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in probability theory such as Pólya urns, large deviation theory, concen-
tration of measure in high dimension, entropic central limit theorems, and
more.

MSC 2010 subject classifications: Primary 62-02, 05C80, 60C05.
Keywords and phrases: Networks, statistical inference, random graphs,
random trees, community detection, stochastic block model, random geo-
metric graphs, evolving random graphs, preferential attachment.

Received September 2016.

Contents

1 Lecture 1: A primer on exact recovery in the general stochastic block
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 The stochastic block model and notions of recovery . . . . . . . . 3
1.2 From exact recovery to testing multivariate Poisson distributions 5
1.3 Testing multivariate Poisson distributions . . . . . . . . . . . . . 7
1.4 Chernoff-Hellinger divergence . . . . . . . . . . . . . . . . . . . . 9
1.5 Characterizing exact recoverability using CH-divergence . . . . . 10

1.5.1 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . 11

∗This is an original survey paper.
†These notes were prepared for a minicourse presented at University of Washington dur-

ing June 6–10, 2016, and at the XX Brazilian School of Probability held at the São Carlos
campus of Universidade de São Paulo during July 4–9, 2016. We thank the organizers of the
Brazilian School of Probability, Paulo Faria da Veiga, Roberto Imbuzeiro Oliveira, Leandro
Pimentel, and Luiz Renato Fontes, for inviting us to present a minicourse on this topic. We
also thank Sham Kakade, Anna Karlin, and Marina Meila for help with organizing at Uni-
versity of Washington. Many thanks to all the participants who asked good questions and
provided useful feedback, in particular Kira Goldner, Chris Hoffman, Jacob Richey, and Ryo-
kichi Tanaka in Seattle, and Vladimir Belitsky, Santiago Duran, Simon Griffiths, and Roberto
Imbuzeiro Oliveira in São Carlos. We also thank an anonymous reviewer for useful sugges-
tions.

1

http://projecteuclid.org/ssu
http://dx.doi.org/10.1214/17-SS117
mailto:miracz@microsoft.com
mailto:sebubeck@microsoft.com
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1. Lecture 1: A primer on exact recovery in the general stochastic
block model

Community detection is a fundamental problem in many sciences, such as soci-
ology (e.g., finding tight-knit groups in social networks), biology (e.g., detect-
ing protein complexes), and beyond. Given its importance, there have been a
plethora of algorithms developed in the past few decades to detect communities.
But how can we test whether an algorithm performs well? What are the fun-
damental limits to any community detection algorithm? Often in real data the
ground truth is not known (or there is not even a well-defined ground truth), so
judging the performance of algorithms can be difficult. Probabilistic generative
models can be used to model real networks, and even if they do not fit the data
perfectly, they can still be useful: they can act as benchmarks for comparing
different clustering algorithms, since the ground truth is known.

Perhaps the most widely studied generative model that exhibits community
structure is the stochastic block model (SBM). The SBM was first introduced in
sociology [37] and was then studied in several different scientific communities,
including mathematics, computer science, physics, and statistics [23, 24, 35, 10,
43, 52].1 It gives a distribution on graphs with n vertices with a hidden partition
of the nodes into k communities. The relative sizes of the communities, and
the edge densities connecting communities are parameters of the general SBM.
The statistical inference problem is then to recover as much of the community
structure as possible given a realization of the graph, but without knowing any
of the community labels.

1.1. The stochastic block model and notions of recovery

The general stochastic block model is a distribution on graphs with latent com-
munity structure, and it has three parameters: n, the number of vertices; a
probability distribution p = (p1, . . . , pk) that describes the relative sizes of the

communities; and Q ∈ [0, 1]
k×k

, a symmetric k × k matrix that describes the
probabilities with which two given vertices are connected, depending on which
communities they belong to. The number of communities, k, is implicit in this
notation; in these notes we assume that k is a fixed constant. A random graph
from SBM(n, p,Q) is defined as follows:

• The vertex set of the graph is V = {1, . . . , n} ≡ [n].
• Every vertex v ∈ V is independently assigned a (hidden) label σv ∈ [k]

from the probability distribution p on [k]. That is, P (σv = i) = pi for
every i ∈ [k].

• Given the labels of the vertices, each (unordered) pair of vertices (u, v) ∈
V × V is connected independently with probability Qσu,σv .

1Disclaimer: the literature on community detection is vast and rapidly growing. It is not
our intent here to survey this literature; we refer the interested reader to the papers we cite,
as well as the recent survey by Abbe [1], for further references.
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Fig 1. A schematic of the general stochastic block model.

Example 1.1 (Symmetric communities). A simple example to keep in mind
is that of symmetric communities, with more edges within communities than
between communities. This is modeled by the SBM with pi = 1/k for all i ∈ [k]
and Qi,j = a if i = j and Qi,j = b otherwise, with a > b > 0.

We write G ∼ SBM(n, p,Q) for a graph generated according to the SBM
without the hidden vertex labels revealed. The goal of a statistical inference
algorithm is to recover as many labels as possible using only the underlying
graph as an observation. There are various notions of success that are worth
studying.

• Weak recovery (also known as detection). An algorithm is said to weakly
recover or detect the communities if it outputs a partition of the nodes
which is positively correlated with the true partition, with high probability
(whp)2.

• Partial recovery. How much can be recovered about the communities?
An algorithm is said to recover communities with an accuracy of α ∈ [0, 1]
if it outputs a labelling of the nodes which agrees with the true labelling on
a fraction α of the nodes whp. An important special case is when only o(n)
vertices are allowed to be misclassified whp, known as weak consistency
or almost exact recovery.

• Exact recovery (also known as recovery or strong consistency). The
strongest notion of reconstruction is to recover the labels of all vertices
exactly whp. When this is not possible, it can still be of interest to un-
derstand which communities can be exactly recovered, if not all; this is
sometimes known as “partial-exact-recovery”.

In all the notions above, the agreement of a partition with the true partition is
maximized over all relabellings of the communities, since we are not interested
in the specific original labelling per se, but rather the partition (community
structure) it induces.

The different notions of recovery naturally lead to studying different regimes
of the parameters. It is well-known that in the Erdős-Rényi random graph—

2In these notes “with high probability” stands for with probability tending to 1 as the
number of nodes in the graph, n, tends to infinity.
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which is the SBM with a single block, or, equivalently, the SBM where all the
connection probabilities are equal—the threshold connection probability for the
graph to have a giant component is 1/n (see [32]) and the threshold connection
probability for it to be connected is ln(n)/n (see [31]). These results suggest what
the relevant regimes are for the different notions of recovery in the SBM. For
weak recovery to be possible, many vertices in all but one community should be
non-isolated (in the symmetric case this means that there should be a giant com-
ponent), requiring the edge probabilities to be Ω (1/n). For exact recovery, all
vertices in all but one community should be non-isolated (in the symmetric case
this means that the graph should be connected), requiring the edge probabilities
to be Ω (ln(n)/n). In these regimes it is natural to scale the edge probability
matrices accordingly, i.e., to consider SBM(n, p,Q/n) or SBM(n, p, ln (n)Q/n),
where Q ∈ R

k×k
+ .

There has been lots of work in the past few years understanding the funda-
mental limits to recovery under the various notions discussed above. For weak
recovery there is a sharp phase transition, the threshold of which was first con-
jectured in [26]. This was proven first for two symmetric communities [47, 48]
and then for multiple communities [4]. Partial recovery is less well understood,
and finding the fraction of nodes that can be correctly recovered for a given set
of parameters is an open problem; see [49] for results in this direction for two
symmetric communities.

In this lecture we are interested in exact recovery, for which Abbe and Sandon
gave the value of the threshold for the general SBM, and showed that a quasi-
linear time algorithm works all the way to the threshold [3] (building on previous
work that determined the threshold for two symmetric communities [2, 50]). The
remainder of this lecture is an exposition of their main results and a few of the
key ideas that go into proving and understanding it.

1.2. From exact recovery to testing multivariate Poisson
distributions

Recall that we are interested in the logarithmic degree regime for exact recovery,
i.e., we consider G ∼ SBM(n, p, ln(n)Q/n), where Q ∈ R

k×k
+ is independent of n.

We also assume that the communities have linear size, i.e., that p is independent
of n, and pi ∈ (0, 1) for all i. Our goal is to recover the labels of all the vertices
whp.

As a thought experiment, imagine that not only is the graph G given, but
also all vertex labels are revealed, except for that of a given vertex v ∈ V . Is it
possible to determine the label of v?

Understanding this question is key for understanding exact recovery, since if
the error probability of this is too high, then exact recovery will not be possible.
On the other hand, it turns out that in this regime it is possible to recover
all but o(n) labels using an initial partial recovery algorithm. The setup of the
thought experiment then becomes relevant, and if we can determine the label of
v given the labels of all the other nodes with low error probability, then we can
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Fig 2. Suppose all community labels are known except that of vertex v. Can the label of v be
determined based on its neighbors’ labels?

correct all errors made in the initial partial recovery algorithm, leading to exact
recovery. We will come back to the connection between the thought experiment
and exact recovery; for now we focus on understanding this thought experiment.

Given the labels of all vertices except v, the information we have about v
is the number of nodes in each community it is connected to. In other words,
we know the degree profile d(v) of v, where, for a given labelling of the graph’s
vertices, the i-th component di(v) is the number of edges between v and the
vertices in community i.

The distribution of the degree profile d(v) depends on the community that v
belongs to. Recall that the community sizes are given by a multinomial distribu-
tion with parameters n and p, and hence the relative size of community i ∈ [k]
concentrates on pi. Thus if σv = j, the degree profile d(v) = (d1(v), . . . , dk(v))
can be approximated by independent binomials, with di(v) approximately dis-
tributed as Bin (npi, ln(n)Qi,j/n), where Bin(m, q) denotes the binomial dis-
tribution with m trials and success probability q. In this regime, the binomial
distribution is well-approximated by a Poisson distribution of the same mean.
In particular, Le Cam’s inequality gives that

TV (Bin (na, ln(n)b/n) ,Poi (ab ln(n))) ≤ 2ab2 (ln(n))
2

n
,

where Poi (λ) denotes the Poisson distribution with mean λ, and TV denotes
the total variation distance3. Using the additivity of the Poisson distribution
and the triangle inequality, we get that

TV

⎛⎝L (d(v)) ,Poi

⎛⎝ln (n)
∑
i∈[k]

piQi,jei

⎞⎠⎞⎠ = O

(
(ln (n))

2

n

)
,

where L (d(v)) denotes the law of d(v) conditionally on σv = j and ei is the i-th
unit vector.

3Recall that the total variation distance between two random variables X and Y tak-
ing values in a finite space X with laws μ and ν is defined as TV (μ, ν) ≡ TV (X,Y ) =
1
2

∑
x∈X |μ (x)− ν (x)| = supA |μ (A)− ν (A)|.
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Thus the degree profile of a vertex in community j is approximately Poisson
distributed with mean ln (n)

∑
i∈[k] piQi,jei. Defining P = diag(p), this can be

abbreviated as ln (n) (PQ)j , where (PQ)j denotes the j-th column of the matrix
PQ. We call the quantity (PQ)j the community profile of community j; this
is the quantity that determines the distribution of the degree profile of vertices
from a given community.

Our thought experiment has thus been reduced to a Bayesian hypothesis
testing problem between k multivariate Poisson distributions. The prior on the
label of v is given by p, and we get to observe the degree profile d(v), which
comes from one of k multivariate Poisson distributions, which have mean ln(n)
times the community profiles (PQ)j , j ∈ [k].

1.3. Testing multivariate Poisson distributions

We now turn to understanding the testing problem described above; the setup
is as follows. We consider a Bayesian hypothesis testing problem with k hy-
potheses. The random variable H takes values in [k] with prior given by p, i.e.,
P (H = j) = pj . We do not observe H, but instead we observe a draw from a
multivariate Poisson distribution whose mean depends on the realization of H:
given H = j, the mean is λ(j) ∈ R

k
+. In short:

D |H = j ∼ Poi (λ(j)) , j ∈ [k].

In more detail:

P (D = d |H = j) = Pλ(j) (d) , d ∈ Z
k
+,

where
Pλ(j) (d) =

∏
i∈[k]

Pλi(j) (di)

and

Pλi(j) (di) =
λi(j)

di

di!
e−λi(j).

Our goal is to infer the value of H from a realization of D. The error probability
is minimized by the maximum a posteriori (MAP) rule, which, upon observing
D = d, selects

argmax
j∈[k]

P (D = d |H = j) pj

as an estimate for the value of H, with ties broken arbitrarily. Let Pe denote the
error of the MAP estimator. One can think of the MAP estimator as a tourna-
ment of k − 1 pairwise comparisons of the hypotheses: if P (D = d |H = i) pi >
P (D = d |H = j) pj then the MAP estimate is not j. The probability that one
makes an error during such a comparison is exactly

Pe (i, j) :=
∑
x∈Z

k
+

min {P (D = x |H = i) pi,P (D = x |H = j) pj} . (1.1)
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For finite k, the error of the MAP estimator is on the same order as the largest
pairwise comparison error, i.e., maxi,j Pe (i, j). In particular, we have that

1

k − 1

k∑
i=1

k∑
j=i+1

Pe (i, j) ≤ Pe ≤
k∑

i=1

k∑
j=i+1

Pe (i, j) . (1.2)

Exercise 1.1. Show (1.2).

Thus we desire to understand the magnitude of the error probability Pe (i, j)
in (1.1) in the particular case when the conditional distribution of D given H
is a multivariate Poisson distribution with mean vector on the order of ln (n).
The following result determines this error up to first order in the exponent.

Lemma 1.2 (Abbe and Sandon [3]). For any c1, c2 ∈ (0,∞)
k
with c1 �= c2 and

p1, p2 > 0, we have

∑
x∈Z

k
+

min
{
Pln(n)c1 (x) p1,Pln(n)c2 (x) p2

}
= O

(
n
−D+(c1,c2)−

ln ln(n)
2 ln(n)

)
, (1.3)

∑
x∈Z

k
+

min
{
Pln(n)c1 (x) p1,Pln(n)c2 (x) p2

}
= Ω

(
n
−D+(c1,c2)−

k ln ln(n)
2 ln(n)

)
, (1.4)

where

D+ (c1, c2) = max
t∈[0,1]

∑
i∈[k]

(
tc1 (i) + (1− t) c2 (i)− c1 (i)

t
c2 (i)

1−t
)
. (1.5)

We do not go over the proof of this statement—which we leave to the reader as
a challenging exercise—but we provide some intuition in the univariate case. Fig-
ure 3 illustrates the probability mass function of two Poisson distributions, with

Fig 3. Testing univariate Poisson distributions. The figure plots the probability mass function
of two Poisson distributions, with means λ = 20 and μ = 30, respectively.
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means λ = 20 and μ = 30, respectively. Observe that min {Pλ (x) ,Pμ (x)} de-
cays rapidly away from xmax := argmaxx∈Z+

min {Pλ (x) ,Pμ (x)}, so we can ob-
tain a good estimate of the sum

∑
x∈Z+

min {Pλ (x) ,Pμ (x)} by simply estimat-

ing the term min {Pλ (xmax) ,Pμ (xmax)}. Now observe that xmax must satisfy

Pλ (xmax) ≈ Pμ (xmax); after some algebra this is equivalent to xmax ≈ λ−μ
log(λ/μ) .

Let t∗ denote the maximizer in the expression of D+ (λ, μ) in (1.5). By differ-
entiating in t, we obtain that t∗ satisfies λ−μ− log (λ/μ) ·λt∗μ1−t∗ = 0, and so
λt∗μ1−t∗ = λ−μ

log(λ/μ) . Thus we see that xmax ≈ λt∗μ1−t∗ , from which, after some

algebra, we get that Pλ (xmax) ≈ Pμ (xmax) ≈ exp (−D+ (λ, μ)).
The proof of (1.4) in the multivariate case follows along the same lines: the

single term corresponding to

xmax := argmax
x∈Z

k
+

min
{
Pln(n)c1 (x) ,Pln(n)c2 (x)

}
gives the lower bound. For the upper bound of (1.3) one has to show that the
other terms do not contribute much more.

Exercise 1.2. Prove Lemma 1.2.

Our conclusion is thus that the error exponent in testing multivariate Pois-
son distributions is given by the explicit quantity D+ in (1.5). The discussion
in Section 1.2 then implies that D+ plays an important role in the threshold
for exact recovery. In particular, it intuitively follows from Lemma 1.2 that a
necessary condition for exact recovery should be that

min
i,j∈[k],i �=j

D+

(
(PQ)i , (PQ)j

)
≥ 1.

Suppose on the contrary that D+

(
(PQ)i , (PQ)j

)
< 1 for some i and j. This

implies that the error probability in the testing problem is Ω
(
nε−1

)
for some

ε > 0 for all vertices in communities i and j. Since the number of vertices in
these communities is linear in n, and most of the hypothesis testing problems
are approximately independent, one expects there to be no error in the testing

problems with probability at most
(
1− Ω

(
nε−1

))Ω(n)
= exp (−Ω (nε)) = o(1).

1.4. Chernoff-Hellinger divergence

Before moving on to the threshold for exact recovery in the general SBM, we
discuss connections of D+ to other, well-known measures of divergence. Writing

Dt (μ, ν) :=
∑
x∈[k]

(
tμ (x) + (1− t) ν (x)− μ (x)

t
ν (x)

1−t
)

we have that
D+ (μ, ν) = max

t∈[0,1]
Dt (μ, ν) .
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For any fixed t, Dt can be written as

Dt (μ, ν) =
∑
x∈[k]

ν (x) ft

(
μ (x)

ν (x)

)
,

where ft (x) = 1 − t + tx − xt, which is a convex function. Thus Dt is an f -
divergence, part of a family of divergences that generalize the Kullback-Leibler
(KL) divergence (also known as relative entropy), which is obtained for f(x) =
x ln(x). The family of f -divergences with convex f share many useful properties,
and hence have been widely studied in information theory and statistics. The

special case ofD1/2 (μ, ν) =
1
2

∥∥√μ−√
ν
∥∥2
2
is known as the Hellinger divergence.

The Chernoff divergence is defined as

C∗ (μ, ν) = max
t∈(0,1)

− log
∑
x

μ(x)tν(x)1−t,

and so if μ and ν are probability vectors, then D+ (μ, ν) = 1 − e−C∗(μ,ν). Be-
cause of these connections, Abbe and Sandon termed D+ the Chernoff-Hellinger
divergence.

While the quantity D+ still might seem mysterious, even in light of these
connections, a useful point of view is that Lemma 1.2 gives D+ an operational
meaning.

1.5. Characterizing exact recoverability using CH-divergence

Going back to the exact recovery problem in the general SBM, let us jump right
in and state the recoverability threshold of Abbe and Sandon: exact recovery
in SBM(n, p, ln(n)Q/n) is possible if and only if the CH-divergence between all
pairs of community profiles is at least 1.

Theorem 1.3 (Abbe and Sandon [3]). Let k ∈ Z+ denote the number of commu-
nities, let p ∈ (0, 1)k with ‖p‖1 = 1 denote the community prior, let P = diag(p),

and let Q ∈ (0,∞)
k×k

be a symmetric k×k matrix with no two rows equal. Exact
recovery is solvable in SBM(n, p, ln(n)Q/n) if and only if

min
i,j∈[k],i �=j

D+

(
(PQ)i , (PQ)j

)
≥ 1. (1.6)

This theorem thus provides an operational meaning to the CH-divergence for
the community recovery problem.

Example 1.4 (Symmetric communities). Consider again k symmetric commu-
nities, that is, pi = 1/k for all i ∈ [k], Qi,j = a if i = j, and Qi,j = b otherwise,
with a, b > 0. Then exact recovery is solvable in SBM(n, p, ln(n)Q/n) if and
only if ∣∣∣√a−

√
b
∣∣∣ ≥ √

k. (1.7)

We note that in this case D+ is the same as the Hellinger divergence.

Exercise 1.3. Deduce from Theorem 1.3 that (1.7) gives the threshold in the
example above.
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1.5.1. Achievability

Let us now see how Theorem 1.3 follows from the hypothesis testing results,
starting with the achievability. When the condition (1.6) holds, then Lemma 1.2
tells us that in the hypothesis testing problem between Poisson distributions
the error of the MAP estimate is o(1/n). Thus if the setting of the thought
experiment described in Section 1.2 applies to every vertex, then by looking
at the degree profiles of the vertices we can correctly reclassify all vertices,
and the probability that we make an error is o(1) by a union bound. However,
the setting of the thought experiment does not quite apply. Nonetheless, in
this logarithmic degree regime it is possible to partially reconstruct the labels
of the vertices, with only o(n) vertices being misclassified. The details of this
partial reconstruction procedure would require a separate lecture—in brief, it
determines whether two vertices are in the same community or not by looking
at how their log(n) size neighborhoods interact—so now we will take this for
granted; we refer the interested reader to [3] for more.

It is possible to show that there exists a constant δ such that if one estimates
the label of a vertex v based on classifications of its neighbors that are wrong
with probability x, then the probability of misclassifying v is at most nδx times
the probability of error if all the neighbors of v were classified correctly. The
issue is that the standard partial recovery algorithm has a constant error rate
for the classifications, thus the error rate of the degree profiling step could be
nc times as large as the error in the hypothesis testing problem, for some c > 0.

This is an issue when mini �=j D+

(
(PQ)i , (PQ)j

)
< 1 + c.

To get around this, one can do multiple rounds of more accurate classifica-
tions. First, one obtains a partial reconstruction of the labels with an error rate
that is a sufficiently low constant. After applying the degree-profiling step to
each vertex, the classification error at each vertex is now O(n−c′) for some c′ > 0.
Hence after applying another degree-profiling step to each vertex, the classifi-

cation error at each vertex will now be at most nδ×O(n−c′ ) × o(1/n) = o(1/n).
Thus applying a union bound at this stage we can conclude that all vertices are
correctly labelled whp.

1.5.2. Impossibility

The necessity of condition (1.6) was already described at a high level at the end
of Section 1.3. Here we give some details on how to deal with the dependencies
that arise.

Assume that (1.6) does not hold, and let i and j be two communities that

violate the condition, i.e., for which D+

(
(PQ)i , (PQ)j

)
< 1. We want to argue

that vertices in communities i and j cannot all be distinguished, and so any
classification algorithm has to make at least one error whp. An important fact
that we use is that the lower bound (1.4) arises from a particular choice of degree
profile that is both likely for the two communities. Namely, define the degree
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profile x by

x� =
⌊
(PQ)

t∗

�,i (PQ)
1−t∗

�,j ln (n)
⌋

for every � ∈ [k], where t∗ ∈ [0, 1] is the maximizer in D+

(
(PQ)i , (PQ)j

)
,

i.e., the value for which D+

(
(PQ)i , (PQ)j

)
= Dt∗

(
(PQ)i , (PQ)j

)
. Then

Lemma 1.2 tells us that for any vertex in community i or j, the probability
that it has degree profile x is at least

Ω
(
n−D+((PQ)i,(PQ)j)/ (ln (n))

k/2
)
,

which is at least Ω
(
nε−1

)
for some ε > 0 by assumption.

To show that this holds for many vertices in communities i and j at once,
we first select a random set S of n/ (ln (n))

3
vertices. Whp the intersection of

S with any community � is within
√
n of the expected value p�n/ (ln (n))

3
, and

furthermore a randomly selected vertex in S is not connected to any other vertex
in S. Thus the distribution of a vertex’s degree profile excluding connections to
vertices in S is essentially a multivariate Poisson distribution as before. We
call a vertex in S ambiguous if for each � ∈ [k] it has exactly x� neighbors in
community � that are not in S. By Lemma 1.2 we have that a vertex in S that is
in community i or j is ambiguous with probability Ω

(
nε−1

)
. By definition, for a

fixed community assignment and choice of S, there is no dependence on whether
two vertices are ambiguous. Furthermore, due to the choice of the size of S, whp
there are at least ln (n) ambiguous vertices in community i and at least ln (n)
ambiguous vertices in community j that are not adjacent to any other vertices
in S. These 2 ln (n) are indistinguishable, so no algorithm classifies all of them

correctly with probability greater than 1/
(
2 ln(n)
ln(n)

)
, which tends to 0 as n → ∞.

1.5.3. The finest exact partition recoverable

We conclude by mentioning that this threshold generalizes to finer questions. If
exact recovery is not possible, what is the finest partition that can be recovered?
We say that exact recovery is solvable for a community partition [k] = �t

s=1As,
where As is a subset of [k], if there exists an algorithm that whp assigns to every
vertex an element of {A1, . . . , At} that contains its true community. The finest
partition that is exactly recoverable can also be expressed using CH-divergence
in a similar fashion. It is the largest collection of disjoint subsets such that the
CH-divergence between these subsets is at least 1, where the CH-divergence
between two subsets is defined as the minimum of the CH-divergences between
any two community profiles in these subsets.

Theorem 1.5 (Abbe and Sandon [3]). Under the same settings as in The-
orem 1.3, exact recovery is solvable in SBM(n, p, ln(n)Q/n) for a partition
[k] = �t

s=1As if and only if

D+

(
(PQ)i , (PQ)j

)
≥ 1

for every i and j in different subsets of the partition.
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1.6. Outlook: open problems and extensions

There has been a huge recent interest in the SBM, initiated by the work of De-
celle et al. [26], which has led to enormous advancements in this area. Nonethe-
less, plenty of exciting avenues for further research remain. We refer the reader
to the recent survey by Abbe [1] for a thorough treatment of the SBM and re-
cent developments, including a more detailed discussion of open problems; here
we mention just a few of them.

In this lecture we discussed exact recovery in the case of linear-size commu-
nities. A natural open problem is to understand what happens in the case of
sublinear-size communities: where do the phase transitions occur?

In the case of weak recovery, Abbe and Sandon [4] recently showed that in the
case of k ≥ 4 communities, it is possible to information-theoretically recover the
communities below the so-called KS threshold. Is it possible to locate the precise
information-theoretic threshold in this setting? Is it possible to show that the
computational threshold is the KS threshold, thereby proving that there exists
an information-computation gap?

In many applications, communities are not disjoint but overlapping. How well
can we detect overlapping communities? What are the fundamental limits? To
understand the utility of the SBM we must also study how robust the obtained
results are to changes in the model. What can we say about variants of the
SBM, such as including degree corrections or allowing adversaries to modify the
graph?

2. Lecture 2: Estimating the dimension of a random geometric
graph on a high-dimensional sphere

Many real-world networks have strong structural features and our goal is often
to recover these hidden structures. In the previous lecture we studied the funda-
mental limits of inferring communities in the stochastic block model, a natural
generative model for graphs with community structure. Another possibility is
geometric structure. Many networks coming from physical considerations nat-
urally have an underlying geometry, such as the network of major roads in a
country. In other networks this stems from a latent feature space of the nodes.
For instance, in social networks a person might be represented by a feature vec-
tor of their interests, and two people are connected if their interests are close
enough; this latent metric space is referred to as the social space [36].

In such networks the natural questions probe the underlying geometry. Can
one detect the presence of geometry? If so, can one estimate various aspects
of the geometry, e.g., an appropriately defined dimension? In this lecture we
study these questions in a particularly natural and simple generative model of
a random geometric graph: n points are picked uniformly at random on the
d-dimensional sphere, and two points are connected by an edge if and only if
they are sufficently close.4

4This lecture is based on [19].
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We are particularly interested in the high-dimensional regime, motivated by
recent advances in all areas of applied mathematics, and in particular statistics
and learning theory, where high-dimensional feature spaces are becoming the
new norm. While the low-dimensional regime has been studied for a long time
in probability theory [51], the high-dimensional regime brings about a host of
new and interesting questions.

2.1. A simple random geometric graph model and basic questions

Let us now define more precisely the random geometric graph model we consider
and the questions we study. In general, a geometric graph is such that each vertex
is labeled with a point in some metric space, and an edge is present between
two vertices if the distance between the corresponding labels is smaller than
some prespecified threshold. We focus on the case where the underlying metric

space is the Euclidean sphere Sd−1 =
{
x ∈ R

d : ‖x‖2 = 1
}
, and the latent labels

are i.i.d. uniform random vectors in S
d−1. We denote this model by G(n, p, d),

where n is the number of vertices and p is the probability of an edge between
two vertices (p determines the threshold distance for connection). This model
is closely related to latent space approaches to social network analysis [36], and
it has applications to remote sensing and finance as well [27]. Locally sparsified
versions of related random geometric graphs also serve as models for wireless
networks, see, e.g., [15, 16, 17] and the references therein.

Slightly more formally, G(n, p, d) is defined as follows. Let X1, . . . , Xn be in-
dependent random vectors, uniformly distributed on Sd−1. In G(n, p, d), distinct
vertices i ∈ [n] and j ∈ [n] are connected by an edge if and only if 〈Xi, Xj〉 ≥ tp,d,
where the threshold value tp,d ∈ [−1, 1] is such that P (〈X1, X2〉 ≥ tp,d) = p. For
example, when p = 1/2 we have tp,d = 0.

The most natural random graph model without any structure is the stan-
dard Erdős-Rényi random graph G(n, p), where any two of the n vertices are
independently connected with probability p.

We can thus formalize the question of detecting underlying geometry as a
simple hypothesis testing question. The null hypothesis is that the graph is
drawn from the Erdős-Rényi model, while the alternative is that it is drawn
from G(n, p, d). In brief:

H0 : G ∼ G(n, p), H1 : G ∼ G(n, p, d). (2.1)

To understand this question, the basic quantity we need to study is the to-
tal variation distance between the two distributions on graphs, G(n, p) and
G(n, p, d), denoted by TV (G(n, p), G(n, p, d)); recall that the total variation
distance between two probability measures P and Q is defined as TV (P,Q) =
1
2 ‖P −Q‖1 = supA |P (A)−Q(A)|. We are interested in particular in the case
when the dimension d is large, growing with n.

It is intuitively clear that if the geometry is too high-dimensional, then it
is impossible to detect it, while a low-dimensional geometry will have a strong
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effect on the generated graph and will be detectable. How fast can the dimension
grow with n while still being able to detect it? Most of this lecture will focus
on this question.

If we can detect geometry, then it is natural to ask for more information.
Perhaps the ultimate goal would be to find an embedding of the vertices into
an appropriate dimensional sphere that is a true representation, in the sense
that the geometric graph formed from the embedded points is indeed the orig-
inal graph. More modestly, can the dimension be estimated? We touch on this
question at the end of the lecture.

2.2. The dimension threshold for detecting underlying geometry

The high-dimensional setting of the random geometric graph G(n, p, d) was first
studied by Devroye, György, Lugosi, and Udina [27], who showed that if n is
fixed and d → ∞, then

TV (G(n, p), G(n, p, d)) → 0,

that is, geometry is indeed lost in high dimensions. More precisely, they show
that this convergence happens when d � n72n

2/2.5 This follows by observing
that for fixed n, the multivariate central limit theorem implies that as d → ∞,
the inner products of the latent vectors converge in distribution to a standard
Gaussian: (

1√
d
〈Xi, Xj〉

)
{i,j}∈([n]

2 )

d→∞
=⇒ N

(
0, I(n2)

)
.

The Berry-Esseen theorem gives a convergence rate, which then allows to show
that for any graph G on n vertices, |P (G(n, p) = G)− P (G(n, p, d) = G)| =

O
(√

n7/d
)
; the factor of 2n

2/2 comes from applying this bound to every term

in the L1 distance.
However, the result above is not tight, and we seek to understand the fun-

damental limits to detecting underlying geometry. The dimension threshold for
dense graphs was recently found in [19], and it turns out that it is d ≈ n3, in
the following sense.

Theorem 2.1 (Bubeck, Ding, Eldan, Rácz [19]). Let p ∈ (0, 1) be fixed. Then

TV (G(n, p), G(n, p, d)) →
{

0, if d � n3, (2.2)

1, if d � n3. (2.3)

Moreover, in the latter case there exists a computationally efficient test to detect
underlying geometry (with running time O

(
n3

)
).

Most of the lecture will be devoted to understanding this theorem. At the end
we will consider this same question for sparse graphs (where p = c/n), where
determining the dimension threshold is an intriguing open problem.

5Throughout these notes we use standard asymptotic notation; for instance, f (t) � g (t)
as t → ∞ if limt→∞ f (t) /g (t) = 0.
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2.3. The triangle test

A natural test to uncover geometric structure is to count the number of triangles
in G. Indeed, in a purely random scenario, vertex u being connected to both v
and w says nothing about whether v and w are connected. On the other hand,
in a geometric setting this implies that v and w are close to each other due to
the triangle inequality, thus increasing the probability of a connection between
them. This, in turn, implies that the expected number of triangles is larger in
the geometric setting, given the same edge density. Let us now compute what
this statistic gives us.

Fig 4. Given that u is connected to both v and w, v and w are more likely to be connected
under G(n, p, d) than under G(n, p).

For a graph G, let A denote its adjacency matrix, i.e., Ai,j = 1 if vertices
i and j are connected, and 0 otherwise. Then TG (i, j, k) := Ai,jAi,kAj,k is the
indicator variable that three vertices i, j, and k form a triangle, and so the
number of triangles in G is

T (G) :=
∑

{i,j,k}∈([n]
3 )

TG (i, j, k) .

By linearity of expectation, for both models the expected number of triangles
is

(
n
3

)
times the probability of a triangle between three specific vertices. For the

Erdős-Rényi random graph the edges are independent, so the probability of a
triangle is p3, and thus we have

E [T (G(n, p))] =

(
n

3

)
p3.

For G(n, p, d) it turns out that for any fixed p ∈ (0, 1) we have

P
(
TG(n,p,d) (1, 2, 3) = 1

)
≈ p3

(
1 +

Cp√
d

)
(2.4)

for some constant Cp > 0, which gives that

E [T (G(n, p, d))] ≥
(
n

3

)
p3

(
1 +

Cp√
d

)
.

Showing (2.4) is somewhat involved, but in essence it follows from the concen-
tration of measure phenomenon on the sphere, namely that most of the mass

on the high-dimensional sphere is located in a band of O
(
1/

√
d
)
around the
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Fig 5. If X1 and X2 are two independent uniform points on the d-dimensional sphere Sd−1,
then their inner product 〈X1, X2〉 is on the order of 1/

√
d due to the concentration of measure

phenomenon on the sphere. This then implies that the probability of a triangle in G(n, 1/2, d)

is (1/2)3 + c/
√
d for some constant c > 0.

equator. We sketch here the main intuition for p = 1/2, which is illustrated in
Figure 5.

Let X1, X2, and X3 be independent uniformly distributed points in S
d−1.

Then

P
(
TG(n,1/2,d) (1, 2, 3) = 1

)
= P (〈X1, X2〉 ≥ 0, 〈X1, X3〉 ≥ 0, 〈X2, X3〉 ≥ 0)

= P (〈X2, X3〉 ≥ 0 | 〈X1, X2〉 ≥ 0, 〈X1, X3〉 ≥ 0)

× P (〈X1, X2〉 ≥ 0, 〈X1, X3〉 ≥ 0)

=
1

4
× P (〈X2, X3〉 ≥ 0 | 〈X1, X2〉 ≥ 0, 〈X1, X3〉 ≥ 0) ,

where the last equality follows by independence. So what remains is to show that
this latter conditional probability is approximately 1/2 + c/

√
d. To compute

this conditional probability what we really need to know is the typical angle
is between X1 and X2. By rotational invariance we may assume that X1 =
(1, 0, 0, . . . , 0), and hence 〈X1, X2〉 = X2(1), the first coordinate of X2. One
way to generate X2 is to sample a d-dimensional standard Gaussian and then
normalize it by its length. Since the norm of a d-dimensional standard Gaussian
is very well concentrated around

√
d, it follows that X2(1) is on the order of

1/
√
d. Conditioned on X2(1) ≥ 0, this typical angle gives the boost in the

conditional probability that we see. See Figure 5 for an illustration.
Thus we see that the boost in the number of triangles in the geometric setting

is Θ
(
n3/

√
d
)
in expectation:
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E [T (G(n, p, d))]− E [T (G(n, p))] ≥
(
n

3

)
Cp√
d
.

To be able to tell apart the two graph distributions based on the number of
triangles, the boost in expectation needs to be much greater than the standard
deviation.

Exercise 2.1. Show that

Var (T (G (n, p))) =

(
n

3

)(
p3 − p6

)
+

(
n

4

)(
4

2

)(
p5 − p6

)
and that Var (T (G (n, p, d))) ≤ n4.

Exercise 2.2. Show that if

|E [T (G(n, p, d))]− E [T (G(n, p))]|

� max
{√

Var (T (G (n, p))),
√

Var (T (G (n, p, d)))
}
,

then
TV (G(n, p), G(n, p, d)) → 1.

Putting together Exercises 2.1 and 2.2 we see that TV (G(n, p), G(n, p, d)) →
1 if n3/

√
d �

√
n4, which is equivalent to d � n2.

2.4. Signed triangles are more powerful

While triangles detect geometry up until d � n2, are there even more powerful
statistics that detect geometry for larger dimensions? One can check that longer
cycles also only work when d � n2, as do several other natural statistics. Yet it
turns out that the underlying geometry can be detected even when d � n3.

The simple idea that leads to this improvement is to consider signed triangles.
We have already noticed that triangles are more likely in the geometric setting
than in the purely random setting. This also means that induced wedges (i.e.,
when there are exactly two edges among the three possible ones) are less likely
in the geometric setting. Similarly, induced single edges are more likely, and
induced independent sets on three vertices are less likely in the geometric setting.
Figure 6 summarizes these observations.

Fig 6. This figure summarizes which patterns are more or less likely in the geometric set-
ting than in the purely random setting. The signed triangles statistic reweights the different
patterns with positive and negative weights.
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The signed triangles statistic incorporates these observations by giving the
different patterns positive or negative weights. More precisely, we define

τ (G) :=
∑

{i,j,k}∈([n]
3 )

(Ai,j − p) (Ai,k − p) (Aj,k − p) .

The key insight motivating this definition is that the variance of signed trian-
gles is much smaller than the variance of triangles, due to the cancellations
introduced by the centering of the adjacency matrix: the Θ

(
n4

)
term vanishes,

leaving only the Θ
(
n3

)
term.

Exercise 2.3. Show that
E [τ (G(n, p))] = 0

and

Var (τ (G(n, p))) =

(
n

3

)
p3 (1− p)

3
.

On the other hand it can be shown that

E [τ (G(n, p, d))] ≥ cpn
3/
√
d, (2.5)

so the gap between the expectations remains. Furthermore, it can also be shown
that the variance also decreases for G(n, p, d) and we have

Var (τ (G(n, p, d))) ≤ n3 +
3n4

d
. (2.6)

Putting everything together and using Exercise 2.2 for the signed triangles statis-
tic τ , we get that TV (G(n, p), G(n, p, d)) → 1 if n3/

√
d �

√
n3 + n4/d, which

is equivalent to d � n3. This concludes the proof of (2.3) from Theorem 2.1.

2.5. Barrier to detecting geometry: when Wishart becomes GOE

We now turn to proving (2.2), which, together with (2.3), shows that the thresh-
old dimension for detecting geometry is n3. This also shows that the signed tri-
angle statistic is near-optimal, since it can detect geometry whenever d � n3.

There are essentially three main ways to bound the total variation of two
distributions from above: (i) if the distributions have nice formulas associated
with them, then exact computation is possible; (ii) through coupling the distri-
butions; or (iii) by using inequalities between probability metrics to switch the
problem to bounding a different notion of distance between the distributions.
Here, while the distribution of G(n, p, d) does not have a nice formula associated
with it, the main idea is to view this random geometric graph as a function of an
n×n Wishart matrix with d degrees of freedom—i.e., a matrix of inner products
of n d-dimensional Gaussian vectors—denoted by W (n, d). It turns out that one
can view G(n, p) as (essentially) the same function of an n × n GOE random
matrix—i.e., a symmetric matrix with i.i.d. Gaussian entries on and above the
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diagonal—denoted by M(n). The upside of this is that both of these random
matrix ensembles have explicit densities that allow for explicit computation. We
explain this connection here in the special case of p = 1/2 for simplicity; see [19]
for the case of general p.

Recall that if Y1 is a standard normal random variable in R
d, then Y1/ ‖Y1‖ is

uniformly distributed on the sphere Sd−1. Consequently we can viewG (n, 1/2, d)
as a function of an appropriate Wishart matrix, as follows. Let Y be an n × d
matrix where the entries are i.i.d. standard normal random variables, and let
W ≡ W (n, d) = Y Y T be the corresponding n × n Wishart matrix. Note that

Wii = 〈Yi, Yi〉 = ‖Yi‖2 and so 〈Yi/ ‖Yi‖ , Yj/ ‖Yj‖〉 = Wij/
√

WiiWjj . Thus the
n× n matrix A defined as

Ai,j =

{
1 if Wij ≥ 0 and i �= j

0 otherwise

has the same law as the adjacency matrix of G (n, 1/2, d). Denote the map that
takes W to A by H, i.e., A = H (W ).

In a similar way we can view G (n, 1/2) as a function of an n×n matrix drawn
from the Gaussian Orthogonal Ensemble (GOE). LetM (n) be a symmetric n×n
random matrix where the diagonal entries are i.i.d. normal random variables
with mean zero and variance 2, and the entries above the diagonal are i.i.d.
standard normal random variables, with the entries on and above the diagonal
all independent. Then B = H (M(n)) has the same law as the adjacency matrix
of G(n, p). Note that B only depends on the sign of the off-diagonal elements
of M (n), so in the definition of B we can replace M (n) with M (n, d) :=√
dM (n) + dIn, where In is the n× n identity matrix.
We can thus conclude that

TV (G(n, 1/2, d), G(n, 1/2)) = TV (H (W (n, d)) , H (M(n, d)))

≤ TV (W (n, d),M(n, d)) .

The densities of these two random matrix ensembles are well known. Let P ⊂
R

n2

denote the cone of positive semidefinite matrices. When d ≥ n, W (n, d) has
the following density with respect to the Lebesgue measure on P :

fn,d (A) :=
(det (A))

1
2 (d−n−1)

exp
(
−1

2Tr (A)
)

2
1
2dnπ

1
4n(n−1)

∏n
i=1 Γ

(
1
2 (d+ 1− i)

) ,
where Tr (A) denotes the trace of the matrix A. It is also known that the density

of a GOE random matrix with respect to the Lebesgue measure on R
n2

is

A �→ (2π)
− 1

4n(n+1)
2−

n
2 exp

(
−1

4Tr
(
A2

))
and so the density of M (n, d) with

respect to the Lebesgue measure on R
n2

is

gn,d (A) :=
exp

(
− 1

4dTr
(
(A− dIn)

2
))

(2πd)
1
4n(n+1)

2
n
2

.
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These explicit formulas allow for explicit calculations. In particular, one can
show that the log-ratio of the densities is o(1) with probability 1−o(1) according
to the measure induced by M(n, d). This follows from writing out the Taylor
expansion of the log-ratio of the densities and using known results about the em-
pirical spectral distribution of Wigner matrices (in particular that it converges
to a semi-circle law). The outcome of the calculation is the following result,
proven independently and simultaneously by Bubeck et al. and Jiang and Li.

Theorem 2.2 (Bubeck, Ding, Eldan, Rácz [19]; Jiang, Li [39]). Define the
random matrix ensembles W (n, d) and M (n, d) as above. If d/n3 → ∞, then

TV (W (n, d) ,M (n, d)) → 0.

We conclude that it is impossible to detect underlying geometry whenever
d � n3.

2.6. Estimating the dimension

Until now we discussed detecting geometry. However, the insights gained above
allow us to also touch upon the more subtle problem of estimating the underlying
dimension d.

Dimension estimation can also be done by counting the “number” of signed
triangles as in Section 2.4. However, here it is necessary to have a bound on
the difference of the expected number of signed triangles between consecutive
dimensions; the lower bound of (2.5) is not enough. Still, we believe that the
right hand side of (2.5) should give the true value of the expected value for an
appropriate constant cp, and hence we expect to have that

E [τ (G(n, p, d))]− E [τ (G(n, p, d+ 1))] = Θ

(
n3

d3/2

)
. (2.7)

Thus, using the variance bound in (2.6), we get that dimension estimation should
be possible using signed triangles whenever n3/d3/2 �

√
n3 + n4/d, which is

equivalent to d � n.
Showing (2.7) for general p seems involved; Bubeck et al. showed that it holds

for p = 1/2, which can be considered as a proof of concept. We thus have the
following.

Theorem 2.3 (Bubeck, Ding, Eldan, Rácz [19]). There exists a universal con-
stant C > 0 such that for all integers n and d1 < d2, one has

TV (G(n, 1/2, d1), G(n, 1/2, d2)) ≥ 1− C

(
d1
n

)2

.

This result is tight, as demonstrated by a result of Eldan [29], which states
that when d � n, the Wishart matrices W (n, d) and W (n, d + 1) are indistin-
guishable. By the discussion in Section 2.5, this directly implies that G(n, 1/2, d)
and G(n, 1/2, d+ 1) are indistinguishable.
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Theorem 2.4 (Eldan [29]). There exists a universal constant C > 0 such that
for all integers n < d,

TV (G(n, 1/2, d), G(n, 1/2, d+ 1)) ≤ TV (W (n, d),W (n, d+ 1))

≤ C

√(
d+ 1

d− n

)2

− 1.

2.7. The mysterious sparse regime

The discussion so far has focused on dense graphs, i.e., assuming p ∈ (0, 1) is
constant, where Theorem 2.1 tightly characterizes when the underlying geom-
etry can be detected. The same questions are interesting for sparse graphs as
well, where the average degree is constant or slowly growing with n. However,
since there are so few edges, this regime is much more challenging.

It is again natural to consider the number of triangles as a way to distinguish
between G(n, c/n) and G(n, c/n, d). A calculation shows that this statistic works
whenever d � log3 (n).

Theorem 2.5 (Bubeck, Ding, Eldan, Rácz [19]). Let c > 0 be fixed and assume
d/ log3 (n) → 0. Then

TV
(
G

(
n,

c

n

)
, G

(
n,

c

n
, d

))
→ 1.

In contrast with the dense regime, in the sparse regime the signed triangle
statistic τ does not give significantly more power than the triangle statistic
T . This is because in the sparse regime, with high probability, the graph does
not contain any 4-vertex subgraph with at least 5 edges, which is where the
improvement comes from in the dense regime.

The authors also conjecture that log3 (n) is the correct order where the tran-
sition happens.

Conjecture 2.6 (Bubeck, Ding, Eldan, Rácz [19]). Let c > 0 be fixed and
assume d/ log3 (n) → ∞. Then

TV
(
G

(
n,

c

n

)
, G

(
n,

c

n
, d

))
→ 0.

The main reason for this conjecture is that, when d � log3 (n), G(n, c/n)
and G(n, c/n, d) seem to be locally equivalent; in particular, they both have
the same Poisson number of triangles asymptotically. Thus the only way to
distinguish between them would be to find an emergent global property which
is significantly different under the two models, but this seems unlikely to exist.
Proving or disproving this conjecture remains a challenging open problem. The
best known bound is n3 from (2.2) (which holds uniformly over p).
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2.8. Outlook: open problems and extensions

High-dimensional random geometric graphs promise to be a rich source of ex-
citing open problems. The main open problem that this lecture leaves open is
understanding the critical dimension in the sparse setting; see Conjecture 2.6
above. More generally, it is interesting to understand how the critical dimension
depends on p.

Understanding the robustness of these results is important—this is also the
topic of the next lecture, in the setting of the Wishart to GOE transition for ran-
dom matrices. Recently Eldan and Mikulincer studied the effect of anisotropy
on the power of detecting geometry in random geometric graphs [30]. The au-
thors introduce new notions of dimensionality and prove a theorem similar to
Theorem 2.1 with appropriate upper and lower bounds on the “effective critical
dimension”.

Perhaps the ultimate goal is to find good representations of network data,
and hence to faithfully embed the graph of interest into an appropriate metric
space. While the worst-case version of this problem—recognizing if a graph can
be realized as a geometric graph—is known to be NP-hard [14], the probabilistic
setting should provide lots of opportunities for exciting research.

3. Lecture 3: Introduction to entropic central limit theorems and a
proof of the fundamental limits of dimension estimation in
random geometric graphs

Recall from the previous lecture that the dimension threshold for detecting ge-
ometry in G(n, p, d) for constant p ∈ (0, 1) is d = Θ

(
n3

)
. What if the random

geometric graph model is not G(n, p, d)? How robust are the results presented
in the previous lecture? We have seen that the detection threshold is intimately
connected to the threshold of when a Wishart matrix becomes GOE. Under-
standing the robustness of this result on random matrices is interesting in its
own right, and this is what we will pursue in this lecture.6 Doing so also gives
us the opportunity to learn about the fascinating world of entropic central limit
theorems.

3.1. Setup and main result: the universality of the threshold
dimension

Let X be an n× d random matrix with i.i.d. entries from a distribution μ that
has mean zero and variance 1. The n× n matrix XX

T is known as the Wishart
matrix with d degrees of freedom. As we have seen in the previous lecture,
this arises naturally in geometry, where XXT is known as the Gram matrix of
inner products of n points in R

d. The Wishart matrix also appears naturally
in statistics as the sample covariance matrix, where d is the number of samples

6This lecture is based on [21].
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and n is the number of parameters.7 We refer to [21] for further applications in
quantum physics, wireless communications, and optimization.

We consider the Wishart matrix with the diagonal removed, and scaled ap-
propriately:

Wn,d =
1√
d

(
XX

T − diag
(
XX

T
))

.

In many applications—such as to random graphs, as we have seen in the pre-
vious lecture—the diagonal of the matrix is not relevant, so removing it does
not lose information. Our goal is to understand how large does the dimension
d have to be so that Wn,d is approximately like Gn, which is defined as the
n × n Wigner matrix with zeros on the diagonal and i.i.d. standard Gaussians
above the diagonal. In other words, Gn is drawn from the Gaussian Orthogonal
Ensemble (GOE) with the diagonal replaced with zeros.

A simple application of the multivariate central limit theorem gives that if n
is fixed and d → ∞, then Wn,d converges to Gn in distribution. The main result
of Bubeck and Ganguly [21] establishes that this holds as long as d �̃n3 under
rather general conditions on the distribution μ.

Theorem 3.1 (Bubeck and Ganguly [21]). If the distribution μ is log-concave8

and d
n3 log2(d)

→ ∞, then

TV (Wn,d,Gn) → 0. (3.1)

On the other hand, if μ has a finite fourth moment and d
n3 → 0, then

TV (Wn,d,Gn) → 1. (3.2)

This result extends Theorems 2.1 and 2.2, and establishes n3 as the universal
critical dimension (up to logarithmic factors) for sufficiently smooth measures
μ: Wn,d is approximately Gaussian if and only if d is much larger than n3. For
random graphs, as seen in Lecture 2, this is the dimension barrier to extracting
geometric information from a network: if the dimension is much greater than
the cube of the number of vertices, then all geometry is lost. In the setting of
statistics this means that the Gaussian approximation of a Wishart matrix is
valid as long as the sample size is much greater than the cube of the number
of parameters. Note that for some statistics of a Wishart matrix the Gaussian
approximation is valid for much smaller sample sizes (e.g., the largest eigenvalue
behaves as in the limit even when the number of parameters is on the same order
as the sample size [42]).

To distinguish the random matrix ensembles, we have seen in Lecture 2 that
signed triangles work up until the threshold dimension in the case when μ is
standard normal. It turns out that the same statistic works in this more gen-
eral setting; when the entries of the matrices are centered, this statistic can be
written as A �→ Tr

(
A3

)
. Similarly to the calculations in Section 2.4, one can

7In statistics the number of samples is usually denoted by n, and the number of parameters
is usually denoted by p; here our notation is taken with the geometric perspective in mind.

8A measure μ with density f is said to be log-concave if f(·) = e−ϕ(·) for some convex
function ϕ.
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show that under the two measures Wn,d and Gn, the mean of Tr
(
A3

)
is 0 and

Θ
(
n3/

√
d
)
, respectively, whereas the variances are Θ

(
n3

)
and Θ

(
n3 + n5/d2

)
,

respectively. Then (3.2) follows by an application of Chebyshev’s inequality. We
leave the details as an exercise for the reader.

We note that for (3.1) to hold it is necessary to have some smoothness as-
sumption on the distribution μ. For instance, if μ is purely atomic, then so is
the distribution of Wn,d, and thus its total variation distance to Gn is 1. The
log-concave assumption gives this necessary smoothness, and it is an interesting
open problem to understand how far this can be relaxed.

3.2. Pinsker’s inequality: from total variation to relative entropy

Our goal is now to bound the total variation distance TV (Wn,d,Gn) from above.
In the general setting considered here there is no nice formula for the density of
the Wishart ensemble, so TV (Wn,d,Gn) cannot be computed directly. Coupling
these two random matrices also seems challenging.

In light of these observations, it is natural to switch to a different metric
on probability distributions that is easier to handle in this case. We refer the
reader to the excellent paper [34] which gathers ten different probability metrics
and many relations between then. Here we use Pinsker’s inequality to switch to
relative entropy:

TV (Wn,d,Gn)
2 ≤ 1

2
Ent (Wn,d ‖ Gn) , (3.3)

where Ent (Wn,d ‖ Gn) denotes the relative entropy of Wn,d with respect to Gn.
In the following subsection we provide a brief introduction to entropy; the reader
familiar with the basics can safely skip this. We then turn to entropic central
limit theorems and techniques involved in their proof, before finally coming back
to bounding the right hand side in (3.3).

3.3. A brief introduction to entropy

The entropy of a discrete random variable X taking values in X is defined as

H(X) ≡ H(p) = −
∑
x∈X

p (x) log (p (x)) ,

where p denotes the probability mass function of X. The log is commonly taken
to have base 2, in which case entropy is measured in bits; if one considers the
natural logarithm ln then it is measured in nats. Note that entropy is always
nonnegative, since p(x) ≤ 1 for every x ∈ X . This is a measure of uncertainty
of a random variable. It measures how much information is required on average
to describe the random variable. Many properties of entropy agree with the
intuition of what a measure of information should be. A useful way of thinking
about entropy is the following: if we have an i.i.d. sequence of random variables
and we know that the source distribution is p, then we can construct a code
with average description length H(p).
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Example 3.2. If X is uniform on a finite space X , then H(X) = log |X |.
The conditional entropy of Y given X is defined as

H (Y |X) =
∑
x∈X

p (x)H (Y |X = x) ,

where p denotes the probability mass function of X and H (Y |X = x) is the
entropy of the random variable Y conditioned on the event {X = x}. It measures
how much information is required on average to describe the random variable
Y , given that the value of the random variable X is known.

For continuous random variables the differential entropy is defined as

h (X) ≡ h (f) = −
∫

f (x) log f (x) dx,

where f is the density of the random variable X.

Example 3.3. If X is uniform on the interval [0, a], then h(X) = log (a). If X
is Gaussian with mean zero and variance σ2, then h(X) = 1

2 log
(
2πeσ2

)
.

Note that these examples show that differential entropy can be negative. One
way to think of differential entropy is to think of 2h(X) as “the volume of the
support”.

The relative entropy (also known as Kullback-Leibler divergence) of two dis-
tributions P and Q on a discrete space X is defined as

D (P ‖Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
.

For two distributions with densities f and g the relative entropy is defined as

D (f ‖ g) =
∫
x∈X

f(x) log
f(x)

g(x)
.

Relative entropy is always nonnegative; this follows from Jensen’s inequality.
Relative entropy can be interpreted as a measure of distance between two dis-
tributions, although it is not a metric: it is not symmetric and it does not obey
the triangle inequality. It can be thought of as a measure of inefficiency of as-
suming that the source distribution is q when it is really p. If we use a code for
distribution q but the source is really from p, then we need H(p)+D(p ‖ q) bits
on average to describe the random variable.

In the following we use Ent to denote all notions of entropy and relative
entropy. We also slightly abuse notation and interchangeably use a random
variable or its law in the argument of entropy and relative entropy.

Entropy and relative entropy satisfy useful chain rules; we leave the proof of
the following identities as an exercise for the reader. For entropy we have:

Ent (X1, X2) = Ent (X1) + Ent (X2 |X1) .

For relative entropy we have:
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Ent ((Y1, Y2) ‖ (Z1, Z2)) = Ent (Y1 ‖Z1) + Ey∼λ1Ent (Y2 |Y1 = y ‖Z2 |Z1 = y) ,
(3.4)

where λ1 is the marginal distribution of Y1 and Y2 |Y1 = y denotes the distri-
bution of Y2 conditionally on the event {Y1 = y}.

Let φ denote the density of γn, the n-dimensional standard Gaussian dis-
tribution, and let f be an isotropic density with mean zero, i.e., a density for
which the covariance matrix is the identity In. Then

0 ≤ Ent (f ‖φ) =
∫

f log f −
∫

f log φ

=

∫
f log f −

∫
φ log φ = Ent (φ)− Ent (f) ,

where the second equality follows from the fact that log φ (x) is quadratic in x,
and the first two moments of f and φ are the same by assumption. We thus see
that the standard Gaussian maximizes entropy among isotropic densities.

3.4. An introduction to entropic CLTs

At this point we are ready to state the entropic central limit theorem. The cen-
tral limit theorem states that if Z1, Z2, . . . are i.i.d. real-valued random variables
with zero mean and unit variance, then Sm := (Z1 + · · ·+ Zm) /

√
m converges

in distribution to a standard Gaussian random variable as m → ∞. There are
many other senses in which Sm converges to a standard Gaussian, the entropic
CLT being one of them.

Theorem 3.4 (Entropic CLT). Let Z1, Z2, . . . be i.i.d. real-valued random vari-
ables with zero mean and unit variance, and let Sm := (Z1 + · · ·+ Zm) /

√
m. If

Ent (Z1 ‖φ) < ∞, then
Ent (Sm) ↗ Ent (φ)

as m → ∞. Moreover, the entropy of Sm increases monotonically, that is,
Ent (Sm) ≤ Ent (Sm+1) for every m ≥ 1.

The condition Ent (Z1 ‖φ) < ∞ is necessary for an entropic CLT to hold; for
instance, if the Zi are discrete, then h (Sm) = −∞ for all m.

The entropic CLT originates with Shannon in the 1940s and was first proven
by Linnik [45] in 1959 (without the monotonicity part of the statement). The
first proofs that gave explicit convergence rates were given independently and
at roughly the same time by Artstein, Ball, Barthe, and Naor [7, 5, 6], and
Johnson and Barron [41] in the early 2000s, using two different techniques.

The fact that Ent (S1) ≤ Ent (S2) follows from the entropy power inequal-
ity, which goes back to Shannon [56] in 1948. This implies that Ent (Sm) ≤
Ent (S2m) for all m ≥ 0, and so it was naturally conjectured that Ent (Sm) in-
creases monotonically. However, proving this turned out to be challenging. Even
the inequality Ent (S2) ≤ Ent (S3) was unknown for over fifty years, until Art-
stein, Ball, Barthe, and Naor [5] proved in general that Ent (Sm) ≤ Ent (Sm+1)
for all m ≥ 1.
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In the following we sketch some of the main ideas that go into the proof of
these results, in particular following the techniques of Artstein, Ball, Barthe,
and Naor [7, 5, 6].

3.5. From relative entropy to Fisher information

Our goal is to show that some random variable Z, which is a convolution of
many i.i.d. random variables, is close to a Gaussian G. One way to approach
this is to interpolate between the two. There are several ways of doing this;
for our purposes interpolation along the Ornstein-Uhlenbeck semigroup is most
useful. Define

PtZ := e−tZ +
√
1− e−2tG

for t ∈ [0,∞), and let ft denote the density of PtZ. We have P0Z = Z and
P∞Z = G. This semigroup has several desirable properties. For instance, if the
density of Z is isotropic, then so is ft. Before we can state the next desirable
property that we will use, we need to introduce a few more useful quantities.

For a density function f : Rn → R+, let

I (f) :=

∫ ∇f(∇f)T

f
= E

[
(∇ log f) (∇ log f)

T
]

be the Fisher information matrix. Let μ denote the mean of the density f . The
Cramér-Rao bound states that for any unbiased estimator μ̂ of μ, the covariance

matrix Cov (μ̂) = E

[
(μ̂− μ) (μ̂− μ)

T
]
satisfies

Cov (μ̂) � I (f)
−1

,

that is, Cov (μ̂) − I (f)
−1

is positive semidefinite. The Fisher information is
defined as

I (f) := Tr (I (f)) .

It is sometimes more convenient to work with the Fisher information distance,
defined as J(f) := I(f) − I(φ) = I(f) − n. Similarly to the discussion above,
one can show that the standard Gaussian minimizes the Fisher information
among isotropic densities, and hence the Fisher information distance is always
nonnegative.

Now we are ready to state the De Bruijn identity [57], which characterizes
the change of entropy along the Ornstein-Uhlenbeck semigroup via the Fisher
information distance:

∂tEnt (ft) = J (ft) .

This implies that the relative entropy between f and φ—which is our quantity
of interest—can be expressed as follows:

Ent (f ‖φ) = Ent (φ)− Ent (f) =

∫ ∞

0

J (ft) dt. (3.5)

Thus our goal is to bound the Fisher information distance J(ft).
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3.6. Bounding the Fisher information distance

We first recall a classical result by Blachman [11] and Stam [57] that shows that
Fisher information decreases under convolution.

Theorem 3.5 (Blachman [11]; Stam [57]). Let Y1, . . . , Yd be independent ran-
dom variables taking values in R, and let a ∈ R

d be such that ‖a‖2 = 1. Then

I

(
d∑

i=1

aiYi

)
≤

d∑
i=1

a2i I (Yi) .

In the i.i.d. case, this bound becomes ‖a‖22 I (Y1).

Artstein, Ball, Barthe, and Naor [7, 5] gave the following variational charac-
terization of the Fisher information, which gives a particularly simple proof of
Theorem 3.5.

Theorem 3.6 (Variational characterization of Fisher information [7, 5]). Let
w : Rd → (0,∞) be a sufficiently smooth9 density on R

d, let a ∈ R
d be a unit

vector, and let h be the marginal of w in direction a. Then we have

I (h) ≤
∫
Rd

(
div (pw)

w

)2

w (3.6)

for any continuously differentiable vector field p : Rd → R
d with the property

that for every x, 〈p (x) , a〉 = 1. Moreover, if w satisfies
∫
‖x‖2 w (x) < ∞, then

there is equality for some suitable vector field p.

The Blachman-Stam theorem follows from this characterization by taking
the constant vector field p ≡ a. Then we have div (pw) = 〈∇w, a〉, and so the
right hand side of (3.6) becomes aTI (w) a, where recall that I is the Fisher
information matrix. In the setting of Theorem 3.5 the density w of (Y1, . . . , Yd)
is a product density: w (x1, . . . , xd) = f1 (x1) × · · · × fd (xd), where fi is the
density of Yi. Consequently the Fisher information matrix is a diagonal matrix,
I (w) = diag (I (f1) , . . . , I (fd)), and thus aTI (w) a =

∑d
i=1 a

2
i I (fi), conclud-

ing the proof of Theorem 3.5 using Theorem 3.6.
Given the characterization of Theorem 3.6, one need not take the vector field

to be constant; one can obtain more by optimizing over the vector field. Doing
this leads to the following theorem, which gives a rate of decrease of the Fisher
information distance under convolutions.

Theorem 3.7 (Artstein, Ball, Barthe, and Naor [7, 5, 6]). Let Y1, . . . , Yd be
i.i.d. random variables with a density having a positive spectral gap c.10 Then

9It is enough that w is continuously twice differentiable and satisfies
∫
‖∇w‖2 /w < ∞

and
∫
‖Hess (w)‖ < ∞.

10We say that a random variable has spectral gap c if for every sufficiently smooth g, we
have Var (g) ≤ 1

c
Eg′2. In particular, log-concave random variables have a positive spectral

gap, see [12].
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for any a ∈ R
d with ‖a‖2 = 1 we have that

J

(
d∑

i=1

aiYi

)
≤ 2 ‖a‖44

c+ (2− c) ‖a‖44
J (Y1) .

When a = 1√
d
1, then

2‖a‖4
4

c+(2−c)‖a‖4
4

= O (1/d), and thus using (3.5) we obtain

a rate of convergence of O (1/d) in the entropic CLT.
A result similar to Theorem 3.7 was proven independently and roughly at

the same time by Johnson and Barron [41] using a different approach involving
score functions.

3.7. A high-dimensional entropic CLT

The techniques of Artstein, Ball, Barthe, and Naor [7, 5, 6] generalize to higher
dimensions, as was recently shown by Bubeck and Ganguly [21]. A result similar
to Theorem 3.7 can be proven, from which a high-dimensional entropic CLT
follows, together with a rate of convergence, by using (3.5) again.

Theorem 3.8 (Bubeck and Ganguly [21]). Let Y ∈ R
d be a random vector with

i.i.d. entries from a distribution ν with zero mean, unit variance, and spectral
gap c ∈ (0, 1]. Let A ∈ R

n×d be a matrix such that AAT = In, the n×n identity

matrix. Let ε = maxi∈[d]

(
ATA

)
i,i

and ζ = maxi,j∈[d],i �=j

∣∣∣(ATA
)
i,j

∣∣∣. Then we

have that

Ent (AY ‖ γn) ≤ nmin
{
2
(
ε+ ζ2d

)
/c, 1

}
Ent (ν ‖ γ1) ,

where γn denotes the standard Gaussian measure in Rn.

To interpret this result, consider the case where the matrix A is built by pick-
ing rows one after the other uniformly at random on the Euclidean sphere in R

d,
conditionally on being orthogonal to previous rows (to satisfy the isotropicity
condition AAT = In). We then expect to have ε � n/d and ζ � √

n/d (we
leave the details as an exercise for the reader), and so Theorem 3.8 tells us that
Ent (AY ‖ γn) � n2/d.

3.8. Back to Wishart and GOE

We now turn our attention back to bounding the relative entropy Ent (Wn,d ‖ Gn)
between the n×n Wishart matrix with d degrees of freedom (with the diagonal
removed), Wn,d, and the n × n GOE matrix (with the diagonal removed), Gn;
recall (3.3). Since the Wishart matrix contains the (scaled) inner products of n
vectors in R

d, it is natural to relate Wn+1,d and Wn,d, since the former comes
from the latter by adding an additional d-dimensional vector to the n vectors
already present. Specifically, we have the following:

Wn+1,d =

(
Wn,d

1√
d
XX

1√
d
(XX)

T
0

)
,
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where X is a d-dimensional random vector with i.i.d. entries from μ, which are
also independent from X. Similarly we can write the matrix Gn+1 using Gn:

Gn+1 =

(
Gn γn
γT
n 0

)
.

This naturally suggests to use the chain rule for relative entropy and bound
Ent (Wn,d ‖ Gn) by induction on n. By (3.4) we get that

Ent (Wn+1,d ‖ Gn+1) = Ent (Wn,d ‖ Gn) + EWn,d

[
Ent

(
1√
d
XX |Wn,d ‖ γn

)]
.

By convexity of the relative entropy we also have that

EWn,d

[
Ent

(
1√
d
XX |Wn,d ‖ γn

)]
≤ EX

[
Ent

(
1√
d
XX |X ‖ γn

)]
.

Thus our goal is to understand and bound Ent (AX ‖ γn) for A ∈ R
n×d, and

then apply the bound to A = 1√
d
X (followed by taking expectation over X).

This is precisely what was done in Theorem 3.8, the high-dimensional entropic
CLT, for A satisfying AAT = In. Since A = 1√

d
X does not necessarily satisfy

AAT = In, we have to correct for the lack of isotropicity. This is the content of
the following lemma, the proof of which we leave as an exercise for the reader.

Lemma 3.9 ([21]). Let A ∈ R
n×d and Q ∈ R

n×n be such that QA (QA)
T
= In.

Then for any isotropic random variable X taking values in R
d we have that

Ent (AX ‖ γn) = Ent (QAX ‖ γn) +
1

2
Tr

(
AAT

)
− n

2
+

1

2
log |det (Q)| . (3.7)

We then apply this lemma with A = 1√
d
X and Q =

(
1
dXX

T
)−1/2

. Observe

that ETr
(
AAT

)
= 1

dETr
(
XX

T
)
= 1

d × n× d = n, and hence in expectation the
middle two terms of the right hand side of (3.7) cancel each other out.

The last term in (3.7), −1
4 log det

(
1
dXX

T
)
, should be understood as the rel-

ative entropy between a centered Gaussian with covariance given by 1
dXX

T and
a standard Gaussian in R

n. Controlling the expectation of this term requires
studying the probability that XX

T is close to being non-invertible, which re-
quires bounds on the left tail of the smallest singular of X. Understanding the
extreme singular values of random matrices is a fascinating topic, but it is out-
side of the scope of these notes, and so we refer the reader to [21] for more
details on this point.

Finally, the high-dimensional entropic CLT can now be applied to see that
Ent (QAX ‖ γn) � n2/d. From the induction on n we get another factor of n,
arriving at Ent (Wn,d ‖ Gn) � n3/d. We conclude that the dimension threshold
is d ≈ n3, and the information-theoretic proof that we have outlined sheds light
on why this threshold is n3.
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3.9. Outlook: open problems and extensions

The work of Bubeck and Ganguly [21] leaves open many questions; we mention
here some of them and refer to [21] for more. Perhaps the main open problem
is to find the optimal conditions under which the phase transition described in
Theorem 3.1 holds. For instance, does it hold if the rows (or columns) of X are
i.i.d. from a log-concave distribution in R

d (or Rn)? Several estimates still work
under this assumption, but it seems that the induction step of the proof requires
the independence of the entries of X.

Another interesting question is whether Eldan’s result on Wishart matrices,
Theorem 2.4, can be extended to Wishart matrices with more general entries.
One difficulty is that the tools described in this lecture are based on measur-
ing relative entropy with respect to a standard Gaussian (since this maximizes
entropy), while the problem concerns only Wishart matrices.

A different direction of inquiry is to study higher order interactions. Denoting
the ith column of X by Xi, we can write XXT =

∑d
i=1 Xi⊗Xi =

∑d
i=1 X

⊗2
i . Now

for any k ∈ N one may consider the distribution W(k)
n,d of 1√

d

∑d
i=1 X

⊗k
i . How

large does d need to be as a function of n and k so that W(k)
n,d is approximately

Gaussian?

4. Lecture 4: Confidence sets for the root in uniform and
preferential attachment trees

In the previous lectures we studied random graph models with community struc-
ture and also models with an underlying geometry. While these models are im-
portant and lead to fascinating problems, they are also static in time. Many
real-world networks are constantly evolving, and their understanding requires
models that reflect this. This point of view brings about a host of new inter-
esting and challenging statistical inference questions that concern the temporal
dynamics of these networks.

In the last lecture we will study such questions: given the current state of a
network, can one infer the state at some previous time? Does the initial seed
graph have an influence on how the network looks at large times? If so, is it
possible to find the origin of a large growing network? We will focus in particular
on this latter question. More precisely, given a model of a randomly growing
graph starting from a single node, called the root, we are interested in the
following question. Given a large graph generated from the model, is it possible
to find a small set of vertices for which we can guarantee that the root is in this
set with high probability? Such root-finding algorithms can have applications to
finding the origin of an epidemic or a rumor.

4.1. Models of growing graphs

A natural general model of randomly growing graphs can be defined as follows.
For n ≥ k ≥ 1 and a graph S on k vertices, define the random graph G(n, S)
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by induction. First, set G(k, S) = S; we call S the seed of the graph evolution
process. Then, given G(n, S), G(n + 1, S) is formed from G(n, S) by adding a
new vertex and some new edges according to some adaptive rule. If S is a single
vertex, we write simply G(n) instead of G(n, S). There are several rules one can
consider; here we study perhaps the two most natural rules: uniform attachment
and preferential attachment. Moreover, for simplicity we focus on the case of
growing trees, where at every time step a single edge is added.

Uniform attachment trees are perhaps the simplest model of randomly grow-
ing graphs and are defined as follows. For n ≥ k ≥ 1 and a tree S on k vertices,
the random tree UA(n, S) is defined as follows. First, let UA(k, S) = S. Then,
given UA(n, S), UA(n+ 1, S) is formed from UA(n, S) by adding a new vertex
u and adding a new edge uv where the vertex v is chosen uniformly at random
among vertices of UA (n, S), independently of all past choices.

Fig 7. Growing trees: add a new vertex u and attach it to an existing vertex v according some
adaptive probabilistic rule.

In preferential attachment the vertex is chosen with probability proportional
to its degree [46, 8, 13]. For a tree T denote by dT (u) the degree of vertex u in T .
For n ≥ k ≥ 2 and a tree S on k vertices we define the random tree PA(n, S) by
induction. First, let PA(k, S) = S. Then, given PA(n, S), PA(n+1, S) is formed
from PA(n, S) by adding a new vertex u and a new edge uv where v is selected
at random among vertices in PA(n, S) according to the following probability
distribution:

P (v = i |PA(n, S)) =
dPA(n,S)(i)

2 (n− 1)
.

4.2. Questions: detection and estimation

The most basic questions to consider are those of detection and estimation. Can
one detect the influence of the initial seed graph? If so, is it possible to estimate
the seed? Can one find the root if the process was started from a single node?
We introduce these questions in the general model of randomly growing graphs
described above, even though we study them in the special cases of uniform and
preferential attachment trees later.
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The detection question can be rephrased in the terminology of hypothesis
testing. Given two potential seed graphs S and T , and an observation R which
is a graph on n vertices, one wishes to test whether R ∼ G(n, S) or R ∼
G(n, T ). The question then boils down to whether one can design a test with
asymptotically (in n) nonnegligible power. This is equivalent to studying the
total variation distance between G(n, S) and G(n, T ), so we naturally define

δ(S, T ) := lim
n→∞

TV(G(n, S), G(n, T )),

where G(n, S) and G(n, T ) are random elements in the finite space of unlabeled
graphs with n vertices. This limit is well-defined because TV(G(n, S), G(n, T ))
is nonincreasing in n (since if G(n, S) = G(n, T ), then the evolution of the
random graphs can be coupled such that G(n′, S) = G(n′, T ) for all n′ ≥ n) and
always nonnegative.

If the seed has an influence, it is natural to ask whether one can estimate S
from G(n, S) for large n. If so, can the subgraph corresponding to the seed be
located in G(n, S)? We study this latter question in the simple case when the
process starts from a single vertex called the root.11 A root-finding algorithm
is defined as follows. Given G(n) and a target accuracy ε ∈ (0, 1), a root-
finding algorithm outputs a set H (G(n), ε) of K(ε) vertices such that the root
is in H (G(n), ε) with probability at least 1 − ε (with respect to the random
generation of G(n)).

An important aspect of this definition is that the size of the output set is
allowed to depend on ε, but not on the size n of the input graph. Therefore it
is not clear that root-finding algorithms exist at all. Indeed, there are examples
when they do not exist: consider a path that grows by picking one of its two
ends at random and extending it by a single edge. However, it turns out that
in many interesting cases root-finding algorithms do exist. In such cases it is
natural to ask for the best possible value of K(ε).

4.3. The influence of the seed

Consider distinguishing between a preferential attachment tree started from a
star with 10 vertices, S10, and a preferential attachment tree started from a path
with 10 vertices, P10. Since the preferential attachment mechanism incorporates
the rich-get-richer phenomenon, one expects the degree of the center of the star
in PA(n, S10) to be significantly larger than the degree of any of the initial
vertices in the path in PA(n, P10). This intuition guided Bubeck, Mossel, and
Rácz [22] when they initiated the theoretical study of the influence of the seed
in preferential attachment trees. They showed that this intuition is correct: the
limiting distribution of the maximum degree of the preferential attachment tree
indeed depends on the seed. Using this they were able to show that for any two

11In the case of preferential attachment, starting from a single vertex is not well-defined;
in this case we start the process from a single edge and the goal is to find one of its endpoints.



Basic models and questions in statistical network analysis 35

seeds S and T with at least 3 vertices12 and different degree profiles we have
δPA(S, T ) > 0.

However, statistics based solely on degrees cannot distinguish all pairs of
nonisomorphic seeds. This is because if S and T have the same degree profiles,
then it is possible to couple PA(n, S) and PA(n, T ) such that they have the
same degree profiles for every n. In order to distinguish between such seeds,
it is necessary to incorporate information about the graph structure into the
statistics that are studied. This was done successfully by Curien, Duquesne,
Kortchemski, and Manolescu [25], who analyzed statistics that measure the
geometry of large degree nodes. These results can be summarized in the following
theorem.

Theorem 4.1. The seed has an influence in preferential attachment trees in
the following sense. For any trees S and T that are nonisomorphic and have at
least 3 vertices, we have δPA(S, T ) > 0.

In the case of uniform attachment, degrees do not play a special role, so
initially one might even think that the seed has no influence in the limit. How-
ever, it turns out that the right perspective is not to look at degrees but rather
the sizes of appropriate subtrees (we shall discuss such statistics later). By ex-
tending the approach of Curien et al. [25] to deal with such statistics, Bubeck,
Eldan, Mossel, and Rácz [20] showed that the seed has an influence in uniform
attachment trees as well.

Theorem 4.2. The seed has an influence in uniform attachment trees in the
following sense. For any trees S and T that are nonisomorphic and have at least
3 vertices, we have δUA(S, T ) > 0.

These results, together with a lack of examples showing opposite behavior,
suggest that for most models of randomly growing graphs the seed has influence.

Question 4.3. How common is the phenomenon observed in Theorems 4.1
and 4.2? Is there a natural large class of randomly growing graphs for which
the seed has an influence? That is, models where for any two seeds S and T
(perhaps satisfying an extra condition), we have δ(S, T ) > 0. Is there a natural
model where the seed has no influence?

The extra condition mentioned in the question could be model-dependent, but
should not be too restrictive. It would be fascinating to find a natural model
where the seed has no influence in a strong sense. Even for models where the seed
does have an influence, proving the statement in full generality is challenging
and interesting.

12This condition is necessary for a simple reason: the unique tree on 2 vertices, S2, is
always followed by the unique tree on 3 vertices, S3, and hence δ(S2, S3) = 0 for any model
of randomly growing trees.
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4.4. Finding Adam

These theorems about the influence of the seed open up the problem of find-
ing the seed. Here we present the results of Bubeck, Devroye, and Lugosi [18]
who first studied root-finding algorithms in the case of uniform attachment and
preferential attachment trees.

They showed that root-finding algorithms indeed exist for preferential at-
tachment trees and that the size of the best confidence set is polynomial in
1/ε.

Theorem 4.4. There exists a polynomial time root-finding algorithm for pref-

erential attachment trees with K(ε) ≤ c log
2(1/ε)
ε4 for some finite constant c. Fur-

thermore, there exists a positive constant c′ such that any root-finding algorithm
for preferential attachment trees must satisfy K(ε) ≥ c′

ε .

They also showed the existence of root-finding algorithms for uniform at-
tachment trees. In this model, however, there are confidence sets whose size is
subpolynomial in 1/ε. Moreover, the size of any confidence set has to be at least
superpolylogarithmic in 1/ε.

Theorem 4.5. There exists a polynomial time root-finding algorithm for uni-

form attachment trees with K(ε) ≤ exp
(
c log(1/ε)
log log(1/ε)

)
for some finite constant

c. Furthermore, there exists a positive constant c′ such that any root-finding al-

gorithm for uniform attachment trees must satisfy K(ε) ≥ exp
(
c′
√
log(1/ε)

)
.

These theorems show an interesting quantitative difference between the two
models: finding the root is exponentially more difficult in preferential attachment
than in uniform attachment. While this might seem counter-intuitive at first, the
reason behind this can be traced back to the rich-get-richer phenomenon: the
effect of a rare event where not many vertices attach to the root gets amplified
by preferential attachment, making it harder to find the root.

In the remaining part of this lecture we explain the basic ideas that go into
proving Theorems 4.4 and 4.5 and prove some simpler special cases. Before we
do so, we give a primer on Pólya urns, whose variants appear throughout the
proofs. If the reader is familiar with Pólya urns, then the following subsection
can be safely skipped.

4.5. Pólya urns: the building blocks of growing graph models

While uniform attachment and preferential attachment are arguably the most
basic models of randomly growing graphs, the evolution of various simple statis-
tics, such as degrees or subtree sizes, can be described using even simpler build-
ing blocks: Pólya urns. This subsection aims to give a brief introduction into the
well-studied world of Pólya urns, while simultaneously showing examples of how
these urn models show up in uniform attachment and preferential attachment.
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4.5.1. The classical Pólya urn

The classical Pólya urn [28] starts with an urn filled with b blue balls and r red
balls. Then at every time step you put your hand in the urn, without looking
at its contents, and take out a ball sampled uniformly at random. You observe
the color of the ball, put it back into the urn, together with another ball of the
same color. This process is illustrated in Figure 8.

Fig 8. A realization of Pólya’s urn with b = 3 blue balls and r = 2 red balls initially.

We are interested in the fraction of blue and red balls in the urn at large
times. Let Xn denote the number of blue balls in the urn when there are n balls
in the urn in total; initially we have Xb+r = b. Furthermore, let xn = Xn/n
denote the fraction of blue balls when there are n balls in total.

Let us start by computing the expected increase in the number of blue balls
at each time step:

E [Xn+1 |Xn] = (Xn + 1)× Xn

n
+Xn ×

(
1− Xn

n

)
=

(
1 +

1

n

)
Xn.

Dividing this by (n+ 1) we obtain that

E [xn+1 | Fn] = xn,

where Fn denotes the filtration of the process up until time n (when there are n
balls in the urn); since Xn is a Markov process, this is equivalent to conditioning
on Xn. Thus the fraction of blue balls does not change in expectation; in other
words, xn is a martingale. Since xn is also bounded (xn ∈ [0, 1]), it follows that
xn converges almost surely to a limiting random variable. Readers not familiar
with martingales should not be discouraged, as it is simple to see heuristically
that xn converges: when there are n balls in the urn, the change in xn is on
the order of 1/n, which converges to zero fast enough that one expects xn to
converge.13

Our next goal is to understand the limiting distribution of xn. First, let us
compute the probability of observing the first five draws as in Figure 8, starting
with a blue ball, then a red, then two blue ones, and lastly another red: this
probability is 3

5 × 2
6 × 4

7 × 5
8 × 3

9 . Notice that the probability of obtaining 3
blue balls and 2 red ones in the first 5 draws is the same regardless of the
order in which we draw the balls. This property of the sequence Xn is known as

13The reader can convince themselves that E
[
(xn+1 − xn)

2
∣∣∣Fn

]
=

xn(1−xn)

(n+1)2
, and so the

sum of the variances from time N onwards is bounded by
∑

n≥N (n+ 1)−2 ≤ 1/N .
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exchangeability and has several useful consequences (most of which we will not
explore here). It follows that the probability of seeing k blue balls in the first n
draws takes on the following form:

P (Xn+b+r = b+ k)

=

(
n

k

)
b (b+ 1) . . . (b+ k − 1)× r (r + 1) . . . (r + n− k − 1)

(b+ r) (b+ r + 1) . . . (b+ r + n− 1)

From this formula one can read off that Xn+b+r − b is distributed accord-
ing to the beta-binomial distribution with parameters (n, b, r). An alternative
way of sampling from the beta-binomial distribution is to first sample a prob-
ability p from the beta distribution with parameters b and r (having density

x �→ Γ(b+r)
Γ(b)Γ(r)x

b−1 (1− x)
r−1

1{x∈[0,1]}), and then conditionally on p, sample

from the binomial distribution with n trials and success probability p. Con-
ditionally on p, the strong law of large numbers applied to the binomial distri-
bution thus tells us that (Xn+b+r − b) /n converges almost surely to p. Since
xn = (Xn+b+r − b) /n + o(1), it follows that xn → p almost surely. We have
thus derived the following theorem.

Theorem 4.6. Let xn denote the fraction of blue balls at time n (when there
are n balls in total) in a classical Pólya urn which starts with b blue balls and r
red balls. Then

lim
n→∞

xn = x

almost surely, where x ∼ Beta (b, r).

Example 4.7. The classical Pólya urn shows up in uniform attachment trees
as it describes the evolution of subtree sizes as follows. Pick an edge of a tree,

Fig 9. The subtree sizes in uniform attachment trees evolve according to the classical Pólya
urn.

such as edge e in tree S in Figure 9, with endpoints v� and vr. This edge par-
titions the tree into two parts on either side of the edge: a subtree under v�
and a subtree under vr. The sizes of these subtrees (i.e., the number of vertices
they contain) evolve exactly like the classical Pólya urn described above (in the
example depicted in Figure 9 we have b = 6 and r = 2 initially).
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4.5.2. Multiple colors

A natural generalization is to consider multiple colors instead of just two. Let m
be the number of colors, let Xn = (Xn,1, . . . , Xn,m) denote the number of balls
of each color when there are n balls in the urn in total, and let xn = Xn/n.
Assume that initially there are ri balls of color i.

In this case the fraction of balls of each color converges to the natural mul-
tivariate generalization of the beta distribution: the Dirichlet distribution. The
Dirichlet distribution with parameters (r1, . . . , rm), denoted Dir (r1, . . . , rm),
has density

x = (x1, . . . , xm) �→ Γ(
∑m

i=1 ri)∏m
i=1 Γ(ri)

xr1−1
1 . . . xrm−1

m 1{∀i : xi∈[0,1],
∑m

i=1 xi=1}.

It has several natural properties that one might expect, for instance the ag-
gregation property, that if one groups coordinates i and j together, then the
resulting distribution is still Dirichlet, with parameters ri and rj replaced by
ri + rj . This also implies that the univariate marginals are beta distributions.

The convergence result for multiple colors follows similarly to the one for two
colors, so we simply state the result.

Theorem 4.8. Let xn denote the fraction of balls of each color at time n (when
there are n balls in total) in a classical Pólya urn of m colors which starts with
ri balls of color i. Then

lim
n→∞

xn = x

almost surely, where x ∼ Dir (r1, . . . , rm).

Example 4.9. A Pólya urn with multiple colors shows up in uniform attach-
ment trees when we partition the tree into multiple subtrees. Picking a subtree

Fig 10. The sizes of multiple subtrees in uniform attachment trees evolve according to a Pólya
urn with multiple colors.

of m vertices as highlighted in bold in Figure 10, the tree is partitioned into m
subtrees. The sizes of these subtrees (i.e., the number of vertices they contain)
evolve exactly like the classical Pólya urn with m colors described above.
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4.5.3. Adding multiple balls at a time

It is also natural to consider adding more than one extra ball at each time
step. The effect of this is to change the parameter of the limiting Dirichlet
distribution.

Theorem 4.10. Let xn denote the fraction of balls of each color at time n
(when there are n balls in total) in a Pólya urn of m colors which starts with ri
balls of color i and where k balls of the same color are added at each time step.
Then

lim
n→∞

xn = x

almost surely, where x ∼ Dir (r1/k, . . . , rm/k).

Example 4.11. Pólya urns where two balls of the same color are added at each
time step appear in preferential attachment trees as follows. Consider partition-
ing the tree into m subtrees as in Figure 10, but now define the size of a subtree
to be the sum of the degrees of the vertices in it. Consider which subtree the new
incoming vertex attaches to. In the preferential attachment process each subtree
is picked with probability proportional to its size and whichever subtree is picked,
the sum of the degrees (i.e., the size) increases by 2 due to the new edge. Thus
the subtree sizes evolve exactly according to a Pólya urn described above with
k = 2.

4.5.4. More general urn models

More generally, one can add some number of balls of each color at each time
step. The replacement rule is often described by a replacement matrix of size
m×m, where the ith row of the matrix describes how many balls of each color
to add to the urn if a ball of color i is drawn. The urn models studied above
correspond to replacement matrices that are a constant multiple of the identity.
The literature on general replacement matrices is vast and we do not intend to
discuss it here; our goal is just to describe the simple case when the replacement
matrix is ( 2 0

1 1 ). We refer to [38] for detailed results on triangular replacement
matrices, and to the references therein for more general replacement rules.

The urn model with replacement matrix ( 2 0
1 1 ) can also be described as the

classical Pólya urn with two colors as described in Section 4.5.1, but in addition
a blue ball is always added at each time step. It is thus natural to expect that
there will be many more blue balls than red balls in the urn at large times. It
turns out that the number of red balls at time n scales as

√
n instead of linearly

in n. The following result is a special case of what is proved in [38].

Theorem 4.12. Let (Xn, Yn) denote the number of blue and red balls, respec-
tively, at time n (when there are n balls in total) in a Pólya urn with replacement
matrix ( 2 0

1 1 ). Assume that initially there are some red balls in the urn. Then
Yn/

√
n converges in distribution to a nondegenerate random variable.
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Example 4.13. The evolution of the degree of any given vertex in a preferential
attachment tree can be understood through such a Pólya urn. More precisely, fix
a vertex v in the tree, let Yn denote the degree of v when there are n vertices
in total, and let Xn denote the sum of the degrees of all other vertices. Then
(Xn, Yn) evolves exactly according to a Pólya urn with replacement matrix ( 2 0

1 1 ).
This implies that the degree of any fixed vertex scales as

√
n in the preferential

attachment tree.

4.6. Proofs using Pólya urns

With the background on Pólya urns covered, we are now ready to understand
some of the proofs of the results concerning root-finding algorithms from [18].

4.6.1. A root-finding algorithm based on the centroid

We start by presenting a simple root-finding algorithm for uniform attachment
trees. This algorithm is not optimal, but its analysis is simple and highlights
the basic ideas.

For a tree T , if we remove a vertex v ∈ V (T ), then the tree becomes a forest
consisting of disjoint subtrees of the original tree. Let ψT (v) denote the size (i.e.,
the number of vertices) of the largest component of this forest. For example, in
Figure 9 if we remove vr from S, then the tree breaks into a singleton and a star
consisting of 6 vertices; thus ψS (vr) = 6. A vertex v that minimizes ψT (v) is
known as a centroid of T ; one can show that there can be at most two centroids.
We define the confidence set Hψ by taking the set of K vertices with smallest
ψ values.

Theorem 4.14. [18] The centroid-based Hψ defined above is a root-finding

algorithm for the uniform attachment tree. More precisely, if K ≥ 5
2
log(1/ε)

ε ,
then

lim inf
n→∞

P
(
1 ∈ Hψ

(
UA(n)

◦)) ≥ 1− 4ε

1− ε
,

where 1 denotes the root, and UA(n)
◦
denotes the unlabeled version of UA(n).

Proof. We label the vertices of the uniform attachment tree in chronological or-
der. We start by introducing some notation that is useful throughout the proof.
For 0 ≤ i ≤ k, denote by Ti,k the tree containing vertex i in the forest obtained
by removing in UA (n) all edges between vertices {1, . . . , k}. Also, let |T | denote
the size of a tree T , i.e., the number of vertices it contains. Note that the vec-
tor (|T1,k| , . . . , |Tk,k|) evolves according to the classical Pólya urn with k colors
as described in Section 4.5.2, with initial state (1, . . . , 1). Therefore, by Theo-
rem 4.8, the normalized vector (|T1,k| , . . . , |Tk,k|) /n converges in distribution
to a Dirichlet distribution with parameters (1, . . . , 1).

Now observe that

P (1 /∈ Hψ) ≤ P (∃i > K : ψ (i) ≤ ψ (1))

≤ P (ψ (1) ≥ (1− ε)n) + P (∃i > K : ψ (i) ≤ (1− ε)n) .
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We bound the two terms appearing above separately, starting with the first one.
Note that ψ (1) ≤ max {|T1,2| , |T2,2|}, and both |T1,2| /n and |T2,2| /n converge
in distribution to a uniform random variable in [0, 1]. Hence a union bound gives
us that

lim sup
n→∞

P (ψ (1) ≥ (1− ε)n) ≤ 2 lim
n→∞

P (|T1,2| ≥ (1− ε)n) = 2ε.

For the other term, first observe that for any i > K we have

ψ (i) ≥ min
1≤k≤K

K∑
j=1,j �=k

|Tj,K | .

Now using the results on Pólya urns from Section 4.5 we have that for every
k such that 1 ≤ k ≤ K, the random variable 1

n

∑K
j=1,j �=k |Tj,K | converges in

distribution to the Beta (K − 1, 1) distribution. Hence by a union bound we
have that

lim sup
n→∞

P (∃i > K : ψ (i) ≤ (1− ε)n)

≤ lim
n→∞

P

⎛⎝∃1 ≤ k ≤ K :

K∑
j=1,j �=k

|Tj,K | ≤ (1− ε)n

⎞⎠
≤ K (1− ε)

K−1
.

Putting together the two bounds gives that

lim sup
n→∞

P (1 /∈ Hψ) ≤ 2ε+K (1− ε)
K−1

,

which concludes the proof due to the assumption on K.

The same estimator Hψ works for the preferential attachment tree as well, if

one takes K ≥ C log2(1/ε)
ε4 for some positive constant C. The proof mirrors the

one above, but involves a few additional steps; we refer to [18] for details.
For uniform attachment the bound on K given by Theorem 4.14 is not op-

timal. It turns out that it is possible to write down the maximum likelihood
estimator (MLE) for the root in the uniform attachment model; we do not do
so here, see [18]. One can view the estimator Hψ based on the centroid as a
certain “relaxation” of the MLE. By constructing a certain “tighter” relaxation
of the MLE, one can obtain a confidence set with size subpolynomial in 1/ε as
described in Theorem 4.5. The analysis of this is the most technical part of [18]
and we refer to [18] for more details.

4.6.2. Lower bounds

As mentioned above, the MLE for the root can be written down explicitly. This
aids in showing a lower bound on the size of a confidence set. In particular,
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Bubeck et al. [18] define a set of trees whose probability of occurrence under the
uniform attachment model is not too small, yet the MLE provably fails, giving
the lower bound described in Theorem 4.5. We refer to [18] for details.

On the other hand, for the preferential attachment model it is not necessary
to use the structure of the MLE to obtain a lower bound. A simple symmetry
argument suffices to show the lower bound in Theorem 4.4, which we now sketch.

First observe that the probability of error for the optimal procedure is non-
decreasing with n, since otherwise one could simulate the process to obtain a
better estimate. Thus it suffices to show that the optimal procedure must have
a probability of error of at least ε for some finite n. We show that there is some
finite n such that with probability at least 2ε, the root is isomorphic to at least
2c/ε vertices in PA(n). Thus if a procedure outputs at most c/ε vertices, then
it must make an error at least half the time (so with probability at least ε).

Observe that the probability that the root is a leaf in PA(n) is 1
2 ×

3
4 × · · · ×(

1− 1
2n

)
= Θ(1/

√
n). By choosing n = Θ

(
1/ε2

)
, this happens with probability

Θ (ε). Furthermore, conditioned on the root being a leaf, with constant probabil-
ity vertex 2 is connected to Θ (

√
n) = Θ (1/ε) leaves (here we use Theorem 4.12),

which are then isomorphic to the root.

4.7. Outlook: open problems and extensions

There are many open problems and further directions that one can pursue; the
four main papers we have discussed [22, 25, 20, 18] contain 20 open problems
and conjectures alone. For instance, can the bounds on the size of the optimal
confidence set be improved and ultimately tightened? What about other tree
growth models? What happens when we lose the tree structure and consider
general graphs, e.g., by adding multiple edges at each time step?

When the tree growth model is not as combinatorial as uniform attachment
or preferential attachment, then other techniques might be useful. In particular,
many tree growth models can be embedded into continuous time branching
processes and then the full machinery of general branching processes can be
brought to the fore and applied; see [53, 9] and the references therein for such
results. This approach can also be used to obtain finite confidence sets for the
root, as demonstrated recently in [40] for sublinear preferential attachment trees.

A closely related problem to those discussed in this lecture is that of detect-
ing the source of a diffusion spreading on an underlying network. The results
are very similar to those above: the rumor source can be efficiently detected in
many settings, see, e.g., [54, 55, 44]. A different twist on this question is moti-
vated by anonymous messaging services: can one design protocols for spreading
information that preserve anonymity by minimizing the probability of source
detection? Fanti et al. [33] introduced a process, termed adaptive diffusion, that
indeed achieves this goal. Understanding the tradeoffs between privacy and other
desiderata is timely and should lead to lots of interesting research.
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46 M. Rácz and S. Bubeck

[33] G. Fanti, P. Kairouz, S. Oh, and P. Viswanath. Spy vs. Spy: Rumor Source
Obfuscation. In ACM SIGMETRICS, volume 43, pages 271–284. ACM,
2015.

[34] A. L. Gibbs and F. E. Su. On choosing and bounding probability metrics.
International Statistical Review, 70(3):419–435, 2002.

[35] M. Girvan and M. E. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002. MR1908073

[36] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent Space Approaches to
Social Network Analysis. Journal of the American Statistical Association,
97(460):1090–1098, 2002. MR1951262

[37] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels:
First steps. Social Networks, 5(2):109–137, 1983. MR0718088

[38] S. Janson. Limit theorems for triangular urn schemes. Probability Theory
and Related Fields, 134(3):417–452, 2006. MR2226887

[39] T. Jiang and D. Li. Approximation of Rectangular Beta-Laguerre Ensem-
bles and Large Deviations. Journal of Theoretical Probability, 28:804–847,
2015. MR3413957

[40] V. Jog and P.-L. Loh. Analysis of Centrality in Sublinear Preferen-
tial Attachment Trees via the Crump-Mode-Jagers Branching Process.
IEEE Transactions on Network Science and Engineering, 4(1):1–12, 2017.
MR3625951

[41] O. Johnson and A. Barron. Fisher information inequalities and the central
limit theorem. Probability Theory and Related Fields, 129(3):391–409, 2004.
MR2128239

[42] I. M. Johnstone. On the distribution of the largest eigenvalue in prin-
cipal components analysis. Annals of Statistics, 29(2):295–327, 2001.
MR1863961

[43] B. Karrer and M. E. Newman. Stochastic blockmodels and commu-
nity structure in networks. Physical Review E, 83(1):016107, 2011.
MR2788206

[44] J. Khim and P.-L. Loh. Confidence Sets for the Source of a Diffusion in
Regular Trees. IEEE Transactions on Network Science and Engineering,
4(1):27–40, 2017. MR3625953

[45] Y. V. Linnik. An Information-Theoretic Proof of the Central Limit Theo-
rem with Lindeberg Conditions. Theory of Probability & Its Applications,
4(3):288–299, 1959. MR0124081

[46] H. M. Mahmoud. Distances in random plane-oriented recursive trees. Jour-
nal of Computational and Applied Mathematics, 41(1-2):237–245, 1992.
MR1181723
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