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Abstract: In this paper we estimate both the Hurst and the stability in-
dices of a H-self-similar stable process. More precisely, let X be a H-sssi
(self-similar stationary increments) symmetric a-stable process. The pro-
cess X is observed at points %, k = 0,...,n. Our estimate is based on
[B-negative power variations with —% < B < 0. We obtain consistent esti-
mators, with rate of convergence, for several classical H-sssi a-stable pro-
cesses (fractional Brownian motion, well-balanced linear fractional stable
motion, Takenaka’s process, Lévy motion). Moreover, we obtain asymp-
totic normality of our estimators for fractional Brownian motion and Lévy
motion.
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1. Introduction

Self-similar processes play an important role in probability because of their con-
nection to limit theorems and they are widely used to model natural phenomena.
For instance, persistent phenomena in internet traffic, hydrology, geophysics or
financial markets, e.g., [9], [17], [21], are known to be self-similar. Stable pro-
cesses have attracted growing interest in recent years: data with “heavy tails”
have been collected in fields as diverse as economics, telecommunications, hy-
drology and physics of condensed matter, which suggests using non-Gaussian
stable processes as possible models, e.g., [21]. Self-similar a-stable processes
have been proposed to model some natural phenomena with heavy tails, as in
[21] and references therein.

The estimation of various indices of H—sssi a—stable processes has been a
problem studied since several decades ago and, even nowadays, it continues to
be a challenge. In the case of fractional Brownian motion, the estimation of
the self-similarity index H has attracted attention to many authors and many
methods have been proposed for solving this problem. Among these, one can
mention the quadratic variation method (see e.g. [6], [7], [9], [13]), the p-variation
method (see e.g. [8], [18]), the wavelet coefficients method (see e.g. [1], [5], [14]),
the log-variation method (see e.g. [9], [12]). Other references, like the works of J.
Istas, recommend the use of complex variations for estimating the self-similarity
index H of H—sssi processes, but not for estimating «, (see e.g. [11]). For linear
fractional stable motions, strongly consistent estimators of the self-similarity
index H, based on the discrete wavelet transform of the processes, have been
proposed without requirement that « to be known, as in [2], [20], [23], [24]. Thus,
regarding the estimation of the stability index «, in [3], the authors presented a
wavelet estimator for linear fractional stable motions assuming that H is known.
Recently, the corresponding estimation problem of the stability function and the
localisability function for a class of multistable processes was considered in the
discussion paper of R. Le Guével, see [15], based on some conditions that involve
the consistency of the estimators. For linear multifractional stable motions, in
[4], the authors presented strongly consistent estimators of the localisability
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function H(.) and the stability index « using wavelet coefficients when a €
(1,2) and H(.) is a Holder function smooth enough, with values in a compact
subinterval [H, H] of (1/a,1).

The aim of this work is to construct consistent estimators of the self-similar
index H and the stable index a of H-sssi, Sa.S-stable processes using a new
framework. In the view of the fact that a stable random variable has a den-
sity function, 8- negative power variations have expectations and covariances
for —1/2 < B < 0. Our estimates are thus based on these variations. This new
approach provides estimators of H and a without assumptions on the existence
moments of the underlying processes. It also allows us to give an estimator for
the self-similarity parameter H without assumption on « and vice versa, we can
estimate the stability index a without assumption on H. In other words, using
B- negative power variations (—1/2 < 8 < 0), one can obtain the estimators of
H and « separately. We prove the consistency and rates of convergence of the
proposed estimators for H and « for the underlying processes under an assump-
tion on the series of covariances of S-negative power variations (—1/2 < 8 < 0).
Then obtained results were illustrated by some classical examples: fractional
Brownian motions, SaS-stable Lévy motions, well-balanced linear fractional
stable motions and Takenaka’s processes. We then show that the asymptotic
normality of our estimates can be ascertained for the proposed estimators when
the underlying process is a fractional Brownian motion or an SaS-stable Lévy
motion.

The remainder part of this article is organized as follows: in the next sec-
tion, we present the setting, the assumption and main results to construct the
estimators of H and «. In Section 3, some classical examples for the obtained
results in Section 2 are given: fractional Brownian motions, SaS—stable Lévy
motions, well-balanced linear fractional stable motions, Takenaka’s processes.
In this Section, we also show the central limit theorem for the cases of the frac-
tional Brownian motion and the Sa.S—stable Lévy motion. Finally, in Section
4, we gather all the proofs of the main results and of the illustrated examples:
Subsection 4.1 contains auxiliary results on negative power variations which
play an important role in the proofs in Subsection 4.2 of the main results and
in the proofs in Subsection 4.3 of the results of four examples.

2. Main results

Let us recall the definition of a H-sssi process and an a- stable process (see e.g.,
[21]): A real-valued process X

e is H-self-similar (H-ss) if for all a > 0, {X (at),t € R} @ g {X(t),t € R},
e has stationary increments (si) if, for all s € R,

(X(t+5)— X(s),t € R} 2 {X(¢) — X(0),t € R},

d
where @ stands for equality of finite dimensional distributions. A random vari-
able X is said to have a symmetric a-stable distribution (Sa.S) if there are
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parameters o € (0,2] and o > 0 such that its characteristic function has the
form:
Ee'X = exp (=0 | 6 ]?).
When o = 1, a SasS is said to be standard. Let X be a H-sssi, SaS random
process with 0 < a < 2.
Let L > 1,K > 1 be fixed integers, a = (ao,...,ax) be a finite sequence
with exactly L vanishing first moments, that is for all ¢ € {0, ..., L}, one has

K K
D klar =0, ka, £0 (1)
k=0 k=0

with convention 0° = 1. For example, here we can choose K = L + 1 and

_ L+1)!
= (=1 L+1—k ( . 2
a = (1) (L +1— k) @)
The increments of X with respect to the sequence a are defined by
K
k+p
ApnX = ;OakX(T). (3)

We define now an estimator of H. Let 5 € R, —% < B <0, we set

1 n—K
Vi(B) = K11 Z;) |Apn X7, (4)
Wa(8) = n""V,.(8). (5)

Notice that V;,(8) is the empirical mean of order 8 and W, () is expected to

converge to its mean. The estimator of H is defined by
o 1 Vn/Z (B)

H, =-"log . 6

FR AT ©)

We are now in position to define an estimator of a. We define first auxiliary

functions ¥y, v, Pu,v, Pu,v before introducing the estimator of o, where u > v > 0.

Let ¢y, »: RT x RT — R be the function defined by

Yu(,y) = —vlnz +ulny + C(u,v), (7)

where

u—v

Cu,v) = mﬂ+uM(Hl+%0+vm<H1;u0

u 1—w
vln(F(1+2))uln<I‘( 5 )>
Let hy .y @ (0,400) = (—00,0) be the function defined by

huo(r) = uln (T(1 + %)) ol (T(1+ g)) (8)

We will prove later that A, , is bijective.
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Let ¢y : R — [0, +00) be the function defined by

0 ifxz>0
Pu(¥) = {hl(x) <0 ©)

where h,, , is defined as in (8).
Let 1,52 be in R such that —1/2 < f; < B2 < 0. The estimator of « is
defined by

Qn = P—B1,—B2 (w761g752 (Wn(51)7 Wn(ﬁQ))) ) (10)

where ¥y, 4, @y, are defined as in (7) and (9), respectively.
With 8 € (—3,0) fixed, we will make the following assumption: There exist
a sequence {b,,n € N} and a constant C' such that lirf by = 0,b,/2 = O(by,)
n—-+oo
and

. 1
lim sup —- > Jeov(|Aka X7 001 X7 < CP. (11)

notee TN penlki<n

Remark 2.1. The assumption (11) is important to prove the consistency of the
estimators of the self-similarity and the stability indices. We will see its role in
the main theorem below.

Now we are in position to present our main results for the estimation of H
and «, based on the assumption (11).

Theorem 2.1. Let X be a H-sssi, SaS random process that satisfies assump-
tion (11). Also, let 3, 1, B2 € R,—% <p< 0,—% < B < P2 <0 and H,,a, be
defined as in (6) and (10), respectively. Then as n — 400, one has

~

P ~ P
H, — H,a, — a,

moreover f[n — H = Op(by,),an, — a = Op(by,), where Op is defined by:
X, = Op(1) iff for all ¢ > 0, there exists M > 0 such that supP(|X,,| >

M) <€,
oY, = Op(a,) means Y, = a, X, with X,, = Op(1).

See Subsection 4.2 for the proof of Theorem 2.1.

3. Examples

In this section, we study four classical examples: fractional Brownian motion,
SaS-stable Lévy motion, well-balanced linear fractional stable motion, Take-
naka’s process. For these, we will show in Section 4 that (11) is valid, so that
the conclusion of Theorem 2.1 holds. We precise this theorem by providing the
rate of convergence defined in (11) and a central limit theorem for the first two
cases.
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3.1. Fractional Brownian motion

Definition 3.1. Fractional Brownian motion
Fractional Brownian motion is a centered Gaussian process with covariance
given by ,

EX(0)X(s) = (528 4 2H — s — 129},

Fractional Brownian motion is a H-sssi 2-stable process (see, e.g., [9], p. 59).
We will prove that the condition (11) is satisfied with b, = n~'/2, then the
results in Theorem 2.1 are obtained. Moreover, we can obtain the asymptotic
normality of the estimators of the self-similarity index H and the stability index
a=2.

Let X be a H fractional Brownian motion with H € (0,1). We first present
the variances 21, X1 for the limit distributions of the central limit theorems for
the estimators of H and a.

We will mimic the Breuer-Major’s theorem (see e.g., Theorem 7.2.4 in [19]) to
define these variances. For 8 € R, —1/2 < § < 0, let us introduce the following
function

fo(@) = Voarbo X (jz|® — E|Z|?), (12)

No1 X

VovarDo 1 X ’

Following Proposition A.1 in Appendix, we can write fz in terms of Hermite
polynomials in a unique way

fa(x) = Zfﬁ,qu(x)a (13)

q>d

where Zy =

where d is the Hermite rank of fg and d > 2, Y° q!fj , < +oo. Let
q=d

K
> apap’|r +p - p/|2H

_ pp'=0
p(r) = — , (14)
> apay|p—p/PH
p,p’'=0
K
> apaylr+p—2p/PH
plr) = P : (15)
2837 apay|p —p'[PH
p,p’'=0
Salfi, 2 plr) X alf, 2 i)
qg>d re’ qg>d re’
= (16)

Yalff, X pl(r) 23 alf, X pi(r)
q>d rEZ q>d

TrEZL
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and ¢ : RT x RT — R be defined by

1 T
o(x,y) = = logy —. 17
(z,9) 5 log: (17)
Then = is defined by
E1 = ¢'(z0, y0) 19’ (z0, 40)" (18)
where
(20, 90) = (E|Do 1 X|%, E|Ag 1 X|P). (19)

To define X1, let —1/2 < 81 < B2 < 0, following Proposition A.1 in Appendix,
we can write fg,, fg, in terms of Hermite polynomials in a unique way

f/Bl (‘T) = Z fﬂlquq(z)7fﬁ2(x) = Z fﬁ%qu(z) (20)
q2ds q2d
where d; is the minimum of the Hermite ranks of fg, and f3,, d; > 2 and
Zq!fghq < +oo,Zq!f§2,q < 400.
q2d q2d
Let
X = Vsofﬁl,—zagodf—ﬁl,—/%g (21, yl)FQV‘P*By*Bg o%—p1,- 2 (@1, yl)t (21)

where 1y, 4, ¢y » are defined by (7), (9) respectively, V is the differential operator
and

(z1,91) = (E]L01 X[ E[20,1X]%), (22)
2
n= (7 ), (23)
01,82 03,
+o0 too
= S ot = S S e
q=d1 kEZ q=d1 kEZ
“+o0
Op e = O A fp1alsmq D PR). (25)
q=d; kEZ

We can now state the following theorem, which precises the results for the
estimation of H and « in the case of fractional Brownian motion.

Theorem 3.1. Let X be a fractional Brownian motion. Then
a) H, — H =0s(n""?),a, — 2= Op(n~"/?),
b)
VA, = H) <% N3(0,21)), Vi@, —2) <% N1(0,51)
as n — 400, where E1, %1 are defined by (18) and (21), respectively.
See Subsection 4.3 for the proof of Theorem 3.1.
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3.2. SaS-stable Lévy motion

Definition 3.2. SaS-stable Lévy motion

A stochastic process {X (¢),t > 0} is called (standard) Sa.S-stable Lévy motion
if X(0) =0 (a.s.), X has independent increments and, for all 0 < s < ¢t < oo and
for some 0 < @ < 2, X(t) — X(s) is a Sa.S random variable with characteristic
function given by

Ee®X(O=X () — exp (—(t — 5)[0]%) .

The condition (11) is proved to be satisfied with b, = n~'/2, then the re-
sults in Theorem 2.1 are ascertained. Similar to the case of fractional Brownian
motion, we obtain the asymptotic normality of H and a.

The variances Z5, 3o for the limit distributions of the central limit theorems
for the estimators of H and « are defined as follows.

Let X be a SaS—stable Lévy motion, we define the variance for the limit
distribution of the central limit theorem for the estimator of H by

Zo = ¢/ (z0,Y0) 3¢ (20, y0)", (26)

where ¢(z,y), (zo,yo) are defined by (17), (19), respectively and
2
n= (778, 0

0'172 0'2

O'% = UG,T‘AOJXW + COU(|A071)(|ﬁ7 ‘A171X|ﬁ)
K-1
+2) " (cov(| 801 X% [Dap 1 X|7) + cov(| 80,1 X |7, [ Azpyr 1 X|7))

p=1
K-—1
+2 ) (cov(|A11 X7, | Dop 1 X|P) + cov(| 211 X7, | Agpr11 X[P)), (28)
p=1
K-—1
02 =2 <vaT|A0 1 X742 cov(|80a X7, 1Ay, 1X|ﬂ)> (29)
p=1

T

01,2 = 2ﬁ (CO’U |A0 2X‘6 |A0 1X|ﬂ) -‘rCOU(‘Al 2X|5 |A0 1X|ﬁ))

K—-1
+ 2753 (cov(| 202X 17, | Ap 1 X|P) + cov(| 81 2X17, |41 X|P))
1

p=

=

+ 25H (COU(|AO’1X|ﬂ7 ‘Azp’gXlﬁ) + CO’U(|A0’1X‘B, |A2p+1’2X|ﬂ))
1

’ (30)

The variance for the limit distribution of the central limit theorem for the esti-
mator of « is defined by

Yy = waﬁl,—ﬁzowfﬂl,—ﬁg (21, yl)Fﬁlv@Lm,—ﬁz 0Y—py,— B (@1, yl)t (31)
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where ¥y 4, Yu.v, (T1,y1) are defined as in (7), (9) and (22), respectively,

2
0’1 01,2
= ), 32
= (778 (32)
K-1
of =var| Do 1 X" +2 ) cov(|Do X |7 Ak X, (33)
k=1
K—-1
o3 = var|No X% 42 cov(|foa X |7, | Ak X|P2) (34)
k=1

0'172 = CO’U(|A071X|ﬂ1, |A071X|B2)

K-1
+ Z (cov(| 20,1 X%, | A1 X|7?) + cov(|Do i X |72, | Ak X)) . (35)

k=1

DN | =

We now present the results on the asymptotic normality for the case of SaS-
stable Lévy motion.

Theorem 3.2. Let X be a SaS-stable Lévy motion. Then
¥ H, — H=0s(n""?),8, —a=0p(n"/?)
b)
VA, — H) <% N3(0,52)), V(@ - @) <2 N3(0,52)
as n — 400, where Eg, ¥o are defined by (26) and (31), respectively.
The proof of Theorem 3.2 is given in Subsection 4.3.

3.3. Well-balanced linear fractional stable motion

Definition 3.3. Well-balanced linear fractional stable motion
Let M be a SaS random measure, 0 < a < 2, with Lebesgue control measure
and consider

+oo
X(0) = / ('t —a |71 | o [F12) M (dr), o0 < t < +o0

— 00

where 0 < H < 1,H # 1/a. The process X is called the well-balanced linear
fractional stable motion. Then X is a H-sssi process (Proposition 7.4.2, [21]).

Let
n~-1/2 ifH<L+1-2

aH—(L+1Da
1

b,=4n 1 fH>L+1-2 (36)

\/ B ifH=L+1-2

Tt is clear that ll)IJ'I_l b, = 0 and b, /3 = O(b,). We get the following results for

the estimation of H and «.
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Theorem 3.3. Let {X (t)}+cr be a well-balanced linear fractional stable motion
with 0 < H < 1,H # 1/a and 0 < a < 2. Then for every § € (—1/2,0),
Theorem 2.1 is true with by, defined by (36).

See Subsection 4.3 for the proof of Theorem 3.3.

3.4. Takenaka’s processes

Definition 3.4. Takenaka’s process
Let M be a symmetric a— stable random measure (0 < a < 2) with control
measure

m(dx,dr) = r* " 2dxdr, (0 < v < 1).

Let t € R, set
Cy ={(z,7) e Rx R |z —t| <7}, 8 = CtAC)

where A denotes the symmetric difference between two sets.
Takenaka’s process is defined by

X(t) = / 1s,(x,r)M (dz, dr). (37)
RxR+

Following Theorem 4 in [25], the process X is v/a—sssi. Let

b,=n"72.

(38)
We can now ascertain the following.

Theorem 3.4. Let {X;,t € R} be a Takenaka’s process defined by (37). Then
for every B, € (—1/2,0), Theorem 2.1 is true with b, defined by (38).

The proof of Theorem 3.4 is given in Subsection 4.3.

4. Proofs

First, we give results on expectation of negative power variations of H-sssi, Sa.S
random processes in Subsection 4.1. Then we apply these results in Subsection
4.2 to the estimation of H and «, in order to prove Theorem 2.1. Finally, we
prove that Theorem 2.1 is true for four classical examples presented in Section 3.

4.1. Negative power expectation and auxiliary results

Now we present some results on expectation of negative power variations of
H-sssi, Sa.S random processes proved by using theory of distribution. These
results are the tools to prove assumptions (11) for four examples in Section 3
and to prove the main result on the estimation for a.
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4.1.1. Auziliary results

We start with the following lemma which confirms the existence of the expecta-
tion of B-negative power variation of a symmetric stable random variable when

BeC,Re(B) € (~1,0).

Lemma 4.1. Let X be a SaS random variable, 5 € C, Re(8) € (—1,0), then
|E| X8| < +oo0.

The proof of Lemma 4.1 is given in Subsection 4.1.2.

The next two important results will be used to prove the condition (11) for our
examples in next section. Theorem 4.1 gives a way to determine the expectation
of B-negative power variation of a symmetric stable random variable whereas
Theorem 4.2 helps to establish the inequality of (11) for illustrated examples.

Let (S, 1) be a measure space, h, g € L*(S, u) and M be a symmetric a-stable
random measure on S with control measure p, a € (0,2). Set

/ h(s)M(ds),V — / (39)

Let 254—1/21“(&)
o=t ) (40)
L(-3)
where 8 € C such that Re(8) € (—1,0).
Theorem 4.1. For § € C,Re(B) € (—1,0), we have
B = = /fT(y)JEeindy _ G [EY (41)
V2 ver ) Tyl

in the sense of distributions, where U,V are defined by (39), T = |z|® and FT
is Fourier transform of T.

See Subsection 4.1.3 for the proof of Theorem 4.1.
Theorem 4.2. Assume that

)l = /|h )| u(ds) =1, |[V]|2 = /|g )| (ds) = 1
UVg—/|h (s)|*?<n<1,

where U,V are defined as in (39). Then for —1/2 < Re(f) < 0, we have

CIBCE EeimU+iyV

E[U|P|V|? = _d
2 ‘$|1+ﬁ|y|1+ﬁ
R2

xdy. (42)
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Moreover, there exists a constant C(n) such that
cov (U, VI < CCo) [ s)g(o)|* 2. (13)
s

The proof of Theorem 4.2 is given in Subsection 4.1.4.
The following two lemmas follow from Theorem 4.1 in which Lemma 4.2
provides an important formula to construct the estimator for a.

Lemma 4.2. Let X be a standard SaS wvariable with 0 < a < 2 and § €
C,—1 < Re(B) <0, then

2P0 (ZF)r(1 —
Val(1—5)
See Subsection 4.1.5 for the proof of Lemma 4.2.

Lemma 4.3. Let X be a SaS process where )0 < a < 2, 8 € C, f% < Re(B) <0,
then

2)

E|X|? = al, (44)

E|Ao X7 #0.

See Subsection 4.1.6 for the proof of Lemma 4.3. Now we will give the proofs
for the latter results.

4.1.2. Proof of Lemma 4.1

Since X is a SaS-stable random variable, X has a density function f(x) that is
even and continuous on R. We first consider the case § € R and —1 < § < 0.
For —1 < 8 < 0, we can write:

E|X|B:/|z|ﬁf(x)dx= / \2/8 f(2)dz + / 2% f()dz = A+ B.

R lej<1 e >1

We have

(oo}

A= / |z|? f(z)dz < sup |f(x)] |z|Pdx < 400, B = 2/$5f(:17)d:c <2.
|z|<1 |z|<1

jej<1 = 1

It follows that E|X|? < +o0. For 8 € C,—1 < Re(j) < 0, we have

BIXP| = | [ o @ids| < [ 12 f(a)ds < +o0.
R R
Then we obtain the conclusion.

4.1.8. Proof of Theorem 4.1

To prove Theorem 4.1, we start with the following lemma.
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Lemma 4.4. For allz € R, € C,—1 < Re(B) <0, let T(z) = |x|?. Then T
has Fourier transform defined by

Cs

FIW) = |yl

(45)

in the sense of distributions, where Cg is defined as in (40).

Proof. For 5 € C,—1 < Re(B) < 0, following example 5, chapter VII of [22],
then T is a distribution and it has Fourier transform FT'(y) = C|y|~®*1, where
C is a constant. We will find C' using function k(z) = e=*"/2. Since T' € L} .(R)
and k € S(R), in the sense of distributions, we have (FT,k) = (T, Fk). On the
other hand,

Fk(y)

1 - 2 2
=—— [ e ™ 2y = ¢V /2
V2T /
R

then

/|x\5e*“‘2/2dx = /C|y|*(6+1)efy2/2dy.
R R

By taking the change of variable, we obtain that

1 1 :
sl a0 =2 02, [y eeve 2y —o-oee (),
R R

It follows that

GO -
I C T
2
From Lemma 4.4, we have FT(y) = %, where f is the density function

ly
of U and C,, = 2“*1/2%%:)).

2
Let ¢ be a non-negative, even function such that

o € C*(R), suppe C [~1,1], / o(y)dy = 1.
R

Set we(x) = M, we will prove that g. = F~1f * p. € S(R).

Indeed, let x(x) be a function in C§°(R) such that x(x) =1 for |z| < 1 and
x(z) =0 for |z| > 2.

We can write the characteristic function corresponding with the density func-
tion f as

e = VarF T f(2) = g(a) = x(2)g(2) + (1 = x(2))g(2) := g1(@) + g2(2)

and
g% Pe(x) = g1 % () + g2 * Pe(T).
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It is clearly that g; € L'(R), g1 has compact support, ¢, € C§°(R), s0 g1 * ¢, €
S(R).

We also have gs * ¢ € S(R) since g2 and ¢c(x) are in S(R).

Then we get g € S(R).

We have
Fge(x) = V2 f () Foe(x).
Since
<Ta fge> = <]:T,ge>v
we obtain
[Vl t@Feade = [ FTGF  frpddy ()
R R

_ / FH@)FT % oc(y)dy, (47)

Here we used Fubini’s theorem since FT, F~'f € L}, (R), p. € C§(R) and ¢,
is an even function.

Now we will find the limits of two sides of the equation (47) when ¢ — 0. We
first consider the left hand side of (47). One has

hm}'<p€ _lll}(l)/ \/ﬁ —ztm dt_lll}(l)/ \/_ —ztz (i/e)dt
= lim/— T (1) du.
e—0 1/27‘[‘
R

For z,u € R, e~ *“®p(u) — ¢(u) when € — 0, and

e ()| = (), / p(u)du = 1.

R
Following Lebesgue dominated convergence theorem, one gets

1
hm]:(Pe du— —

e—0 / vV 27T V 2 '
Therefore, for z # 0,

Var|z)? f(a) Foe(x) = V||’ f(z)
pointwise when € — 0. We have

2]7 £ (2) Fipe ()| = \/%kcRe(ﬁ)f(xn/e—itw—*"(’;/e)dﬂ

R
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= =l P 1(a) / e~ o (u)du

< \/%—Wllee“)f(m) / () du| = 9 f(a).

R

1 Re(
—F|T
oriid

Moreover, applying Lemma 4.1, it follows that [ |z f(z)dz < oco. Thus
R

applying Lebesgue dominated convergence theorem, the left hand side of (47)
converges to [ |z|Fe() f(z)dx.

R
Turning back to the right hand side of (47), since FT is continuous at y # 0
and FT € L} (R), we get

loc

lim FT'x ¢c(y) = FT(y)
for y € R*. It follows that
lim 71 f () FT = pe(y) = F = f () FT(y)

pointwise almost everywhere. We have the following inequality on FT and .

Lemma 4.5. There exists a constant C > 0 such that for all e > 0,2 # 0, we

have
|FT| * o (z) < C|FT|(x).

Proof. Since FT and . are even functions, we just need to prove this lemma for
z > 0. From the fact that ¢ has compact support, then there exists a constant
C such that for all x > 0, o(z) < C1;_y 3j(2).

We consider first the case z > 2e. One has

x+e
Flxpda) = [1FTIWea =)y < [ FTIw)dy
R r—e
< 20| FT|(x — €) < 2C|FT|(x/2) = C1|FT)().

If z < 2¢, then

xr+e 3e
c c
Friepda) < [ 1FTI0y < $ [ 171100y
T—e —3e
20 TR o1
= ol 4G 1 < Cy| FT|(x). O

e ] Jy|ttERe® Y= (3€)Re(B)
0

Applying Lemma 4.5, then we deduce that
\F f@)FT ()| < CIF ()| FT|(y)
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almost everywhere. But

U < T (o N
Var TR T o ) Ty
R R

/ F ) 1FTI(w)dy = dy < oo
R

since Re(8) € (—1,0). Applying Lebesgue dominated convergence theorem
again, the right hand side of (47) converges to [ F ! f(y)FT(y)dy. So we get
R

(41).

4.1.4. Proof of Theorem 4.2

Let x be in CP(R), x > 0,x(z) =1 if = € [—1,1], suppx € [-2,2]. For € > 0,
we define

¢e(x) = (1= x(z/€))x(ex).

Let u be the distribution of random vector (U, V'), then p is a probability mea-
sure on R2. B

Let Ty (x) = |z|?, Ty (x) = |y|®. Following Lemma 4.4, Ty, T are distributions
and have Fourier transforms

Cs Cs
FTi(y) = W,sz(I) = |x|1+37

2u+1/2 F(uTH)

respectively, in the sense of distributions, where C,, = NEDR
2

Set Fie(x) = Ty (2)¢e(x), Fae(y) = To(y)de (y)-
It is clearly that Fi.(z) € S(R), Fac(y) € S(R).
Then Fi. ® Fb(z,y) € S(R?). It follows that

[ Freo Faeauton) = [ 7)) F (R0 Fa,y)dody. (48)
R2 R2
Now we consider the right-hand side of (48). We have

-F(Fle & FQE)(.T,:U) = -FFIE ®fF26(xvy)

We can write "

Fio(a) = Ti()x(en) - Ta@)x(en)x(2).

Set 9(x) = Fx(x). One has

1 1
FFi(z) = E]‘-Tl * e — E]:Tl * e *wl/e
1 1 1
=FT e_—]:T —— Ve €
o (e = T e (v = vy

We will use the following lemma.
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Lemma 4.6. Let 1) be a function in the Schwartz class, T(t) = [t|® where
Re(B) € (—1,0). Then for all x # 0, there exists a constant C > 0 such that
1T« (x)| < C|T(x)].

Proof. We denote C' a running constant which may change from an occurrence
to another occurrence. For € > 0, set

vela) = To(5),

We first prove that there exists a constant C' > 0 such that for all € > 0,

1 r+a
IT % ()] < C'sup — / (T(t) dt.
a>0 2a

r—a

Let k(y) = |T(z — y)|, Ic = T * ().
By taking the change of variable u = £, we obtain that I. = [ k(eu)y(u)du.
R

Set F(x) =

C—sy

k(eu)du, one has

Flz) =2 /0 TRt F(2) = k(ex).

€

Combining with the fact that lim F(z)y(z) = 0 and F(0) = 0, we deduce that

Tr—r 00
“+ o0 Too 400
/ F(ew)u(u)du = / P (w)(u)du = — / Flu)y (u)du
0 0 0
—+oo 1 €U
_ - /
_ / - / k(E)dt S w (w)du.
0 0
Since k(u) > 0, it follows that
€U “+a
L (k@ < sup / k(t)dt
€u = a '
0 —a

We also have v is a function in the Schwartz class, then

“+a

+o0 +oo
+a
| / k(ew)y(u)du| < | / uz//(u)du|supl/ k(t)dt = C’supi/k(t)dt.
) , a>00a J_g4 a>0 QG_a

0
We can get a similar bound for the integral | | k(eu)y(u)du|. Therefore we
obtain
1 x+a
I.| < Csup — T(t) | dt.
i< Csupon [170)]

r—a
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Taking € = 1, it follows that

r+a
1
|T *¢(x)| < Csup — / |T'(¢)|dt.
a>0 2a

Now we will prove that there exists a constant C' > 0 such that for all a > 0,

then
x+a
1

% [ 170l < T

We first consider the case x > 0.
If 2 > 2a, then 0 < § < 2 —a < x+a and T'(t) decreases over [z — a,z + a.
We get
1 o 1
_ < — A — _ q)Re(B)
2 [ 17O < 5@ a- @ -a) @

- (x/2)2R€(5)

= C|T(x)].

If 0 < z < 2a < 3a, then

r+a

2 | 1Tl

IN

3a
1
ég/www

—3a

3a e
1/ tRe®) gt = M
a Jo a(l + Re(B))

< C(3a)Fe®) < 0zl = |7 ()|

For the case x < 0, if < —2a, then © —a <z + a < /2 < 0, we obtain

1 (z+a— (z—a))|z+ a|F®
2a - 2a

< Jz/2/"P) = C|T ().

If —2a < x <0, then —3a <z —a < x + a < 3a, one gets

1 z+a 1 3a
— Tt)| < — T(t)|dt
s [ 1ro1< oo [1ro)
T—a —3a
3a

=0 [ < clal™ ) — T
a
0

One can therefore obtain the conclusion. O
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Since v * 91/ € S(R), following Lemma 4.6, we have
|FTy s (e ¢P1ye) ()] < ClFTy ()]
Then, there exists a constant C' > 0 such that
|FFic(x)] < C|FTy ().
In a similar way, we also get |FFa(y)| < C|FT(y)|. It follows that
I F=H(dp) (@, y) F (Fre ® Fae)(z,9)| < CIF " (dp) (2, )| FT1 (2) F T2 (y)]-

Let us recall that [ %dt = x(0) = 1. We will use the two following lemmas to
R
get

lim FFi.(z) = FT1(2), lim FFo.(y) = FIa(y). (49)
e—0 e—0

Lemma 4.7. Let T(z) = |z|® where Re(8) € (—1,0), ¢ be a function in
Schwartz class. Then almost everywhere,

lim 7 46y () = 0.
where ¥y ¢ (r) = e(ex).

Proof. Let x € R,z # 0, we have

T*%kuwi/nww@@—wMyz/WWW@u—wMy

R

By taking the change of variable ¢ = ey, one gets

uwmes/ﬁM&mwm»ww=f%@/mewm—mm
R R
We write

1
[ 1O loten e = [ 1O tes - vjar+ [ O e - o
R 1 [¢[>1
=1 + Is.

We consider I; and I5. Since 1) is a function in Schwartz class, one gets ||¥]|o0 <
00, |[1]|1 < oo. Then

1
I < 2/|9]]so /tRe(ﬁ)dt =C < +oo.
0
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I = /|wﬂmw@x—mﬁs /Iwwﬁiwﬁéwwh=0<+m-

[t[>1 [t]>1

Since then [T#t; . (z)| < Ce e — 0 as e — 0. It follows that T*1by /() — 0
almost everywhere as € — 0. O

Lemma 4.8. Let ¢ be a function in Schwartz class such that [(t)dt = 1,
R
T(t) = |t|® where Re(B) € (—1,0). Then we have liH(l)T x Ye(x) = T(x) almost
e—
ey

everywhere, where ¥ (x) =

Proof. Let x € R,z # 0, we consider I = T *t(x) — T(x). Let us recall that

[, [
!mmﬁ_! 1) gy !M)d

Therefore I = g {T(z—y) —T(x)} 1y(y/e)dy

Let 6§ > 0 be a constant. There exists 0 < § < |z| such that for |y| < §, we
have |T'(z —y) — T(x)| < 2\|w|| Then

ly|<o ly|>o
= Il + IQ.
We have

0 0
h < oo / (w/elldy = 5o / et ()

ly|<6 lu|<es

0 6
< MR/EW(U)CM_ 3

Now we consider Is. Since @ is a function in Schwartz class, there exists a
constant C' > 0 such that for [t| > 1 then |1(t)] < &

We choose € > 0 such that g > 1. By taking the change of variable t = y/e,
we get

I < /ITW—dN¢@WH-/1W@mMﬂW

[e]>¢ [t]>2
< / T — et) || (8))dt + / T — et) [ (8))dt + / () [ (8) | dt
t]>2 lt|>2 It]>2

|z—et|<1 |z—et|>1

=J1+ Jo + J3.
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We have
J1 = / |T(x — et)||(t)|dt < C / |T(z — et)|(e/6)%dt

|t‘_€,|’1' et|<1 |z—et|<1

By taking the change of variable u = et — x, one gets

ce T (u)|
Jl =~ (52 / Tdu = Cl€.
lul<1
Here C] is a constant depending on §.
Let us consider Jy. Since |T'(t)| = [t|%¢(®) and Re(B) € (—1,0), if |z —et| > 1
we get |T'(z —et)| < 1.
Moreover §/e > 1, it follows that
C €
< —dt = Cy=
Jo < / e dt 025
[t1>5/¢

where C5 is a constant depending on 4. Similarly, since §/e > 1, we get

[t|>6/e

where Cj is a constant depending on z,4. So we get I < Ce where C' is a

constant depending on z, 6. We can choose € small enough to get I < g.

Then for all & > 0, there exists €y such that for all 0 < € < €y, we have
|I| < 6. Therefore we get the conclusion. O

From (49), one gets

lim F(Fy. ® F. FT1(z)FT; o
Jum (Fie ® Fae)(z,y) = FT1(z) F1a(y) = W.
Moreover F~1(du)(z,y) = w We use Theorem 4.1, Lemma 4.1 and the

following lemma to deduce that

/ H(dp) (. )] dxdy = / Eertrw? drdy < 400
|$‘1+Re(ﬁ |y|1+Re B) 2W|x|1+Re(ﬁ)|y|l+Re(§) ’
RQ

Lemma 4.9. Set

|My,v(z,y)]

_ izU+iyV wwUmpiyV o o7 YV AT JJ0
My (z,y) = Ee Ee™" Ee™" , I |zy| T Re(B)
2

dxdy.
UVQf/m (8)|*2 <n<1,

where U,V are defined as in Theorem 4.2. Then I < C(n)[U,V]s < oo, where
the constant C(n) depends on 1.
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Proof. We just need to consider the integral only over (0,+00) x (0,+00). We
divide this domain into four regions (0,1) x (0,1),(0,1) x (1, +00), (1, +00) X
(0,1), (1,400) x (1, +00) and let I, I5, I3, I4 be the integrals over those domains,
respectively.

Over (0,1) x (0,1), by using inequality (3.4) in [20] we get

11 11
My (z,y a e
Il<//|xy|1+(36 2//xy 2=1=ReB) duedy U, V]y = C[U, V]a.
00 00

Over (1,400) x (1,400), by using inequality (3.6) in [20] and assumptions

Ulle = LIIVI[G =1,[U,V]s = / [ (s)g(s)|*/* < <1,

we can bound the integral over this domain by

+o0o +oo
I, <2 / /(xy)a/Q—l—Re(B)6—2(1—n)($y)“/2dxdy[U, V.

1 1

Here we can bound e~2(1—m(@y)*/? up to a constant depending on n by (zy)~?
for arbitrarily large p > 0.

So I < C(n)[U,V]a. Over (0,1) x (1,400), by using inequality (3.5) in [20]
we obtain a bound

(zy)*/ 21 Re(®) o=@ =v"*)? 104y U, V],
(wy) /2 1= ReB) =" =1 gy (U, V),

(xy)a/2—1—Re(B)e—(ya/2—1)2dmdy[U, Vs

yo/2=1=Re(B) o= (> =1 gy 77 V7],

+oo
Since f ya/2—1—R€(ﬁ)6_(ya/2—1)2dy < +OO, we get I?, S C’[[]7 V]2
1
A similar bound holds for I,. Then we have the conclusion. O

By Lebesgue dominated convergence theorem, as € — 0, the right-hand side

of (48) converges to
CﬂCE EeizU+iyV

=d
2 148|148
m el Py

xdy.
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Now we consider the left-hand side of (48). Since liH(l) ¢c(z) =1forall z € R, it
€E—>

follows 7
lim Py () Foc(y) = |2|°[y|?

e—0

for all x # 0,y # 0. B
It is clear that |Fi.(z)| < Olz|RP) | Fy(y)| < Cly| ). Moreover

[1al Oy Paue,y) = [BUPVP] < \BIUREVE < +oc

R2

since Re(B) € (—1/2,0).
We can therefore apply Lebesgue dominated convergence theorem for the
left-hand side of (48). As € — 0, it converges to

[ a1l dute, ) = EUPIVP.
R2

This proves the result (42). Now we prove (43).
Following Theorem 4.1 and (42), for —1/2 < Re(8) < 0, we get

E izU _ O+ E wyV
Eu|f = 22 = de BV = L [ _qy
\/271’R |z|1+58 V2 J ly|t+7P
_ CsC= E ixU—+iyV
EUPVP = 228 [ £C _ddy.
2 || By [P
R2
Then
[cou([U12,1V1%)| = [EUIPIV P ~ EUPE|V 7|
Eeia:U+iyV _ Eeia:UEeiyV
= 0505 _ dwd
0 | R
]R?
}EeirU+iyV _ EeizU]EeiyV
< |CQCE\/ PG dzdy.
R2

Applying Lemma 4.9, we obtain (43).

4.1.5. Proof of Lemma 4.2

For the case @ = 2, let Y be a standard S2S variable. Then for —1 < Re(8) < 0,
we have

+oo
1 1 26 1
ElY|’ = W / l2|e™ T do = — /xﬁe—fz/‘*dx: N -F(—B; ).
s s
—00 0
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4126
Let us now consider the case a # 2. Following (45) and Theorem 4.1, we have
C —lyl* 20 P
B e B &
d / ST dy.

Cﬁ EeiXyd o o
var ) WP T Var ) WY T Ve
R R 0

E|X|” =

By making the change of variable y* = ¢, then
+oo +oo
25 [ttt -y YIONCI)
ay/T

2C
E|X| = 222 / fBla—1—tgy —
Varm 27 ,

Since I'(xz + 1) = 2T'(z), one gets
28 (BE\(1 = 2
V(1 —5)

4.1.6. Proof of Lemma 4.3
From the fact that X is a Sa.S process, one can write
K d
@ oY

A071X = Z akXUC)

k=0
where o > 0 and Y is a standard Sa.S random variable. Then E|Aq ;X |? =
oPE|Y|?. Following Theorem 4.1, since there doesn’t exist any = € C such that

['(x) = 0, we deduce that E[Y|% # 0.
Thus E|[Ag 1 X |? # 0.

4.2. Proof of Theorem 2.1
Proof of Theorem 2.1. In this proof, we shall denote by C' a generic constant

which may change from occurrence to occurrence.
We will prove that W,,(8) —E|Ag 1 X|? = Op(b,) where b, is defined by (11).
Indeed, from Lemma 4.1, it follows that E|Ag1X|? < +oo.
Because of H-self similarity and stationary increment properties of X, one

has
K k+p. () o= ax ~a
k

DpnX = ZakX( - ) = Z n—HX(k+P) = Zn—H(X(k+P) - X(p))

k=0 k=0 k=0

(d) X N1 X
k 0,1
k=0

E|fo, X and EW,,(8) = E|Ap1X|?. Now we will prove

We get E|Ap,nX\5 =~ 5w
that Wy, (5) ®, E|Ap1X|? when n — oo.
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We have
) n2B8H n—K 5 5
E|W, = E|IA, . XIP|A X
| (ﬁ)' (TL*K+].)2 pzo | P, |‘ P, |
Moreover
|Aan\5|Ap/ n X7
@ v
| X(k+p) IBIZ X(k+p")°
k=
:ngﬁH\Zap (k+p) - |B|Zak (k+p) = X())|?

(@ 1
- —mﬁmzamkw—p’m Zamk)w
k=0 k=0

1
= 28H 18— 1 X 1P| D01 X |7

It follows that

ElA, p 1 X1P|00 1 X2 ElAR1 X [P No1 X |2
E| A X |7 Ay 0 X|P = [Lp—p 1 X[7|D0n X[7 B8 X[7[D0,1 X

n26H - n2BH
with k = p — p’. Thus
EWa (B = e 3 (1- A, XA X
—K+1 n—K+1 ’ ’
k| <n—K
One has

E[Wo(B) — El801 X |°? = EIWa(B)[ — E| A0, X[ E| A0 1 X|.
On the other hand, since E|A; 1 X|? = E|A¢1X|? and
S o P L, )
n—K—i—lllen*K n—K-+1
it follows that

\k\; K(l — W yeov(| Ak X1P, | D01 X|P)

E‘Wn(ﬂ) _]E|A0,1X|'B|2 =

. (50
n—K+1 (50)

Using (50) and the assumption (11), one obtains

1
lim sup b—21E|Wn(ﬁ) — E|No 1 X|P)? < X2
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For all € > 0, applying Markov’s inequality and using (50), we get

E[W,(8) — B|Aoa X|7P2

P .
sup P(|W,(8) — E|Aoa X |P| > bnﬁ) < lim sup Ty <e.
It follows that
W (B) — E[Ag 1 X|? = Op(by,). (51)

In a similar way, combining with the fact that b,/, = O(by), one also has
W,/2(8) — E|80,1X|° = Op(by). (52)

Now we will prove that fIn — H = Op(by).
Let ¢ : Rt x RT — R be defined by

(z,y) = log, g (53)

Then H,, — H = §(Woya(8), Wa(5)).
We need the following lemma.

Lemma 4.10. Let f : D C R?> — R, be differentiable at a constant vector
(a,b) € D. Let (X,,Y,) be random vectors whose ranges lie in D such that

X, 5 aY, 5 band X, —a = Op(by),Y, — b = Op(bn) where {by}n is a
non-negative sequence and b, — 0 as n — +00.
Then f(X,,Y,) — f(a,b) = Op(by,).

Proof. Since f is differentiable at (a,b), we can write

0 0
f(a + h17b+ hg) = f(a,b) + hl—f(a,b) + hgi(a,b) + 0(||(h1,h2”)
ox y
as ||b]] = |[(h1, ho)[| — 0.
By applying Lemma 2.12 in [26] for
_ _ N A
Roy) = fla+ b+ 9) - flah) ~ o) (@b) = (@b

and the sequence random vector (X,, — a,Y,, — b), one gets
f(Xn, Yn) = S(
0
= (X, — a)a—i

a,b)

of
dy

= (X — a)Op(1) + (Yo — a)Op(1) + op(|[(Xy — a, Yo = )|])
= b, Op(1)Op(1) + b,0p(1)Op(1) + b,Op(1)op(1)

= bnOP(l) + bnO]p(l) + bnO]p(l)

— 5,08(1). 0

(a,0) + (Yn — a)==(a,b) + op([[(Xn — a, Y = b)]])
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Applying Lemma 4.10 with f = ¢ and vector (E | A1 X |2 E | A1 X |7),
combining with (51), (52) and the fact that ¢(E | Ao 1 X |?,E| A1 X |#) =0,
it follows that H, — H = Op(b,,).

®)

Since hm b, = 0, it induces that hm }AIn = H.

n—-4o0o n—-4oo

To prove that &, — a = Op(b,,), we first prove that
hepy,—a (@) = Vg, 5 (B[ D01 X |7 B 80,1 X|2) (54)

where 1y, 4, hy,» are defined by (7), (8), respectively.

Indeed, since {X;,t € R} is a H-sssi SaS—stable process, there exists a
constant ¢ > 0 such that Ay ;X = oY, where Y is the standard H-sssi, SaS
random variable. For 1, 82 € R, —1/2 < 1, 82 < 0, from Lemma 4.2, we have

2ﬁ1F(31+1

(- &)
VA=)

[e3

E|A0,1X|51 — Uﬁl]E|Y|ﬂ1 — g

Thus

(]E|A0)1X|’61),82 _ 0.,31,32 <

Similarly, we also get

B
B 2027 (B2Hyp(1 - L2
(]E|A0,1X|’82) = ghb2 ( 2 ) <,32 )
vrl(l—3)

Moreover, from Lemma 4.3, E[Ag 1 X |# # 0 for all —=1/2 < 8 < 0, then it induces

/31 /32

(E|A071X|ﬁ1)ﬁ2 F,Bl(l _ %)F@(%)Fﬁ?(l _ %)

(E| Ao 1 X|52)" [P2(1— BT (B2t (1 — B2)

Taking the natural logarithm, we have

62 ln E|A0 1X‘ﬁ1) — 61 ID(E‘AO 1X‘ﬂ2)
1

" 7r+611n< (1- %)) + Bz ln (F(ﬁ1; )) +/321n< (- é))

«
—@m(a—ﬁo—mmﬁf%iﬂ—mm(u—@ﬂ
It follows that

i (1= 2) i (- 2)

:@m@mmm%_mm@mmxw)ﬂ 5Hw_mm<a_%0
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— 8l (r(51;1)> +521n( (1- &)> + Bl (r(ﬁ“';l))

or h_g, g, (o) = V_p1,—B8s (E|A0,1X|ﬁlﬂE|A0,1X|62)'
From the following lemma, we can deduce that h, , is a strictly increasing
function on (0, +00) and lirf B (z) =0, lirrb B, (z) = —00. Moreover, there
T—+0o0 T—

exists an inverse function
h;i) : (—00,0) = (0, +00)
which is continuous and on (—o0, 0).
Lemma 4.11. Let 0 < v < u and gy : (0,+00) = R be a function defined by
Guv(z) =uln (T'(1 +vx)) —vIn (T'(1 + uz)).
Then gy is a strictly decreasing function on (0,+00) and

lir% Gun(x) =0, lim g,,(z) = —o0.

T— :E—)—‘,-OO

Proof. We have

, T'(1 +wx) (14 uzx) 'l +wvz) T/(1+4 ux)
Guo (%) = v I'(1+vzx) — L(1+4uz) ( )

rd+ovz) T1+4uz

)
Following Bohn-Mollerup’s theorem, I' is a log-convex function. Let k(y) be
defined by k(y) = InT'(y). Then £”(y) > 0 for all y > 0. It follows that i(y) :=
K (y) = 1;((5)) is an increasing function.
Since I'(z + 1) = 2T'(z), we have I''(z + 1) = I'(z) + «I"(x). We obtain
Maz+1) I(z)+2l(z) 1

D(z+1) xl(x) 77 V(@).

Y(x+1) =

We will prove that 1 increases strictly.
Assume that there exist xg,yo such that 0 < z¢g < yo and ¥(x0) = ¥(yo),

then 1 1
-

w(xo+1)—¢(y0+1):___:yo 0.
Lo Yo ZoYo

However, zo+1 < yo+ 1, then ¥(zo+1) < ¥(yo+ 1) but this could not happen.
Thus 9 is a strictly increasing function.

We also have 1 < 1 +vx < 1+ ux, so 1;‘((11155)) - E,((f_t:f)) < 0.

It induces that g;, () < 0 for all 0 < v < w and x > 0. This proves that

gu,v(x) is a strictly decreasing function.
It is clear that lim g, ,(z) = 0. Now we need to prove that lim g, ,(z) =
z—0 x—+00

—00.
Applying Stirling’s formula, we have

InT(1+42) =In(zl'(z)) =lnz+InT(z) = (= + %) Inz—z+ %ln(27r) +0(z7h
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as z = 400. Then
1 1 1
Guv(z) =u | (vr + 5) In(ve) — v + 3 In(27) + O((vx)™")

—v <(ux + %) In(ux) — ux + % In(27) + O((ux)1)>

ulnv—vlnu = (u—v)ln(27)
2 2

=uv(lnv —Inu)x + ? Inz
u v

)= O(—)

+ O(
VT ux

as r — +o0.
Since 0 < v < u we deduce wv(lnv — Inu) < 0. Moreover lim 2Z =0, it

r——+00
follows that
mgrfoo Gu.v(T) = —00. O
Then since « € (0, 2], we obtain that
hog,,—p, (@) =¥_p, -, (E|A0,1*X|B1 ) E|A071X|’82) <0.
On the other hand

Vg1, (Wn(B1), Wi (B2)) = ¥—p,.—5, (Va (B1), Va(B2))-
We deduce that
an —a =g, g, Vg, (Wa(B1), Wn(B2))) = hZp, s, (h—p, —p,(a))
=0 p1,—B (V—p1,— 5, (Wi (B1), Wn(B2))) — 0—p,,—p2 (h—p,,— ()
=012 (V—p1,—8: (Wi (B1), W (B2)))
— g1~ (V—p1,— 5 (Bl Do X |7 E| Do, X[ 72)).
Moreover, ¢_g, g, ©_g,,—3, is continuous and differentiable at
(@1,91) = (|20, X[ B[ 20,1 X |2). (55)
Combining with (51), (52), we apply Lemma 4.10, and get
ap —a = Op(by).

(P
It also induces that lim a,, ® Q. O
n—-+o0o

4.3. Proofs related to Section 3

Now we are in position to prove Theorems related to examples presented in
Section 3.

Proof of Theorem 3.1. a) From Lemma A.2 in Appendix, the assumption
(11) is satisfied. Then following Theorem 2.1, we have

H, — H=0p(n""?),a, —2=0p(n"""?).
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b) We now prove the asymptotic normality for the estimators of H and «. To

prove \/n(H, — H) converges to a normal distribution as n — +o0, we will first
prove that

Vi (W (B), W2 (8)) — (Bl D01 X |2, E[ 801 XIP)) D5 No(0,17)  (56)

as n — +oo, where I is defined by (16). Then, we need to prove that for all
a,b e R,ab#0,

Vi i= av/n(Wi(B8) = E[Ao1 X|P) 4+ by/n(Wy 2 (8) — B[ Ao 1 X|7) (57)
converges to G ~ N7(0,02) as n — 400, where
(@ +26°)> q'f5, > p%(r) +2ab>_q'f5, Y pl(r) (58)
q>d rEL q>d rEZL

f8.48, p, p1 are defined by (13), (14), (15), respectively. Since {X;}1>¢ is a H-sssi
process, for all n € N*, we get

(AO,TLX Aln An KnX AO,rL/Q‘Xv7A1,7L/24XVu~~~7A1'L/2—K,n/2)()
d
@ (n/ A (Ao 2 X, D2 X, Dk 2 X Do X, Aa X D1 X))
Moreover vary o = MTQAZ—Q,’IX,vaTAk’lX =varlo1X. It follows that
VI (Wa(B), Way2(8)) — (E[Do1 X% E| A 1 X))
n—K TL/Q*K
o[PS 1Beaxp > X
& k=0 _ B k=0 B
Vi n—K+1 El S0 XT7, n/2— K +1 E[£0.1.X]

n—K n/2—K
ﬁkzo(|yk|B*E|Zo|ﬁ) vn IZO (1211° — E| Zo”)
n—K+1 ’ n/2—-—K+1

(varNg 1 X)P/?

\/ﬁ n/2—K
n—K+1 Zfﬁ nj2—K+1 ; Js(2)

\/m \/m and fz is defined by (12).
We obtain that Yy, ~ ./\fl(O 1),Z; ~ N1(0,1), and

where Yj, =

K
Aot k _ k/+ _ |2H
]E(Ak’QXAk/’QX) . p,pZ:O Py ‘ b p|
varQNog 1 X K
22H E apap’ |p _p/|2H
p,p’'=0

EY.Y. =
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Then EYkYk/ = p(k — k‘/),]EZlZl/ = p(l — l/) and EYkZl = pl(k — 2l) where
p, p1 are defined by (14), (15), respectively. As in the proof of Lemma A.2 in
Appendix, we can prove that for r big enough

p(r)| < ClrP=2, lpa ()] < Clr?H2, (59)

We then mimic the proof of Theorem 7.2.4 in [19] to get V,, @, N1(0,0?) as
n — 400, it follows (56). On the other hand, we have

Vg loe: 35 )

\/E(Hn - H) OgQ W
Vi ($(Wa(B), W 2(B)) — S(E| D01 X [P E[Ag1 X 7))

where ¢ is defined as in (17).
Since ¢ is differentiable at (zg,v0) = (E|Ao1X|?, E|Ag1X|?), we can apply
Theorem 3.1 in [10] to get

Vali, — 7)Y i (0,21)

as n — +oo, where Z; is defined by (18).
Now we prove central limit theorem for the estimation of a. We will prove
that

(VA(Wa(B1) — B[ Aot X|P), V(Wi (B2) — Bl 801 X1%2))) A2 N5 (0, 1) (60)

as n — +oo, with I'; defined by (23).
Since {X;}ier is a H-sssi process, we have

—
=

(Do X, s Dp—gnX) = (Do X, o Dk X) . (61)

1
nH
On the other hand, varAy 1 X = varAg1X. Then we can write

(VW (B1) = E|lDoa X|M), V(W (B2) — E| D01 X))

n—K
PORTAVED n—K
(d) k=0 ’ 5 oo |[DraX|P B
= — —E|[Ag 1 X |7 —E|Ag1X|7?
v n—K+1 [Boa X[, n—K+1 [Bo.1X]

n 1 n—K 1 n—K
- \/z (m kZ:O T 20 =7 kZ:O fm(Z@) .

where fz, and fg, are defined as in (12) and Zy = %, Zp ~N1(0,1).
varinga
We have Efg, (Zo) = Efg,(Z0) = 0,Ef3 (Zo) < +00,Ef3,(Zy) < +oc and
EZyZ, = p(k — ) where p is defined by (14).
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We mimic the proof of Theorem 7.2.4 of [19] to obtain that

ayv/n (Wa(B1) — E|D01|") + byv/n (Wa(B2) — E| Ao 1|%)

converges to N7 (0,02) as n — +oo for all a,b € R, ab # 0, where

g _Zq afﬂ1q+bfﬂ27q ZP

reZ

Here p, f3,.q, [8,.q arve defined by (14), (20) respectively. This proves (60).
The function ¢_g, —g, 0 Y_p, —p, : RT x RT — [0, +00) is differentiable at

(z1,51) = (E[L01 X |7, E|A0,1 X]%),

where 1y 4, 9u.» are defined by (7), (9) respectively.
We can therefore apply Theorem 3.1 of [10] to get the conclusion. O

Proof of Theorem 3.2. a) We will check the assumption (11).
Let 0<I< k,k—1> K, then

ApiX = Zap (k+p)— X k)], 1 X = Zap (L+p)— X ().

By the fact that {X;};>0 has independent increments, we obtain that X (I +
p)— X(1),X(k+p) — X(k) are independent for all p,p’ =0,..., K since 0 <
I1<l+p <k<k+p.

It follows that Ay 1 X and 21X are independent for |k| > K. Thus

COU(|A]C’1X|B, ‘AOJX‘B) =0

We deduce that

1 1
~ Y leon(2ea X P A X ) =~ 3T Jeov(|AkaX] D02 X )]

kEZ,|k|<n kEZ,|k|<K

3|Q

~1/2 and it follows

where C'is a positive constant. We thus get (11) with b, =n
that H,, — H = Op(n~"?),a, —a = Op(n~=1/?).
b) To prove the asymptotic normality for the estimator of H, we first prove

that for all n € N,n > 2K,
VI (Wi, Wa2) — (E| D01 X |7 E[ Ao 1 X |P))

converges in distribution to a normal distribution as n — 4oc0.
Since {X;}>0 is a H-sssi process, one has

(AO,nXa A1,71)(; R Aan,an A0,71,/2)(7 A1,n/2)(a BERE) An/Q—K,n/QAX)
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- ﬁ (D02 X, A1aX, . D k2 X, Doa X, D00 X, Dya g1 X))
Moreover EIA. - X8
E|A2l? = %EMMXW =E|Ao X7,
B = M,var|ﬁk71){|ﬁ = var| N1 X|°.

225H
It follows that

VI (W, Way2) — (E[A0 1 X |7 Bl 201 X|7))

BHn_K 8 n/2—K 5
(d 2 ZO |A;D,2X| ZO |Ap’1X|
p= p=
- — (E|2g 1 X |2 Bl A 1 X )P
\/ﬁ n—K+1 ’ n/2_K+1 ( ‘ 0,1 |a | 0,1 |)

_ n/2—K
201 z (1202X17 ~BIZ57) 5 (1850 X17 ~ E|A0a X))

_ p=0 p=
=V n—K+1 ’ n/2—-K+1

Now we need to prove that for all a,b € R, ab # 0,

opH  nK
 =ay/n (Tﬂ Z (Ap,zXN E\AOIXl ))

1 n/2—K

B B
+b\/ﬁ m pgo (|Ap’1X)| _E|AO,1X|)

converges to a normal distribution when n — +o0o. Let

28H g
Zp = —5 (102p 2 X |7 + [ Agpr1,2X %) + 0] 21 X (62)
It follows that
m n/2—K
= A/ -EZ ns
where
oo 2Mayn(l - K) ”‘221":“ A, oX|P - |A0 1X‘
"Tn-K+1)n-2K+2) 2

26H . /n n-K Ng1 X
NS (mp,zXW B 20X |ﬁ>

n—K+1 p=n—2K+2
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= -
p P 9
n-K+1\n-2K+2 e

and Y, = [A, 2 X|7 — E[254X|0.
K

Since Y ax = 0, one can write
k=0

B
2B8H g

Zptl = 9

S a (X(ilC * 2;’) 0y~ X(l))

k=0

K

Zak <X(k+2(p+l)+1)X(l)>

2
k=0

2B8H
+ 5

B
+b

K
> an (X(k+p+1) - X(1))
k=0

If p—p’ > K — 1, since X has independent increments and

k+2p E+2p+1
p7 2p 7k+p}7

C k+2 k+2p+1
p < min{——, 5

E+2p E+2p+1
2p7 2[) ’k+p}7

< p < min{

k+p},

0<p <k+p <p<min{

for all k = 0,..., K, it follows that Z,,Z, are independent. It induces that
{Z,}pen is a (K — 1)-dependent sequence of random variables.
On the other hand, since X has stationary increments and X (0) = 0 almost

surely, we have

(X +0) = X1))ex 2 (X)) e -

Then for | € R fixed, (Zp4;,p € R) @ (Z,,p € R) or in another way, (Z,,p € R)
is stationary.

It follows that {Z,},en is a stationary (K —1)-dependent sequence of random
variables. From Theorem 2.8.1 in [16], we get

m 1 n/2—K
/ Z,-EZ
n/2—K+1\ /n2—K+1 1;)(” )

converges in distribution to a centered normal distribution with variance

K-1
o? = 2(varZy + 2 Z cov(Zo, Zx)) = a*o? + b*o5 + 2abo o (63)
k=1
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where 0%, 03, 01 2 are defined as in (28), (29), (30). We also have EY,, = 0,EU,, =
(d)

0,Y, = Y and EY;? = EY{ for all p. Thus
2K +1 K 2
QZBHQZTL 1- K n— n—
B S Y oy

(n—K+1) n—2K+2) = s
22ﬁH+1a2n (1 _ K)2 n—2K+1 n—K

< E( > Y)P+EC Y V)

=y _ 2 — 2 P P
(n—K+1) (n—2K +2) = e
22PH+1q2n (1-K)?

< — 2K +2)°EYZ + (K — 1)*EYg

_(n—K+1)2((n—2K+2)2(" +2)EYG + )EYS

B 22/3H+2a2(K _ 1)271 - nC

(n— K +1)? O T m—K+1)2

It follows that EU2 converges to 0 as n — -+oo. Moreover EU,, = 0, using

Chebyshev’s inequality, we obtain that U, ﬂ 0 as n — +oo.

Following Slutsky’s theorem, as n — +o00, S,, converges in distribution to a
centered normal distribution with variance o as in (63).
We deduce that

d
Vi (W, W) — (Bl 801 X |7 B[ 801 X)) Y N5 (0, 1),
where I3 is defined by (27). Since

—~ W,
Vi, — H) = Vi3 log, =/

=1 (d(Wn(B), Wy y2(8)) — o(E| 201 X |7 E| 201 X %)) (64)

where ¢ is defined by (17). Applying Theorem 3.1 of [10], we get \/ﬁ(ﬁ —H) @

N1(0,Z2) with Ey defined by (26).

We now prove the central limit theorem for the estimation of « in the case
of SaS—stable Lévy motion.

We need to prove that for all n € N,n > K, then

Vi (W (B1), Wa(B2)) — (Bl 201 X7, E| 20,1 X]%))

converges in distribution to a normal distribution as n — 4oc.
We consider

Sn = avn (Wa(B1) — E[L20,1X|%) + bv/n (W (B2) — E|Ag1 X |72)
for all a,b € R,ab # 0. Since {X;,t € R} is a H self-similar process, we have

g @_avn

n—K
e D> Ak X —E| Ak X )

k=0
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n—K
b/ , ,
T K1 Z(IAMX\ 2 —E| Ak X|%2)

n_KHZ %~ E2y)

where
Zy = a|Dpa X P+ b A1 X |2 (65)

Since {X;,t € R} has stationary increments, {Z, k € N} is stationary.
Moreover, if k — k' > K — 1, since {X;,t € R} has independent increments,
then Zy, Zj, are independent. We obtain that {Zj, k € N} is a stationary (K —1)-
dependent sequence of random variables. Then applying Theorem 2.8.1 of [16],
as n — 400, S, converges to a centered normal distribution with variance:
K—1
o? = varZy + 2 Z cov(Zy, Zy,). (66)
k=0

We can write o2 in details

K-1
2 <WA0,1X51 +2) cov(|Koa X7, |Ak’1X|ﬁ1)>
k=1

K-1
(var|Ao X% 42 cov(| Do X |72, | A, 1X|ﬁz)>

k=1
+ab (COU ‘AO 1)(|ﬁ17 |A0 1X|B2) +COU(|A0,1X|B2, |Ak,1X|61))
K—
+2abz cov(| 201 X |7, [ A1 X|7)
k=1

=a? 01 b2 + 2abo; 2,

where 02,03, 01 9 are defined by (33), (34), (35) respectively.
It follows that

Vi (Wa(Br), Wa(B2)) — (E| Ao X |7 E| A, 1X|ﬁ2)) ! N, (0,Ty),

where I'y defined by (32).
The function ¢_g, —g, 0 Y_p, —p, : RT x RT — [0, +00) is differentiable at

(x1,11) = (E|Lo1 X|P El Ao X|P),

where ¥y, v, @u,» are defined by (7), (9) respectively. Then we apply Theorem
3.1 of [10] to get the conclusion. O

Proof of Theorem 3.3. Set f(t) = ZkK:o aplk — t|=1/*. For all k € Z, one
has

K
Ak,lxz/zaj(\kﬂ—svf—l/a—|s|H—1/a)M(ds):/f(s—k)M(ds)
R j=0 R
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and ||Ap1X||2 = [|f(s — k)|*ds. By taking the change of variable u = s — k,
R

we get

180aX1l5 = [ 1) = 201X 5.

Let Uy = %7 then ||Ug||¢ = 1 and U, = f%M(ds) We now

prove that the assumption (11) is satisfied. Therefore we consider
1
Su=— > leov(|26aX]% | B0a X 7). (67)
kEZ,|k|<n
Since ||Ak1X||la = [|20,1X ]|, it follows that
Y leov(| 8 XI? (20 X1 = (1200 X[ D leov(|Ukl”, 1Uol)].
kEZ,k|<n kEZ,|k|<n

Moreover
a/2
ds

f(s
Uk Uolz /‘ ||A01X||2

Together with Lemma 3.6 in [11], there exist kg > 4K and 0 < 1 < 1 such that
for all k € Z,|k| > ko, one has

[Uk,UO]Q < n < 1.

Applying Theorem 4.2, there exists C(n) > 0 depending on 7 such that

lcov(|Uk|7, [Uo7)] < C(n)/lf(s—k)f(S)la/2d8
R

for all |k| > ko. Then for n > kg, one obtains that

Y leov((Ukl?, 10 = Y leov([U), Ul + D leov(|Usl?, [Uol?)]

kEZ keZ kEZ
|k|<n k| <ko ko<|k|<n
<C > /|fs— (s)|*/%ds
kEZ
|k|<ko ¥
()cH (L+1)r1
+C E .
kEZ

Because f(r) € L*(R,dx), one has Y. [ | f(s—k)f(s) |*/? ds < +o0.
kEZ,[k|<ko R
aH—(2L+1)a

Then S, = 3 |k|
kE€Z,ko<|k|<n
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Since aH — (L + 1)a < 0, using Lemma A.4 in Appendix, we also get

O(n=1) fH<L+1-2
Sp=40m ™) HH>L+1-2,
o(lan) fH=L+1-2

where S, is defined by (67). Applying Theorem 2.1, we have
W (B) = E| 201 X[ = Op(bn), Hy — H = Op(bn),

where b, is defined by(36). O
Proof of Theorem 3.4. We have

+oo K
A X = / / (Zai]lgkﬂ(x,r)) M(dx,dr)
0 kR N0

400 K
| A1 X]la = / /\Zai]lngri(x,7‘)|a(r”72)adxdr
o r =0

+oo K

_ / I3 aitsi (e — k)2 d@ = K.

0 R

By taking the change of variable u = x — k, one obtains that

“+o0 K
1A X[ = / / 1S aits, (w2 dudr = [[ Aoy X1
o r =0

_ AkJX _ AkJX
Set Us = 15, iXT = [Bo.i X1
condition (11) is satisfied. Set

. Obviously, ||Ug||2 = 1. We now prove that the

L= Y leov(|0ea X )P, [ 002 X))
kEZ,|k|<n

=001 Xlla DY leov(|Ul?, 1Uo)7)].
k€EZ,|k|<n

For n > 2K, applying Lemma A.3 in Appendix, one gets

I, <C > Jeov([Ukl?, [Uo]%)] + > |cov(|Uk|”, |Uo|”)]
kEZ,|k|<2K kEZ 2K <|k|<n

<ol > leov(Ul% UM+ > KT

kEZ,|k|<2K kEZ2K <|k|<n
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Since 0 < v < 1, one gets —1 < v — 1 < 0. Following Lemma A.4 in Appendix,

one obtains )
Y W =ow .
keZ 2K <|k|<n

Then we get the condition (11). Applying Theorem 2.1, we obtain that
Wo(X) —E|Ag1 X|? = Op(by,)

and R
H,—-H= OIP(bn)a Gy —a = O]P’(bn)
where by, is defined as in (38). O

Appendix A: Techincal results related to examples

We present here some technical results related to examples introduced in Section
3.

A.1. Auxiliary results related to Fractional Brownian motion

We are in position to provide and prove some technical results related to frac-
tional Brownian motion. These results are used to present the variances for the
limit distributions of the central limit theorems for the estimators of H and «
and to prove Theorem 3.1 in Subsection 4.3.

Proposition A.1. Let X be a H fractional Brownian motion with H € (0,1).
For B eR,—1/2 < 8 <0, let fz be defined as in (12),

B
fa = varfo1 X (\a:|B —E|Zo|/3)
A()’lX

where Zg = ——==——. Then fg can be expanded in a unique way into series
0 VovarDo 1 X B

of Hermite polynomials

fa(z) = Z fo.qHq(x)

q>d

and > q!fgjq < 400, where d is the Hermite rank of fg, moreover d > 2.
q2d

. _w2
Proof. Since —1/2 < 8 < 0, one has \/%H{fg(x)e /2dx =0 and

L /2 —2°/2
— [ f3(x)e =24 < +oo.
V2

"R

Then following Proposition 1.4.2-(iv) in [19], we can write f3 in terms of Hermite
polynomials in a unique way

fa(z) = Z fo.aHq(),
q>d

where d > 1 is the Hermite rank of fz and Hgs are the Hermite polynomials.
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Moreover, it is clear that Zy ~ N(0,1). From Proposition 2.2.1 in [19], we
get

0 ifp#q
pl ifp=gq

Then since Hl(l‘) = I, one has EHl(Zo)flg(Zo) = EZOfﬂ(Zo) = fﬁ)lEZg = fﬁ,l-
Combining with the fact that

E[HP(ZO)Hq(ZO)} - {

(vaerJX)B

EH1(Zo) fs(Z0) = T

/ 2|2’ — E|Zo|P)e=""/2dw = 0,
R

we deduce that fg; = 0. It follows that d > 2.
Moreover,

1 2
Ef3(Zo) = —= [ f3(z)e* Pda < +cc.
\/QWR/

On the other hand,

Ef;(ZO) = Z fﬁ,pfﬁ,qE[Hp(ZO)Hq(ZO)] = Zq!fg,q~

p,q>d q>d

It follows that > q!féq < +o0. |
q>d

Lemma A.1. Let (U, V) @ No ((0,0), </1) f)) ,lpl < 1. Then for each B €
C, Re(B) € (—1/2,0), there exists a constant C' > 0 such that V|p| < 1, we have:

lcov(|U1, [V|7)| < Cp?

_ (L r 12 11 (Lop
Proof. Let ¥ = (p 1). We have det(X) = 1 —p? and 7' = = o 1)
The density function of (U, V):

P )

_ 2 —-1/2 _ 1 2 2
= ((27)°dety) exp { ) (" +y pry)} .
We get
E (IU\B\V@ S / | °|y|Pexp [—%(12 +y? - pry)} dady
/1= ) 20—
24,2
Tty Ydxdy

— 1 —
BUPEV = o [l lyPean(-
R2
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and

coo(|U|%, |V I%) = E(U|°|V|°) — E[U|°E|V|?

1 _ .’132 _|_y2
=5 [ el lPeap(- "), (o, ) dody
]R2
where
A, (z,y) = ! exp | — r (2 +12) ) exp PTY ) 1.
P 12 1—p? L=p?

Since [ |z|®ze=""/2dz = 0 we obtain that
R

22+ y?
2

1 —
oo (U7, [VP) = 5 [ lal”lyPeap(~
R2

)By(x,y)dzdy

with
By(x,y) = Ap(z,y) — pry

1 p?
= emn| =
V1= p? b 1—p?

Using L’Hopital rule, we get:

pxy
= (x2+y2)> e:z:p(l p2> —1 - pzy.

B B,
lim —; = lim =2
p—0 p p—0 2p

_ A(a,y) —zy
= lim —F-——
p—0 2p
leap (72 (22 + %) + £ ) (1= p?) 7 =1 L
= zy - lim + - -2 —y
p—0 2p 2
1
= A+ - —a? — g2
+ 5 7 -y
Then we continue using L’Hoépital rule for the remaining limit:
2
oy =P o o pry
A—7l1)1_r>%exp(1p2(x Tyt 1p2) x
2p 2, 2 p 2p° 1 2p°
o ) (T )+ (T g
P
-
One has
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2

0*B,(z,y) P 2 2 pTY
T_Pp(x,y)emp —17102(‘% +y°) ) exp )

where P,(z,y) is a fourth degree polynomial that depends continuously on p.
We also have

Bo(l‘,y) = O,B;(Jj,y) ‘;020: 0.

A Taylor expansion up to order 2 leads to

~2 ~
p pry
Bylass) = P Eptotean (~ 2@ 7)) ean ({27
with p € (0,p). On the compact set |p| < 1/2, the polynomial P,(z,y) can be

bounded by a fourth degree polynomial P(x,y), for all z,y € R,|P,(z,y)| <
|P(|z|, ly])|- Moreover

~2 ~ ~
p pry pry
exrp <—1_ﬁ2(x2—|—y2)> exp(l_ﬁz> Semp(l_ﬁ2>.

But with || < 1/2, we get |#\ <2/3. So exp< /3xy2) <exp (2\wy|>' Thus

15 3

2|zy|

Byten)| < A1PGol lblean (2521

Because the power function grows faster than the polynomial function, we have

. 22 4 92 2|xy
[ b~ ) P, e (222 ) dady < o
R2

3

So we have the conclusion.

Lemma A.2. Let X be a fractional Brownian motion, 8 € C,—1/2 < Re(f) <
0. Then

> Jeov(|Apa X [P, | 20,1 X]%)]| < +oo.

keZ

Proof. We have

K
1
COU(A]@JX, AOJX) = *5 Z apap/|k +p — p,‘zH

p,p'=0
2 K /
k P—D 2m
- apay |1+ =",
p,p'=0

We just need to consider cov(Ag1X, Ao 1X) when |k| > K. Since 1+ p%ﬂ >0,
we get
k2H K p— p/ -
CO’U(Ak’lX, AQJX) = —T Z apap/(l + T)2 .

p,p'=0
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Set
| X
g(x) = -5 Zoapap/(l +(p—p)x)*H.
p,p =

IfH= % then g(z) = 0. If H # %, using Taylor expansion as x — 0, we get

K
g(@)=-H > apay(p—p)(1+(p—p)z)*!
p,p'=0
K
g'(x) = —HQH - 1) > apay(p—p)*(1+ (p—p)a)*"
p,p’'=0
K
9¥ () = —HQH — 1)2H —2) Y apay(p—p')*(1+ (p — p))a)*" 2.
p,p’=0

Thus ¢(0) = 0, ¢'(0) = 0,¢”(0) = 0,3 (0) = 0 and we obtain that g(x) = o(z*)
as x — 0. It follows that

cov(Dp 1 X, No1 X) ~ k2. o(k—lg) ~ o(k?H73)

as k — +oo. We can apply similarly as £k — —oo. Then there exists a constant
C such that for all &, |k| > K and for all H € (0,1),

lcov(D g X, Do X)| < O[22, (68)
For all k € Z, we have
K K
varDp,1 X =E Z ap, X (k+p) Z ay X(k+7p)
p=0 p’=0
| XK
D) Z apay [p _p/|2H~
p,p'=0

A1 X _ No1X

Vwvar(Apa1X)’ V= Vovar(Do1X)

2
cov | AkJX ‘57| Ao’lX ‘5 S C. cov (AkélX’ Ao’lX).
var(Ap1X)) var(Noa1X)) var?Lo1 X

We now apply the Lemma A.1 with U = . Then

It follows that
|cov(|Ap1 X 1P, [ 20,1 X17)| < Ceov® (D1 X, Doy X)), Vk, k € Z.

Since H € (0,1), we get > |k|*f =6 < +o00. Applying inequality (68), we obtain
kez

Z {cov(|Ak,1X|6, |A0,1X\ﬂ)’ = Z |cov(|Ak,1X\5, |A071X|B)|
keZ k€EZ,|k|<K
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+ ) Jeov(|Aka X 1000 X))
keZ,|k|>K

SC Z CO’Uz(Ak,lX, AO,lX)
kEZ,k|<K

+C > kM0 < 4oo, O
kEZ,|k|>K

A.2. Auxiliary results related to Takenaka’s process

Lemma A.3. Let {X;,t € R} be a Takenaka’s process defined by (37). Then
for BeR, B € (—1/2,0) and |k| > 2K, we have

’CO’U(|A]€71X|B, ‘AOJX‘&” S Ckyil.
Proof. One has

K K
N1 X = Z a; X(k+1i)= / Z ails, ., (x, )M (dx,dr)
i=0

RxR+ =Y
K K K
where fp = > a;ls,,, = Y ai(le,,, — 1c,)?. From the fact that Y a; = 0
i=0 i=0 i=0

and | 1 — 21, |= 1, it induces

K K
|fk| = |1 - 2100” Zai]lck+i = |Zaﬂlck+i

i=0 i=0

Therefore we have to estimate, as |k| — +oo,
—+oo

I = (D01 X, Boa Xz = / / i) fole, ) dadr.
0 R

We will find an upper bound for I;, when |k| > 2K.

If x > K + r then 1¢,(x,r) = 0 for all i = 0,..., K, thus fo(z,r) = 0. If
r<k—r lg, (r,r)=0forali=0,..., K, it follows that fj(z,r) =0.

As a result, fi(x,r)fo(x,r) =0 forall z € (—oo,k —r) U (K + r,+00).

Let k > 2K. If r < 22K < k —r > K +r then fi(z,7) fo(z,r) = 0 for all z.
Thus one gets

kE—K

2 +oo
I = 72| fr(,r) fol@, 7)ldr + 72| fe(z, ) fola, r)|dr | do
/(] ]
+o0 Too
:/ / 72| fu (2, 1) folz, r)|drde = TV—Q/|fk(x,7“)f0(x7r)|dxdr,
R AoK k—K R

Here we consider fi(z,7)fo(z, ).
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Since k > 2K, then k+ K —r < k+r. For k+ K—r <z <k+r, |[x—k—i| <r
K
for all i =0,..., K, it follows that 1¢,,, (z,r) =1 and fi(z,r) = > a; = 0.
i=0

Therefore fi(z,7)fo(z,7) =0if z € (—oo,k—7r)U (k+ K — r, +00). We also
have

K K
oz, r)l =1 aide,.. (@) <D lail
i=0 i=0

for all £ € N. Thus

“+o0o k+K—r
I, < / =2 / | fx(z, 1) fo(z,7)|dxdr
k=K k—r
2
“+o0 k+K—r i K
<C / P2 / dedr = C(_T)"—1 <Cr!
k—K k—r
2
since%Z%and0<u<l.

Let k< —2K.Ifr < -5 o k+ K+r < —r, thenforalli=1,..., K,
1c,,,(z,r) =0,Vr € (k+ K +r,+00),1¢,(z,r) = 0,Vx € (—00, —7).

It follows that fx(z,7)fo(z,7) =0, for all z € (—o0, —r)U (k+ K +r,+00) = R.

Therefore
+oo

I, = / TV*Q/|fk(x,r)f0(x,r)|dxdr
R

_ kK
2

For r > —E£E » > K — K/2 = K/2. We have fi(z,7)fo(z,r) = 0 for all
x € (—oo,k—r)Uk—r+Kk+r)Uk+r+KK+7r)U (K +r +0). It

induces that

—+o0

I — / 2 / \Fiu( ) fole, r)ldadr
_EiK R
“+o0 k—r+K k+r+K

- / 2 / () o, ) dadr + / (e, ) fola,r)|dedr
_k+K k—r k+r

2

+o0
<C / Y 2dr < Olk|V L
k4K

2

Putting together with Theorem 4.2, for |k| > 2K we obtain that
}cov(|Ak71X|ﬁ, |A0,1X\5)’ < CkvL. O
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A.3. Auxiliary results related to rate of convergence

We present here a lemma used to determine rate of convergence in the proofs
of Theorems 3.3 and 3.4.

Lemma A.4. Forp <0, let S, = %Z\kKn |k|P, then liIJIrl Sp = 0. Moreover
g = n— 00

Oon™Y) ifp<-—1
Sp =4 O(nP) if —1<p<0
or) ifp=-1
Proof. Set

k=1

oo
If p < —1, since [ 2Pdzr < 400, following the integral test for convergence, we

get > kP < 400. Then
k=1

S, =0(n"1).
If -1 < p <0, we take a constant € such that 0 < € < —p, then
k1+e+p 1 n 1+e+p 1
_ = - __ ,,pte
Sn = n Z klte — n Z felte =n Z flte’
k=1 k=1 _

Since p+€ < 0, we get > 7 < +00. Then S,, = O(nP*<) for all 0 < € < —p.
Thus S, = O(n?). -

If p=—1,then S, =1 > + =0(2n),
k=1
In all cases, we have lim S,, =0 O
n—-4o0o
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