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Abstract: Efficient recovery of a low-dimensional structure from high-
dimensional data has been pursued in various settings including wavelet
denoising, generalized linear models and low-rank matrix estimation. By
thresholding some parameters to zero, estimators such as lasso, elastic net
and subset selection perform variable selection. One crucial step challenges
all these estimators: the amount of thresholding governed by a threshold
parameter λ. If too large, important features are missing; if too small,
incorrect features are included. Within a unified framework, we propose a
selection of λ at the detection edge. To that aim, we introduce the concept
of a zero-thresholding function and a null-thresholding statistic, that we
explicitly derive for a large class of estimators. The new approach has the
great advantage of transforming the selection of λ from an unknown scale
to a probabilistic scale. Numerical results show the effectiveness of our
approach in terms of model selection and prediction.
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1. Introduction

Many real world examples in which the number of features P of the model can
be dramatically larger than the sample size N have been identified in various
domains such as genomics, finance and image classification, to name a few.
In those instances, the maximum likelihood estimation principle fails. Beyond
existence and uniqueness issues, it tends to perform poorly when P is large
relative to N due to its high variance. Motivated by the seminal papers of
James and Stein [27] and Tikhonov [58], a considerable amount of literature
has concentrated on parameter estimation using regularization techniques. In
both parametric and nonparametric models, a reasonable prior or constraints
are set on the parameters in order to reduce the variance of the estimator and
the complexity of the fitted model, at the price of a bias increase.

We consider a class of regularization techniques, called thresholding, which:

(i) assumes a certain transform ξ∗ = g(β∗) ∈ RQ of the true model parameter
β∗ ∈ RP is sparse, meaning

S∗ := {q ∈ {1, . . . , Q} : ξ∗q �= 0} (1.1)

has small cardinality. For example, coordinate-sparsity is induced by g(β∗)
= β∗, whereas variation-sparsity is induced by g(β∗) = Bβ∗ with B the
first order difference matrix;

(ii) results in an estimated support

Ŝλ := {q ∈ {1, . . . , Q} : ξ̂λ,q �= 0} (1.2)

whose cardinality is governed by the choice of a threshold parameter λ ≥ 0.

Thresholding techniques are employed in various settings such as linear re-
gression [15, 54], generalized linear models [40], low-rank matrix estimation
[32, 8], density estimation [18, 49], linear inverse problems [13], compressed
sensing [14, 9] and time series [38].
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Selection of the threshold is crucial to perform effective model selection. It
amounts to selecting basis coefficients in wavelet denoising, or genes responsible
for a cancer type in microarray data analysis. In change-point detection, it is
equivalent to detecting locations of jumps. A too large λ results in a simplistic
model missing important features whereas a too small λ leads to a model includ-
ing many features outside the true model. A typical goal is variable screening,
that is,

Ŝλ ⊇ S∗ (1.3)

holds with high probability, along with few false detections {q : ξ̂λ,q �= 0, ξ∗q =
0}. For a suitably chosen λ, certain estimators allow variable screening. The
optimal threshold for model identification often differs from the threshold aimed
at prediction optimality [61, 31, 34, 64], and it turns out that models aimed at
good prediction are typically more complex.

Classical methodologies to select λ consist in minimizing a criterion. Exam-
ples include cross-validation, AIC [1], BIC [51] and Stein unbiased risk estima-
tion (SURE) [53]. In low-rank matrix estimation, Owen and Perry [39] and Josse
and Husson [28] employ cross-validation whereas Candès et al. [11] and Josse
and Sardy [29] apply SURE. The latter methodology is also used in regression
[15, 66, 57], and reduced rank regression [36]. Because traditional information
criteria do not adapt well to the high-dimensional setting, generalizations such
as GIC [21] and EBIC [12] have been suggested.

In this paper, we propose a new threshold selection method that aims at
a good identification of the support S∗. Our approach has the advantage of
transforming the selection of λ from an unknown scale to a probabilistic scale
with the simple selection of a probability level. In Section 2, we first review
thresholding estimators in linear regression, generalized linear models, low-rank
matrix estimation and density estimation. We then introduce the key concept
of a zero-thresholding function in Section 3 and derive explicit formulations. In
Section 4, we define the null-thresholding statistic, which leads to our proposal:
the quantile universal threshold. Some properties are derived. We illustrate the
effectiveness of our methodology in Section 5 with four real data sets and sim-
ulations. The appendices contain proofs and technical details.

2. Review of thresholding estimators

Thresholding estimators are extensively used in the following domains.

Linear regression. Consider the linear model

Y = X0β
∗
0 +Xβ∗ + σε, ε ∼ N(0, IN ), (2.1)

where X0 and X are matrices of covariates or discretized basis functions of sizes
N×P0 and N×P respectively, and β∗

0, β
∗ are unknown coefficients. The vector

β∗
0 corresponds to P0 parameters assumed a priori to be nonzero, as is the case

for the intercept.
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For an observed (y, X0, X), a large class of estimators is of the form

(β̂0λ, β̂λ) ∈ argmin
(β0,β)∈RP0+P

L(X0β0 +Xβ,y) + pλ(g(β)), (2.2)

for a given loss L and function g. A penalty pλ induces sparsity in ξ̂λ = g(β̂λ).
The element notation “∈” indicates the minimizer might not be unique. The
lasso [54] defined by

β̂
lasso

λ ∈ argmin
β∈RP

1

2
‖y −Xβ‖22 + λ‖β‖1 (2.3)

is among the most popular techniques (we assume here that P0 = 0 for simplic-
ity). Other examples include:

(i) Total variation [44], WaveShrink [15], adaptive lasso [64], group lasso [62],
generalized lasso [56], sparse group lasso [52], least absolute deviation
(LAD) lasso [60], which minimizes ‖y−Xβ‖1 + λ‖β‖1, square root lasso
[3], which minimizes ‖y−Xβ‖2 + λ‖β‖1 and group square root lasso [7].

(ii) Subbotin lasso [46] where pλ(β) = λ‖β‖νν , ν ≤ 1, best subset selection,
which is equivalent to Subbotin lasso with ν = 0, smoothly clipped ab-
solute deviation (SCAD) [19], minimax concave penalty (MCP) [63] and
smooth lasso [47].

Convex methodologies (i) also include the Dantzig selector [10]. Although ridge
regression [26], bridge [22] and smoothing splines [59] are of the form (2.2), they
do not threshold.

Generalized linear models (GLMs). The canonical model assumes the log-
likelihood is of the form

� (β0,β;y) =

N∑
n=1

[ynθn − b (θn)] with θn = x0
T
nβ0 + xT

nβ, (2.4)

b a known function, x0n and xn denoting the nth row of X0 and X respectively
[37]. As an extension of lasso, Sardy et al. [50] and Park and Hastie [40] define

(β̂0λ, β̂λ) ∈ argmin
(β0,β)∈F

−� (β0,β;y) + λ‖β‖1, (2.5)

where F :=
{
(β0,β) ∈ RP0+P |X0β0 +Xβ ∈ ΘN

}
and Θ := {θ ∈ R | b(θ) <

∞}. Other penalties such as group lasso [33] have been proposed.

Low-rank matrix estimation. Consider the model Y = X∗ + σZ, where X∗

is a low-rank matrix and Zij
i.i.d.∼ N(0, 1). Inspired by lasso, an estimate of X∗

[32, 8] is given by

argmin
X∈RN×P

1

2
‖Y −X‖2F + λ‖X‖∗,
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where ‖ · ‖F and ‖ · ‖∗ respectively denote the Frobenius and trace norm. For a

fixed λ, the solution is X̂ = Udiag(d̂λ)V
T with Y = Udiag(d)V T the singular

value decomposition of Y , and d̂λ,i = max(di − λ, 0).

Density estimation. Let Y1, . . . , YN
i.i.d.∼ ϕ. A regularized estimate ϕ̂λ of the

discretized density ϕ∗ = [ϕ(y(1)), . . . , ϕ(y(N))] is

ϕ̂λ = argmin
ϕ∈RN

−
N∑

n=1

logϕn + λ‖Bϕ‖1 s.t. aTϕ = 1,

where a1 = (y(2) − y(1))/2, an = (y(n+1) − y(n−1))/2, n = 2, . . . , N − 1, aN =
(y(N) − y(N−1))/2, y(k) denotes the kth order statistic and B is the first order
difference matrix [49].

Motivated by the preceding examples in GLMs and low-rank matrix estima-
tion, a definition of a thresholding estimator is the following.

Definition 1. Assume Y ∼ f(η∗,β∗), with ξ∗ = g(β∗) sparse for a certain

function g and η∗ a vector of nuisance parameters. Let β̂λ(Y) be an estimator

indexed by λ ≥ 0. We call ξ̂λ(Y) = g ◦ β̂λ(Y) a thresholding estimator if

P(ξ̂λ(Y) = 0) > 0 for some finite λ.

3. The zero-thresholding function

A key property shared by a class of estimators is to set the estimated parameters
to zero for a sufficiently large but finite threshold λ. This leads to the following
definition.

Definition 2. A thresholding estimator ξ̂λ(Y) admits a zero-thresholding func-
tion λ0(Y) if

ξ̂λ(Y) = 0 ⇔ λ ≥ λ0(Y) almost everywhere.

The zero-thresholding function is hence determined uniquely up to sets of
measure zero. The equivalence implies equiprobability between setting all coef-
ficients to zero and selecting the threshold large enough. It turns out that such
a function has a closed form expression in many instances. Below we derive a
catalogue for the estimators reviewed in Section 2.

Linear regression. Explicit formulations are the following:

• Lasso, WaveShrink and the Dantzig selector: λ0(y) = ‖XTy‖∞; SCAD
and MCP share the same zero-thresholding function when X is orthonor-
mal. For adaptive lasso, λ0(y) = ‖WXTy‖∞, where W is a diagonal
matrix of weights, for LAD-lasso, λ0(y) = ‖XTsgn(y)‖∞, where sgn(·)
is the sign function applied componentwise, and for square root lasso,
λ0(y) = ‖XTy‖∞/‖y‖2.
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• Group lasso and square root lasso: if the parameters are partitioned into G
prescribed groups so that pλ(β) = λ

∑
g=1,...,G ‖βg‖2, the zero-thresholding

function is λ0(y) = maxg=1,...,G ‖XT
g y‖2 for group lasso and λ0(y) =

maxg=1,...,G ‖XT
g y‖2/‖y‖2 for square root lasso.

• Generalized lasso: Assuming B has full row rank, let I denote a set of
column indices such that BI , the submatrix of B with columns indexed
by I, is invertible. Then, λ0(y) = ‖AT

1 (I − PA2)y‖∞, where PX is the
orthogonal projection matrix onto the range of X, A1 = XIB

−1
I , A2 =

XĪ −XIB
−1
I BĪ and Ī is the complement of I. In one-dimensional total

variation, λ0(y) = ‖(BBT)−1By‖∞.
• Best subset:

λ0(y) = max
p=1,...,rank(X)

Δp(y)

p
, (3.1)

where Δp(y) =
1
2 max{I⊂{1,...,P}:|I|=p} ‖PXIy‖22. When X is orthogonal,

λ0(y) = Δ1(y).
• Subbotin lasso: λ0(y) = {‖XTy‖∞/(2 − ν)}2−ν/{2(1 − ν)}ν−1 if X is

orthonormal.

For a convex objective function, derivation of the zero-thresholding function
can be inferred from the Karush-Kuhn-Tucker conditions [43]. As an example,
we consider LAD-lasso. A given β ∈ RP is a minimum of the objective function
f(β) = ‖y − Xβ‖1 + λ‖β‖1 if and only if 0 ∈ ∂f(β), the subdifferential of
f evaluated at β. The zero-thresholding function λ0(y) = ‖XTsgn(y)‖∞ then

follows from the result for all y ∈ (R∗)N , ∂f(0) = −XTsgn(y) + λ [−1, 1]
P
.

Such a derivation can also be performed for estimators with a composite
penalty involving a two-dimensional parameter λ = (λ(1), λ(2)), for example:

• Elastic net [65] where pλ(β) = λ(1)‖β‖1 + λ(2)‖β‖22: regardless of λ(2),

λ
(1)
0 (y;λ(2)) = ‖XTy‖∞.

• Fused lasso [55] where pλ(β) = λ(1)‖β‖1+λ(2)
∑P

p=2 |βp−βp−1|: assuming

X is orthonormal, λ
(1)
0 (y;λ(2)) = ‖β̂(0,λ(2))(y)‖∞.

Generalized linear models. The following Lemma shows that although the
lasso GLM solution (2.5) might not be unique, its fit is unique (see proof in
Appendix A.1).

Lemma 1. Assume b is strictly convex on Θ. For any fixed X0, X, y and
0 ≤ λ < ∞, X0β̂0λ +Xβ̂λ is unique.

The zero-thresholding function of β̂λ is given in (3.2) below. Its derivation is
based on Theorem 1 whose proof can be found in Appendix A.2.

Theorem 1. Assume b in (2.4) is convex on Θ open, and let μ(β0) = (b′(x0
T
1 β0),

. . . , b′(x0
T
Nβ0))

T. For any fixed X0, X, y and 0 ≤ λ < ∞,

(β̂0λ,0) ∈ argmin
(β0,β)∈F

−� (β0,β;y) + λ‖β‖1 ⇐⇒

⎧⎪⎨
⎪⎩
X0β̂0λ ∈ ΘN

X0
Ty = X0

Tμ(β̂0λ)

‖XT[y − μ(β̂0λ)]‖∞ ≤ λ.
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Table 1

Values of b′(β∗
0 ), D and P(Y ∈ D) when X0 = 1.

Response distribution μ = b′(β∗
0 ) D P(Y ∈ D)

Gaussian β∗
0 RN 1

Poisson exp
(
β∗
0

)
NN \ {0} 1− exp (−Nμ)

Bernoulli
exp

(
β∗
0

)
(
1 + exp

(
β∗
0

)) {0, 1}N \ {0,1} 1− μN − (1− μ)N

Binomial (m, p) /m
exp

(
β∗
0

)
(
1 + exp

(
β∗
0

)) {0, 1/m, . . . , 1}N
\ {0,1} 1− (μ)mN − (1− μ)mN

Hence, for a strictly convex b and setting β̂λ = 0 if λ = +∞, the zero-
thresholding function of lasso GLM is

λ0(y) =

{
‖XT[y − μ(v)]‖∞ if y ∈ D,

+∞ otherwise,
(3.2)

with v any vector such that

{
X0v ∈ ΘN

X0
Ty = X0

Tμ(v)
(3.3)

and D = {y | ∃v ∈ RP0 solution to (3.3)}. For the group lasso GLM, one
obtains

λ0(y) =

{
maxg=1,...,G ‖XT

g [y − μ(v)]‖2 if y ∈ D,

+∞ otherwise.

Lemma 1 implies λ0(y) does not depend on which solution v to (3.3) is
chosen. The set D is the set of values based on which the maximum likelihood
estimate (MLE) of (β0,β) with constraint β̂ = 0 exists. If the response variable
is Gaussian, then D = RN . An explicit formulation of D when the intercept
is unpenalized (X0 = 1) is given in Table 1. For an arbitrary matrix X0 and
under certain assumptions, Giacobino [24] shows that D coincides with the set
of values y such that lasso GLM admits a solution. In particular, the following
property holds.

Property 1. Consider a Poisson or (multinomial) logistic regression model.
Then, for any fixed X0, X and 0 < λ < ∞, and any observed value y, lasso
GLM defined in (2.5) admits a solution if and only if a MLE of (β0,β) with

constraint β̂ = 0 exists.

Low-rank matrix estimation. The zero-thresholding function is λ0(Y ) =
‖d‖∞, the largest singular value of the noisy matrix Y .

Density estimation. The zero-thresholding function is λ0(y) = ‖w‖∞ with

wk = N
∑k

i=1 ai − k
∑N

i=1 ai, k = 1, . . . , N − 1.
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4. The quantile universal threshold

4.1. Thresholding under the null

Inspired by Donoho and Johnstone [15], we now consider the idea of choosing
a threshold based on the null model ξ∗ = 0, that is, selecting a threshold λ
such that {ξ̂λ = 0 | ξ∗ = 0} holds with high probability. From Definition 2, the

events {ξ̂λ = 0} and {λ ≥ λ0(Y)} are equiprobable. This conducts us to the
zero-thresholding function under the null model.

Definition 3. Assume ξ̂λ(Y) admits a zero-thresholding function λ0(Y). The
null-thresholding statistic is

Λ0 := λ0(Y0) (4.1)

with Y0 =d Y under H0 : ξ∗ = 0.

Given a thresholding estimator and its null-thresholding statistic, selecting
λ large enough such that ξ∗ is recovered with probability 1− α under the null
model ξ∗ = 0 leads to the following new selection rule.

Definition 4. The quantile universal threshold λQUT is the upper α-quantile of
Λ0 defined in (4.1).

We discuss the selection of α in Section 4.4. As we will see, it turns out such
a choice results in good empirical and theoretical properties also in the case
ξ∗ �= 0.

If the distribution of Λ0 is unknown, λQUT can be computed numerically
by Monte Carlo simulation. For instance, one can easily simulate realizations
of square root lasso’s null-thresholding statistic Λ0 = ‖XTY0‖∞/‖Y0‖2, and
compute λQUT by taking the appropriate upper quantile. Section 4.4 considers
situations where a closed form expression of λQUT can be derived.

With the quantile universal threshold, selection of the regularization param-
eter is now redefined on a probabilistic scale through the probability level α.
QUT is a selection rule designed for model selection as it aims at good identi-
fication of the support of the estimand ξ∗. If one is instead interested in good
prediction, then the sparse model identified by QUT can be refitted by maxi-
mum likelihood. Such a two step approach has been considered (see Bühlmann
and van de Geer [5], Belloni and Chernozhukov [2]) to mimic the behavior of
adaptive lasso [64] and results in a smaller bias for large coefficients.

4.2. Instances of QUT

A QUT-like selection rule supported by theoretical results has appeared in the
following three settings, where a null model for the selection of λ plays a key
role.

Wavelet denoising. Donoho and Johnstone [15] and Donoho et al. [17] con-
sider an orthonormal P × P wavelet matrix and select the threshold of soft-
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WaveShrink as λuniversal
P = σ

√
2 logP . Under the null model with wavelet co-

efficients β∗ = 0, P(β̂λuniversal
P

= 0)
P→∞−→ 1. An oracle inequality and minimax

properties hold with λ = λuniversal
P over a wide class of functions, that is, when

β∗ �= 0.

Linear regression. Desirable properties of estimators such as the lasso, group
lasso, square root lasso, group square root lasso or the Dantzig selector are
satisfied if the tuning parameter is set to λ = cλ(0) for a certain c ≥ 1, such
that the event {β̂λ(0) = 0 | β∗ = 0} holds with high probability, for instance
with λ(0) = λQUT for a small α. More precisely, upper bounds on the estimation
and prediction error, as well as the screening property (1.3) hold with high
probability assuming certain conditions on the regression matrix, the support
S∗ of the coefficients and their magnitude; see Bühlmann and van de Geer
[5], Belloni et al. [3], Bunea et al. [7] and references therein.

Low-rank matrix estimation. Under the null model X∗ = 0N×P , it can be
shown that with a noise level of 1/

√
N , the empirical distribution of the singular

values of the response matrix converges to a compactly supported distribution.
By setting any singular value smaller than the upper bound of the support
to zero, Gavish and Donoho [23] derive optimal singular value thresholding
operators.

4.3. Pivotal null-thresholding statistic

Assuming a Gaussian distribution, the zero-thresholding function of lasso (3.2)
yields the null-thresholding statistic

Λ0 = ‖XT(I − PX0)Y0‖∞,

where PX0 is the orthogonal projection onto the range of X0 and the null model
is Y0 ∼ N(X0β

∗
0, σ

2I). Since Λ0 is an ancillary statistic for β∗
0, the quantile

universal threshold can equivalently be defined as λQUT = σλZ , λZ being the
upper α-quantile of ΛZ = ‖XT(I − PX0)Z‖∞, where Z ∼ N(0, IN ). Alike other
criteria such as SURE, AIC, BIC and GIC, an estimate of σ is required; see
Appendix B for a possible approach.

In contrast, square root lasso’s null-thresholding statistic Λ0 = ‖XT(I −
PX0)Y0‖∞/‖(I−PX0)Y0‖2 is pivotal with respect to both β∗

0 and σ, and LAD-
lasso’s is pivotal with respect to σ when P0 = 0. This is a clear advantage over
lasso, especially in a situation where the nuisance parameter σ is difficult to
estimate.

In Poisson and logistic regression, the null-thresholding statistic depends on
β∗
0 which we estimate with the following procedure. First, calculate the MLE of

β0 based on the observed value y with the constraint β̂ = 0 (it is the solution
to (3.3)). Then, solve (2.5) with the corresponding quantile universal threshold.

Finally, the estimate is β̂0

MLE

where (β̂0

MLE

, β̂
MLE

) denotes the MLE based on y
with covariates selected by the previous procedure. In Appendix C, we conduct
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an empirical investigation of the sensitivity of our approach to the estimation
of β∗

0.
The random design setting is the situation where not only the response vector

but also the matrix of covariates is random, like all four data sets in Section 5.1.
To account for the variability due to random design, we define the quantile uni-
versal threshold as the upper α-quantile of Λ0 = λ0(Y0, [X0, X]), with [X0, X]
consisting of independent identically distributed rows. To account for the vari-
ability in the design matrix, the rows of [X0, X] can be bootstrapped within the
Monte Carlo simulation to evaluate λQUT. Both fixed and random alternatives
are implemented in our R package qut.

4.4. Properties of QUT

Before considering the choice of α and deriving an explicit formulation of the
quantile universal threshold in some settings, more theoretical properties are
derived. Upper bounds on the estimation and prediction error of the lasso tuned
with λQUT as well as a sufficient condition for the screening property (1.3) follow
from the next property.

Property 2. Assume the (L,S∗)-compatibility condition is satisfied for S∗ of
cardinality s∗ with L = (λ + λ(0))/(λ − λ(0)), for a certain λ(0), 0 < λ(0) < λ,
that is,

φcomp(L,S∗) := min
{√

s∗‖Xβ‖2/‖βS∗‖1 | ‖βS̄∗‖1 ≤ L‖βS∗‖1, β �= 0
}
> 0.

Then lasso (2.3) with λ = λQUT satisfies with probability at least 1−α−P(λ(0) ≤
Λ0 ≤ λ)

(i) ‖X(β̂λ − β∗)‖22/2 ≤ 8(λ+ λ(0))2s∗/φ2
comp(L,S∗),

(ii) ‖(β̂λ − β∗)S∗‖1 ≤ A, A = 4(λ+ λ(0))s∗/φ2
comp(L,S∗),

(iii) ‖(β̂λ)S̄∗‖1 ≤ 4s∗(λ+ λ(0))2/{(λ− λ(0))φ2
comp(L,S∗)}.

If, in addition,

min
p∈S∗

|β∗
p| > A,

then with the same probability

Ŝλ ⊇ S∗.

Remark that P(λ(0) ≤ Λ0 ≤ λ) can be made arbitrarily small for a well-
chosen λ(0) as long as the (L,S∗)-compatibility condition is met. The proof
of the property is omitted as it is essentially the same as for Theorem 6.1 in
Bühlmann and van de Geer [5] using the fact that the key statistic they bound
with high probability is the null-thresholding statistic Λ0 = ‖XTε‖∞ = λ0(Y0)
defined in (4.1). The screening property is a direct consequence of (ii). Similar
results can be shown for the group lasso, square root lasso, group square root
lasso and the Dantzig selector.
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Another important property of our methodology concerns the familywise er-
ror rate. Recall that when performing multiple hypothesis tests, it is defined as
the probability of incorrectly rejecting at least one null hypothesis. In the con-
text of variable selection, it is the probability of erroneously selecting at least
one variable. It can be shown that if the null model is true, the familywise error
rate is equal to the false discovery rate defined in Section 5.2. Hence, Definition 4
implies the following property.

Property 3. Any thresholding estimator tuned with λQUT controls the family-
wise error rate as well as the false discovery rate at level α in the weak sense.

The probability of the previous properties is determined by α; we recommend
α = 0.05 as Belloni et al. [3]. An alternative is to set αP tending to zero as the
number P of covariates goes to infinity. Donoho and Johnstone [15] implicitly
select a rate of convergence of αP = O(1/

√
logP ) (Josse and Sardy [29] also

select this rate).

Finally, an explicit formulation of the quantile universal threshold can be
derived in the following settings:

(i) In orthonormal regression with best subset selection and threshold equal
σ
√
2 logP discussed in Section 4.2, the equivalent penalty is λQUT =

2λBIC = σ2 logP satisfying F̄Λ0(λ
QUT) ∼ 1/

√
π logP . This result can

be inferred from the null-thresholding statistic Λ0 =d ‖Z‖2∞/2 using (3.1),

where Zi
i.i.d.∼ N(0, σ2). Generalizations such as GIC and EBIC also se-

lect a larger tuning parameter than BIC which performs poorly in the
high-dimensional setting.

(ii) In total variation, the null-thresholding statistic converges in distribution
to the infinite norm of a Brownian bridge, then λQUT = σ

√
P log logP/2

for αP = O(1/
√
logP ) [48]. For block total variation, the null-thresholding

statistic tends to the maximum of a Bessel bridge, which distribution is
known [41].

(iii) In group lasso with orthonormal groups, each of size Q, extreme value
theory leads to λQUT = σ

√
2 logP + (Q− 1) log logP − 2 log Γ(Q/2) [47].

5. Numerical results of lasso GLM

The QUT methodology for lasso and square root lasso is implemented in the qut
package which is available from the Comprehensive R Archive Network (CRAN).
In the following, QUTlasso and QUT√

lasso stand for QUT applied to lasso and
square root lasso. CVmin refers to cross-validation, CV1se to a conservative
variant of CVmin which takes into account the variability of the cross-validation
error [4], SS to stability selection [35] and GIC to the generalized information
criterion [21]. When applying GIC and QUTlasso, the variance is estimated with
(B.2) and (B.3) respectively. The level α is set to 0.05.
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5.1. Based on data sets

We briefly describe the four data sets considered to illustrate our approach in
Gaussian and logistic regression:

• riboflavin [6]: Riboflavin production rate measurements from a popu-
lation of Bacillus subtilis with sample size N = 71 and expressions from
P = 4088 genes.

• chemometrics [45]: Fuel octane level measurements with sample size N =
434 and P = 351 spectrometer measurements.

• leukemia [25]: Cancer classification of human acute leukemia cancer types
based on N = 72 samples of P = 3571 gene expression microarrays.

• internetAd [30]: Classification of N = 2359 possible advertisements on
internet pages based on P = 1430 features.

We randomly split one hundred times into a training and a test set of equal size.
Five lasso selection rules are compared including QUT. Except for CV1se, the
final model is fitted by MLE with the previously selected covariates in order to
improve prediction. In Figure 1, we report the number of nonzero coefficients
selected on the training set, as well as the test set mean-squared prediction error
and correct classification rate.

Good predictive performance is achieved by QUTlasso as well as GIC with a
median model complexity between SS and CV1se. QUTlasso works remarkably

Fig 1. Monte Carlo simulation based on four data sets: riboflavin (Gaussian), chemometrics
(Gaussian), leukemia (Binomial) and internetAd (Binomial). We report the boxplots of the
following statistics: the number of nonzero coefficients obtained from the training sets (top);
the test set mean-squared prediction error for Gaussian responses and the correct classification
rate for binomial responses (bottom).
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well for chemometrics and leukemia. By selecting a large number of variables
CV1se results in efficient prediction, whereas SS and

√
lasso show poor predictive

performance due to the low complexity of their estimated model. Moreover, GIC
exhibits a larger variability than QUTlasso and QUT√

lasso in terms of number
of nonzero coefficients.

5.2. Based on simulations

Two prominent quality measures of model selection are the true positive rate
TPR := E[TPr] and the false discovery rate FDR := E[FDr], where TPr :=
|Ŝλ ∩ S∗|/|S∗|, the proportion of selected nonzero features among all nonzero
features, and FDr := |Ŝλ ∩ S̄∗|/|Ŝλ|, the proportion of falsely selected features
among all selected features.

We perform a simulation based on Reid et al. [42]. Responses are generated
from the linear, logistic and Poisson regression model with N = 100 and P =
1000. The intercept is set to one and unit noise variance is assumed in linear
regression. The true parameter β∗ and predictor matrix X are obtained as
follows:

• Entries of X are standard Gaussian with correlation between columns set
to ω.

• The support of β∗ is of cardinality s∗ = �Nθ� and selected uniformly at
random. Entries are generated from a Laplace(1) distribution and scaled

according to a certain signal to noise ratio, snr = β∗TΣωβ
∗, Σω being the

covariance matrix of a single row of X and for a noise variance σ2 = 1 in
the Gaussian case.

Table 2 contains estimated TPR and FDR based on one hundred replications.
We also report the predictive root mean squared error defined by RMSE2 =
E{(xT

newβ
∗−xT

newβ̂)
2}/snr; here the expectation is taken over training sets and

new predictive locations xnew. Looking at TPR and FDR, the high complexity
of CV1se and the low complexity of SS and

√
lasso are again observed. Looking

at RMSE, QUTlasso often performs best thanks to a good sparse model before
fitting by MLE. Finally, QUTlasso and GIC are comparable in terms of RMSE,
but QUTlasso often has a better compromise between TPR and FDR.

5.3. Phase transition property

We investigate the variable screening property and observe a phase transition.
Given a thresholding estimator, if several tuning parameter values yield Ŝλ

containing the true support S∗, the smallest estimated model can be of interest
since it minimizes the FDr. We call it the optimal inclusive model. This leads to
the definition of the oracle inclusive rate which measures its cardinality relative
to the estimated support.

Definition 5. Assume S∗ �= ∅ and let smin := minλ {ŝλ = |Ŝλ| : Ŝλ ⊇ S∗}
if it exists. The oracle inclusive rate (OIR) for a selection rule λ is defined as
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Table 2

Estimated TPR/FDR/RMSE based on the simulation of Section 5.2.

Method Response variable distribution
Gaussian Binomial Poisson

(θ,ω,snr) (0.5,0,1) (0.5,0,10) (0.5,0,0.5)
lasso
CV1se 0.23/0.27/0.87 0.26/0.42/0.10 0.28/0.34/3.35

QUTlasso 0.09/0.02/0.85 0.10/0.02/0.10 0.37/0.57/2.94
SS 0.12/0.03/0.81 0.11/0.03/0.10 0.13/0.02/3.27

GIC 0.10/0.04/0.85 0.13/0.12/0.10 0.35/0.50/2.98√
lasso

QUT√
lasso 0.05/0.01/0.92

(θ,ω,snr) (0.1,0,1) (0.1,0,10) (0.3,0,0.5)
lasso
CV1se 0.70/0.25/0.57 0.83/0.50/0.06 0.62/0.38/2.51

QUTlasso 0.61/0.00/0.35 0.67/0.00/0.04 0.64/0.44/1.96
SS 0.66/0.03/0.31 0.74/0.01/0.04 0.40/0.02/2.12

GIC 0.68/0.13/0.36 0.78/0.13/0.04 0.64/0.47/2.03√
lasso

QUT√
lasso 0.24/0.00/0.80

(θ,ω,snr) (0.5,0.4,1) (0.5,0.4,10) (0.5,0.4,0.5)
lasso
CV1se 0.18/0.79/0.67 0.15/0.80/0.08 0.24/0.82/2.56

QUTlasso 0.13/0.71/0.63 0.12/0.78/0.09 0.26/0.82/2.41
SS 0.03/0.03/0.92 0.02/0.08/0.11 0.03/0.03/3.64

GIC 0.06/0.37/0.83 0.06/0.48/0.10 0.24/0.81/2.37√
lasso

QUT√
lasso 0.02/0.25/0.92

(θ,ω,snr) (0.5,0,10) (0.5,0,20) (0.5,0,2)
lasso
CV1se 0.76/0.61/0.39 0.33/0.50/0.07 0.58/0.73/10.78

QUTlasso 0.20/0.00/0.66 0.12/0.02/0.07 0.64/0.77/ 9.04
SS 0.26/0.00/0.59 0.14/0.02/0.07 0.11/0.14/12.14

GIC 0.55/0.22/0.42 0.18/0.15/0.07 0.65/0.78 / 9.10√
lasso

QUT√
lasso 0.06/0.00/0.88

E[OIr], where

OIr :=

{ smin

ŝλ
if Ŝλ ⊇ S∗,

0 otherwise.

Models with OIr �= 0 have TPr = 1, whereas those with OIr = 1 have
minimum FDr amongst all models with TPr = 1. Moreover, OIR ≤ P(Ŝλ ⊇ S∗).
A small OIr results from a complex model containing S∗, whereas a null OIr
results from Ŝλ � S∗. The latter could be due to a simplistic model or the
variable screening property being unachievable, in which case smin does not
exist.

We extend the simulation of Donoho and Tanner [16] in compressed sensing
to model (2.1) with unit noise variance assumed to be known. The entries of the
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Fig 2. Estimated OIR of the oracle lasso selection rule (left) and QUT (middle) as a function
of (δ, ρ) = (N/P, s∗/N). The right panel contains the estimated OIR of several selection rules
for a fixed δ = 0.2.

N × P X matrix are assumed to be i.i.d. standard Gaussian. We set P = 1600
and vary the number of rows N ∈ {160, 320, 480, 640, 800, 960, 1120, 1280, 1440}
as well as the cardinality of the support of β∗, s∗ ∈ {1, . . . , N}. Nonzero entries
are set to ten. One hundred predictor matrices X and responses y are generated
for each pair (N, s∗).

On the left panel of Figure 2, we report OIR for the oracle lasso selection
rule which retains the optimal inclusive model if it exists. Values are plotted as
a function of δ = N/P , the undersampling factor, and of ρ = s∗/N , the sparsity
factor. On the middle and right panel, we report OIR for QUTlasso along other
methodologies as well as QUT√

lasso. The following interesting behaviors are
observed:

• Phase transition of Oracle and QUT. Two regions can be clearly distin-
guished: a high OIR region due to a selected model containing few co-
variates outside the optimal model and a zero OIR region in which smin

does not exist. The change between these regions is abrupt, as observed
in compressed sensing.

• Near oracle performance of QUT. Comparing the left and middle panels,
the performance of QUT is nearly as good as that of the oracle selection
rule, with the phase transition occurring at similar values of ρ.

• Low complexity of QUTlasso. Comparing several rules on the right panel,
QUT has a high OIR. Moreover, CVmin has lower OIR than CV1se and
is comparable to SURE. The low OIR of the three latter selection rules
is due to the high complexity of their selected model. This goes along the
fact they are prediction-based methodologies whereas QUT aims at a good
identification of the parameters.

• Low OIR of QUT√
lasso. This could be due to the fact that

√
lasso requires

stronger conditions than lasso with a known variance to achieve variable
screening [3]. Considering its zero-thresholding function, not only its nu-
merator increases as the model deviates from the null model (as lasso),
but also its denominator, making screening harder to reach with α = 0.05.
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5.4. Conclusion

According to Ockham’s razor, if two selected models yield comparable predictive
performances, the sparsest should be preferred. Lasso with QUT tends to be in
accordance with this principle by selecting low complexity models that achieve
good predictive performance. A good compromise between high TPR and low
FDR is obtained.

Appendix A: Proofs

A.1. Proof of Lemma 1

It follows from the strict convexity of b on Θ and the convexity of f (β0,β) =
‖β‖1 on F that the objective function in (2.5) is convex on F . The solution set
is thus convex.

Assume there exists two solutions (β̂0

(1)

λ , β̂
(1)

λ ) and (β̂0

(2)

λ , β̂
(2)

λ ) such that

X0β̂0

(1)

λ +Xβ̂
(1)

λ �= X0β̂0

(2)

λ +Xβ̂
(2)

λ . Because the solution set is convex,

(β̂0

(3)

λ , β̂
(3)

λ ) := δ(β̂0

(1)

λ , β̂
(1)

λ ) + (1− δ) (β̂0

(2)

λ , β̂
(2)

λ )

is a solution for any 0 < δ < 1. However,

−�
(
β̂0

(3)

λ , β̂
(3)

λ ;y
)
+ λ‖β̂(3)

λ ‖1 < m,

where m denotes the minimum value of the objective function and the strict
inequality follows from the strict convexity of b and the convexity of f (β0,β) =

‖β‖1. In other words, (β̂0

(3)

λ , β̂
(3)

λ ) is not in the solution set, a contradiction.

A.2. Proof of Theorem 1

Minimizing (2.5) over F is equivalent to minimizing

f (β0,β) =

{
−� (β0,β;y) + λ‖β‖1 if (β0,β) ∈ F ,

+∞ if (β0,β) /∈ F ,

over all of RP0+P . Assuming f is convex, a given point (β0,β) belongs to the
minimum set of f if and only if 0 is a subgradient of f at (β0,β). This is
equivalent to ⎧⎪⎨

⎪⎩
X0β0 +Xβ ∈ ΘN ,

X0
T(y − b

′
(X0β0 +Xβ)) = 0,

XT(y − b
′
(X0β0 +Xβ)) = λγ,

for some γ ∈ RP such that

γp ∈
{
{sign(βp)} if βp �= 0,

[−1, 1] if βp = 0,
, p = 1, . . . , P.
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Setting (β0,β) = (β̂0λ,0) and assuming b is convex, the assertion in Theorem 1
follows.

Appendix B: Variance estimation in linear models

When P > N in (2.1) (P0 = 0 is assumed for simplicity), constructing a reliable
estimator for σ2 is a challenging task and several estimators have been proposed.
Reid et al. [42] consider an estimator of the form

σ̂2 =
1

N − ŝλ
‖Y −Xβ̂λ‖22, (B.1)

where β̂λ is the lasso estimator tuned with cross-validation and ŝλ denotes
the number of estimated nonzero entries. Fan et al. [20] propose refitted cross-
validation (RCV). The data set is split into two equal parts, (X(1),Y(1)) and
(X(2),Y(2)). On each part, a model selection procedure is applied resulting in
two different sets of nonzero indices M̂1, M̂2 with respective cardinality m̂1 and
m̂2. This allows to compute

σ̂2
1 =

1

N/2− m̂1
‖(I −P

X
(2)

M̂1

)Y(2)‖22 and σ̂2
2 =

1

N/2− m̂2
‖(I −P

X
(1)

M̂2

)Y(1)‖22,

where P
X

(i)

M̂j

is the orthogonal projection matrix onto the range of the submatrix

of X(i) with columns indexed by M̂j . Finally, the RCV estimator is defined as

σ̂2
RCV :=

σ̂2
1 + σ̂2

2

2
. (B.2)

Consistency and asymptotic normality hold under some regularity assumptions.
In practice, the lasso tuned with cross-validation is applied in the first stage.

We propose a new estimator of σ2, refitted QUT, which is defined as

σ̂2
QUT := argmin

σ2>0

∣∣σ2 − σ̂2
RCV(σ

2)
∣∣ , (B.3)

where σ̂2
RCV(σ

2) is the RCV estimate with the lasso tuned with λQUT(σ2). Fig-
ure 3 shows boxplots of the three estimators of variance applied to the Gaussian
data of Section 5.1. Refitted QUT has smallest variability and seems slightly
more conservative than CV and RCV.

Appendix C: Sensitivity study

As noted in Section 4.3, the null-thresholding statistic and therefore the quantile
universal threshold are functions of the unknown intercept β∗

0 . In Figure 4, we
empirically investigate the sensitivity of our method to the estimation of β∗

0 = 1
on the Poisson distributed data of Section 5.2. On the left panel, estimation of
β∗
0 (dark grey) described at the end of Section 4.3 has low bias. Moreover we

observe the relative median insensitivity of TPr and FDr to the estimate.
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Fig 3. Results of Monte Carlo simulation based on riboflavin and chemometrics data of
Section 5.1 for the estimation of σ with cross-validation (CV) defined in (B.1), refitted QUT
defined in (B.3) and refitted cross-validation (RCV) defined in (B.2).

Fig 4. Estimation of β∗
0 = 1 (left) and its effect on TPr (middle) and FDr (right). White,

light grey and dark grey boxplots correspond respectively to the oracle estimator β̂0 = 1, initial
step and final step of our estimation procedure.
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