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Missing Information Principle: A Unified
Approach for General Truncated and
Censored Survival Data Problems
Yifei Sun, Jing Qin and Chiung-Yu Huang

Abstract. It is well known that truncated survival data are subject to sam-
pling bias, where the sampling weight depends on the underlying trunca-
tion time distribution. Recently, there has been a rising interest in devel-
oping methods to better exploit the information about the truncation time,
thus the sampling weight function, to obtain more efficient estimation. In
this paper, we propose to treat truncation and censoring as “missing data
mechanism” and apply the missing information principle to develop a unified
framework for analyzing left-truncated and right-censored data with unspec-
ified or known truncation time distributions. Our framework is structured in
a way that is easy to understand and enjoys a great flexibility for handling
different types of models. Moreover, a new test for checking the indepen-
dence between the underlying truncation time and survival time is derived
along the same line. The proposed hypothesis testing procedure utilizes all
observed data and hence can yield a much higher power than the conditional
Kendall’s tau test that only involves comparable pairs of observations under
truncation. Simulation studies with practical sample sizes are conducted to
compare the performance of the proposed method with its competitors. The
proposed methodologies are applied to a dementia study and a nursing house
study for illustration.

Key words and phrases: Kendall’s tau, inverse probability weighted estima-
tor, outcome-dependent sampling, prevalent sampling, self-consistency algo-
rithm.

1. INTRODUCTION

The prevalent cohort design is frequently used to
study the natural history of disease processes. A preva-
lent cohort consists of individuals with disease at the
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time of enrollment and is followed for the occurrence
of failure events of interest. Compared to the incident
cohort approach, which follows initially undiseased in-
dividuals from disease onset to failure, the prevalent
cohort approach enjoys the advantage of being more ef-
ficient and relatively easy to assemble through existing
disease registries. However, this design is known to be
subject to sampling bias, because diseased individuals
who died before the recruitment period would not be
qualified to enter the cohort. As a result, the sampling
scheme favors individuals who survive longer and thus
is outcome dependent. Statistically speaking, the sur-
vival time in a prevalent cohort study is subject to left
truncation, where the truncation time is the duration
from disease onset to enrollment. A survival time can
be observed if and only if it is longer than the trunca-
tion time. In the case of a stable disease, the truncation
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times in the unbiased disease population are uniformly
distributed under the stationarity assumption with re-
spect to the disease incidence; moreover, the survival
time in the prevalent cohort has a length-biased distri-
bution where the probability of a survival time being
sampled is proportional to its length (Lancaster, 1990,
Chapter 3).

Statistical analysis of truncated survival time data
are usually based on nonparametric and semiparamet-
ric conditional likelihood methods, conditioning on the
observed truncation time (Lynden-Bell, 1971, Wang,
1991, Tsai, Jewell and Wang, 1987). As a result, the
inference procedures do not require information about
the underlying truncation time distribution. When such
information is available, however, the conditional like-
lihood approaches are known to be inefficient (Wang,
1991)—this is in contrast with the analysis of right-
censored survival data where the knowledge about the
independent censoring time distribution is ancillary.
For survival data collected in the prevalent cohort study
of a stable disease, various authors, including Vardi
(1989), Vardi and Zhang (1992), Asgharian, M’Lan
and Wolfson (2002), Luo and Tsai (2009), Tsai (2009),
Qin et al. (2011), Huang and Qin (2012), and Ning, Qin
and Shen (2014), have developed more efficient meth-
ods that exploit the properties of uniformly distributed
truncation times in the estimation procedure. Readers
are referred to Shen, Ning and Qin (2017) for a com-
prehensive review of recent developments.

In this paper, we present a unified framework for an-
alyzing left-truncated and right-censored data with un-
specified or known (but not necessary uniform) trun-
cation time distributions. The proposed framework is
structured in a way that is easy to understand and en-
joys a great flexibility for handling different types of
models. Our idea is to treat truncation and censoring as
“missing data mechanism” and apply the missing in-
formation principle to develop efficient estimation and
hypothesis testing procedures. The missing informa-
tion principle provides a general paradigm for statis-
tical inference in missing data problems. Its theoret-
ical foundation was formally established by Orchard
and Woodbury (1972), whose idea dates back to Yates
(1933) and Bartlett (1937). Later, Dempster, Laird and
Rubin (1977) provided an extensive generalization and
named the procedure EM algorithm. Heuristically, one
may replace a complete-data estimating function or an
unbiased estimator by their conditional expectations
given the observed data to obtain unbiased inference.
When applied to the score function, the missing in-
formation principle reduces to a single iteration of the

EM-algorithm (Dempster, Laird and Rubin, 1977). It
is worthwhile to point out that, under truncation, the
number of individuals being truncated is unknown and
thus the sample size needs to be imputed via the miss-
ing information principle, adding additional level of
complication compared to the usual missing data prob-
lems.

We begin by deriving score operators from the non-
parametric and semiparametric full likelihood function
based on completely observed survival data from a
representative sample. The score functions are unbi-
ased if there were no missing data, that is, the survival
times are neither truncated nor censored. We then apply
the missing information principle to the unbiased esti-
mating function and, based on which, derive iterative
self-consistency algorithms to obtain maximum like-
lihood estimation. Compared to existing likelihood-
based methods, a major advantage of our approach is
that the proposed algorithm is formulated based on
the hazard function, making the extension from non-
parametric estimation to semiparametric estimation of
the Cox model relatively straightforward. Another im-
portant feature of our methodology is that, similar to
Vardi (1989) and Qin et al. (2011) for survival data un-
der length-biased sampling, the estimated hazard can
have positive support on both censored and uncensored
failure time points; this is in contrast with the pseudo
partial likelihood-based approaches considered by Luo
and Tsai (2009) and Tsai (2009) which only allow
jumps at uncensored failure times.

We further demonstrate the use of the missing infor-
mation principle in hypothesis testing, which receives
less attention in the truncation data analysis literature
compared to model estimation. Specifically, we con-
sider testing the association between the survival time
and the truncation time in the target population. Note
that, instead of employing the conditional Kendall’s
tau statistic based on comparable pairs of survival and
truncation times in the prevalent cohort (Tsai, 1990),
we evaluate the expected difference between the pro-
portions of concordance and discordance pairs, that is,
the unconditional Kendall’s tau statistics, in the un-
biased population by applying the missing informa-
tion principle. Extensive simulation studies shows that
the new testing procedure outperforms the conditional
Kendall’s tau test, especially in the case where the pro-
portion of comparable pairs are small.

The rest of the article is organized as follows. We
demonstrate the application of the missing informa-
tion principle with left-truncated and/or right-censored
data in the case of one-sample estimation (Section 2)
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and seimiparametric estimation of the Cox model (Sec-
tion 3). In both cases, we consider the estimation proce-
dure with and without the knowledge of the truncation
time distribution. In particular, self-consistency algo-
rithms which guarantee to yield positive hazard func-
tion estimates are proposed to incorporate the infor-
mation about the truncation time distribution. In Sec-
tion 4, a nonparametric association test is proposed to
illustrate the missing information principle when trun-
cation time distribution is not specified. In Section 5,
simulation studies are conducted to evaluate the per-
formance of the proposed algorithms. In Section 6, two
data examples are presented to illustrate the proposed
approaches. A discussion follows in Section 7 to con-
clude the paper.

2. NONPARAMETRIC ESTIMATION

2.1 Nonparametric Estimation with Complete Data

Let T 0 denote the survival time in the population
of interest. Note that we use superscript 0 for ran-
dom variables in the target population. Assume that T 0

is absolutely continuous and has a support on [0, τ ],
that is, T 0 has a probability density function f (t),
0 ≤ t ≤ τ . Denote, respectively, by F(t), S(t), λ(t),
and �(t), the distribution function, survival function,
hazard function, and cumulative hazard function of the
survival time T 0. Suppose the data {T 0

1 , . . . , T 0
n } from

n subjects are independent and identically distributed
(i.i.d.) realizations of T 0. Following Murphy and van
der Vaart (2000), we consider the nonparametric like-
lihood

n∏
i=1

�
{
T 0

i

}
exp

{−�
(
T 0

i

)}
with �{t} the jump size of � at t so that the likelihood
depends smoothly on �{T 0

1 }, . . . ,�{T 0
N }. It is easy to

check that the corresponding score operator (Begun
et al., 1983) is given by

�(κ) =
∫ τ

0
κ(u)

{
dÑ0(u) − I

(
T 0 ≥ u

)
d�(u)

}
,

where Ñ0(t) = I (T 0 ≤ t) and κ(u) is any bounded,
measurable function. Setting κ(u) = I (u ≤ t) moti-
vates the unbiased estimating equation

n∑
i=1

∫ t

0
dM̃0

i (u) = 0

with M̃0
i (t) = Ñ0

i (t) − ∫ t
0 I (T 0

i ≥ u)d�(u). As a re-
sult, solving the complete-data estimating equation∑n

i=1 dM̃0
i (t) = 0 for all t ∈ [0, τ ] is equivalent to

maximizing the nonparametric likelihood function
with respect to �(t).

2.2 Left-Truncated Data, with an Unspecified
Truncation Time Distribution

We now consider the scenario where the observation
of the survival time T 0 is subject to an independent
truncation time A0, that is, the pair of random vari-
ables (T 0,A0) is observed if and only if T 0 ≥ A0. We
drop superscript 0 to indicate random variables in the
prevalent population. Denote by T and A the survival
time and truncation time for individuals in the preva-
lent population, then (T ,A) has the same joint distribu-
tion as (T 0,A0) | T 0 ≥ A0. For simplicity, we assume
that the truncation time A0 also has support on [0, τ ].
In what follows, we consider nonparametric estimation
with an unspecified truncation time distribution.

Let {(Ti,Ai), i = 1, . . . , n} be i.i.d. copies of (T ,A).
Following Turnbull’s argument of ghost observations
(Turnbull, 1976), conditioning on the truncation time
Ai , the observation (Ti,Ai) can be considered the rem-
nant of a group of mi unobserved subjects whose sur-
vival times are smaller than Ai . Specifically, let O∗

i =
{(T ∗

ij ,Ai), j = 1, . . . ,mi} be the ghosts corresponding
to (Ti,Ai), where T ∗

ij < Ai and T ∗
ij is independent of Ti

given Ai for all j = 1, . . . ,mi . Note that, given Ai = a,
the sample size mi of the group of unobserved subjects
follows a negative binomial distribution with parame-
ters 1 and F(a) and thus E(mi | Ai = a) = F(a)/S(a).
Moreover, given Ai = a, the density function of T ∗

ij is

f (t)F (a)−1I (t < a).
For the ith observed subject, we define the stochastic

process

M̃i(t) = I (Ti ≤ t) −
∫ t

0
I (Ti ≥ u)d�(u).

Similarly, for truncated observations (the ghosts) O∗
i =

{(T ∗
ij ,Ai), j = 1, . . . ,mi}, we define

M̃∗
ij (t) = I

(
T ∗

ij ≤ t
) −

∫ t

0
I
(
T ∗

ij ≥ u
)
d�(u).

Then it follows from the unbiasedness of the score op-
erator with complete data that dM̃i(t)+∑mi

j=1 dM̃∗
ij (t)

has a zero-mean. Because T ∗
ij ’s are unobserved, we

apply the missing information principle to replace∑mi

j=1 dM̃∗
ij (t) with its conditional expectation

E

{
mi∑

j=1

dM̃∗
ij (t)

∣∣∣ Ai

}

= E(mi | Ai) × S(Ai)

F (Ai)
I (Ai > t) d�(t)

= I (Ai > t) d�(t)
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to obtain the imputed stochastic process

dM̃A
i (t) ≡ dM̃i(t) + I (Ai > t) d�(t)

= dÑi(t) − I (Ti ≥ t ≥ Ai) d�(t).
(2.1)

Solving
∑n

i=1 dM̃A
i (t) = 0 gives

d�(t) =
n∑

i=1

I (Ti = t)
/ n∑

i=1

I (Ti ≥ t ≥ Ai).

As expected, the application of the missing informa-
tion principle to left-truncated data yields the asymp-
totically efficient nonparametric maximum likelihood
estimator (NPMLE), that is, the Lynden-Bell estimator
(Lynden-Bell, 1971).

2.3 Left-Truncated Data, with a Known Truncation
Time Distribution

In many applications, it is reasonable to assume
that the incidence of disease onset follows a specific
distribution. As an example, several authors, includ-
ing Addona and Wolfson (2006) and Huang and Qin
(2012), have argued that the incidence of dementia
onset in the Canadian Study of Health and Aging,
one of the largest epidemiology studies of dementia
(McDowell, Hill and Lindsay, 2001), follows a Pois-
son process; that is, the disease incidence is stable over
time. Under this stable disease condition, the under-
lying truncation time is uniformly distributed and the
probability of a survival time being sampled is propor-
tional to its length.

Let H be the known distribution function of the un-
derlying truncation time A0, and define H̄ (t) = 1 −
H(t). As an example, under the stable disease condi-
tion, A0 is uniformly distributed and hence H(t) = t/τ

and H̄ (t) = 1 − t/τ for t ∈ [0, τ ]. Applying Turnbull’s
argument of ghost observations, the observed data
(Ti,Ai) can be viewed as the remnant of a group of mi

independent subjects O∗
i = {(T ∗

ij ,A
∗
ij ), j = 1, . . . ,mi},

whose survival times satisfy T ∗
ij < A∗

ij are thus not ob-
served. Moreover, (T ∗

ij ,A
∗
ij ) has the same joint distri-

bution as (T 0,A0) | T 0 < A0. Note that, instead of us-
ing the conditioning argument as in Section 2.1, the
ghosts corresponding to the observation (Ti,Ai) are
not constrained to have the same truncation time Ai .
Define α = pr(T 0 < A0) = ∫ τ

0 H̄ (u) dF (u). The sam-
ple size mi follows a negative binomial distribution
with parameters 1 and α, and hence E(mi) = α/(1 −
α).

Following the spirit of missing information princi-
ple, we propose to replace

∑mi

j=1 dM̃∗
ij (t) in the unbi-

ased estimating function dM̃i(t) + ∑mi

j=1 dM̃∗
ij (t) with

its expectation integrating over the given truncation
time density function. Specifically, it follows from the
result that T ∗

ij has the density function H̄ (t)f (t)/α that

E

{
mi∑

j=1

dM̃∗
ij (t)

}

=
{
H̄ (t) dF (t) − d�(t)

∫ τ

t
H̄ (u) dF (u)

}/
(1 − α)

and that the imputed stochastic process is

dM̃H
i (t)

≡
{
dÑi(t) + H̄ (t) dF (t)∫ τ

0 H(u)dF (u)

}

−
{
I (Ti ≥ t) +

∫ τ
t H̄ (u) dF (u)∫ τ
0 H(u)dF (u)

}
d�(t).

(2.2)

Solving
∑n

i=1 dM̃H
i (t) = 0 would yield the nonpara-

metric maximum likelihood estimation (NPMLE) of
�(·) when the underlying truncation time distribution
is known. It is easy to see that the estimating equation
does not have a closed-form solution. We propose a
self-consistency algorithm for deriving the NPMLE.

Define the stochastic processes dη̃i(t) = dÑi(t) +
H̄ (t) dF (t)/

∫ τ
0 H(u)dF (u), and ξ̃i (t) = I (Ti ≥ t) +∫ τ

t H̄ (u) dF (u)/
∫ τ

0 H(u)dF (u), so that dM̃H
i (t) =

dη̃i(t) + ξ̃i (t) d�(t). We consider the class of distri-
butions with jumps at the observed failure times. The
self-consistency algorithm is described below:

Step 0. Set initial values for the jumps of �(0)(t) at
observed failure times and obtain S(0)(t) =
exp{−�(0)(t)}.

Step k. For the kth iteration, evaluate dη̃
(k)
i (t) and

ξ̃
(k)
i (t) by replacing F(t) with 1 − S(k−1)(t) = 1 −

exp{−�(k−1)(t)} in dη̃i(t) and ξ̃i (t). Update �(t)

with

�(k)(t) =
∫ t

0

∑n
i=1 dη̃

(k)
i (u)∑n

i=1 ξ̃
(k)
i (u)

.

Iterate until a convergence criterion is met.

Interestingly, when the distribution of the truncation
time A0 is known, the construction of imputed stochas-
tic process dM̃H

i (t) does not require A being observed.
A closer examination reveals that dM̃H

i (t) can be re-
expressed as

dM̃H
i (t) = dM̃A

i (t) +
{
I (Ai > t) −

∫ τ

t
S(u) dH(u)

/∫ τ

0
S(u)dH(u)

}
d�(t),
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where dM̃A
i (t) is given by (2.1) for left-truncated data

with a unspecified truncation time distribution, and the
function in the brackets is simply the empirical esti-
mate of the survival function subtract the conditional
survival function of A0 given T 0 ≥ A0.

Recognizing that Ti’s can be viewed a biased sam-
ple from f (t) with a sampling weight function H(t),
an inverse-probability weighted estimator for �(t)

(Wang, 1996) can be given by∫ t

0

∑n
i=1 dÑi(u)∑n

j=1 I (Tj ≥ u)H(u)/H(Tj )
.

The assigned weight is inversely proportional to the
probability of a subject being sampled. As a result, the
weighted risk set has the same probability structure as
that that would be formed by an incidence cohort. In
most cases, this simple estimator, though consistent for
�(t), is not identical to the NPMLE obtained by solv-
ing

∑n
i=1 dM̃H

i (t) = 0 and hence is not expected to be
fully efficient.

2.4 Left-Truncated and Right-Censored Data, with
an Unspecified Truncation Time Distribution

The observation of left-truncated survival time is
usually subject to right censoring due to loss to follow-
up or end of study. Let C be the censoring time for the
residual survival time V = T −A, where C is assumed
to be independent of V given A. Hence we observe
{(Ai, Yi,
i), i = 1, . . . , n}, where Yi = min(Ti,Ai +
Ci) and 
i = I (Ti ≤ Ai + Ci). For censored individ-
uals, the values of dÑi(t) and I (Ti ≥ t) in dM̃A

i (t)

given by (2.1) can not be determined completely. It
can be verified that E{dÑi(t) | Ai,Yi,
i} = dNi(t) +
(1 − 
i)I (Yi < t) dF (t)/S(Yi) and E{I (Ti ≥ t) |
Ai,Yi,
i} = I (Yi ≥ t) + (1 − 
i)I (Yi < t)S(t)/

S(Yi), with Ni(t) = 
iI (Yi ≤ t). We apply the missing
information principle to dM̃A

i (t) by replacing dÑi(t)

and I (Ti ≥ t) with their conditional expectations to
yield the imputed stochastic process

(2.3) dMA
i (t) ≡ dNi(t) − I (Yi ≥ t ≥ Ai) d�(t).

It is easy to see that solving
∑n

i=1 dMA
i (t) = 0 yields

the Nelson-Aalen estimator, that is, the NPMLE, for
left-truncated and right-censored data with unspecified
truncation time distribution.

2.5 Left-Truncated and Right-Censored Data, with
a Known Truncation Time Distribution

When the truncation time A0 follows a known dis-
tribution function H , applying the missing information

principle to replace dÑi(t) and I (Ti ≥ t) in dM̃H
i (t)

in (2.2) with their conditional expectations yields

dMH
i (t) ≡

[
E

{
dÑi(t) | Yi,
i

}
+ H̄ (t) dF (t)

/∫ τ

0
H(u)dF (u)

]
−

[
E

{
I (Ti ≥ t) | Yi,
i

}
+

∫ τ

t
H̄ (u) dF (u)

/∫ τ

0
H(u)dF (u)

]
d�(t)

= dηi(t) − ξi(t) d�(t),

(2.4)

where dηi(t) = dNi(t) + (1 − 
i)I (Yi < t)S(t)/

S(Yi) d�(t)+H̄ (t) dF (t)/
∫ τ

0 H(u)dF (u) and ξi(t) =
I (Yi ≥ t) + (1 − 
i)I (Yi < t)S(t)/S(Yi) +∫ τ
t H̄ (u) dF (u)/

∫ τ
0 H(u)dF (u). Similar to (2.2), the

evaluation of the imputed process (2.4) does not re-
quire Ai being observed.

At any time point t∗ that no failure event was
observed, that is,

∑n
i=1 dNi(t

∗) = 0, the equality∑n
i=1 dMH

i (t∗) = 0 can be implied by either d�(t∗) =
0 or n−1 ∑n

i=1 I (Yi ≥ t∗) = ∫ τ
t∗ S(u)dH(u)/∫ τ

0 S(u)dH(u). In other words, the NPMLE may have
jumps at censored survival times. This is in contrast
to right-censored survival data, where the NPMLE has
jumps at only uncensored failure times.

Similar to Section 2.3, a self-consistency algorithm
can be derived to solve

∑n
i=1 dMH

i (t) = 0. Here in all
iterative steps the cumulative hazard function �(k)(t)

for k ≥ 0 are allowed to have jumps at all censored
and uncensored failure times. Specifically, in the kth
iteration, we evaluate

(2.5) �(k)(t) =
∫ t

0

∑n
i=1 dη

(k)
i (u)∑n

i=1 ξ
(k)
i (u)

,

where dη
(k)
i (t) and ξ

(k)
i (t) are obtained by substituting

F(t) with 1 − S(k−1)(t) in dηi(t) and ξi(t).

REMARK 2.1. It is worthwhile to point out that
the proposed method can be applied to analyze right-
censored survival data under biased sampling, where
the sampling weight is proportional to a known func-
tion H(t). Luo and Tsai (2009) considered this set-
ting and proposed a pseudo-partial likelihood approach
that allows for jumps only at uncensored failure times.
Their estimation procedure, however, requires estima-
tion of the censoring time distribution. In contrast, the
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proposed estimator is derived directly from the full
likelihood of complete data and thus is expect to be
more efficient.

3. SEMIPARAMETRIC ESTIMATION OF THE COX
MODEL

In this section, we apply the missing information
principle, along the same line as nonparametric estima-
tion, to estimate the Cox proportional hazards model
with left-truncated and right-censored data. To pro-
ceed, we assume that, given the p-dimensional co-
variate vector Z0 = z, the conditional hazard func-
tion of the survival time T 0 in the target population,
λ(t | z), follows the proportional hazards model, that
is, λ(t | z) = λ(t) exp(β ′z), where λ(t) is an unspeci-
fied baseline hazard function and β is a vector of p × 1
regression parameters.

We begin by deriving the unbiased estimating equa-
tions based on complete data. Let the complete data
{(T 0

i ,Z0
i ), i = 1, . . . , n} be i.i.d. copies of (T 0,Z0).

Define the stochastic process

M̃0(t, β) = Ñ0(t) −
∫ t

0
exp

(
β ′Z0)

I
(
T 0 ≥ u

)
λ(u)du,

with �(t) = ∫ t
0 λ(u)du. Denote by �{t} the jump size

of � at t . The score operators for β and � derived from
the semiparametric likelihood

n∏
i=1

�
{
T 0

i

}
exp

(
β ′Z0

i

)
exp

{−�
(
T 0

i

)
exp

(
β ′Z0

i

)}
are given by �β = ∫ τ

0 Z0 dM̃0(u,β) and ��(κ) =∫ τ
0 κ(u)dM̃0(u,β), with κ an arbitrary bounded, mea-

surable function. Setting κ(u) = I (u ≤ t) and solving
the system of estimating equations

∑n
i=1

∫ τ
0 Zi dM̃0

i (u,

β) = 0 and
∑n

i=1
∫ t

0 dM̃0
i (u,β) = 0, for all t ∈ [0, τ ],

yields the semiparametric maximum likelihood estima-
tor.

3.1 Semiparametric Estimation with Left-Truncated
Data

Under left truncation, we observe (T 0,A0,Z0) if
and only if T 0 ≥ A0, so the observed triplet (T ,A,Z)

has the same joint distribution as (T 0,A0,Z0) | T 0 ≥
A0. Let {(Ai, Ti,Zi), i = 1, . . . , n} be i.i.d. copies of
(A,T ,Z). We impose the usual independent truncation
assumption by assuming that A0 is independent with
T 0 conditional on Z0.

We first consider the case where the distribution of
A0 is left unspecified. Arguing as in Section 2.2, the
observation (Ti,Ai,Zi) corresponds to mi unobserved

ghosts {(T ∗
ij ,Ai,Zi), j = 1, . . . ,mi}, where T ∗

ij < Ai

and T ∗
ij is independent of Ti given (Ai,Zi). Condi-

tioning on Ai = a and Zi = z, the sample size mi

follows a negative binomial distribution with parame-
ters 1 and F(a | z) = 1 − exp{−�(a | z)}, where �(a |
z) = ∫ a

0 λ(u | z) du. Hence, we have E(mi | Ai,Zi) =
F(Ai | Zi)/S(Ai | Zi).

Define the stochastic processes M̃i(u,β) = I (Ti ≤
t) − ∫ t

0 exp(β ′Zi)I (Ti ≥ u)d�(u) for observed data
and M̃∗

ij (t, β) = I (T ∗
ij ≤ t) − ∫ t

0 exp(β ′Zi)I (T ∗
ij ≥

u)d�(u) for ghost observations. Following the un-
biasedness of the score operators with complete data,
we have E[∫ τ

0 Zi{dM̃i(u,β)+∑mi

j=1 dM̃∗
ij (u,β)}] = 0

and E
∫ t

0 {dM̃i(u,β) + ∑mi

j=1 dM̃∗
ij (u,β)} = 0. In the

spirit of missing information principle, we replace∑mi

j=1 dM̃∗
ij (t, β) with its conditional expectation to

obtain the imputed stochastic process

dM̃A
i (t, β)

≡ dM̃i(u,β) + E

{
mi∑

j=1

dM̃∗
ij (t, β)

∣∣∣ Ai,Zi

}

= dÑi(t) − exp
(
β ′Zi

)
I (Ti ≥ t ≥ Ai) d�(t).

As expected, solving the imputed estimating equations∑n
i=1

∫ τ
0 ZidM̃A

i (t, β) = 0 and
∑n

i=1
∫ t

0 dM̃A
i (u,β) =

0 for all t ∈ [0, τ ] yields the maximum partial likeli-
hood estimator (Wang, Brookmeyer and Jewell, 1993)
that is the solution of the partial score equation

n∑
i=1

∫ τ

0

{
Zi

−
∑n

j=1 Zj exp(β ′Zj)I (Tj ≥ t ≥ Aj)∑n
j=1 exp(β ′Zj)I (Tj ≥ t ≥ Aj)

}
dÑi(t) = 0.

Next, we consider the case where A0 has a known
distribution function H(t). Integrating over the given
truncation time density function, straightforward alge-
bra gives

E

{
mi∑

j=1

dM̃∗
ij (t)

∣∣∣ Zi

}

= H̄ (t) dF (t | Zi)∫ τ
0 H(u)dF (u | Zi)

−
∫ τ
t H̄ (u) dF (u | Zi)∫ τ
0 H(u)dF (u | Zi)

d�(t).

Thus, by replacing
∑mi

j=1 dM̃∗
ij (t) with its expectation

in the unbiased stochastic process, we obtain the im-
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puted stochastic process

dM̃H
i (t, β)

≡ dM̃i(t, β) + E

{
mi∑

j=1

dM̃∗
ij (t, β)

∣∣∣ Zi

}

=
{
dÑi(t) + H̄ (t) dF (t | Zi)∫ τ

0 H(u)dF (u | Zi)

}

−
{
I (Ti ≥ t) +

∫ τ
t H̄ (u) dF (u | Zi)∫ τ
0 H(u)dF (u | Zi)

}
d�(t).

Solving
n∑

i=1

∫ τ

0
Zi dM̃H

i (t, β) = 0

and
n∑

i=1

∫ t

0
dM̃H

i (u,β) = 0

for all t ∈ [0, τ ] would yield the semiparametric maxi-
mum likelihood estimator when the distribution of A0

is known.
Define the stochastic processes dη̃i(t, β) = dÑi(t)+

H̄ (t) dF (t | Zi)/
∫ τ

0 H(u)dF (u | Zi) and ξ̃i (t, β) =
I (Ti ≥ t) + ∫ τ

t H̄ (u) dF (u | Zi)/
∫ τ

0 H(u)dF (u | Zi).
The solution to

n∑
i=1

∫ t

0
dM̃H

i (u,β) = 0

and
n∑

i=1

∫ τ

0
Zi dM̃H

i (t, β) = 0

satisfies

(3.1) d�(t) =
∑n

i=1 dη̃i(t, β)∑n
i=1 exp(β ′Zi)̃ξi(t, β)

,

and
n∑

i=1

∫ τ

0

{
Zi

−
∑n

j=1 Zj exp(β ′Zj )̃ξj (t, β)∑n
j=1 exp(β ′Zj )̃ξj (t, β)

}
dη̃i(t, β)

= 0.

(3.2)

Based on (3.1) and (3.2), we propose the following it-
erative algorithm to obtain estimates of β and �(t). As
before, we consider the family of � that only jumps at
the unique failure times in the following algorithm.

Step 0. Set initial values for β(0) and the jumps of
�(0)(t) at observed failure times. Compute S(0)(t |
Zi) = exp{−�(0)(t) exp(β(0)′Zi)}.

Step k. For the kth iteration, evaluate dη̃
(k)
i and ξ̃

(k)
i

by replacing F(t | Zi) with 1 − S(k−1)(t | Zi) =
1 − exp{−�(k−1)(t) exp(β(k−1)′Zi)} in dη̃i and ξ̃i .
Solve

n∑
i=1

∫ τ

0

{
Zi

−
∑n

j=1 Zj exp(β ′Zj )̃ξ
(k)
j (t, β(k−1))∑n

j=1 exp(β ′Zj )̃ξ
(k)
j (t, β(k−1))

}
dη̃

(k)
i

(
t,

β(k−1)) = 0.

for β to obtain β(k), and update �(t) with

�(k)(t) =
∫ t

0

∑n
i=1 dη̃

(k)
i (u,β(k−1))∑n

i=1 exp{β(k)′Zi }̃ξ (k)
i (u,β(k−1))

.

Iterate until a convergence criterion is met.

3.2 Semiparametric Estimation with Left-Truncated
and Right-Censored Data

In the presence of right censoring C in addition to
left truncation, the observed data {(Ai, Yi,
i,Zi), i =
1, . . . , n} are i.i.d copies of (A,Y,
,Z), where Y =
min(T ,A + C) and 
 = I (A + C ≥ T ). We assume
that the censoring time C is independent of (A,T )

given Z. As pointed out by one reviewer, one may also
assume that C is independent of T given (A,Z). We
adopt the former assumption to be consistent with the
existing literature.

We now consider the case where the distribution
of the underlying truncation time A0 is not specified.
Similarly as before, it can be verified that E{dÑi(t) |
Ai,Yi,
i,Zi} = dNi(t) + (1 − 
i)I (Yi < t) dF (t |
Zi)/S(Yi | Zi) and E{I (Ti ≥ t) | Ai,Yi,
i,Zi} =
I (Yi ≥ t)+ (1−
i)I (Yi < t)S(t | Zi)/S(Yi | Zi). Ap-
plying the missing information principle to dM̃A

i (t, β)

by replacing dÑi(t) and I (Ti ≥ t) with their condi-
tional expectations yields

dMA
i (t, β)

= dNi(t) − exp
(
β ′Zi

)
I (Yi ≥ t ≥ Ai) d�(t).

As expected, solving the system of imputed estimating
equations

n∑
i=1

∫ τ

0
Zi dMA

i (t, β) = 0
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and
n∑

i=1

∫ t

0
dMA

i (u,β) = 0

for all t ∈ [0, τ ] yields the maximum partial likelihood
estimator, which is the solution of the partial score
equation

n∑
i=1

∫ τ

0

{
Zi

−
∑n

k=1 Zk exp(β ′Zk)I (Yk ≥ t ≥ Ak)∑n
k=1 exp(β ′Zk)I (Yk ≥ t ≥ Ak)

}
dNi(t)

= 0.

Finally, we consider the case where the distribution
of A0 is known to be H . Replacing dÑi(t) and I (Ti ≥
t) with their conditional expectations in dM̃H

i (t, β)

yields

dMH
i (t, β) = dηi(t, β) − ξi(t, β) exp

(
β ′Zi

)
d�(t),

where

dηi(t, β) = dNi(t) + (1 − 
i)I (Yi < t)
dF (t | Zi)

S(Yi | Zi)

+ H̄ (t) dF (t | Zi)∫ τ
0 H(u)dF (u | Zi)

,

ξi(t, β) = I (Yi ≥ t) + (1 − 
i)I (Yi < t)
S(t | Zi)

S(Yi | Zi)

+
∫ τ
t H̄ (u) dF (u | Zi)∫ τ
0 H(u)dF (u | Zi)

.

Solving the imputed estimating equations
n∑

i=1

∫ τ

0
Zi dMH

i (t, β) = 0

and
n∑

i=1

∫ t

0
dMH

i (u,β) = 0

for all t ∈ [0, τ ] gives estimates of β and �(t). Be-
cause a closed solution does not exist, we develop a
self-consistency algorithm for model estimation.

Arguing as in Section 2.5, the estimated baseline cu-
mulative hazard function obtained by solving the im-
puted estimating equations may have jumps at cen-
sored survival times. Hence, in all iterative steps
the baseline cumulative hazard function �(k)(t) for
k ≥ 0 are allowed to have jumps at all censored
and uncensored failure times. At the kth iteration,

we compute dη
(k)
i (t, β(k−1)) and ξ

(k)
i (t, β(k−1)) by

substituting {β,F (t | z)} in dηi(t, β) and ξi(t, β)

by the estimates from the (k − 1)th iteration, and
solve the equations along the same line as those
in Step k of the algorithm in Section 3.1, where
dη̃

(k)
i (t, β(k−1)) and ξ̃

(k)
i (t, β(k−1)) are replaced by

ξ
(k)
i (t, β(k−1)) and dη

(k)
i (t, β(k−1)). Interestingly, in

the special case where H is the distribution function
of an uniform random variable, the proposed self-
consistency algorithm will converge to the semipara-
metric MLE described in Qin et al. (2011).

Denote by (β̂, �̂) the estimators obtained by the pro-
posed self-consistency algorithm and by (β0,�0) the
true parameter values. The large-sample properties of
(β̂, �̂) is summarized in Theorem 3.1, with regularity
conditions and asymptotic distribution given in the Ap-
pendix. The proof closely follows Theorems 1 and 2 in
Qin et al. (2011) and thus is omitted in this article.

THEOREM 3.1. Under the regularity conditions
(A1)–(A6),

√
n{β̂ −β0, �̂(t)−�0(t)} (t ∈ (0, τ ]) con-

verges weakly to a zero-mean Gaussian process defined
in the Appendix as n → ∞.

REMARK 3.1. The self-consistency algorithm de-
scribed in this section can also be applied to right-
censored survival data under biased sampling. For this
problem, Tsai (2009) proposed a pseudo-partial like-
lihood approach to incorporate the knowledge about
the sampling weight function H(t) in the estimation
procedure. This approach, however, involves estimat-
ing the random censoring time distribution and can be
inefficient when the censroing proportion is high. Our
estimator, on the other hand, naturally accounts for
covariate-dependent censoring and is in general more
efficient as it is derived from the full likelihood of com-
plete data.

When the underlying truncation time distribution de-
pends on the covariates and is left unspecified, appli-
cation of the MIP results in the conditional likelihood
approach. When the underlying truncation time distri-
bution depends on the covariates and is specified, the
self-consistency algorithm can be easily extended to
gain efficiency. For example, suppose the cumulative
distribution function of A0 conditional on Z0 = z is
H(· | z), we can replace H(·) in ηi(t, β) and ξi(t, β)

with H(· | Zi) to estimate β and �. However, this ap-
proach is not practically interesting, since H(· | z) is
usually treated as a nuisance function.
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4. NONPARAMETRIC ASSOCIATION TEST FOR
INDEPENDENT TRUNCATION

The preceding sections illustrate the application of
the missing information principle in model estimation.
In this section, we consider nonparametric test for the
association between the underlying truncation time and
the failure time. Under left truncation, the validity of
most statistical methods for left-truncated survival time
data requires the assumption of quasi-independence to
hold, that is, the failure time and the truncation time
are independent in the observable region. In the liter-
ature, Kendall’s tau (Kendall and Gibbons, 1990) is
a popular nonparametric measure of association be-
tween two failure time random variables because of
its rank-invariance property. To measure the associa-
tion between the underlying truncation time A0 and
the underlying survival time T 0, Kendall’s tau can be
defined as K = E[sgn{(A0

1 − A0
2)(T

0
1 − T 0

2 )}], where
sgn(u) is the sign of u. Clearly, K does not depend
on the marginal distribution; moreover, −1 ≤ K ≤ 1
and K = 0 when A0 and T 0 are independent. For com-
pletely observed data, K can be consistently estimated
by

K̂ = 1

(n2)

∑
i<j

sgn
{(

A0
i − A0

j

)(
T 0

i − T 0
j

)}
.

A pair of subjects (i, j) is said to be concordant if
(A0

i − A0
j )(T

0
i − T 0

j ) > 0, and discordant if (A0
i −

A0
j )(T

0
i −T 0

j ) < 0. As pointed out by many authors, in-
cluding Tsai (1990), Martin and Betensky (2005), and
Oakes (2008), Kendall’s tau is not directly applicable
to left truncated data, as the observed data (A,T ) are
a biased sample of (A0, T 0); moreover, association in
the observed bivariate random variable (A,T ) arises
naturally due to sampling constraint. Failing to account
for sampling bias in the construction of test statistics
usually leads to incorrect conclusions.

In the absence of right censoring, Tsai (1990) con-
sidered conditional Kendall’s tau

Kc = E
{
sgn(A1 − A2) sgn(T1 − T2) |

max(A1,A2) ≤ min(T1, T2)
}
,

for testing the association between A0 and T 0 under
left truncation. It is easy to see that independence of A0

and T 0 in the observable region {(a, t) : 0 ≤ a ≤ t ≤ τ }
implies Kc = 0 (but not vice versa). Estimation of
the conditional Kendall’s tau is based on comparable
pairs {(Ai, Ti), (Aj , Tj )} that satisfy max(Ai,Aj ) ≤

min(Ti, Tj ) (Bhattacharya, Chernoff and Yang, 1983),
and thus can be very inefficient when the number of
comparable pairs is small. Specifically, with a nega-
tive correlation between the underlying truncation time
and survival time, Ai ≥ Aj implies that Ti is likely
to be smaller than Tj . As a result, the comparability
condition is likely to be satisfied and the conditional
Kendall’s tau is likely to utilize most available infor-
mation. On the other hand, with a positive correlation,
fewer pairs are expected to satisfy the comparability
condition, as the condition further requires Ai ≤ Tj

when Ai ≥ Aj . In what follows, we consider alterna-
tive tests that can better utilize the observed data.

Instead of employing the conditional Kendall’s tau
for testing association, we propose to apply the miss-
ing information principle to construct new test statis-
tics. Arguing as before, we begin by deriving the test
statistic using complete data from enrolled individuals
and their corresponding (unobserved) ghosts, that is,
{(Ai, Ti), (Ai, T

∗
ip);p = 1, . . .mi, i = 1, . . . , n}. If the

compete data were observed, the contribution of any
pair of subjects (i, j) to the construction of Kendall’s
tau statistic is given by uij = u

(0)
ij + u

(1)
ij + u

(1)
j i + u

(2)
ij ,

where

u
(0)
ij = sgn(Ai − Aj) sgn(Ti − Tj ),

u
(1)
ij =

mi∑
p=1

sgn(Ai − Aj) sgn
(
T ∗

ip − Tj

)
,

u
(2)
ij =

mi∑
p=1

mj∑
q=1

sgn(Ai − Aj) sgn
(
T ∗

ip − T ∗
jq

)
.

Under the null hypothesis that A0 and T 0 are indepen-
dent, it is easy to see that uij has mean zero. Thus, a
Kendall’s tau type test statistic based on the observed
data and “ghost” data is given by

K0 =
∑n

i=1
∑n

j=i+1 uij∑n
i=1

∑n
j=i+1(mi + 1)(mj + 1)

,

and the denominator
∑n

i=1
∑n

j=i+1(mi +1)(mj +1) is
the number of comparable pairs and normalize K0 to
be in [−1,1].

In the absence of right censoring, we apply the miss-
ing information principle and replace the unknown
quantities in uij with their expectations conditioning
on the observed data. Under the null hypothesis, fol-
lowing the arguments in Section 2.2, it can be verified
that the conditional expectations of u

(k)
ij , k = 0,1,2,
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given the observed pair (Ai, Ti) and (Aj , Tj ) is

v
(0)
ij = E

{
u

(0)
ij | Ai,Ti,Aj , Tj

}
= sgn(Ai − Aj) sgn(Ti − Tj ) = u

(0)
ij ,

v
(1)
ij = E

{
u

(1)
ij | Ai,Ti,Aj , Tj

}
= sgn(Ai − Aj)

{
sgn(Ai − Tj )

F (Ai)

S(Ai)

− 2I (Ai > Tj )
F (Tj )

S(Ai)
− I (Ai = Tj )

F (Ai)

S(Ai)

}
,

v
(2)
ij = E

{
u

(2)
ij | Ai,Ti,Aj , Tj

}
= sgn(Ai − Aj)

∫ Aj

0

∫ Aj

0 sgn(u − v) dF (u)dF (v)

S(Ai)S(Aj )
.

Moreover, the quantity (mi + 1)(mj + 1) can be im-
puted as

mij = E
{
(mi + 1)(mj + 1) | Ai,Aj

}
= 1 + F(Ai)

S(Ai)
+ F(Aj )

S(Aj )
+ F(Ai)F (Aj )

S(Ai)S(Aj )
.

Define vij = v
(0)
ij + v

(1)
ij + v

(1)
j i + v

(2)
ij , then the imputed

test statistic given the observed left truncated data is
given by K̃A = ∑n

i=1
∑n

j=i+1 vij /
∑n

i=1
∑n

j=i+1 mij .
When the observation of left-truncated survival

times is further subject to independent right censor-
ing, we apply the missing information principle to ob-
tain the imputed test statistic KA = ∑n

i=1
∑n

j=i+1 kij /∑n
i=1

∑n
j=i+1 mij , where kij = k

(0)
ij +k

(1)
ij +k

(1)
j i +k

(2)
ij

with

k
(0)
ij = E

{
v

(0)
ij | Ai,Yi,
i,Aj ,Yj ,
j

}
= sgn(Ai − Aj)

[

i
j sgn(Yi − Yj )

+ 
i(1 − 
j)

{
I (Yi ≥ Yj )

S(Yj ) − S(Yi)

S(Yj )

− S(Yi ∨ Yj )

S(Yj )

}
+ (1 − 
i)
j

{
S(Yi ∨ Yj )

S(Yi)

− I (Yi ≤ Yj )
S(Yi) − S(Yj )

S(Yi)

}
+ (1 − 
i)(1 − 
j)

·
∫ τ
Yi

∫ τ
Yj

sgn(u − v) dF (u)dF (v)

S(Yi)S(Yj )

]
,

k
(1)
ij = E

{
v

(1)
ij | Ai,Yi,
i,Aj ,Yj ,
j

}

= sgn(Ai − Aj)

[

j

{
sgn(Ai − Yj )

F (Ai)

S(Ai)

− 2I (Ai > Yj )
F (Yj )

S(Ai)

}

+ (1 − 
j)

{
I (Yj ≤ Ai)

S(Yj ) − S(Ai)

S(Yj )

− S(Ai ∨ Yj )

S(Yj )

}
F(Ai)

S(Ai)

− 2(1 − 
j)I (Ai > Yj )

∫ Ai

Yj
F (u)dF (u)

S(Yj )S(Ai)

]
,

k
(2)
ij = E

{
v

(2)
ij | Ai,Yi,
i,Aj ,Yj ,
j

} = v
(2)
ij .

The test statistic involves the unknown functions S

and F = 1 − S. Intuitively, one may replace the sur-
vival function S by the product-limit estimator for
left-truncated and right-censored data. Our simulation
shows that the type I error rate of the test is close to
the pre-specified nominal level. Denote by K̂A the test
statistic with S replaced by the product limit estimator.
Following a standard argument and applying the func-
tional delta method, we can show that n−1/2K̂A con-
verges to a zero-mean normal distribution under the
null hypothesis. The formula of the asymptotic vari-
ance is very complicated, hence we recommend using
nonparametric bootstrap method to obtain the confi-
dence interval of the test statistic and reject the null
hypothesis at a significance level of 0.05 if the 95%
confidence interval does not cover 0.

Note that because a small value of S(A) in the de-
nominator can result in a very large k

(m)
ij (m = 1,2),

in practice, to stabilize the test statistic, we only eval-
uate Kendall’s tau on the region {(a, t) : 0 ≤ a ≤ τ0},
where τ0 is an arbitrary constant smaller than τ . Specif-
ically, define KA

τ0
= ∑n

i=1
∑n

j=i+1 kij I (Ai ≤ τ0,Aj ≤
τ0)/

∑n
i=1

∑n
j=i+1 mij I (Ai ≤ τ0,Aj ≤ τ0), and we

use K̂A
τ0

with estimated survival function S as the test-
ing statistics.

5. SIMULATION STUDY

Numerical simulations were carried out to evaluate
the performance of the nonparametric and semipara-
metric estimators from the iterative algorithms in Sec-
tion 2.5 and Section 3.2. We considered the follow-
ing two scenarios for the underlying truncation time
random variable: (I) A0 follows an exponential distri-
bution with with survival function H̄ (t) = exp(−t);
(II) A0 follows a Weibull distribution with survival
function H̄ (t) = exp(−t2/4). The time from enroll-
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TABLE 1
Simulation summary statistics of Ŝ(t), ŜPPL(t) and ŜPL(t)

̂S(t) ̂SPPL(t) ̂SPL(t)

n Cen S(t) Bias SE ESMSE Bias SE ESMSE Bias SE ESMSE

Scenario I
100 25% 0.75 6 55 55 5 56 56 1 60 60

0.5 5 56 56 4 56 56 2 60 60
0.25 3 47 47 3 46 47 4 49 49

50% 0.75 5 57 58 6 58 58 0.4 62 62
0.5 −1 61 60 3 61 61 1 64 64
0.25 −10 55 56 5 56 56 7 59 60

400 25% 0.75 1 28 28 1 28 28 −0.3 30 30
0.5 1 28 28 0.3 28 28 0.1 29 29
0.25 0.4 23 23 1 23 23 2 24 24

50% 0.75 0.4 29 29 1 29 29 −1 31 31
0.5 −2 30 30 0.3 30 30 0.2 32 32
0.25 −6 27 28 2 28 28 4 29 30

Scenario II
100 25% 0.75 61 70 93 33 92 97 17 108 109

0.5 48 69 84 27 79 84 16 91 93
0.25 25 47 53 10 50 51 10 56 57

50% 0.75 59 74 94 45 91 101 17 111 112
0.5 45 72 85 37 83 91 16 95 96
0.25 20 54 58 13 59 60 12 65 66

400 25% 0.75 30 42 51 12 55 56 2 64 64
0.5 22 36 42 10 43 44 3 50 50
0.25 10 23 25 2 25 25 1 30 30

50% 0.75 30 43 52 19 56 59 2 65 65
0.5 22 38 44 15 45 48 4 52 52
0.25 8 25 27 1 28 28 1 33 33

Note: Cen is the censoring rate; Bias is the empirical bias (×1000); SE is the empirical standard error (×1000); ESMSE is the square root of
empirical mean square error (×1000). Ŝ(t) is the proposed estimator; ŜPPL(t) is the pseudo partial likelihood estimator; ŜPL(t) is the partial
likelihood estimator.

ment to loss to follow-up was generated from a uni-
form distribution so that the censoring rate was approx-
imately 25% and 50%. We generated 1000 datasets,
each with a sample size of n = 100 and 400.

We first evaluated the nonparametric estimation pro-
cedure for left-truncated and right-censored data given
in Section 2.5. To simulate left-truncated data, we gen-
erated the unbiased survival time T 0 from a Weibull
distribution with hazard function 0.5t repeatedly until
there are n subjects satisfying the sampling constraint
A0 < T 0, where A0 were simulated under Scenarios (I)
and (II). Table 1 reports the summary statistics for the
proposed nonparametric estimator. We compared the
proposed estimator Ŝ(t) with the product-limit estima-
tor ŜPL(t) for left-truncated and right-censored data,
and the nonparametric pseudo partial likelihood esti-

mator ŜPPL(t) proposed by Luo and Tsai (2009). It can
be seen that both Ŝ and ŜPPL have smaller mean square
error than ŜPL in all the scenarios, thus improvement is
gained by using information from the underlying trun-
cation time distribution. In Scenario I, the proposed
estimator Ŝ has similar performance as ŜPPL; in Sce-
nario II, Ŝ has smaller variance and larger bias com-
pared to ŜPPL and ŜPL, and Ŝ performs best in terms of
mean square error. For all the three estimators, the bias
decreases as sample size increase.

In the second set of simulation studies, we evaluated
the semiparametric estimation procedure presented in
Section 3.2. We generated the unbiased failure time
T 0 from the proportional hazards model with two co-
variates, where the continuous covariate Z1 follows a
uniform distribution on [0,1], the binary covariate Z2
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TABLE 2
Simulation summary statistics of β̂ , β̂PPL and β̂PL

̂β ̂βPPL
̂βPL

n Cen Bias SE SEE CP Bias SE Bias SE

Scenario I
100 25% (2,1) (38,25) (37,23) (95,93) (3,3) (40,26) (3,3) (45,28)

50% (11,4) (41,28) (40,26) (94,92) (3,4) (50,31) (2,4) (55,33)

400 25% (2,0.3) (18,12) (18,11) (95,94) (1,1) (19,12) (0.5,1) (21,13)

50% (6,2) (21,14) (21,13) (93,93) (1,1) (23,14) (0.3,1) (25,16)

Scenario II
100 25% (0.3,2) (35,23) (33,22) (94,94) (5,4) (39,25) (5,3) (46,29)

50% (6,0.4) (37,26) (35,23) (92,93) (9,8) (53,32) (5,3) (55,35)

400 25% (0.3,0.1) (16,11) (16,11) (95,95) (3,2) (18,11) (1,1) (21,14)
50% (3,1) (18,12) (18,11) (94,95) (5,4) (24,15) (1,0.4) (26,16)

Note: Cen is the censoring rate; Bias is the empirical bias (×100); SE is the empirical standard error (×100); SEE is the empirical mean of
the standard error estimates; CP is the empirical coverage probability (×100) of the 95% confidence interval. β̂ is the proposed estimator;
β̂PPL is the pseudo partial likelihood estimator; β̂PL is the partial likelihood estimator.

follows Bernoulli distribution with success probabil-
ity 0.5. The coefficients are set to be β = (1,1) and
the baseline hazard function is set to be 2t . The vari-
ance estimation follows a perturbation procedure in
Qin et al. (2011). We compared the proposed estima-
tor β̂ in Section 3.2 with the pseudo partial likelihood
estimator β̂PPL proposed in Tsai (2009) and the partial
likelihood estimator β̂PL for left-truncated and right-
censored data. Table 2 reports the summary statistics
for the three estimators. It can be observed that our
proposed method has negligible bias, and, as expected,
the bias decreases with sample size. The variance of
β̂ is smaller than that of both β̂PL and β̂PPL, and the
coverage probability is close to the nominal level with
moderate sample sizes.

We also evaluated the nonparametric test in Section 4
via a series of simulations. We compared the power
of our proposed test with the conditional Kendall’s
tau test in Tsai (1990). We generated (A0, T 0) from
bivariate log-normal distribution truncated at τ , and
the associated normal distribution has mean (μ1,μ2)

and variance-covariance matrix (σij )2×2. The censor-
ing time C was generated from uniform distribution
to produce different censoring rate. In all the scenar-
ios, we set σ11 = σ22 = 0.5, and the other parameters
are set to produce different associations and trunca-
tion proportions α = P(A0 > T 0). We set τ = 4 when
μ2 = 0 and 6 when μ2 = 0.5. The results are pre-
sented in Table 3, with a sample size of 100 and 1000

TABLE 3
Simulated power of the proposed test and conditional Kendall’s tau test

Proposed test Tsai’s test

(μ1,μ2) σ12 α 0% 25% 50% 0% 25% 50%

(0,0) 0.3 0.51 98 87 32 44 27 16
(0,0) 0 0.51 6 7 4 5 6 4
(0,0) −0.3 0.51 84 74 74 85 71 57
(0,0.5) 0.3 0.22 91 80 40 76 64 47
(0,0.5) 0 0.32 6 5 7 5 5 4
(0,0.5) −0.3 0.36 93 87 82 93 86 73

Note: Tsai’s test is based on conditional Kendall’s tau (Tsai, 1990). 0%, 25%
and 50% are the censoring rates. α is the proportion of truncation. The table
presents power (×100) in each scenario.
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iterations. Both tests maintains the nominal level un-
der the null hypothesis. As expected, the proposed test
substantially outperforms the conditional Kendall’s tau
test when the rate of truncation is high and the correla-
tion is positive, while the two tests have similar perfor-
mance when the correlation is negative.

6. DATA ANALYSIS

6.1 Analysis of Canadian Study of Health
and Aging

In this section, we illustrate the proposed methods by
analyzing data from the Canadian Study of Health and
Aging (CSHA), one of the largest epidemiology stud-
ies of dementia (McDowell, Hill and Lindsay, 2001).
CSHA recruited a prevalent cohort of individuals aged
65 and older with dementia during the period between
February 1991 and May 1992. In our data analysis, the
survival time of interest is the time from onset to death
and the truncation time in the prevalent cohort is the
duration from the onset of dementia to study enroll-
ment. A total of 807 subjects were analyzed; among
them, 249 were diagnosed with possible Alzheimer’s
disease, 388 had probable Alzheimer’s disease, and
170 had vascular dementia.

To assess the effect of dementia subtypes on mor-
tality, we fit a Cox proportional hazards model with
indicators of probable Alzheimer (X1) and vascular
dementia (X2) as covariates. Several authors, includ-
ing Addona and Wolfson (2006) and Huang and Qin
(2012), have examined the stationarity assumption
with respect to disease incidence and found that the
stable disease condition holds approximately. Instead
of imposing an uniform distribution for the underly-
ing truncation time distribution, however, for illustra-
tive purpose we apply the result obtained in Huang,
Ning and Qin (2015) to employ the density function
h(t) ∝ exp(0.183t − 0.028t2 + 0.001t3)I (0 ≤ t ≤ τ),
with τ = 19.85 years. Note that h(t) is a member of
Neyman’s smooth alternative which includes uniform
distribution as a special case.

We compare the proposed method to the pseudo par-
tial likelihood approach (Tsai, 2009) by using the same
truncation time density function h(t) in both estimation
procedures. Applying the proposed self-consistency al-
gorithm described in Section 3.2, the estimated regres-
sion coefficients are 0.151 (asymptotic standard error
[ASE], 0.065; 95% confidence interval [CI], 0.023 to
0.278) for probable Alzheimer and 0.229 (ASE, 0.079;
95% CI, 0.074 to 0.384) for vascular dementia. The es-
timated covariate effects are similar to the maximum

likelihood estimator reported in Qin et al. (2011) ob-
tained under the stable disease assumption. Thus, our
analysis suggests that probable Alzheimer and vascular
dementia are associated with significantly worse sur-
vival compared to possible Alzheimer. On the other
hand, the pseudo partial likelihood method gives re-
gression coefficient estimates 0.064 (ASE, 0.082) for
probable Alzheimer and 0.161 (ASE, 0.106) for vas-
cular dementia. It is easy to see that both regression
coefficients are not significantly different from 0 using
Tsai’s method.

6.2 Testing Independent Truncation for Nursing
Home Data

We next illustrate the proposed test of independence
by analyzing the well-known Channing House data
(Hyde, 1977). The study recorded age at entry and age
at death for 462 residents of a retirement center, Chan-
ning House, from 1964 to 1975. The survival time is
left-truncated by study entry and right-censored by end
of study or loss to follow-up. We apply the testing
statistic K̂A in Section 4 to test the null hypothesis that
the underlying survival time and underlying the trun-
cation time are independent of each other within each
gender group.

Because the variance of the proposed testing pro-
cedure is quite complicated, we adopt the nonpara-
metric bootstrap method with 1000 replicates to con-
struct the 95% bootstrap CI for the test statistic. The
value of the proposed test statistic is 0.005 (95% boot-
strap CI, 0.003 to 0.039) for males and is −0.004
(95% bootstrap CI, -0.025 to 0.014) for females. Thus,
we conclude that the association between the under-
lying survival time and the underlying truncation time
was significantly different than 0 in the male group,
whereas the association was not significant in the fe-
male group. For comparison, we also apply the con-
ditional Kendall’s tau test statistic developed by Tsai
(1990). The conditional Kendall’s tau is 0.198 (95%
bootstrap CI, 0.003 to 0.362) for males and 0.051 (95%
bootstrap CI, −0.046 to 0.164) females. Hence, the re-
sults of our proposed test are consistent with that based
on conditional Kendall’s tau test.

7. REMARKS

The main goal of this paper is to develop a uni-
fied framework for analyzing left-truncated and right-
censored data with an unspecified or known trunca-
tion time distribution. Our methodologies are devel-
oped based on the idea of treating truncation and cen-
soring as “missing data mechanisms” and applying the
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missing information principle to unbiased estimating
equations obtained in the absence of left truncation and
right censoring. Specifically, we derived imputed esti-
mating function from the score function derived from
the full nonparametric likelihood (Section 2) and semi-
parametric likelihood (Section 3) with complete data.
This is in contrast with the estimation procedure devel-
oped in Luo and Tsai (2009) and Tsai (2009), where
the authors derived a pseudo-partial likelihood by inte-
grating the partial likelihood over the given truncation
time distribution. As a result, their estimators are not
expected to be more efficient than the proposed estima-
tors which are based on the full likelihood of complete
data. Moreover, the evaluation of pseudo-partial likeli-
hood requires estimation of the censoring time distri-
bution and is thus less desirable.

In addition to model estimation, we also demon-
strate the use of the missing information principle to
hypothesis testing problem. In particular, in Section 4
we derive a new nonparametric test for checking the
independence between the underlying survival time
and the underlying truncation time based on Kendall’s
tau statistic. Unlike the conditional Kendall’s tau test
that are constructed based on comparable pairs sub-
ject to truncation and censoring, our new testing pro-
cedure utilizes data from all individuals and hence is
expected to be more efficient. Results of simulation
studies show that the proposed test enjoys a substantial
gain in power, compared to the conditional Kendall’s
tau test, when the underlying truncation time and sur-
vival time random variables are positively correlated.

Finally, with minor modifications, the missing infor-
mation principle can be applied to handle more com-
plicated data structures, such as double truncation and
competing risk models, as well as non-Cox models,
such as accelerated failure time models and additive
hazards models. Further research is warranted.

APPENDIX

Define θ̂ = (β̂, �̂), θ0 = (β0,�0), S(· | Z) =
exp{−�(·) expβ ′Z} and S0(· | Z) = exp{−�0(·) ·
expβ ′

0Z}. The log-likelihood function based on the ob-
served data is

l(θ) =
n∑

i=1

[∫ τ

0

{
β ′Zi + logd�(u)

}
dNi(u)

−
∫ τ

0
I (Yi ≥ t) exp

{
β ′Zi

}
d�(u)

− log
∫ τ

0
S(u | Zi) dH(u)

]
.

The score function of (β,�) is Un(β,�) = (U1n(β,

�),U2n(·, β,�)), where

U1n(β,�)

= 1

n

n∑
i=1

[∫ τ

0
Zi dNi(t)

−
∫ τ

0
Zi

{
I (Yi ≥ t) −

∫ τ
t S(u | Zi) dH(u)∫ τ
0 S(u | Zi) dH(u)

}

· exp
{
β ′Zi

}
d�(t)

]
,

U2n(t, β,�)

= 1

n

n∑
i=1

[∫ t

0
dNi(u)

−
∫ t

0

{
I (Yi ≥ u) −

∫ τ
u S(v | Zi) dH(v)∫ τ
0 S(v | Zi) dH(v)

}

· exp
{
β ′Zi

}
d�(u)

]
.

We assume the following regularity conditions for The-
orem 3.1.

(A1) The true value of λ0 is continuously differen-
tiable. In addition, the upper bound τ of the support
is finite. The parameter space of � contains all the
nondecreasing functions � satisfying �(0) = 0 and
�(τ) < ∞.

(A2) The true value of β0 is in a compact parameter
space B.

(A3) The truncation time distribution H has a den-
sity h on [0, τ ].

(A4) The residual censoring time C has a continu-
ous survival function SC .

(A5) The covariate Z is bounded.
(A6) The matrix −∂EU1n(β, �̂(·, β))/∂β evaluated

at β0 is positive definite.

Condition (A6) implies that the information matrix
of the profile likelihood evaluated at the true value β0
is positive definite, which is a classical condition that
appears in the study of the Cox model for traditional
survival data (Andersen et al., 1993, page 497). (A6)
guarantees the existence and uniqueness of the solu-
tion β̂ in large samples. (A6) also implies that J0, the
fisher information matrix of β for known �0 is positive
definite and thus the map σ11 defined below is invert-
ible.

Following Qin et al. (2011), it can be shown that√
nUn(θ0) converges weakly to W = (W1,W2), where
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W1 is a zero mean Gaussian random vector and W2 is a
zero mean Gaussian process. Define μ0(Z) = ∫ τ

0 S0(t |
Z)dH(t), and

K
(l)
1 (t) = E

{
Z⊗l exp

{
β ′

0Z
}
S0(t | Z)

· μ0(Z)−1
∫ t

0
SC(u|Z)dH(u)

}
,

K
(l)
2 (t, u) =

∫ τ

u
E

[
Z⊗l exp

{
2β ′

0Z
}
S0(v | Z)

· μ0(Z)−1
{
�0(t ∧ v)

−
∫ t

0

(∫ τ

s
S0(w | Z)dH(w)

)
d�0(s)

· μ0(Z)−1
}]

dv.

Then the Frechet derivative U̇ψ0 is

U̇ψ0(β,�)

= −(
σ11(β) + σ12(�),σ21(β)(·) + σ22(�)(·)),

where

σ11(β) = J0β,

J0 =
∫ τ

0
K

(2)
1 (u) d�0(u)

+
∫ τ

0
K

(2)
2 (τ, u) d�0(u),

σ12(�) =
∫ τ

0
K

(1)
1 (u) d�(u)

+
∫ τ

0
K

(1)
2 (τ, u) d�(u),

σ21(β)(t) =
{∫ t

0
K

(1)
1 (u) d�0(u)

+
∫ τ

0
K

(1)
2 (t, u) d�0(u)

}′
β,

σ22(�)(t) =
∫ t

0
K

(0)
1 (u) d�(u)

+
∫ τ

0
K

(0)
2 (t, u) d�(u).

The inverse of Frechet derivative is

U̇−1
ψ0

(β,�)

= −
(
σ−1

11 + σ−1
11 σ12�

−1σ21σ
−1
11 −σ−1

11 σ12�
−1

−�−1σ21σ
−1
11 �−1

)

·
(

β

�

)
,

where σ−1
11 (β) = J−1

0 β , the functional � = σ22 −
σ21σ

−1
11 σ12 and �−1 exists by applying the Fredholm

integral equations of the second kind. Thus
√

n(θ̂ −θ0)

converges weakly to a tight mean zero Gaussian pro-
cess −U̇−1

ψ0
(W1,W2).
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