Electronic Journal of Statistics

Vol. 11 (2017) 5232-5253

ISSN: 1935-7524
https://doi.org/10.1214/17-EJS1377SI

Random consensus robust PCA

Daniel Pimentel-Alarcén and Robert Nowak

University of Wisconsin-Madison
e-mail: pimentelalar@wisc.edu; rdnowak@wisc.edu

Abstract: This paper presents R2PCA, a random consensus method for
robust principal component analysis. R2PCA takes RANSAC’s principle of us-
ing as little data as possible one step further. It iteratively selects small
subsets of the data to identify pieces of the principal components, to then
stitch them together. We show that if the principal components are in
general position and the errors are sufficiently sparse, R2PCA will exactly
recover the principal components with probability 1, in lieu of assumptions
on coherence or the distribution of the sparse errors, and even under adver-
sarial settings. R2PCA enjoys many advantages: it works well under noise,
its computational complexity scales linearly in the ambient dimension, it is
easily parallelizable, and due to its low sample complexity, it can be used
in settings where data is so large it cannot even be stored in memory. We
complement our theoretical findings with synthetic and real data experi-
ments showing that R2PCA outperforms state-of-the-art methods in a broad
range of settings.
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1. Introduction

Recent years have seen an exponential growth of data acquisition in many fields,
including astronomy, biology, engineering, remote sensing, computer vision and
economics, to name a few. In many of these cases, the dimension (variables)
of such data (images, videos, genomic data, financial time series, etc.) tends to
be very high, which can make its analysis quite challenging. Fortunately, data
often has structured dependencies, which means that some variables can be ac-
curately inferred based on others. Hence, as a first analysis step, one often aims
to find a low-dimensional subspace that explains the dataset at hand (such sub-
space describes its linear dependencies). Principal Component Analysis (PCA)
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is one of the most widely used techniques for this purpose. Unfortunately, a
single grossly corrupted datum can severely compromise its performance. Hence
there is a wide variety of approaches to make PCA robust. Examples include
M-estimators [1], random sampling [2], influence function techniques [3], alter-
nating minimization [4], bilinear decompositions [5], online methods to update
the subspace as more data arrives [6], and convex relaxations [7-18]. Other ap-
proaches use convex optimization methods on subsets of the data (e.g., full rows
and full columns) to improve computational complexity [19, 20]; others aim to
use better non-greedy algorithms [21] or optimize better objective functions [22];
others use bayesian approaches [23-26].

Among these methods, one of the most natural and widely used algorithms for
robust estimation is random sample consensus (RANSAC) [2]. RANSAC is simple
yet powerful. It is popular because it makes almost no assumptions about the
data, and it does not require unrealistic conditions to succeed. It has theoretical
guarantees, works well in practice, and has enjoyed many improvements since
its inception, e.g., [27-29]. The RANSAC version of PCA iteratively selects a few
columns in the data matrix M to define a candidate subspace, until it identifies
a subspace that agrees with other columns in M. This will successfully identify
the subspace that we are looking for, as long as M has enough uncorrupted
columns.

However, in many modern applications, such as image processing and net-
works data analysis, every column in M may have a few grossly corrupted
entries. This makes all columns in M outliers, hence standard robust methods
like RANSAC are no longer applicable. In this setting M can be better modeled
as the sum of a low-rank matrix L and a sparse matrix S representing the cor-
rupted entries. The goal is to identify the subspace U spanned by the columns
in L. This problem is often called robust PCA (RPCA) [8]. The last decades
have seen great approaches to this problem [30, 31], yet it remained unclear how
to extend RANSAC’s principles to this setting [3].

The main contribution of this paper is R2PCA: a random consensus algorithm
for RPCA. R2PCA takes RANSAC’s principle of using as little data as possible one
step further. It iteratively selects small subsets of the entries in M to identify
pieces of the subspace U. This process is repeated until we identify enough pieces
to stitch them together and recover the whole subspace. The key idea behind
R2PCA is that subspaces can be easily and efficiently recovered from a few of
its canonical projections [32]. These canonical projections are the pieces that
R2PCA aims to identify. See Figure 1 for some intuition.

Our main result shows that R2PCA will exactly recover the subspace that we
are looking for with probability 1, as long as M is generic, and the corrupted
entries are sufficiently sparse. In contrast to popular optimization methods (e.g.,
[7-22]), our results make no assumptions about coherence or the distribution
of the sparse errors. In fact, our results hold even under adversarial settings
where the errors are purposely located to complicate success. In its noisy variant,
R2PCA can consistently estimate the desired subspace within the noise level. The
computational complexity of R2PCA scales linearly in the ambient dimension. In
addition, R2PCA enjoys many of RANSAC’s advantages, and many of RANSAC’S
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Fi1c 1. First: Each column in a rank-r matriz L corresponds to a point in an r-dimensional
subspace U. In these figures, U is a 1-dimensional subspace (line) in general position, and the
columns in L are drawn generically from U, that is, independently according to an absolutely
continuous distribution with respect to the Lebesgue measure on U. For example, according to
a gaussian distribution on U. Second: Adding S equates to corrupting some coordinates of
some columns in L. In this figure each point is corrupted in only one coordinate. As a result,
the corrupted points no longer lie in U. So, how can we identify U from these corrupted points?
Third: The key idea behind R2PCA is that since errors are sparse, if we only focus on a few
coordinates of a few columns at a time, it is likely that the selected columns are uncorrupted
on the selected coordinates. We can verify whether this is the case, because the projections
of the selected columns onto the selected coordinates will agree if and only if the columns
are uncorrupted in these coordinates. In this illustration, R2PCA only focused on the (z,y)
coordinates and on two columns. The projections of both columns onto the (z,y) coordinates
agree. Namely, they both lie in Uw, . Hence we can be sure that the (x,y) coordinates of these
columns are uncorrupted, and that Uy, is actually equal to the projection of the subspace U
that we aim to identify. Last: We can repeat this procedure for different sets of coordinates
and columns, until we obtain enough projections to reconstruct the whole subspace.

improvements can be easily adapted to R2PCA. For instance, R2PCA can run in
parallel, with different computers searching for different pieces (canonical pro-
jections) of the subspace. This can greatly reduce computation time, which is of
great interest in general, and paramount in real-time applications. Furthermore,
R2PCA’s principle of studying subspaces by pieces also improves computational
and sample complexity. This is because R2PCA only uses small subsets of the
data at a time. This is of particular importance in settings where M is so large it
cannot even be stored in memory. We complement our theoretical findings with
synthetic and real data experiments showing that R2PCA outperforms state-
of-the-art methods, both in terms of speed and accuracy, in a broad range of
settings.

Organization of the paper

In Section 2 we formally state the problem and present our main result. Section 3
presents our algorithm in its most basic setting. In Section 4 we discuss our as-
sumptions in more detail, and compare them with existing assumptions from
the literature. In Section 5 we explain how to generalize our algorithm to noisy
settings. In Section 6 we present extensive experiments that support our results
and compare the performance of our algorithm with state-of-the-art methods.
All proofs are in Section 7.
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2. Model and main results

Suppose we observe a d x n data matrix M, given by
M = L+S8, (2.1)

where L is rank-r and S is sparse. The goal is to identify the r-dimensional
subspace U spanned by the columns of L, or slightly more demanding, deter-
mine S and L. Consider the following assumptions, where Gr(r, Rd) denotes the

Grassmannian manifold of r-dimensional subspaces in ]Rd, and ||+ ||o denotes the
£o-norm, given by the number of nonzero entries.

(A1) U isdrawn according to an absolutely continuous distribution with respect

to the uniform measure over Gr(r, Rd).

(A2) The columns of L are drawn independently according to an absolutely
continuous distribution with respect to the Lebesgue measure on U.

(A3) The nonzero entries in S are drawn independently according to an abso-
lutely continuous distribution with respect to the Lebesgue measure on
RIS

(A4) S has at most ﬁ nonzero entries per row and at most
nonzero entries per column, with o > 1.

d—r
2(r+1)0-1

A1 requires that U is a subspace in general position, and A2 requires that
the columns in L are drawn generically from this subspace. Together, A1 and
A2 require that L is a generic rank-r matrix. Similarly, A3 requires that S
is a generic sparse matrix. See Section 4 for a further discussion about our
assumptions and their relation to other typical assumptions from the literature.

A4 requires that M has at most O(%/r%) corrupted entries per row and at
most O(d/r®-1) corrupted entries per column. Notice that since decomposing M
is the same as decomposing M, assumption A4 can be interchanged in terms
of rows and columns. A4 is a reasonable assumption because in most problems
where this setting arises, S is sparse and r < d,n, whence A4 allows a large
number of corrupted entries in M. The parameter « determines the sparsity
level of S, which in turn determines the computational complexity of R2PCA.
The larger «, the sparser S, and the faster R2PCA will succeed.

The main result of this paper is the next theorem. It states that R2PCA
(Algorithm 1 below) will exactly recover U, L and S on O((d + n)2r2_a) iter-
ations (linear in d and n). In the extreme case where S has too many errors
(a = 1), R2PCA could require exponential time in r. But if S is sufficiently
sparse (a > 2), R2PCA will succeed in linear time in r. This is true even in the
adversarial setting where the errors are purposely located to complicate suc-
cess. In other words, the computational complexity in Theorem 1 considers the
worst-case scenario. So in practice, as shown in our experiments, R2PCA can be
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much faster and allow a much larger number of corrupted entries. The proof is
in Section 7.

Theorem 1. Let A1-A4 hold. Let U, L and S be the output of R2PCA.
Then span{ﬂ} = U L =L and S = S with probability 1. Furthermore,
the expected number of iterations required by R2PCA is upper bounded by
(d+n— )20+

Remark 1. Throughout the paper we assume that the rank r is known. If this is
not the case, T can be estimated by iteratively selecting (T+1) X (7+1) minors in
M, and verifying their rank (or their singular value decomposition in the noisy
setting). Under A1-A4, with probability 1 there will be a (T+1) x (7+1), rank-T
minor in M if and only if r= 1. So we can start with T = 1. If we find a 2 x 2
minor in M, we know that r = 1. If there exists no such minor, we know that
r > 2. We can iteratively repeat this process until we find a (7 + 1) x (1 + 1)
minor of rank-T. A1-A4 imply that if r = 7, then for every w C {1,..., d} with
T+ 1 entries, M will contain o (1 + 1) X (7 + 1), rank-7 minor. Furthermore,
using the same reasoning as in the proof of Theorem 1, one can show that on

expectation, it would take no more than (9(27‘270[) trials to find such a minor
(recall that o > 1 determines the sparsity level in S ).

3. Algorithm

In this section we introduce R2PCA in its most basic setting (Algorithm 1). In
Section 5 we discuss how to generalize it to noisy settings. From a high level
perspective, R2PCA searches for small subsets of uncontaminated data in M
to obtain pieces of U to then stitch them together. Once U is known, R2PCA
searches for a few uncontaminated entries in each column of M to recover the
coefficients of L. Once L is known, S can be trivially recovered through (2.1).
The key idea behind R2PCA is that subspaces can be exactly and efficiently
recovered from a few of its canonical projections [32]. So rather than attempting
to identify U directly, we will aim to identify small projections of U, knowing
that there is a simple way to stitch these projections together to recover U. More
precisely, let €2 be a d x N matrix with exactly r+ 1 nonzero entries per column,
and let w; C {1,2,...,d} index the nonzero entries in the i™ column of Q. w;
indicates the canonical coordinates involved in the i*® projection that we will
aim to identify. For any subspace, matrix or vector that is compatible with w;,
we will use the subscript w; to denote its restriction to the coordinates/rows in
w;. For example, My, € RE+DUXI denotes the restriction of M to the rows in
w;, and Uy, C Rt denotes the projection of U onto the coordinates in w;.

Our goal is to identify a collection of projections {Uwi}%\i , such that U can
be recovered from these projections. Whether this is the case depends on the

w;’s, i.e., on €. Fortunately, Theorem 1 in [32] specifies the conditions on
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to guarantee that U can be recovered from {Ug, }N ~,- To present this result,
let us introduce the matrix A. A1l implies that w1th probability 1, Uy, is a
hyperplane, i.e., an r-dimensional subspace in R'*1. As such, it is characterlzed
by its orthogonal direction, which we will call ayy,. More precisely, let ay), €
R be a nonzero vector in ker Uw,, and let a; be the vector in Rd with the
entries of ag,, in the locations of w;, and zeros elsewhere. Let A be the d x N
matrix formed with {ai}%\i , as columns. This way, A encodes the information
of the projections {Uw}}\i L With this, we are ready to present Theorem 1 in

[32], which we restate here as Lemma 1 with some adaptations to our context.

Lemma 1 (Theorem 1 in [32]). Let A1 hold. With probability 1, U = ker AT
if and only if

(i) There is a matriz 2 formed with d—r columns of Q, such that every matriz
formed with a subset of n columns in Q' has at least n + r nonzero rows.

There exist plenty of matrices € satisfying (i). For example:

where 1 and 0 denote blocks of all 1’s and all 0’s. One may easily verify that
 satisfies condition (i) by taking €2’ = €. Notice that A is sparse (it only has
1+ 1 nonzero entries per column), so computing ker AT can be done efficiently.

Lemma 1 implies that N = d — r projections are necessary and sufficient to
recover U. Furthermore, it tells us which projections to look for, and how to
reconstruct U from these projections. Hence, our strategy will be to select a

d x (d —r) matrix € satisfying (i), then identify the projections {U, } and

1= 1 ’
finally construct A according to these projections to recover U as ker AT.

In principle, our strategy to identify each projection is very similar to RANSAC.
Given w;, we iteratively select r + 1 columns of My,, uniformly at random.
Let M, € RIFDXIHD be the matrix formed with the selected columns.
span{Mw } defines a candidate projection of U onto w;. A1-A3 imply that with
probability 1, span{M, .} = Uw, if and only if Mwi has no corrupted entries.
This will be the case if and only if rank(ML,i) = 1. We will thus verify whether
rank(My,, ) = r. If this is not the case, this candidate projection will be dis-
carded, and we will try a different My, . On the other hand, if rank(My, ) =r,
then we know that span{l\/[w } is the pI‘OJeCthH Uw, that we were lookmg for.
In this case, we can construct a; as before. This process is repeated for each
column w; in Q to obtain A. Since €2 satisfies (i), we know by Lemma 1 that
at the end of this procedure we will have enough projections to reconstruct U
as dimker AT.

At this point, we have already recovered U. Let U € RIXT he a basis of U.
We will now estimate the coefficient matrix ® € R'*! such that L = U®.
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Algorithm 1: Random Robust PCA (R2PCA)

Input: Data matrix M € RAX1 yank r,
matrix © € {0, 1}4%(A=1) gatisfying (i).

=

2
3 PART 1: Estimate U

a for i=1,2,...,d— rdo

5 w; = indices of the r + 1 nonzero rows of

6 the it" column in €.

7 repeat

8 M, € RIHDXT+D) — v 4 1 columns of M, , selected randomly.
° until rank(My,,) = 7.
10 aw,; € R'! = nonzero vector in ker M{J .
11 a; € ]Rd = vector with the entries of aw, in
12 the locations of w;, and zeros
13 elsewhere.

14 A e Rdx(d-1) = [a1 a2 - -ag_,]
15 | U € RAXT = basis of ker AT.
16 PART 2: Estimate ©

17 for each column m in M do

18 repeat

19 w = subset of {1,2,...,d} withr+1
20 elements, selected randomly.

21 until me € span{Uw}.

22 éz (ﬁLﬁw)ilﬁme

23 Insert 6 into ©.

24 Qutput: ﬁ, L= U(:D, S=M-1L.

Let m be a column in M, and let w be a subset of {1,2,...,d} with exactly
r+ 1 elements. A1-A3 imply that with probability 1, m¢, will lie in U, if and
only if all entries in m, are uncorrupted. We will thus iteratively select a set
w indexing r + 1 random entries in m until we find an w such that m¢, € Ug,.
Once we find such w, the coefficient vector of the corresponding column in L
will be given by 8 := (U},Uy,)~'UJl,m,. This process will be repeated for
every column in M to obtain the coefficient matrix ©, which together with U
determine L as U®. Once L is known, one can trivially recover S through (2.1).
R2PCA is summarized in Algorithm 1.

4. More about our assumptions

Essentially, A1-A3 require that M is a combination of a generic sparse matrix,
and a generic low-rank matrix. This discards pathological cases, like matrices
with identical columns or exact-zero entries. Examples of these cases could arise
in unnatural, cartoon-like images.

However, A1-A3 allow realistic cases, like natural images. For instance, back-
grounds in natural images can be highly structured but are not perfectly con-
stant, as there is always some degree of natural variation that is reasonably
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modeled by an absolutely continuous (but possibly highly inhomogeneous) dis-
tribution. For example, the sky in a natural image might be strongly biased
towards blue values, but each sky pixel will have at least small variations that
will make the sky not perfectly constant blue. So while these are structured im-
ages, these variations make them generic enough so that our theoretical results
are applicable. This is confirmed in our real data experiments.

Furthermore, because absolutely continuous distributions may be strongly
inhomogeneous, they can be used to represent highly coherent matrices (that
is, matrices whose underlying subspace is highly aligned with the canonical
axes). Previous theory and methods for RPCA cannot handle some of the highly
coherent cases that our new theory covers and that our new algorithm handles
well (as demonstrated in our experiments).

We point out that A1-A3 do not imply coherence nor vice-versa. For exam-
ple, coherence assumptions indeed allow some identical columns, or exact-zero
entries. However, they rule-out cases that our theory allows. For example, con-
sider a case where a few rows of U are drawn i.i.d. N(0,07) and many rows
of U are drawn i.i.d. N(0,03), with o7 > o5. This is a good model for some
microscopy and astronomical applications that have a few high-intensity pixels,
and many low-intensity pixels. Such U would yield a highly coherent matrix,
which existing theory and algorithms cannot handle, while our results can (this
can be confirmed in our experiments).

To sum up, our assumptions are different, not stronger nor weaker than the
usual coherence assumptions, and we believe they are also more reasonable in
many practical applications.

5. Handling noise

In practice, all entries in M may be noisy, even the ones that are not corrupted
by gross errors. We can model this as

M = L+S+W, (5.1)

where L and S are as before, and W represents a noise matrix. The goal is the
same as before: determine L and S from M.

Recall that R2PCA’s goal is to identify the projections {Uwi}id__lr to then
reconstruct U. In the noiseless setting, we do this by iteratively selecting (r 4+
1) x (r + 1) matrices My, , and checking their rank. If rank(M, ) = r, then
we know that all entries in ML_,Z are uncorrupted, whence Uy, is given by
span{M,, }. But in the noisy setting, rank(My, ) =r+1 in general, regardless
of whether these columns are corrupted by gross errors. Hence we cannot deter-
mine directly whether the columns in ML, are uncorrupted by simply checking
whether rank(My, ) = r, as we did in the noiseless setting. Instead, we can
check the (r+1)™ singular value of My, , which we will denote as Ayy1. If Aryq
is above the noise level, it is likely that at least one entry in Mf_,,? is grossly
corrupted. On the other hand, if Ary; is within the noise level, it is likely that
ML, has no grossly corrupted entries, whence we can use the subspace spanned
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by the r leading singular vectors of ML,Z as an estimator of Ug,,. Unfortunately,
since M;,1 only has r 4+ 1 rows and columns, the singular values and vectors of
’wi will have a large variance. This means that Ary; will be above the noise
level for many uncorrupted matrices Médi, and below the noise level for many
corrupted ones. As a result, we could miss good estimators and use bad ones.
Furthermore, even if ML.,L is uncorrupted, the subspace spanned by its r leading
singular vectors could be far from Uy,. As a result, our estimate of U could be
very inaccurate.

But this can be improved if we use a few more entries in M so that the

noise cancels out. To this end, let k; be a subset of {1,2,...,d} with k >
r elements containing w;, and let M;i e RK*K be a matrix formed with k

columns of M,. Define Vi, € REXT a5 the matrix formed with the r leading
left singular vectors of Mkl Under mild, typical assumptions (e.g., finite second
and fourth moments), if M, is uncorrupted, as k grows, the (r 4+ 1) singular
value of M}; converges to the noise level, and span{V,} converges to Ug,.
In other words, the larger k, the better estimates of U we will obtain. On the
other hand, as k grows, it is more likely that at least one entry in M;@ is
grossly corrupted (because My, will have more entries, each of which may be
grossly corrupted), contrary to what we want. We thus want k to be large
enough such that M}; can be used to accurately estimate Ug,, but not so
large that there are no matrices M;.Q with uncorrupted entries. The fraction
of corrupted entries in M determines how large k can be. Figure 3 in Section 6
shows the feasible range of k as a function of the fraction of corrupted entries
in M.

Since Mk has k > r rows, if M;.6 is believed to be uncorrupted, we can use
it to estimate several projections of U (as many as k — r). To see this, let v;
be a subset of w; with exactly r elements. Let j € k;\v;, and let w;; := v; U].
Observe that, Vi, € RETDXT gives an estimate of Ugw,, through span{Vw,, }.
As before, we will store this information in the matrix A. More precisely, for
each j € k;\v;, we will take a nonzero vector ay,, € ker VLij, and we will

construct the vector a;; € RY with the entries of aw,; in the locations of w;;.
This time, A will be the matrix with the a;;’s as columns. Since w; = w;;
for some j, Lemma 1 suggests that the projections encoded in A should be
enough to reconstruct U. We can thus use the matrix U € RYT formed with
the last r left singular vectors of A (which approximates ker AT) to estimate
of U.

Similarly, in the second part of R2PCA we can estimate the coefficients of
L using k entries of each column in M. More precisely, for each column m
in M, we can iteratively select a set x indexing k random entries in m until
we find a k such that my is close to Span{fjm} (within the noise level). If
this is the case, it is likely that the entries in my are uncorrupted, and that
6 = (UL Ugk) 'ULmy is a good estimate of the coefficient we are looking for.
We repeat this process to obtain an estimate O of ©. Finally, our estimate of L
is given by UO, which in turn gives an estimate of S through (2.1). The noisy
variant of R2PCA is summarized in Algorithm 2.
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Algorithm 2: Random Robust PCA (R2PCA, noisy variant)

Input: Data M € Rdxn, rank r,
matrix © € {0, 1}4X(A=1) gatisfying (i),

=

2
3 parameter k € N.
a2 PART 1: Estimate U
5 fori=1,2,...,d—rdo
6 w; = indices of the r + 1 nonzero rows of
7 the i*? column in Q.
8 K; = subset of {1,...,d} containing w;
9 and k —r 4+ 1 other rows selected randomly. repeat
10 Mh S REXK — k columns of Mk, ,
11 selected randomly.
12 until (r + 1)'" singular value of My,
13 is within the noise level.
14 Vg, € RKXT = ¢ leading singular vectors
15 of M.
16 v; = subset of k; with exactly r elements,
17 selected randomly.
18 for each j € k;\v; do
19 Wij 1= Uy @] J
20 aw,; € RI*1 = nonzero vector
21 in ker VL” .
22 a;; € Rd = vector with aw,; in the
23 locations of w;;, and zeros
24 elsewhere.
25 Insert a;; into A.

26 U € RIXT = basis of ker AT,

27 PART 2: Estimate ©

28 for each column m in M do

29 repeat

30 K = subset of {1,...,d} with k
31 elements, selected randomly.
32 until mg is close to span{fjn}

33 (within the noise level).

34 6= (ﬁLUH)*lﬁLmR.

35 | Insert 0 into ©.

36 Output: U, L=0U6,S=M—L.

6. Experiments

In this section we present a series of experiments to study the performance of
R2PCA and compare it with the following Robust PCA state-of-the-art algo-
rithms:

(i) Robust PCA via Augmented Lagrange Multiplier (RPCA-ALM) [13, 14]
(ii) Bayesian Robust PCA (BRPCA) [23].
(iii) Accelerated Robust Orthogonal Subspace Learning (ROSL+) [15].
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(iv) Robust Matrix Completion ¢,-norm Iterative Hard Thresholding (RMC-
¢,-THT) [16].

We found, consistent with the comprehensive review in [31] and previous
reports [11, 30, 33] that these algorithms typically performed as well or better
than several others (e.g., singular value thresholding [9], alternating direction
method [17], accelerated proximal gradient [18] and the dual method [18]).

Synthetic data

We will first use simulations to study the performance of R2PCA (and the algo-
rithms above) in the noiseless setting, as a function of the percentage of grossly
corrupted entries per row p, and the coherence of L, defined as

d
= — max |Ppe;||?
po= g mex [Poe,

where Py denotes the projection operator onto U, and e; the i*" canonical vector
in RY. Intuitively, 4 parametrizes how aligned is U with respect to the canonical
axes. In all our experiments, L was a d x n, rank-r matrix, with d = n = 100
and r = 5.

In our simulations, we first generated a d x r random matrix U with N(0, 1)
i.i.d. entries to use as basis of U. To obtain matrices with a specific coherence
parameter, we simply increased the magnitude of a few entries in U, until it
had the desired coherence. We then generated an r x (r + 1)(d — r) random
matrix @, also with N(0,1) i.i.d. entries, to use as coefficient vectors. With this,
we constructed L = UBO. Next, we generated a d X r matrix S with p percent
of nonzero entries per row, selected uniformly at random. The nonzero entries
in S are i.i.d. N(0,10). Finally, we obtained M as in (2.1). We repeated this
experiment 100 times for each pair (p, ), and recorded the fraction of trials
that L was exactly recovered. We declared a success if the normalized error
(using Frobenius norm) was below 10719 after at most 103 seconds. The results
are summarized in Figure 2.

As predicted by our theory, R2PCA performs perfectly as long as S is suffi-
ciently sparse, regardless of coherence. In contrast, other approaches (e.g., [7—
26]) can recover incoherent cases (white regions where p is small), but their
performance quickly decays as coherence increases (black regions where g is
large). On the other hand, as p grows, and S becomes less sparse, the likelihood
of finding uncorrupted blocks in M quickly decays. In turn, it takes more time
to identify projections of U, up to the point where R2PCA is unable to identify
enough projections to reconstruct U.

Our next experiment relates to the noisy variant of R2PCA presented in
Section 5 that iteratively selects k rows of k columns of M to estimate U and
©. Its performance depends on the choice of k. If k is too small, our estimates
could be very inaccurate. If k is too large, M may not contain enough k x k un-
corrupted blocks to obtain an estimate. The feasible range of k depends on the
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F1G 2. Transition diagrams of the success rate (top row) and time (bottom row) for exact recovery of L as a function of the percentage of grossly
corrupted entries per row p, and the coherence parameter p € [1, d/r]. The color of each (p, ) pizel indicates the average over 100 trials (the lighter
the better). Notice that as p grows, so does the time required to find projections, up to the point where R2PCA is unable to find enough projections
to reconstruct U. Theorem 1 shows that if M has at most p = 7.9% corrupted entries per row (dashed line), then R2PCA can exactly recover L. We
point out that our results hold regardless of coherence, as opposed to other algorithms, whose performance quickly decays as coherence increases.
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1

10°
2% 4% 6% 8% 10%

Fi1G 3. Transition diagram of the estimation error of L (using the noisy variant of R2PCA) as
a function of the percentage of grossly corrupted entries per row p and the parameter k, with
noise level o = 1073, The color of each (p, k) pizel indicates the average over 100 trials (the
lighter the better). If k is too small, our estimate could be very inaccurate. If k is too large, it
is less likely to find k X k uncorrupted matrices to obtain an estimate. This figure shows the
feasible range of k (white region, where R2PCA can recover L within the noise level), which
depends on the percentage of corrupted entries p.

percentage of corrupted entries p. In our next experiment we study the perfor-
mance of the noisy variant of R2PCA as a function of p and k. To obtain a noisy
M according to (5.1), we generated matrices L and S as described before, and
then added a d x n random matrix W with N(0,0?) i.i.d. entries. To measure
accuracy we recorded the error of the estimated L after at most 103 seconds
(using normalized Frobenius norm). We repeated this experiment 100 times for
each pair (p,k) with o = 1073 fixed. The results, summarized in Figure 3, show
the feasible range of k.

In our next simulation, we selected k = 2r, known from our previous experi-
ment to produce reasonable results for a wide range of p, and used it to test the
performance of R2PCA as a function of noise and coherence, with fixed p = 5%.
We repeated this experiment 100 times for each pair (o, it). The results, summa-
rized in Figure 4, show that R2PCA can consistently estimate L within the noise
level, as long as S is sufficiently sparse, regardless of coherence (as opposed to
other algorithms).

Astronomy and correlated errors

In a video, the background can be modeled as approximately low-rank, and the
foreground objects (like cars or people) can be modeled as sparse errors (as they
typically take only a fraction of each frame). So the sparse plus low-rank model
is a natural fit for this problem. Here M is the matrix containing the vectorized
images in the video, and the goal is to decompose it into the sparse foreground
S and the low-rank background L. We now present an experiment where highly
coherent matrices and highly correlated sparse errors arise in a very natural
way: background segmentation of astronomy videos. This experiment aims to
illustrate the importance of RPCA in coherent matrices with non uniformly
distributed errors.

In this experiment we simulated astronomy videos with a background with
v twinkling stars and p moving objects (see Figure 5). To this end we first
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Fic 4. Transition diagram of the estimation error of L as a function of the noise level o and the coherence parameter u, with p = 5% grossly
corrupted entries. The color of each (o, u) pizel indicates the average error over 100 trials (the lighter the better). This shows that R2PCA can
consistently estimate L within the noise level, as long as S is sufficiently sparse, regardless of coherence. Other algorithms can also estimate L
within the noise level, but only for a restricted range of matrices with bounded coherence.

VOd 151Q04 SNSUISU0D ULOPUDY

aves



5246 D. Pimentel-Alarcén and R. Nowak

Fic 5. Left: One frame of a simulation of an astronomical video, composed of a background
formed with v twinkling stars and p moving objects. Fach object (block) moves in a random
direction at a random speed over the video. Right: Each frame is vectorized to form the matriz
M, which is shown negated and transposed for display purposes (i.e., we see 1 — MT ). The
vertical lines correspond to the pizels of the stars. All other points correspond to the moving
objects. These points are highly correlated, as is the location of an object in consecutive frames.

generated a d X r matrix U, and an r x N matrix ®, with d = 90120 = 10800,
r = 5and N = 100. We selected v rows in U uniformly at random, and populated
them with the absolute values of i.i.d. N(0, 100) random variables. These entries
represent the twinkling stars. All other entries in U were populated with the
absolute values of i.d.d. N(0,1) random variables. Similarly, we populated ©®
with the absolute value of i.d.d. N(0, 1) random variables. Next we constructed
L = UO, and bounded its entries by 1 (i.e., we divided L by its maximum
value). Each column of L represents the vectorized background of a 90 x 120
frame of a video.

For each of the p moving objects, we selected uniformly at random: one
starting point on the edge of a 90 x 120 frame, one starting time between
{1,2,...,100}, one direction, and one speed ranging from 1 to 5 pixels per
frame. With this information, we created p objects moving across a dark back-
ground over 100 frames. Each moving object consisted of an r x r block with
N(0,1) entries. We vectorized the frames to obtain a 10800 x 100 matrix, whose
entries we normalized between 0 and 1 to obtain S. Finally, we replaced the
zero entries in S with the corresponding entries in L to obtain M. This way,
all entries in M are between 0 and 1, such that the brightest star shines at a
maximum intensity of 1, and so does the brightest pixel of all moving objects.

We repeated this experiment 100 times for each pair (v, p), and counted the
fraction of times that L was perfectly recovered from M, using R2PCA and the
algorithms above. Figure 6 shows the results, where (to avoid clutter), each
pixel in the right column corresponds to the best performing algorithm among
(i)-(iv). This experiment shows that R2PCA has almost perfect performance
handling highly coherent matrices and highly correlated errors (as opposed to
other algorithms).

Real data: Microscopy and surveillance

Finally, we evaluate the background segmentation performance of R2PCA on real
data. To this end we used several microscopy videos from the Internet [36], and
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R2PCA (this paper) Best of (i)-(iv)

10800 10800

Success rate
Number of Stars
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Time (seconds)
Number of Stars

11020 60 100 200 300 400 11020 60 100 200 300 400

Number of Objects ~ Number of Objects

Fi1c 6. Transition diagrams of the success rate (top row) and time (bottom row) for exzact
recovery of L as a function of the number of moving objects p and the number of twinkling
stars v for the experiment described in Figure 5. The right column corresponds to the best
performing algorithm among (i)-(iv). The larger p, the larger proportion of corrupted entries
p. The larger v, the lower coherence p. The color of each (p,v) pizel indicates the average over
100 trials (the lighter the better). The results are consistent with the experiments in Figure 2,
showing that R2PCA has almost perfect performance handling highly coherent matrices and
highly correlated errors (as opposed to other algorithms).

videos from two widely used datasets: the Wallflower dataset [34] and the I2R
dataset [35]. Figures 7 and 8 show several examples.

We point out that many cases of the Wallflower and the I2R datasets have low
coherence. In these cases, the performance of R2PCA and all other algorithms
is very similar. Consistent with our theory, the advantage of R2PCA becomes
more evident in highly coherent cases, like our microscopy and astronomy ex-
periments.

Remark 2. Notice that in all of our background experiments, R2PCA can handle
a much larger fraction of gross errors than the allowed by Theorem 1. This is
because Theorem 1 holds even under the worst-case scenario where the errors are
purposely located to complicate success. In many applications, as in background
segmentation, errors are often grouped, which tends to leave more uncorrupted
blocks. This facilitates R2PCA’s success.

7. Proof of main result

In this section we give the proof of Theorem 1. Recall that 2 is a d x (d — 1)
matrix, and that w; C {1,...,d} indexes the r + 1 nonzero entries in the ith
column of 2. Each w; indicates the coordinates of a projection of U that we aim
to identify. Since R2PCA selects a matrix € satisfying (i), Lemma 1 implies that

if we find the projections of U onto the coordinates indicated in €2, then we can
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R2PCA (this paper) Best of (i)-(iv)
Background Foreground Background Foreground

Original Frame

Fic 7. Sparse (foreground) plus low-rank (background) decomposition of several microscopy
videos [36]. The two rightmost columns corresponds to the best performing algorithm among
(i)-(iv). Notice that the background obtained by other algorithms contain foreground objects,
while the background obtained by R2PCA is much cleaner. This is because it these videos the
background is mostly dark with a few bright regions (which implies a highly coherent subspace)
and the location of the errors is highly correlated (the location of an object in consecutive
frames is very similar). In contrast to other methods [7-26], we make no assumptions about
coherence or the distribution of the sparse errors, and so this does not affect our results.
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R2PCA (this paper) Best of (i)-(iv)
Background Foreground Background Foreground

Original Frame

Fia 8. Sparse (foreground) plus low-rank (background) decomposition of some video frames
from the Wallflower [23] and I2R [24] datasets. The two rightmost columns corresponds to
the best performing algorithm among (i)-(iv). We point out that in these experiments, all
algorithms had similar performance.

reconstruct U from these projections. Hence we need to show that under the
assumptions of Theorem 1, R2PCA can find the projections of U onto the w;’s
in Q. To this end, we will show that R2PCA can potentially find the projection
onto any w C {1,2,...,d} with exactly r + 1 elements.

So let w be given. As discussed in Section 2, finding the projection Uy equates
to finding r+ 1 uncorrupted columns in M,. So R2PCA can potentially find U,
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as long as there are r + 1 uncorrupted columns in M,. Since M, only contains
r + 1 rows, A4 implies that there are at most % corrupted entries in
M. In the worst-case scenario, each of these corrupted entries is located in a
different column. It follows that M, has at most # corrupted columns.

Then
P(i*™ column in My, is uncorrupted)

1
P [P —
= ST o non

which corresponds to the case where the first r columns in M, are uncorrupted,

whence the ratio of uncorrupted columns ((n —r) — ﬁ) versus total

remaining columns (n —r) is smallest. It follows that

P(all columns in M, are uncorrupted)

(ﬁ)

(r+1)1+(a71)7<a71)
(r+ 1 - 1)

( T+1) Q=D (r41)2-

v

1-—
r—|—1‘)‘ (r+1)a-1

1/ @+1) @D
(r+ 1)o- 1)

> ()T (1)

(r+1)2-¢

—«

This implies that on expectation, R2PCA will require at most 2+D°™ iterations
to find a set of r+ 1 uncorrupted columns in M. This is true for every w. Since
R2PCA only searches over the w;’s in €2, and since €2 has exactly d —r columns,

it follows that on expectation, R2PCA will require at most (d — r)2(r+1)2_a
iterations to find the projections of U onto the canonical coordinates indicated
by Q. Since Q satisfies condition (i), we know by Lemma 1 that U is given by
ker AT.

Now that U is known, let us show that R2PCA can recover L. Let U be an
arbitrary basis of U. We will show that R2PCA can determine the matrix ©
containing the coefficients of L in this basis, such that in the end, L will be
given by U®. To this end, let m be a column in M. Observe that R2PCA can
potentially find the coefficients of the corresponding column of L as long as
there is a set w C {1,2,...,d} with r+1 elements such that m¢, € Uy. A1-A3

imply that with probability 1, this will be the case if and only there are at least
d-r

r + 1 uncorrupted entries in m. By A4, there are at most 0T

corrupted
entries in m. It follows that
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P(i*" entry in my is uncorrupted)
> 1 L
= sy

which corresponds to the case where the first r entries in m, are uncorrupted,
d-r
r) —

whence the ratio of uncorrupted entries ((d — T

) versus total re-

maining entries (d — r) is smallest. It follows that

P(all entries in my, are uncorrupted)

1 T+1 o
> (1.0 - > (1/9)T+1)
= ( 2(r+1)0‘1> > (1/2) ’

where the last inequality follows by the same arithmetic manipulations as in
(7.1). This implies that on expectation, R2PCA will require at most (r+1)>
iterations to find a set of r 4+ 1 uncorrupted entries in m. This is true for every
m. Since M has n columns, it follows that on expectation, R2PCA will require
at most n20+10° ™Y jterations to recover L. Once L is known, S can be trivially
recovered as S = M — L. This shows that on expectation, R2PCA will require

at most (d +n — 1")2(”1)2706 iterations to recover U, L and S from M. O

8. Conclusions

In this paper we present R2PCA, a novel algorithm for robust PCA. We show that
under reasonable assumptions, R2PCA will succeed with probability 1 in linear
time, in lieu of assumptions on coherence or the distribution of the sparse errors.
The algorithm is parallelizable and can be used in large scale settings where the
dataset is too large to even store in memory. Our experiments show that R2PCA
consistently outperforms state-of-the-art methods both in terms of speed and
accuracy in a broad range of settings, particularly on high coherence cases.
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