)α̂−1

]

for the constant α we use. The proposition follows immediately by applying The-
orem 3.15 to En. Since M0 > 1, let

V̂ (E) = max
{
1,V (E)

}
.

Then since V̂ ≤ V + 1, it follows from Theorem 4.1 and Lemma 4.7 that

P̂ V̂ (E) − V̂ (E) ≤ −c0V̂
α(E) + (

1 + M0 + CM ′ehNK)1G.

The proposition then follows from Theorem 3.15. �

The following definitions regarding the energy flux in the system are necessary
for the proof of Theorem 5.1. Let t1, t2, . . . be the times at which either clock 1 or
clock N + 1 rings. The energy in-flow and out-flow on [0, T ) are denoted by

FI

([0, T )
)= ∑

0≤ti<T

(
W(Et+i

) − W(Eti )
)+
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and

FO

([0, T )
)= ∑

0≤ti<T

(
W(Eti ) − W(Et+i

)
)+

,

respectively. Next, we need to estimate the energy flux with respect to Ê.

LEMMA 5.3. There exists a constant C2 such that

EE
[
FI

([0, T )
)]≤ C2T

for any E ∈ RN+ and any T > 0. In addition,

Xn := FI

([0, nh)
)− C2hn

is a supermartingale relative to Fn, where Fn is the σ field generated by
{E0, . . . ,En}.

PROOF. It is easy to see that for any E(t) ∈ RN+ we have

EE(t)

[
FI

([t, t + dt)
)]

≤√
TL

{∫ ∞
0

∫ 1

0

1

TL

p
(
x + E1(t)

)
e−x/TL dx dp − E1

}+
dt

+√
TR

{∫ ∞
0

∫ 1

0

1

TR

p
(
x + EN(t)

)
e−x/TR dx dp − EN

}+
dt

≤√
TL

{∫ ∞
0

∫ 1

0

1

TL

pxe−x/TL dx dp

}
dt

+√
TR

{∫ ∞
0

∫ 1

0

1

TR

pxe−x/TR dx dp

}
dt

= 1

2

(
T

3/2
L + T

3/2
R

)
dt := C2 dt.

This estimate is independent of E(t). Therefore,

EE
[
FI

([0, T )
)]≤ C2T

for any E and T . In addition,

E[Xn+1 − Xn | Fn] = E
[
FI

([
nh, (n + 1)h

)) | Fn

]− C2h ≤ 0

for any En. This completes the proof. �

By the definition of T1, T1 is a stopping time relative to Fn. We have the fol-
lowing.
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PROPOSITION 5.4.

EE
[
FI

([0, T1)
)]≤ C2hEE[T1],

where C2 is the constant in Lemma 5.3.

PROOF. By Proposition 5.2, EE[T1] < ∞ for any E ∈ RN+ . In addition, by
Lemma 5.3,

EE
[|Xn+1 − Xn| | Fn

]≤ 2C2h < ∞,

where the supermartingale Xn is defined in Lemma 5.3. It then follows from the
optional stopping theorem that

EE[XT1] ≤ EE[X0] = 0.

Therefore,

EE
[
FI

([0, T1)
)]≤ C2hEE[T1]. �

The following estimate about the energy influx with respect to the G-induced
chain follows easily.

LEMMA 5.5. There exist constants C3 < ∞ and C′
3 < ∞ such that

EE
[
FI

([0, T1)
)]≤ C3

if E ∈ G and

EE
[
FI

([0, T1)
)]≤ C′

3V̂ (E)

if E /∈ G.

PROOF. By Proposition 5.2,

EE[T1] ≤ EE
[
(T1)

α̂]≤ C5V̂ (E).

It then follows from Proposition 5.4 that

EE
[
FI

([0, T1)
)]≤ C2h · C5V̂ (E).

Let

C3 := C2h · C5M0.

If E0 ∈ G, the lemma follows immediately. If E0 /∈ G, by letting

C′
3 = C2hC5,

we will have

EE
[
FI

([0, T1)
)]≤ C′

3V̂ (E).

This completes the proof. �

The following lemma controls the out flow of the energy.
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LEMMA 5.6. Assume E ∈ G. There exist constants σ,M ′′ > 0, such that

EE
[
FO

([0, T1)
)]≥ σW(E)

whenever W(E) > M ′′.

PROOF. Since

EE
[
FO

([0, T1)
)]≥ EE

[
FO

([0, h)
)]

,

it is sufficient to construct an event within the time interval [0, h) such that when-
ever E ∈ G, a certain proportion of energy can be dumped out of the system.

Let En1 be the site that holds the largest amount of energy. Let E denote the
following event:

• Clocks n1, n1 − 1, . . . , 2, and 1 ring in the time interval [0, h
n1

), [ h
n1

, 2h
n1

), . . . ,

[ (n1−1)h
n1

, h), respectively.
• At the ith ring, En1−i+1 gives at least half of its energy to En1−i for i =

1, . . . , n1 − 1.
• At the n1th ring, E1 dumps 1/3 of its energy to the left heat bath.
• Besides what described above, all other clocks do not ring during the time

period [0, h).

If W(E) ≥ 3N · 2N−1TL, we have En1(0) ≥ 3 · 2N−1 · TL and E1(
(n1−1)h

n1
) > 3TL

conditioning with event E . Note that all clock rates are bounded above by K . In
addition, since En1 holds the largest amount of energy, right before the ith ring
(for i < n1) we have En1−i+1 ≥ 2−(i−1)En1−i . Hence the probability that En1−i+1
gives at least half of its energy to En1−i is at least 2−i/(1 + 2−(i−1)). Therefore, it
is a straightforward exercise to check that there exists a constant c0 > 0 such that

P[E] ≥ c0 > 0

for every E ∈ G. The proof is completed by letting

σ = c0

3
· 2−(N−1)

and

M ′′ = 3N · 2N−1TL. �

PROOF OF THEOREM 5.1. By the definition of W(E), we have

P̂W(E) − W(E) = EE
[
FI

([0, T1)
)]−EE

[
FO

([0, T1)
)]

.

Since E ∈ G, by Lemma 5.5, we have EE[FI ([0, T1))] ≤ C3. On the other hand,
by Lemma 5.6, if W(E) > M ′′, we have

EE
[
FO

([0, T1)
)]≥ σW(E).

Therefore, let δ = 1
2σ and M1 = max{2C3/σ,M ′′}, we have

P̂W(E) ≤ (1 − δ)W(E).

This completes the proof. �
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6. Proof of the theorems.

6.1. Existence of a uniform reference set C. Define

C = {
E | V (E) ≤ M0,W(E) ≤ M1

}
.

The aim of this subsection is to prove that C is a uniform reference set. This
follows immediate from the theorem below.

THEOREM 6.1. For any t > 0, there exists a constant η > 0 such that

P t(E, ·) > ηUC(·) for all E ∈ C,

where UC is the uniform probability measure on C.

PROOF. Let e = inf{min(E1, . . . ,EN) | E = (E1, . . . ,EN) ∈ C}. Clearly
e > 0.

Note that C is compact due to the condition involving W . Then we cover C by
finitely many disks D = D(Ē, ξ) = {E | |E − Ē| ≤ ξ} for ξ < e/2. It is sufficient
to show that for any t > 0, there exists η > 0 independent of Ē ∈ C, such that for
any E ∈ C, P t(E, ·) ≥ ηUD(·) for all D in this cover.

Let E and D be fixed. We prescribe the following sequence of events:

(i) On the time intervals [ (i−1)t
2N

, it
2N

) for each i = 1, . . . ,N − 1, site i ex-
changes energy with site i + 1. After the energy exchange, the remaining energy
at site i is between e/2 and e. Other clocks do not ring during this time period.

(ii) On the time interval [ (N−1)t
2N

, 1
2), site N exchanges energy with the right

heat bath. After the energy exchange, EN is greater than supĒ∈D

∑N
i=1(Ēi + ξ).

Other clocks do not ring during this time period.
(iii) On the time intervals [ (N+i−1)t

2N
, (N+i)t

2N
) for each i = 1, . . . ,N , site N − i

exchanges energy with site N + 1 − i. (Note that site 0 is the left heat bath.) After
each energy exchange, the energy left at site N + 1 − i is uniformly distributed in
EN+1−i ∈ [ĒN+1−i − ξ, ĒN+1−i + ξ ]. Other clocks do not ring during this time
period.

It is then easy to check that the event above occurs with probability at least η,
where η > 0 is independent of E provided E ∈ C. �

Since P t(E, ·) now has positive density everywhere in RN+ , the strong aperiod-
icity and irreducibility of En follows immediately.

COROLLARY 6.2. En is a strongly aperiodic Markov chain.

PROOF. By Theorem 6.1, C is a uniform reference set. In addition, UC(C) > 0.
The strong aperiodicity follows from its definition. �

Therefore, En is aperiodic.
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COROLLARY 6.3. En is λ-irreducible, where λ is the Lebesgue measure on
RN+ .

PROOF. Let A ⊂ RN+ be a set with strictly positive Lebesgue measure. Then
there exists a set O that has the form

O = {E | 0 < c ≤ Ei ≤ C < ∞, i = 1, . . . ,N}
such that λ(O ∩ A) > 0.

For any E0 ∈ RN+ and the time step h as in Theorem 4.1, the same construc-
tion as in Theorem 6.1 implies that P h(E0, ·) > ηUO(·) for some η > 0. Hence
P h(E0,A) > ηUO(A) > 0. �

6.2. Absolute continuity of the invariant measure. This subsection aims to
prove the absolute continuity of the invariant probability measure with respect to
the Lebesgue measure. For the sake of simplicity, we denote the Lebesgue measure
on RN+ by λ.

PROPOSITION 6.4. If π is an invariant measure of Et , then π is absolutely
continuous with respect to λ with a strictly positive density.

The proof is similar to that of Proposition 6.1 of [24]. For E ∈ RN+ and t > 0,
we have decomposition

P t(E, ·) = ν⊥ + νabs,

where νabs and ν⊥ are absolutely continuous and singular component with respect
to λ, respectively. We need to show that an absolutely continuous component can-
not revert back to singularity as time evolves.

LEMMA 6.5. For any probability measure μ � λ, μP t � λ for any t > 0.

PROOF. This proof is similar to that of Lemma 6.3 of [24]. We include it here
for the sake of completeness of this paper.

Let t > 0 be fixed. We define l = (c1, . . . , cn) be the sequence of energy ex-
changes, where ci = k means site k exchanges energy with site k + 1. (As before,
heat baths are sites 0 and N + 1.) Let S(l) be the event that energy exchanges
(c1, . . . , cn) occur during the time period [0, t) in the order specified, and no other
energy exchanges occur. If zero (resp., infinite many) energy exchange occurs
on [0, t), we denote the corresponding event by S(∅) [resp., S(∞)]. Obviously,
PE[S(∞)] = 0.

For S = S(l) or S(∅), we define the conditional Markov operator

(μPS)(A) :=
∫
RN+

P[Et ∈ A | E0 = E | S]μ(dE)
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and the measure
dμQ

dλ
(E) := PE

[
S(Q)

]dμ

dλ
(E)

for Q = l or ∅. Then by the law of total probability,

μP t = μ∅ +∑
l

μlPS(l).

Therefore, it is sufficient to show that each term above is absolutely continuous
with respect to λ. Since for each l = (c1, . . . , cn), we have the decomposition

PS(l) = PS(cn) · · ·PS(c1).

Hence the proof is reduced to proving the absolute continuity of μPci
for each

i = 0 ∼ N + 1, which is a straightforward exercise. Let ξ and ξ̂k be the density of
μ and μPS(ck), respectively. Then if 0 < k < N , we have

ξ̂k(E1,E2, . . . ,EN)

=
∫ 1

0
ξ
(
E1, . . . ,Ek−1,p(Ek + Ek+1), (1 − p)(Ek + Ek+1),Ek+2, . . . ,EN

)
dp.

For k = 0 and N , we have

ξ̂0(E1,E2, . . . ,EN)

=
∫ ∞

0

∫ ∞
(E1−Ê1)

+
ξ(Ê1,E2, . . . ,EN)

1

Ê1 + E

1

TL

e−E/TL dE dÊ1

and

ξ̂N (E1,E2, . . . ,EN)

=
∫ ∞

0

∫ ∞
(EN−ÊN )+

ξ(E1,E2, . . . , ÊN)
1

ÊN + E

1

TR

e−E/TR dE dÊN . �

PROOF OF PROPOSITION 6.4. Let π = πabs + π⊥ be an invariant measure.
Assume π⊥ �= 0. For t > 0, πabsP

t � λ by Lemma 6.5. By Theorem 6.1, for any
E ∈ C, P t/2(E, ·) has a nonzero absolutely continuous component with respect
to the Lebesgue measure, which has a strictly positive density on C. Since C is
accessible within finitely many energy exchanges, P t/2(E,C) > 0 for all E ∈ RN+ .
Hence for all E ∈ RN+ , P t(E, ·) has a nonzero absolutely continuous component
with respect to the Lebesgue measure, which has a strictly positive density on C.

If π⊥ �= 0, there must exist M2,M3 < ∞ such that

π⊥
({

E | V (E) ≤ M2,W(E) ≤ M3
})

> 0.

Therefore, Theorem 6.1 implies that π⊥P t must have an absolutely continuous
component. The absolutely continuous component of πP t is strictly larger than
that of π . This contradicts to the invariance of π . �
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6.3. Excursion time before entering C. Now we are ready to estimate the tail
of τC. Let V̂ = max{1,V } and Ŵ = max{1,W }.

THEOREM 6.6. For any ε > 0, there exists a constant C6 < ∞ such that

PE[τC > n] ≤ C6
(
Ŵ (E) + V̂ (E)

)
n−(α̂−ε)

for any E ∈ RN+ , where α̂ = 2 − 2η.

PROOF. Note that C⊂ G, therefore, one can define τ̂C as the first passage time
to C for the induced chain Ên.

Note that M0,M1 > 1. Apply Theorem 3.14 to Ŵ = max{1,W(E)}. It follows
from Theorem 3.14 and Theorem 5.1 that there exist constants C7 > 0 and r > 1
such that, for every E ∈ G,

EE
[
rτ̂C

]≤ EE

[
τC−1∑
k=0

W(Êk)r
k

]
< Ŵ(E)C7.

Applying Markov’s inequality to rτ̂C , we have

(6.1) PE[τ̂C > n] < C7Ŵ (E)e−cn,

where c = log r . For any given initial condition E ∈ RN+ , we have

PE[τ̂C > n]
=
∫
RN+

P[τ̂C > n | ET1 = Ẽ]PE[ET1 = dẼ]

≤
∫
RN

C7Ŵ (Ẽ)e−cnPE[ET1 = Ẽ]

= C7e
−cnEE

[
Ŵ (ET1)

]
≤ C7e

−cn · (Ŵ (E) +EE
[
FI

([0, T1)
)])

≤ C7e
−cn · (Ŵ (E) + max

{
C3,C

′
3V̂ (E)

})
≤ C7e

−cn · (Ŵ (E) + max
{
C3,C

′
3
}
V̂ (E)

)
,

where the third line follows from equation (6.1) and the second to last line follows
from Lemma 5.5, constants C3 and C′

3 are as in Lemma 5.5.
By Proposition 5.2, we have

E
[
(Tn+1 − Tn)

α̂ | Ên

]≤ C5V̂ (Ên),

where C5 is from Proposition 5.2. Without loss of generality, we let C5 ≥ 1.
Applying Markov’s inequality to (Tn+1 − Tn)

α̂ , we have

P[Tn+1 − Tn > k | ETn] ≤ C5V̂ (ETn)k
−α̂ .

If n ≥ 1, since ETn = Ên ∈ G, we have a uniform bound V̂ (Ên) ≤ M0.
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Therefore, assumptions of Theorem 3.11 are satisfied for ξ = V̂ and η = Ŵ .
For each given ε > 0, notice that V̂ ≥ 1 and Ŵ ≥ 1, we have

PE[τC > n] ≤ c
(
C5V̂ (E) + Ŵ (E) + max

{
C3,C

′
3
}
V̂ (E)

)
n−(α̂−ε)

≤ C6
(
Ŵ (E) + V̂ (E)

)
n−(α̂−ε),

where C6 is a constant depending on ε and η. This completes the proof. �

PROOFS OF THEOREMS 1 AND 2. We first prove Theorems 1 and 2 for En.
It follows from Theorem 6.6 that

PE[τC > n] ≤ C6
(
Ŵ (E) + V̂ (E)

)
n−(α̂−ε),

where C6 is a constant that depends on both η and ε. Since PE[τC > n] is at most
1, we have

PE[τC > n] ≤ max{1,2C6}(Ŵ (E) + V̂ (E)
)
(n + 1)−(α̂−ε).

Therefore, by Lemma 3.13, there exists a constant C8 that depends on η and ε,
such that

EE
[
τ α̂−2ε
C

]≤ C8
(
Ŵ (E) + V̂ (E)

)
.

Note that α̂ = 2 − 2η. Let ε = η and η = 1
4γ , we have

(6.2) EE0

[
τ

2−γ
C

]≤ C8
(
Ŵ (E) + V̂ (E)

)
.

By the compactness of C, it is easy to see that

sup
E∈C

EE
[
τ

2−γ

C

]
< ∞.

Note that Ŵ ≤ W + 1 and V̂ ≤ V + 1. Therefore, for any probability measure
μ ∈Mγ , C8(Ŵ (E) + V̂ (E)) is integrable and

(6.3) Eμ

[
τ

2−γ
C

]
< ∞.

Theorem 1 for En is then proved by applying Theorem 3.6 to μ,ν ∈Mγ .
It follows from Corollaries 6.2 and 6.3 that En is a strongly aperiodic irreducible

Markov chain. The existence of an invariant measure π then follows from

sup
E∈C

EE[τC] < sup
E∈C

EE
[
τ

2−γ
C

]
< ∞

and Theorem 3.5. The absolute continuity of π comes from Proposition 6.4. The
n−(1−γ ) speed of convergence to π is given by the existence of π and Theorem 3.6.

It remains to prove the uniqueness of π . We prove the uniqueness of π for any
Et instead of En.
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Recall the proof of Proposition 6.4, for any t > 0 and E ∈ RN+ , P t(E, ·) has a
strictly positive density on C. This implies C belongs to the support of any invari-
ant probability measure. However, any two distinct ergodic invariant probability
measures must be mutually singular. In addition, every invariant probability mea-
sure must be a convex combination of ergodic invariant measures. Hence Et has at
most one invariant probability measure, which must be π (see, e.g., Theorem 1.7
of [16]).

This completes the proof of Theorem 2 for En. �

The return time argument for En also help us to obtain the tail of a marginal
distribution of π . Since π is absolutely continuous with respect to the Lebesgue
measure, any marginal distribution of π also has absolute continuity. Let ρi(E) be
the density of the marginal distribution of π with respect to site i. Let

qi(E) =
∫ E

0
ρi(Ê)dÊ = Pπ [Ei < E]

be the marginal distribution function. The following lemma holds.

LEMMA 6.7. For any i = 1, . . . ,N and any sufficiently small γ > 0, there
exists 0 < δ < 1 such that

qi(E) ≥ E1/2+γ

if 0 < E < δ.

PROOF. Define sets A = {(E1, . . . ,EN) | 1 ≤ Ei ≤ 2 for all i} and Bi(E) =
{(E1, . . . ,EN) | Ei ≤ E}. It is then well known that qi(E) = π(Bi(E)) is equal to
the expected occupation time for En on Bi(E), that is,

π
(
Bi(E)

)=
∫
A

π(dy)Ey

[
τA−1∑
k=0

1{Ek∈Bi(E)}
]

(Theorem 10.4.9 of [29]). Let h be the time step size when defining En in Theo-
rem 4.1. We have

π
(
Bi(E)

)≥
∫
A

π(dy)Py[S1]P[S2 | S1]P[S3 | S1, S2]E−1/2,

where S1, S2, S3 are the following three events:

S1 = {clock i rings exactly once at t0 < h, all other clocks are silent},

S2 = {
Ei

(
t+0
) ∈ (0,E) after S1 occurs

}
,

and

S3 = {
after t = h,no energy exchange involves Ei before t = h + ⌊

E−1/2⌋}.
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Then it is easy to see that Py[S1] is uniformly positive for y ∈ A, P[S2 | S1] > E/4
is independent of the initial condition, and P[S3 | S1, S2] ≥ e−1 for any initial con-
dition because Ei(h) < E. In addition, we have π(A) > 0. Hence for all suffi-
ciently small E > 0, we have

qi(E) ≥ cE1/2

for some constant c > 0 that is independent of E and i. This completes the proof.
�

Theorems 1 and 2 for Et . The last step is to pass results from En to Et . The
contraction of the Markov operator is easy to pass because we have

∥∥μP t − νP t
∥∥

TV = ∥∥(μP � t
h
�h − νP � t

h
�h)P (t−� t

h
�)h∥∥

TV ≤ ∥∥μP � t
h
�h − νP � t

h
�h∥∥

TV.

It remains to show that π , the invariant probability measure of En, is invariant
for any Et , t > 0.

LEMMA 6.8. πP t = π for any t > 0.

PROOF. Note that the argument in Sections 4 and 5 works for all sufficiently
small time steps. Let h be the time step we have chosen for En. For any r < h,
P r also admits an invariant measure πr . It is then sufficient to show that πr = π

because any t can be written as

t =
⌊

t

h

⌋
· h + r

for some r < h.
In addition, we have the “continuity at zero,”∥∥πrP

δ − πr

∥∥
TV → 0 as δ → 0

because all clock rates are less than K .
Without loss of generality, assume r/h /∈Q. By the density of orbits in irrational

rotations, there exist sequences in, jn ∈ Z+, such that δn := h − in
jn

r → 0 from
right. Then

πrP
h = πrP

in
jn

r
P δn = πrP

δn → πr

by the “continuity at zero.”
Hence πr is invariant with respect to P h. By uniqueness, πr = π . �

Therefore, Theorems 1 and 2 also hold for Et .
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REMARK. We expect Theorem 1 to be close to optimal. Let C be a uniform
reference set. Then it is easy to see that there exists an ε > 0 such that Bε = {E |
Ei < ε for some i = 1, . . . ,N} is disjoint with C. Let D = {E | Ei < L} for some
large L. Then it is easy to see that for any μ and ν that have uniformly positive
density on Bε ∩ D, we have μ(Bt−2) ∼ O(t−2) and ν(Bt−2) ∼ O(t−2) for t � 1.
When Ei < t−2, the probability that no energy exchange occurs between site i − 1
and i, or between site i and i + 1, before time t is O(1). Therefore, we have the
lower bound on tails Pμ[τC > t] ≥ O(1) · t−2 (and Pν[τC > t] ≥ O(1) · t−2). This
implies the coupling time T has the tail

Pμ,ν[T > t] ≥ O(1) · t−2.

This is consistent with our numerical result in [22] that the tail of P[τC > t] is
∼ t−2. Similar argument leads to the proof of Proposition 4.

PROOF OF THEOREM 3. The following calculation is straightforward:∣∣∣∣
∫ (

P tζ
)
(E)ξ(E)μ(dE) −

∫ (
P tζ

)
(E)μ(dE)

∫
ξ(E)μ(dE)

∣∣∣∣
=
∣∣∣∣
∫

ξ(E)

((
P tζ

)
(E) −

∫ (
P tζ

)
(Z)μ(dZ)

)
μ(dE)

∣∣∣∣
≤ ‖ξ‖L∞‖ζ‖L∞

∫ ∥∥δEP t − μP t
∥∥

TVμ(dE).

It then follows from Corollary 3.10 and equation (6.2) that∥∥δEP t − μP t
∥∥

TV ≤ C
(
Ŵ (E) + V̂ (E) + Cμ

)(�t�)γ−2

for some C,Cμ < ∞ that is independent of E. Since Ŵ (E)+ V̂ (E) is μ-integrable,
we have ∣∣∣∣

∫ (
P tζ

)
(E)ξ(E)μ(dE) −

∫ (
P tζ

)
(E)μ(dE)

∫
ξ(E)μ(dE)

∣∣∣∣
≤ O(1) · ‖ξ‖L∞‖ζ‖L∞ tγ−2,

where the O(1) term depends on γ,N and μ. �

PROOF OF PROPOSITION 4. Let ν be a probability measure that satisfies the
following properties:

• ν is absolutely continuous with respect to π .
• Let Bε = {E = (E1, . . . ,EN) ∈ RN+ | E1 < ε} for some fixed small ε > 0.

ν satisfies dν/dπ = 4 on Bε .

Such ν must exist because π is absolutely continuous with respect the Lebesgue
measure. Hence we can always find a small ε > 0 such that π(Bε) < 1

4 .
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Then for t > 0, we have∥∥νP t − π
∥∥

TV ≥ ∥∥(νP t )(Bt−2) − π(Bt−2)
∥∥

TV ≥ (
νP t )(Bt−2) − π(Bt−2)

≥ Pν[clock 1 does not ring before t,E0 ∈ Bt−2] − π(Bt−2)

= ν(Bt−2)Pν|B
t−2

[clock 0 and 1 does not ring before t] − π(Bt−2)

≥ ν(Bt−2)e
−1 − π(Bt−2) = (

4e−1 − 1
)
π(Bt−2),

where ν|B
t−2 is the restricted probability measure ν on Bt−2 . Let γ > 0 be a suf-

ficiently small number. Apply Lemma 6.7 to the marginal distribution function
q1(E) and small parameter γ /2. There should exist a T < ∞ such that

π(Bt−2) = q1
(
t−2)≥ t−1−γ

for any t > T . Hence∥∥νP t − π
∥∥

TV ≥ (
4e−1 − 1

)
(1 + t)−1−γ , t > T .

In addition, we can always find c > 0 such that∥∥νP t − π
∥∥

TV ≥ c(1 + t)−1−γ

for all 0 ≤ t ≤ T . The proof is completed by combining the two estimates. �

REMARK. The result of Lemma 6.7 implies that the invariant probability mea-
sure π may not belong to Mη for sufficiently small η > 0. As a result, the initial
probability distribution ν constructed in the proof of Proposition 4 may not be in
Mη either. Our numerical simulation shows that the lower bound of convergence
holds for many initial probability distributions within the measure class Mη as
well. But a rigorous proof requires many detailed properties of π , which turns out
to be very difficult due to the nonequilibrium nature of the system.
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