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Sufficientness Postulates for Gibbs-Type
Priors and Hierarchical Generalizations
S. Bacallado, M. Battiston, S. Favaro and L. Trippa

Abstract. A fundamental problem in Bayesian nonparametrics consists of
selecting a prior distribution by assuming that the corresponding predictive
probabilities obey certain properties. An early discussion of such a problem,
although in a parametric framework, dates back to the seminal work by En-
glish philosopher W. E. Johnson, who introduced a noteworthy characteriza-
tion for the predictive probabilities of the symmetric Dirichlet prior distribu-
tion. This is typically referred to as Johnson’s “sufficientness” postulate. In
this paper, we review some nonparametric generalizations of Johnson’s pos-
tulate for a class of nonparametric priors known as species sampling mod-
els. In particular, we revisit and discuss the “sufficientness” postulate for the
two parameter Poisson–Dirichlet prior within the more general framework of
Gibbs-type priors and their hierarchical generalizations.

Key words and phrases: Bayesian nonparametrics, Dirichlet and two pa-
rameter Poisson–Dirichlet process, discovery probability, Gibbs-type species
sampling models, hierarchical species sampling models, Johnson’s “suffi-
cientness” postulate, Pólya-like urn scheme, predictive probabilities.

1. INTRODUCTION

At the heart of Bayesian nonparametric inference
lies the fundamental concept of discrete random prob-
ability measure, whose distribution acts as a non-
parametric prior, the most notable example being the
Dirichlet process by Ferguson [25]. Species sampling
models, first introduced by Pitman [53], form a very
general class of discrete random probability measures
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P = ∑
i≥1 piδX∗

i
defined by the sole requirements that

(pi)i≥1 are nonnegative random weights such that∑
i≥1 pi = 1 almost surely, and (X∗

i )i≥1 are random
locations independent of (pi)i≥1 and independent and
identically distributed as a nonatomic base distribu-
tion ν0. The term “species sampling” refers to the
fact that the distribution P of P has a natural in-
terpretation as a (prior) distribution for the unknown
species composition (pi)i≥1 of a population of indi-
viduals (Xi)i≥1 belonging to species X∗

i ’s. As dis-
cussed in Pitman [53] and Lee et al. [41], the defi-
nition of species sampling models provides some in-
sights on the structural sampling properties of these
discrete random probability measures. However, for
being usable as nonparametric priors, a distribution
for the random probability (pi)i≥1 has to be specified.
Among the various approaches for specifying such a
distribution, the most common are the stick-breaking
approach by Ishwaran and James [34] and the nor-
malization approach by James [35], Pitman [54] and
Regazzini et al. [61]. These approaches lead to popu-
lar species sampling models such as the Dirichlet pro-
cess, the generalized Dirichlet process (Hjort [31] and
Ishwaran and James [34]), the two parameter Poisson–
Dirichlet process (Perman et al. [51] and Pitman and
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Yor [56]) and the normalized generalized Gamma pro-
cess (James [35], Prünster [57] and Pitman [54]) to
name a few. The reader is referred to Lijoi and Prün-
ster [45] for a comprehensive and stimulating account
of species sampling models, as well as generalizations
thereof, with applications to Bayesian nonparametrics.

A common building block in Bayesian nonpara-
metrics, either at the level of observed data or at
the latent level of hierarchical models, consists of a
sample from a species sampling model P with distribu-
tion P . According to de Finetti’s representation theo-
rem, such a sample is part of an exchangeable sequence
(Xi)i≥1 with directing (de Finetti) measure P , that is,
limn→+∞ n−1 ∑

1≤i≤n δXi
= P almost surely. In par-

ticular, due to the discreteness of species sampling
models, a sample of size n from P features Kn = k ≤ n

distinct species, labelled by X∗
1, . . . ,X∗

Kn
, with corre-

sponding frequencies Nn = (N1,n, . . . ,NKn,n) = n =
(n1, . . . , nk) such that

∑
1≤i≤Kn

Ni,n = n. More for-
mally, if (X1, . . . ,Xn) is a random sample from P ,
namely

(1)
Xi | P iid∼ P, i = 1, . . . , n,

P ∼ P,

then the sample induces a random partition �n of
{1, . . . , n} whose blocks corresponds to the equiva-
lence classes for the random equivalence relations i ∼
j ⇐⇒ Xi = Xj almost surely. The random partition
�n is exchangeable, namely the distribution of �n is
a symmetric function of the frequencies n. This func-
tion, denoted pn,k(n), is known as the exchangeable
partition probability function (EPPF), a concept intro-
duced in Pitman [52] as a development of earlier results
in Kingman [39].

The notion of exchangeable random partition of
{1, . . . , n} can be extended to the natural numbers N. In
particular, the infinite exchangeable sequence (Xi)i≥1
induces an exchangeable random partition � of N,
where exchangeable means that the distribution of � is
invariant under finite permutations of its elements. This
partition can be described by the sequence (�n)n≥1 of
its restrictions to the first n integer numbers, that is, �n

is obtained from � by discarding all elements greater
than n. Conversely, a sequence of random exchange-
able partitions (�n)n≥1 defines an exchangeable ran-
dom partition of N provided that this sequence is con-
sistent, that is, �m is the restriction of �n to the first
m elements, for all m < n. Consistency implies that

(2) pn,k(n) = pn+1,k+1(n,1)+
k∑

i=1

pn+1,k(n1,n+ei)

for all n ≥ 1, where ei denotes a k-dimensional vec-
tor with all entries equal to zero but the ith entry equal
to 1. As a direct consequence of Kingman’s theory of
exchangeable random partitions of N, the predictive
probabilities of (Xi)i≥1 are

(3)

Pr[Xn+1 ∈ · | X1, . . . ,Xn]

= g(n, k,n)ν0(·) +
k∑

i=1

fi(n, k,n)δX∗
i
(·),

for any n ≥ 1, where ν0 is a nonatomic distribu-
tion on the sample space and where g(n, k,n) :=
pn+1,k+1(n,1)/pn,k(n) and fi(n, k,n) := pn+1,k(n1,

n + ei )/pn,k(n) are nonnegative functions of (n, k,n),
respectively describing the probability that the Xn+1
will be a new value and the probability that it will
be equal to X∗

i . From (2), it follows that g and fi

must satisfy the following constraint: g(n, k,n) +∑
1≤i≤k fi(n, k,n) = 1. The functions g and fi com-

pletely determine the distribution of (Xi)i≥1 and, in
turn, the distribution of �. See Pitman [53] for a de-
tailed account of exchangeable random partitions and
species sampling models.

Within the Bayesian nonparametric framework (1),
how to select the prior distribution P is an impor-
tant issue. Of course one approach is to select P by
appealing to prior information about P , and then at-
tempt to incorporate this information into P . This is
often a difficult task for nonparametric priors, since
P is an infinite dimensional object. Alternatively, one
may select P by assuming that the predictive proba-
bilities (3) obey or exhibit some characteristic or prop-
erty. Indeed in practical applications it may be that the
form of the functions g and fi may be an adequate de-
scription of our current state of knowledge. An early
discussion of this alternative approach, although in a
parametric framework, dates back to the seminal work
by English philosopher W. E. Johnson. Specifically, as-
suming T < +∞ possible species that are known and
equiprobable prior to observations, Johnson [38] char-
acterized the T -dimensional symmetric Dirichlet dis-
tribution as the unique prior for which g depends only
on n, k and T , and fi depends only on n, ni and T .
As a direct consequence of the parametric assumption
that T < +∞, of course, g = 0 for all k ≥ T . Using the
terminology in Good [28], this characterization of the
Dirichlet prior is referred to as Johnson’s “sufficient-
ness” postulate. We refer to the work of Zabell [71, 72]
for a review of Johnson’s postulate. See also the mono-
graph by Zabell [75] for a more comprehensive account
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of sufficientness, exchangeability and predictive prob-
abilities.

In this paper, we discuss and derive some general-
izations of Johnson’s postulate that arise by removing
the parametric assumption of a prespecified number
T < +∞ of possible species in the population. We fo-
cus on species sampling models that allow either for
an infinite number of species or for a finite random
number T of species, with T having unbounded sup-
port over N. Regazzini [60], and later on Lo [49], pro-
vided a nonparametric counterpart of Johnson’s postu-
late. Specifically, under the assumption of an infinite
number of species in the population, they showed that
the Dirichlet process is the unique species sampling
model for which the function g depends only on n, and
the function fi depends only on n and ni . A notewor-
thy extension of this nonparametric sufficientness pos-
tulate was presented in Zabell [74], and it characterizes
the two parameter Poisson–Dirichlet process of Pitman
[52] as the unique species sampling model for which g

depends only on n and k, and fi depends only on n

and ni . Here we revisit the seminal work of Zabell [74]
within the more general framework of the Gibbs-type
species sampling models introduced by Gnedin and
Pitman [27], and nowadays widely used in Bayesian
nonparametrics. Gibbs-type species sampling models,
which include the Dirichlet process and two parame-
ter Poisson–Dirichlet process as special cases, suggest
for the formulation of a novel nonparametric sufficient-
ness postulate in which the function g depends only on
n and k, and the function fi depends only on n, k and
ni . We present such a postulate and, in light of that,
we show how the sufficientness postulates of Regazz-
ini [60] and Zabell [74] may be rephrased in terms of an
intuitive Pólya-like urn scheme for Gibbs-type species
sampling models. Table 1 provides with a schematic
summary of sufficientness postulates for species sam-
pling models. Our study is completed with a discussion

TABLE 1
Sufficientness postulates for species sampling models (SSM):

T -dimensional symmetric Dirichlet distribution (T -SD), Dirichlet
process (DP), two parameter Poisson–Dirichlet process (2PD)

and Gibbs-type SSM

Number T of
speciesSSM g(n,k,n) fi(n,k,n)

T -SD Known T < +∞ g(n, k, T ) f (n,ni)

DP T = +∞ g(n) f (n,ni)

2PD T = +∞ g(n, k) f (n,ni)

Gibbs-type SSM T = +∞ g(n, k) f (n, k,ni)

on the problem of formulating analogous nonparamet-
ric sufficientness postulates in the context of the hier-
archical species sampling models introduced by Teh et
al. [68].

The paper is structured as follows. Section 2 contains
a brief review on the sampling properties of the class
of Gibbs-type species sampling models. In Section 3,
we review the sufficientness postulate of Zabell [74],
we present its generalization within the more general
framework of Gibbs-type species sampling models,
and we introduce a Pólya-like urn scheme for describ-
ing the predictive probabilities of Gibbs-type species
sampling models. In Section 4, we discuss how John-
son’s sufficientness postulate can be extended to the
framework of hierarchical species sampling models.
Section 5 contains a discussion of the proposed char-
acterizations and open questions. Proofs of our results
are provided as online supplementary material [3].

2. A BRIEF REVIEW OF GIBBS-TYPE PRIORS

As recently discussed in De Blasi et al. [18], Gibbs-
type species sampling models, or Gibbs-type priors,
may be considered as the most “natural” generaliza-
tion of the Dirichlet process. Indeed, apart of the well-
known conjugacy of the Dirichlet process, Gibbs-type
species sampling models share numerous properties
that are appealing from both a theoretical and an ap-
plied point of view: (i) they admit a simple and in-
tuitive definition in terms of predictive probabilities,
which is a generalization of the Blackwell and Mac-
Queen [9] urn scheme; (ii) they stand out in terms of
mathematical tractability, which allows to study their
distributional properties for finite sample sizes and
asymptotically; (iii) they admit a stick-breaking rep-
resentation and a representation as normalized random
measures, thus taking the advantages of both represen-
tations; (iv) they are characterized by a flexible param-
eterization, thus including numerous interesting special
cases, most of them still unexplored. All these proper-
ties have made the class of Gibbs-type priors a com-
mon choice in several contexts, such as in hierarchical
mixture modeling, species sampling problems, feature
and graph modeling, hidden Markov modeling, etc. In
this section, we briefly review Gibbs-type species sam-
pling models, with emphasis towards their predictive
probabilities and sampling properties. The reader is re-
ferred to the monographs by Pitman [55] and Bertoin
[8] for a comprehensive account of Gibbs-type species
sampling models, and to Lijoi and Prünster [45] and
De Blasi et al. [18] for reviews on their use in Bayesian
nonparametrics.
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Among various possible definitions of Gibbs-type
species sampling models, the most intuitive is given in
terms of their predictive probabilities. See, for exam-
ple, Pitman [54] and Gnedin and Pitman [27]. These
predictive probabilities are of the general form (3), for
a suitable specification of the nonnegative functions
g and fi . In particular let (X1, . . . ,Xn) be a sample
from an arbitrary species sampling model P , and as-
sume that (X1, . . . ,Xn) features Kn = k ≤ n species,
labelled by X∗

1, . . . ,X∗
Kn

, with corresponding frequen-
cies Nn = n. For α < 1 and for ν0 a nonatomic prob-
ability measure, P is a Gibbs-type species sampling
model if

(4) Pr[X1 ∈ ·] = ν0(·)
and

(5)

Pr[Xn+1 ∈ · | X1, . . . ,Xn]

= Vn+1,k+1

Vn,k

ν0(·) + Vn+1,k

Vn,k

k∑
i=1

(ni − α)δX∗
i
(·)

for any n ≥ 1, where (Vn,k)1≤k≤n,n≥1 are nonnega-
tive weights satisfying the triangular recursion Vn,k =
Vn+1,k(n − αk) + Vn+1,k+1 with the proviso V1,1 := 1.
By combining the predictive probabilities (5) with
the nonparametric sufficientness postulate in Regazz-
ini [60] and Lo [49], it follows that Gibbs-type species
sampling models generalize the Dirichlet process by
introducing the dependency on k in both the functions
g and fi . See also Zabell [71] and references therein
for details.

Gnedin and Pitman [27] characterized the de Finetti
measure of an exchangeable sequence (Xi)i≥1 dis-
tributed as (4) and (5). Such a characterization relies on
the notion of Poisson–Kingman model introduced by
Pitman [54]. Specifically, for any α ∈ (0,1) let (Ji)i≥1
be decreasing ordered jumps of an α-stable subor-
dinator, namely a subordinator with Lévy measure
ρ(dx) = Cαx−α−1dx for some constant Cα . See Sato
[64] and references therein for details. Furthermore, let
Pi = Ji/Tα where Tα = ∑

i≥1 Ji < +∞ almost surely,
and let PK(α; t) denote the conditional distribution of
(Pi)i≥1 given Tα = t . In particular, Tα is a positive α-
stable random variable, and we denote by fα its density
function. If we denote by Tα,h a random variable with
density function fTα,h

(t) = h(t)fα(t), for any nonneg-
ative function h, then an α-stable Poisson–Kingman
model is defined as the discrete random probability
measure Pα,h = ∑

i≥1 Pi,hδX∗
i
, where (Pi,h)i≥1 is dis-

tributed as
∫
(0,+∞) PK(α; t)fTα,h

(t)dt and (X∗
i )i≥1 are

random variables, independent of (Pi,h)i≥1, and inde-
pendent and identically distributed as ν0. According to
Gnedin and Pitman [27], if (Xi)i≥1 is an exchange-
able sequence distributed as (4) and (5) then the de
Finetti measure of (Xi)i≥1 is the law of: (i) an α-
stable Poisson–Kingman model, for α ∈ (0,1); (ii) the
Dirichlet process, for α = 0; (iii) an M-dimensional
symmetric Dirichlet distribution, with M being a non-
negative discrete random variable on N, for α < 0. In
other terms, (Xi)i≥1 distributed as (4) and (5) admits a
finite number M of species for α < 0, and an infinite
number of species for α ∈ [0,1).

The characterization of Gnedin and Pitman [27]
leads to identify explicit expressions for the Vn,k’s in
(5). In particular, for the class of α-stable Poisson–
Kingman models an expression for Vn,k was pro-
vided in Pitman [54], and further investigated by
Ho et al. [32]. See also James [36] and references
therein. Let �(·) denote the Gamma function. For
any α ∈ (0,1) and c > 0 let Sα,c be a polynomi-
ally tilted α-stable random variable, that is, fSα,c (s) =
�(cα + 1)s−αcfα(s)/�(c + 1), and let Ba,b be a Beta
random variable with parameter (a, b) independent of
Sα,c. Then,

(6) Vn,k = αk�(k)

�(n)
E

[
h

(
Sα,k

Bαk,n−αk

)]
.

We refer to Chapter 4 of Pitman [55] for additional de-
tails on (6). For the Dirichlet process, the expression
of Vn,k is well known from the seminal work of Ewens
[20], that is,

(7) Vn,k = θk

(θ)n

for any θ > 0. See also Antoniak [1] for an alternative
derivation of (7) in terms of the urn scheme description
of the Dirichlet process in Blackwell and MacQueen
[9]. For the M-dimensional symmetric Dirichlet distri-
butions, for any α < 0 one has

(8) Vn,k =
∏k−1

i=0 (M|α| + iα)

(M|α|)n .

Conditionally to M = m, the expression (8) dates back
to the seminal work of Fisher et al. [26]. In particu-
lar, they derived (8) and they also considered the pas-
sage to the limit as m → +∞ and −α → 0 for fixed
θ = mα > 0, which leads to the weight in (7). See
also Johnson [38], Watterson [70] and Engen [19] for
a detailed account of the M-dimensional symmetric
Dirichlet species sampling model.
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Among Gibbs-type species sampling models with
α ∈ (0,1), the two parameter Poisson–Dirichlet pro-
cess certainly stands out. See, for example, Perman et
al. [51], Pitman [52, 54] and Pitman and Yor [56]. An-
other noteworthy example is the normalized general-
ized Gamma process, introduced in Pitman [54] and
further investigated in Bayesian nonparametrics, for
example, James [35, 36] and Lijoi et al. [44, 46]. For
α ∈ (0,1) and θ > −α, the two parameter Poisson–
Dirichlet process is a Gibbs-type species sampling
model with h(t) = α�(θ)t−θ /�(θ/α). In particular,
by replacing this function in (6), one obtains

(9) Vn,k =
∏k−1

i=0 (θ + iα)

(θ)n
,

where (θ)n is the ascending factorial, that is, (θ)n :=∏
0≤i≤n−1(θ + i) with the proviso (θ)0 = 1. For α ∈

(0,1) and τ ≥ 0 the normalized generalized Gamma
process is a Gibbs-type species sampling model with
h(t) = exp{τ − τ 1/αt}. By replacing this function in
(6),

(10)

Vn,k = αkeτ

�(n)

n−1∑
i=0

(
n − 1

i

)

× (−τ 1/α)i
�

(
k − i

α
, τ

)
,

where �(·, ·) is the incomplete Gamma function. Note
that (9) may be viewed as a suitable mixture of (10).
That is, if Gθ/α,1 is a Gamma random variable with pa-
rameter (θ/α,1) then (9) can be written as (10) where τ

is replaced by Gθ/α,1. In general, for any θ > 0 the two
parameter Poisson–Dirichlet process may be viewed as
hierarchical generalization of the normalized general-
ized Gamma process, with a Gamma prior over τ . See
Section 5 in Pitman and Yor [56] for details.

The predictive probabilities (5) lead to the distribu-
tion of the exchangeable random partition �n induced
by a sample (X1, . . . ,Xn) from a Gibbs-type species
sampling model. In particular, let p

(n)
k (n) denote the

EPPF of �n, that is probability of any particular par-
tition of the set {1, . . . , n} induced by (X1, . . . ,Xn)

and featuring Kn = k distinct blocks with frequencies
Nn = n, for any n ≥ 1. Then, by a direct application of
the predictive probabilities (5), one may easily verify
that

(11) p
(n)
k (n) = Vn,k

k∏
i=1

(1 − α)(ni−1).

Moreover, by marginalizing Pr[Kn = k,Nn = n] =
(k!)−1( n

n1,...,nk

)
p

(n)
k (n) with respect to the frequencies

n, one obtains the distribution of Kn. In particular, one
has

(12) Pr[Kn = k] = Vn,k

C(n, k;α)

αk
,

where C(n, k;α) is the generalized factorial coeffi-
cient, namely C(n, k;a) := (k!)−1 ∑

1≤i≤k(−1)i
(k
i

) ×
(−ai)n. As discussed in Gnedin and Pitman [55] and
De Blasi et al. [18], the mathematical tractability of
Gibbs-type species sampling models originates from
the product form of the EPPF (11). Such a product
form is closely related to the notion of product parti-
tion model in Quintana and Iglesias [58].

The role of the parameter α in the distribution (11)
is easily interpreted. In particular, a first interpretation
of α follows from the predictive probabilities (5). In-
deed, α > 0 acts an interesting reinforcement mecha-
nism in the empirical part of the predictive probability
(5). Note that the probability that Xn+1 coincides with
the species X∗

i , for any i = 1, . . . , k, is a function of
the frequency ni and α. In particular, the ratio of the
probabilities assigned to any pair of species (X∗

i ,X
∗
j )

is

(13)
ni − α

nj − α

If α → 0, the ration (13) reduces to the ratio of the
frequencies of the two species, and therefore the coin-
cidence probability is proportional to the frequency of
the species. On the other hand, if α > 0 and ni > nj

then the ratio is an increasing function of α. Accord-
ingly, as α increases the mass is reallocated from the
species X∗

j to the species X∗
i . In other terms, the sam-

pling procedure tends to reinforce, among the observed
species, those having higher frequencies. See De Blasi
et al. [18] and references therein for a detailed discus-
sion on such a reinforcement mechanism. If α < 0, the
reinforcement mechanism works in the opposite way
in the sense that the coincidence probabilities are less
than proportional to the species frequencies.

A further interpretation of the parameter α arises
from the large n asymptotic behavior of the random
variable Kn with distribution (12). This behaviour was
first investigated by Korwar and Hollander [40] for the
Dirichlet process, and then extended by Pitman [54] to
the general framework of Gibbs-type species sampling
model. See also Gnedin and Pitman [27] and Pitman
[55] for details. The parameter α determines the rate
at which Kn increases, as the sample size n increases.
Three different rates may be identified for Gibbs-type
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species sampling models. Let

cn(α) :=

⎧⎪⎪⎨
⎪⎪⎩

nα if α ∈ (0,1),

log(n) if α = 0,

1 if α ∈ (−∞,0),

for any n ≥ 1. Then there exists a random variable Sα ,
positive and finite almost surely, such that

(14)
Kn

cn(α)
→ Sα

almost surely, as n → +∞. Using the terminology in
Pitman [54], Sα is referred to as the α-diversity of
the the Gibbs-type species sampling model. More pre-
cisely: (i) for α ∈ (0,1) the α-diversity coincides, in
distribution, with T −α

α,h ; (ii) for α = 0 the α-diversity
is a random variable whose distribution degenerates at
θ > 0; (iii) for α < 0 the α-diversity coincides, in dis-
tribution, with the random number M of species in the
population. The larger α, the faster the rate of increase
of Kn or, in other terms, the more new species are gen-
erated from the sampling mechanism described in (5).

Gibbs-type species sampling models have been ex-
tensively used in the context of Bayesian nonparamet-
ric inference for species sampling problems. See, for
example, Lijoi et al. [43, 46, 47], Favaro et al. [21,
22], Bacallado et al. [5, 6] and Arbel et al. [2]. Species
sampling problems are arguably the field in which the
mathematical tractably of Gibbs-type species sampling
models can be most appreciated. In the last few years,
a plethora of posterior properties of Gibbs-type pri-
ors, for finite sample sizes and asymptotically, have
been derived and applied for estimating population’s
features and predicting features of additional unob-
servable samples. Gibbs-type species sampling models
have been also applied in the context of mixture mod-
eling, thus generalizing the seminal work by Lo [48].
See, for example, Ishwaran and James [34], Lijoi et al.
[42, 43], Favaro and Walker [23] and Lomeli et al. [50].
While maintaining the same computational tractability
of the Dirichlet process mixture model, the availability
of the additional parameter α allows for a better con-
trol of the clustering behaviour. Most recently, Gibbs-
type species sampling models have been proposed for
Bayesian nonparametric inference for ranked data in
Caron et al. [13], sparse exchangeable random graphs
and networks in Caron and Fox [12] and Herlau [30],
feature allocations in Teh and Görür [66], Broderick et
al. [10], Heaukulani and Roy [29], Roy [63] and Bat-
tiston et al. [7], reversible Markov chains in Bacallado
et al. [4], dynamic textual data in Chen et al. [14, 15]
and bipartite graphs in Caron [11].

3. SUFFICIENTNESS POSTULATES AND URN
SCHEMES FOR GIBBS-TYPE PRIORS

A noteworthy generalization of Johnson’s sufficient-
ness postulate was first discussed in the work of
Zabell [74]. Specifically, let P be an arbitrary species
sampling model with predictive probabilities (3), and
consider the following assumptions: (A1) Pr[�n =
πn] > 0 for all the partitions πn of {1, . . . , n}, that
is no scenario is deemed, a priori, to be impossible;
(A2) g(n, k,n) = g(n, k), that is the probability of
observing a new species depends only on n and k;
(A3) fi(n, k,n) = f (n,ni), that is the probability of
observing the species X∗

i depends only on n and ni .
Zabell [74] showed that if just these three assump-
tions are imposed, then there exist three parameters
α ∈ (0,1), θ > −α and cn ≥ 0 such that:

(i) if k ≥ 2, then

(15) g(n, k) = θ + kα

θ + n
; f (n,ni) = ni − α

θ + n
;

(ii) if k = 1, then

(16) g(n, k) = θ + α

θ + n
− cn; f (n,n) = n − α

θ + n
+ cn.

In other words, if a species sampling model satisfies
the assumptions (A1)–(A3), then the functions g and
fi in the predictive probabilities (3) must have the ex-
pressions (15) and (16). Zabell’s sufficientness postu-
late may be viewed as a nonparametric counterpart of
the classical Johnson’s postulate, in the sense that it al-
lows to remove the assumption of a prespecified num-
ber T < +∞ of possible species in the population. See
Zabell [71, 72] and references therein for details.

As discussed in Zabell [74], the parameters (cn)n≥1
represent adjustments of the predictive probabilities
that arise when only one species is observed in an ex-
changeable sequence (Xi)i≥1 of trials. That is a parti-
tion consisting of a single block is observed. Accord-
ingly one may set cn = 0, for any n ≥ 1, by impos-
ing the following additional assumption: (A4) Pr[Kn >

1] = 1 almost surely for any n ≥ 1. In particular, let
(X1, . . . ,Xn) be a sample of size n from an arbitrary
species sampling model P , such that (X1, . . . ,Xn) fea-
tures Kn = k ≤ n species X∗

1, . . . ,X∗
Kn

with corre-
sponding frequencies Nn = n. Then under (A1)–(A4)
one has

(17)

Pr[Xn+1 ∈ · | X1, . . . ,Xn]

= θ + kα

θ + n
ν0(·) + 1

θ + n

k∑
i=1

(ni − α)δX∗
i
(·),
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for any n ≥ 1, which are precisely the predictive prob-
abilities of the two parameter Poisson–Dirichlet pro-
cess. An intuitive description of (17) was proposed by
Zabell [74] in terms of the following Pólya-like urn
scheme. Consider an urn containing both colored and
black balls, where colored balls may be interpreted as
the individuals with their associated species (color).
Balls are drawn and then replaced, in such a way that
the probability of a particular ball being drawn at any
stage is proportional to its selection weight. Initially
the urn contains a black ball with weight θ > 0, and
at the nth draw: (i) if we pick a colored ball then it
is returned to the urn with ball of the same color with
weight 1; (ii) if we pick a black ball, then it is returned
to the urn with a black ball of weight α ∈ (0,1) and a
ball of a new color with weight 1−α. If Xn is the color
of the ball returned in the urn after the nth draw, and
such a color is generated according to the nonatomic
distribution ν0, then it can be easily verified that the
predictive probabilities Pr[Xn+1 ∈ · | X1, . . . ,Xn] co-
incides with (17), for any α ∈ (0,1) and θ > 0.

According to Zabell’s sufficientness postulate, the
two parameter Poisson–Dirichlet process is the unique
species sampling model for which the function g de-
pends only on n and k, and the function fi depends
only on n and ni , for any i = 1, . . . , k. As a limiting
special case of Zabell’s characterization, for α → 0
the Dirichlet process is the unique species sampling
model for which the function g depends only on n,
and the function fi depends only on n and ni , for
any i = 1, . . . , k. The predictive probabilities (5) of a
Gibbs-type species sampling model generalize those
of the two parameter Poisson–Dirichlet process by in-
troducing the dependency on k in the function f . In
particular, within the class of Gibbs-type species sam-
pling model one may rephrase Zabell’s sufficientness
postulated as follows: for any index α ∈ (0,1) the
two parameter Poisson–Dirichlet process is the unique
Gibbs-type species sampling model for which the ra-
tio Vn+1,k/Vn,k in (5) simplifies in such a way to re-
move the dependency on the number k of observed
species. The normalized generalized Gamma process,
whose predictive probabilities are expressed in terms
of the Vn,k’s in (10), is a representative example of a
Gibbs-type species sampling model for which such a
simplification does not occur. See, for example, Lijoi et
al. [44, 46] for details. The predictive probabilities of
Gibbs-type species sampling models thus suggest for a
generalization of the Zabell’s sufficientness postulate,
where the assumption (A3) is replaced by the assump-
tion fi(n, k,n) = f (n, k, ni), that is the probability of

observing the species X∗
i depends only on n, k and ni ,

for any i = 1, . . . , k. The following generalization of
the Zabell’s sufficientness postulate can be proved.

PROPOSITION 1. Let P be a species sampling
model with predictive probabilities of the form (3), and
allowing either for an infinite number of species or for
a finite random number T of species, with T being sup-
ported on N. Furthermore, assume that:

(A1) Pr[�n = πn] > 0 for all the partitions πn of
the set {1, . . . , n};

(A2) g(n, k,n) = g(n, k);
(A3) fi(n, k,n) = f (n, k, ni) for any i = 1, . . . , k.

Under (A1)–(A3) there exists a parameter α < 1 and
a collection of nonnegative weights (Vn,k)1≤k≤n,n≥1
with V1,1 = 1 and satisfying Vn,k = Vn+1,k(n − αk) +
Vn+1,k+1 such that

g(n, k) = Vn+1,k+1

Vn,k

; f (n, k, ni) = Vn+1,k

Vn,k

(ni − α)

for any i = 1, . . . , k. In other terms, if a species sam-
pling model P satisfies the assumptions (A1)–(A3)
then P is a Gibbs-type species sampling model with
parameter α < 1.

As we pointed out in the Introduction, Zabell’s suffi-
cientness postulate generalizes the original framework
of Regazzini [60] and Lo [49] by introducing the de-
pendency on k in the function g. Proposition 1 provides
an even more general framework by introducing the de-
pendency on k in both the function g and the function
fi , for any i = 1, . . . , k, while maintaining the same
structure with respect to the dependency on the fre-
quencies counts n. The proof of Proposition 1 is rather
long and technical, although along lines similar to the
proof of Zabell’s sufficientness postulate. In particular,
it consists of verifying the following main steps:

(i) showing that the function f (n, k, ni) is a lin-
ear with respect to ni , for any n ≥ 1, 1 ≤ k ≤ n,
that is, there exist parameters an,k and bn,k such that
f (n, k,m) = an,k + bn,km;

(ii) showing that the parameter bn,k is different
from zero, for any n ≥ 1 and 1 ≤ k ≤ n; this al-
lows us to introduce an additional parameter αn,k =
−an,k/bn,k , which we show to be independent of n and
k and to be strictly less than 1;

(iii) introducing the new parametrization Vn,k ,
showing that it satisfies the recursion specific of the
Gibbs-type prior and finally recovering the fi and g of
a generic Gibbs-type prior.



494 BACALLADO, BATTISTON, FAVARO AND TRIPPA

See Section 1 of the supplementary material for the
proof of Proposition 1. Note that Proposition 1 does not
characterize the entire class of Gibbs-type species sam-
pling models. Indeed we confined ourself to species
sampling models allowing either for an infinite num-
ber of species or for a finite random number T of
species, with T being supported on N. According to
the characterization of Gnedin and Pitman [27], this re-
striction excludes Gibbs-type species sampling models
with α < 0 and with M being a distribution with finite
support. It remains an open problem to check whether
it is possible to characterize the entire class of Gibbs-
type priors by relaxing (A1).

One can derive an intuitive urn scheme that describes
the predictive probabilities for the class of Gibbs-type
species sampling models. Let (Vn,k)1≤k≤n,n≥1 be a col-
lection of nonnegative weights such that V1,1 = 1 and
Vn,k = Vn+1,k(n − αk) + Vn+1,k+1. Consider an urn
containing both colored and black balls, where col-
ored balls may be interpreted as the individuals with
their associated species (color). The urn initially con-
tains only a black ball with an arbitrary weight. Balls
are drawn successively from the urn with probabilities
proportional to their weights, and the drawing mech-
anism is described by the following Pólya-like urn
scheme. Assuming that at the ith draw black balls have
weight M , and that there are k distinct colors in the urn
with weights M1, . . . ,Mk , respectively, at the (i + 1)th
draw:

(i) if we pick a black ball, then it is returned to the
urn together with a black ball of weight

(18) B∗
i+1 = M

Vi+2,k+2Vi+1,k

Vi+2,k+1Vi+1,k+1
− M,

and a ball of a new color with weight

(19) A∗
i+1 = (1 − α)M

Vi+1,k

Vi+1,k+1
;

(ii) if we pick a non-black ball, then it is returned to
the urn together with a black ball of weight

(20) B̃i+1 = M
Vi+2,k+1Vi+1,k

Vi+2,kVi+1,k+1
− M,

and an additional ball of the same color with weight

(21) Ãi+1 = M
Vi+1,k

Vi+1,k+1
.

If Xn is the color the non-black ball returned in the
urn after the nth draw, then it can be verified that
Pr[Xn+1 ∈ · | X1, . . . ,Xn] coincides with the predic-
tive probabilities (5) of the class of Gibbs-type species

sampling models. We refer to Section 2 of the supple-
mentary material for details on formulae (18), (19),
(20) and (21). Hereafter, we denote by Xn,k a sam-
ple of size n from the above urn scheme and featuring
Kn = k ≤ n distinct colors, labelled by X∗

1, . . . ,X∗
Kn

,
with frequencies Nn = n.

Note that the urn scheme proposed in Zabell [74]
is recovered from (18), (19), (20) and (21) by setting
Vn,k of the form (9) and M = θ + kα. Note that under
this assumptions the black ball is updated only when
the black ball is drawn. This is indeed a feature of
Zabell’s urn scheme. Differently, in our urn scheme the
weight of the black ball is updated when the black ball
is drawn (18) and also when a non-black ball is drawn
(20). According to (20), in order to update the black
ball only when the black ball is drawn we must assume
the following constraint:

(22)
Vn+2,k+1Vn+1,k

Vn+2,kVn+1,k+1
= 1.

By means of (5), it can be easily verified that the as-
sumption (22) is equivalent to

(23)
Pr

[
Xn+2 is of color X∗

i | Xn+1,k+1
]

= Pr
[
Xn+2 is of color X∗

i | Xn+1,k

]
,

for i = 1, . . . , k, that is, the probability of observing
at the next step a species of type i is independent of
k. By Zabell’s sufficientness postulate and Proposi-
tion 1 together, we know that, for any α ∈ (0,1) and
θ > −α, the two parameter Poisson–Dirichlet process
is the unique Gibbs-type species sampling model for
which (23) holds true. In Section 2 of the supplemen-
tary material, we present a direct proof of this fact,
which is stated here as a proposition. This proposition
holds true for all α < 1 and does not rely on Zabell’s
characterization but only on Proposition 1.

PROPOSITION 2. The two parameter Poisson–
Dirichlet process is the unique Gibbs-type species sam-
pling model for which the assumptions (22) hold true.

Now, let us consider the alternative scenario in which
the weight of the black ball is not updated neither when
the black ball is drawn, nor when a non-black ball is
drawn. Recall that, from the Pólya-like urn scheme of
Zabell [74], this scenario is obtained by letting α → 0.
In other terms, we are considering the predictive proba-
bilities characterizing the Dirichlet process. According
to (18) and (20), in order to never update the black ball
we must assume condition (22) together with

(24)
Vn+2,k+2Vn+1,k

Vn+2,k+1Vn+1,k+1
= 1.
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By means of (5), it can be easily verified that the two
assumptions are equivalent to assuming (23) and

(25)
Pr[Xn+2 is a new color | Xn+1,k+1]

= Pr[Xn+2 is a new color | Xn+1,k].
According to Regazzini [60], for any θ > 0 the Dirich-
let process is the unique species sampling model for
which (23) and (25) hold true. The next proposition
provides an alternative proof of this result, not relying
on the results of Regazzini [60], by only on Proposi-
tion 1. Its proof is presented in Section 2 of the supple-
mentary material.

PROPOSITION 3. The Dirichlet process is the
unique Gibbs-type species sampling model for which
the assumptions (23) and (25) hold true.

So far we discussed the relationship between: (i) the
dependency on k of the ratio Vn+1,k+1/Vn,k and
Vn+1,k/Vn,k , which appear in the predictive probabili-
ties (5); (ii) the updates of the black ball in the above
Pólya-like urn scheme. According to Proposition 2,
the weight of the black ball is updated only when the
black-ball is drawn if and only if Vn+1,k+1/Vn,k de-
pends on k and Vn+1,k/Vn,k does not depend on k. The
opposite scenario consists of updating the weight of
the black ball when a non-black ball is drawn, and not
updating it when the black ball is drawn. According
to (18) and (20), this scenario is obtained by assuming
only (24). In the next proposition, we show that this
constraint alone implies that α = 0. That is, impos-
ing not to reinforce the black ball when a black ball is
picked leads to the trivial scenario in which the weight
of the black ball is actually never updated. See Sec-
tion 2 of the supplementary material for the proof of
the next proposition.

PROPOSITION 4. The Dirichlet process is the
unique Gibbs-type species sampling model for which
the assumption (25) holds true.

If α → 0, then the urn scheme of Zabell [74] reduces
to the Pólya-like urn scheme introduced by Hoppe [33].
Hoppe [33] showed that the configuration of the col-
ored balls after n draws from the urn is distributed as
the sampling formula of Ewens [20], that is, the distri-
bution of the number of different gene types (alleles)
and their frequencies at a selectively neutral locus un-
der the infinitely-many-alleles model of mutation with
rate θ > 0. Hence, the following natural genetic inter-
pretation for the Hoppe’s urn scheme: colors are muta-
tions and the black ball, which is ignored in describing

the urn configuration, is a device for introducing new
mutations. See Crane [16] for detailed account of the
interplay between Hoppe’s urn and Ewens sampling
formula, as well as for their genetic interpretations. Un-
der the Zabell’s urn scheme, as well as under our gen-
eral urn scheme, the distribution of the configuration
of the colored balls after n draws from the urn can be
easily derived from (11). See, for example, Pitman [52,
54]. However, despite explicit generalized Ewens sam-
pling formulae are available, we are not aware of any
genetic interpretation of them. Even for the simplest
case of the Zabell’s urn scheme, a natural genetic inter-
pretation seems missing from the literature. While the
parameter θ might be still interpreted as a mutation pa-
rameter, it is not clear a natural genetic interpretation
for the parameter α ∈ (0,1). See Feng and Hoppe [24]
for a discussion.

4. SUFFICIENTNESS POSTULATES AND
HIERARCHICAL DIRICHLET PROCESSES

The hierarchical Dirichlet process was introduced
in Teh et al. [68], while its two parameter general-
ization is due to Teh [65]. Let P be a species sam-
pling model with nonatomic base distribution ν0. Hi-
erarchical species sampling models are defined as col-
lections of species sampling models, say P1, . . . ,Pr ,
with the same random base distribution P . Due to the
discreteness of P , the support of the Pj ’s is contained
in that of P and, hence, all the Pj ’s share the same
random support of P . A sample from a hierarchical
species sampling model is then part of a random array
(Xj,i)i≥1,1≤j≤r , which is partially exchangeable in the
sense de Finetti [17] originally attached to this term,
that is, each sequence (Xj,i)i≥1 is exchangeable for all
j ≤ r . The distribution of a sample (Xj,i)1≤i≤nj ,1≤j≤r

from a hierarchical species sampling model can be ex-
pressed in the following hierarchical form:

(26)

Xj,i | Pj
ind∼ Pj , i = 1, . . . , nj , j = 1, . . . , r,

Pj | P ind∼ Pj (P ), j = 1, . . . , r,

P ∼ P,

where nj is the size of the sample from Pj and, in the
second line, Pj is indexed by j because the conditional
distribution may depend on additional population-
specific parameters and P . One may think of the sam-
ple (Xj,i)1≤i≤nj ,1≤j≤r as a collection of samples from
r different populations. Within population, observa-
tions are exchangeable, but across populations their
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dependence becomes weaker. Consideration of hier-
archical models defined by layers of species sampling
models raises the interesting problem of whether there
exists sufficientness postulates that characterize the
resulting models. In this section we discuss such a
problem with respect to the two parameter hierarchi-
cal Poisson–Dirichlet process, namely: (i) the Pj ’s are
two parameter Poisson–Dirichlet process with param-
eters αj ∈ [0,1), θj > −αj and with common base
distribution P ; (ii) P is a two parameter Poisson–
Dirichlet process with parameters α ∈ [0,1), γ > −α

and nonatomic base distribution ν0.
To describe the two parameter hierarchical Poisson–

Dirichlet process, we adopt the notation of Teh and Jor-
dan [67]. Let X∗∗

1 , . . . ,X∗∗
K be the K distinct species

observed in the joint sample from the r populations.
Observations in population j are grouped in clusters.
We remark that there may be two or more clusters
in the population j composed of individuals of the
same species. We therefore denote by mj,k the num-
ber of clusters in population j sharing species X∗∗

k

and by nj,t,k the number of observations in popula-
tion j , belonging to the t th cluster and having species
X∗∗

k . Within cluster t observations belong to the same
species. We use dots in the subscripts to denote that we
are summing over indexes, for example, nj ·· and mj ·
are the number of observations and the number of clus-
ters in population j , respectively. Finally, we denote
by (X∗

j,1, . . . ,X
∗
j,mj ·) the species of the mj · clusters in

population j . Given a sample (Xj,i)1≤j≤r,1≤i≤nj ·· , the
predictive probability of Xj,nj ··+1 is

(27)

θj + mj ·αj

θj + nj ··
P(·)

+ 1

θj + nj ··

mj ·∑
t=1

(njt · − αj )δX∗
j,t

(·)

for any j = 1, . . . , r , whereas the predictive probability
for a new cluster X∗

j,mj ·+1 is

(28)
γ + Kα

γ + m··
ν0(·) + 1

γ + m··

K∑
k=1

(m·k − α)δX∗∗
k

(·).

These two formulae should be understood as follows.
Xj,i+1 joins the t th cluster in population j and be-
longs to species X∗

j,t with probability proportional to
(njt · − αj ), or it forms a new cluster with probabil-
ity proportional to (θj + mj ·αj ). In this latter case, the
species of this new cluster, X∗

j,mj ·+1 is sampled from
(28). Such a species is one of those already observed

among all populations, say X∗
k , with probability pro-

portional to (m·k − Kα), or it is a new species with
probability proportional to (γ + Kα). The parameters
αj and θj have the same interpretation as for the pre-
dictive probabilities (17). Instead, α and γ control the
total number and the sharing of cluster values among
populations: the lower γ the lower is the average total
number of different species observed K ; the larger α

the lower is the number of species shared across pop-
ulations. We refer to Teh and Jordan [67] for further
details.

The predictive probabilities of the hierarchical Di-
richlet process arises from (27) and (28) by setting
α = 0 and αj = 0 for any j = 1, . . . , r . We refer to Teh
et al. [68] for a detailed account on this predictive prob-
abilities, with a description in terms of the so-called
Chinese restaurant franchise process. We assume the
θj = θ for any j = 1, . . .. Now, let (Xi)i≥1 be an ex-
changeable sequence directed by a Dirichlet process P

with parameter γ and base distribution ν0. Given P , or
equivalently given (Xi)i≥1, let (Xj,i)i≥1,j≥1 be a col-
lection of conditionally independent exchangeable se-
quences, the j th sequence being directed by a Dirichlet
process Pj with parameter θ and base distribution P .
We observe that in order to implement the second level
of the hierarchy, and generate a finite sample of obser-
vations from multiple populations, it is not necessary to
resort to P , but it is sufficient to have a truncated ver-
sion of the Pólya urn sequence (Xi)i≥1. In particular,
it is enough to have at hand (Xi)i≤n··· , because the ex-
changeable sequences at the second level of the hierar-
chy needs at most n··· conditional independent samples
from P . In the next proposition, we introduce a suf-
ficientness postulate for the hierarchical Dirichlet pro-
cess. Our postulate thus extends the characterization of
Regazzini [60] and reveals some limitations of the hi-
erarchical Dirichlet process.

PROPOSITION 5. Let (Xj,i)i≥1,j≥1 be a partially
exchangeable array directed by a hierarchical species
sampling model, and assume that its predictive prob-
abilities are such that the conditional probability of
X�,n�+1 given the sample (Xj,i)1≤i≤nj ,j≤r is

(29) wn�
F̂�,n�

+ (1 − wn�
)F

[
(Xj,i)1≤i≤nj ,j≤r

]
,

where:

(i) F̂�,n�
is the empirical distribution of X�,1, . . . ,

X�,n�
;

(ii) wn�
varies only with the population specific

sample sizes n�;
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(iii) F [(Xj,i)1≤i≤nj ,j≤r ] does not depend on � and
can include point masses that coincide with the (Xj,1,

. . . ,Xj,nj
) values.

Then the hierarchical Dirichlet process is the directing
measure of the array (Xj,i)i≥1,j≥1.

The proof of Proposition 5 is presented in Section 3
of the supplementary material. Proposition (5) imposes
some constraints on the predictive probabilities of the
partially exchangeable array (Xj,i)i≥1,1≤j≤r . In partic-
ular, the constraint on the form (29) for the predictive
probabilities, with the function F [(Xj,i)1≤i≤nj ,j≤r ]
not depending on � and the weights wn�

depending
only on the sample size n�, is the most relevant in prac-
tice. Indeed this constraint requires that the conditional
probability of discovering a new species in an addi-
tional sample from the population j , given the sam-
ple (Xj,i)1≤i≤nj ,1≤j≤r , depends only on the size of the
sample from the population j , in a way that is homo-
geneous across populations. More formally, probabil-
ities of discovering a new species by sampling from
one of the populations are proportional to the vector
of weights [(1 − wn1), . . . , (1 − wnr )]. This assump-
tion is violated in numerous real-world examples, as
evidenced in Figure 1. This figure shows an estimate
of the Shannon entropy for the distribution of bacte-
rial species in 900 samples of the vaginal microbiome
taken from the work of Ravel et al. [59]. Note that the
predictive probabilities of a hierarchical Dirichlet pro-
cess, conditioned on these data, would assign an equal
probability to the event of discovering a new species

from each of these populations, because the sample
sizes nj ’s are equal, despite the evident disparity in the
diversity of species.

Proposition 5 does not extend easily to the two pa-
rameter hierarchical Poisson–Dirichlet process. In fact,
we believe it may not be trivial to provide a suffient-
ness postulate for this model, unless one makes use
of latent variables. Specifically, consider the predictive
probabilities (27) and (28). If we condition on a set of
variables that determine the steps in (Xj,i)i≥1,1≤j≤r in
which P is sampled, then it is not difficult to formu-
late sufficientness conditions that characterize the ex-
changeable sequences. In particular, the sufficientness
characterization of Zabell [74] could be applied to each
layer of the process. However, conditioning on this set
of variables is not in the spirit of Johnson sufficientness
postulate because, first, the variables that determine
when P is sampled are not observable since the species
observed at those steps are not necessarily “new”, and
second, unlike the exchangeability of a random parti-
tion the hierarchical structure assumed does not have
an apparent subjective motivation. We also note that
model interpretability, in this case, is provided by the
overall probability construction, rather than by char-
acteristics of the joint distribution of dependent ran-
dom partitions, which in most cases presents analytic
expressions that are far from trivial. With the excep-
tion of the correlations between the random probabili-
ties P1, . . . ,Pr , results to quantify and understand the
degree of dependence among (Xj,i)i≥1,1≤j≤r remain
limited.

FIG. 1. The empirical Shannon entropy in the microbial distribution across 900 samples of the vaginal microbiome (Ravel et al. [59]),
which are ranked according to the level of diversity. The dashed blue line shows the Shannon entropy of the Uniform distribution for the same
number of species.
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5. DISCUSSION

In this paper, we reviewed and discussed some non-
parametric counterparts of the celebrated Johnson’s
“sufficientness” postulate. In particular, we presented a
general framework for “sufficientness” which extends
previous characterizations by Regazzini [60], Zabell
[71, 75] and Lo [49] for the Dirichlet process and
two parameter Poisson–Dirichlet process. The reader
is referred to the works of Zabell [73], Walker and
Muliere [69], Rolles [62] and Bacallado et al. [4] for
related “sufficientness” characterizations in the con-
text of neutral to the right random probability mea-
sures and Markov chains. Following the parallel with
the “sufficientness” postulates for the Dirichlet pro-
cess and the two parameter Poisson–Dirichlet process,
we paired our postulate with a simple Pólya-like urn
scheme for describing the predictive probabilities of
Gibbs-type species sampling priors. Such a scheme
provides a novel and intuitive interpretation of these
predictive probabilities in terms of the updates of a se-
quence of balls drawn for a Pólya-like urn. We find
this interpretation particularly useful in order to high-
lights the fundamental differences between the Dirich-
let process, the two parameter Poisson–Dirichlet pro-
cess, and the more general class of Gibbs-type species
sampling models. In particular, we show how the suffi-
cientness postulates originally proposed by Zabell [74]
and Regazzini [60] may be rephrased in terms of our
Pólya-like urn scheme.

The Pólya-like urn schemes for the Dirichlet process
and the two-parameter Poisson–Dirichlet process are
often applied in hierarchical constructions. While hier-
archical species sampling priors had a tremendous im-
pact on several applied fields, it still remains difficult
to guide a selection of the prior distribution with sub-
jective arguments, such as the number of species and
their variability across populations. On the other hand
it also remains challenging to tune hierarchical con-
structions to optimize the performance of the resulting
tools, quantified by classification and prediction error
metrics. Our hope, and a motivation for our work, is
that “sufficientness” postulates and urn schemes con-
tribute to a better understanding and interpretability of
hierarchical constructions [68] and dependent random
distributions [37] that combine layers of exchangeable
random partitions. In particular the study of Gibbs-
type exchangeable random partitions has the potential
of contributing to the critical evaluation of hierarchi-
cal constructions for data analysis. When, for example,
heterogeneous populations, say in ecology of micro-
biome studies, are modeled using dependent random

partitions embedded in hierarchical constructions, how
can we use the imputed layers of partitions generated
through Markov chain Monte Carlo algorithms or other
approaches to evaluate the construction of the prior
model? When can we say that the use of hierarchical
species sampling priors appears appropriate? Which
type of assumption can we leverage on to tackle this
type of problems? The theoretical characterization and
classification of random partitions will allow the sta-
tistical and machine learning communities to approach
these problems.
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