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Abstract: Despite the fundamental nature of the inhomogeneous Pois-
son process in the theory and application of stochastic processes, and its
attractive generalizations (e.g. Cox process), few tractable nonparametric
modeling approaches of intensity functions exist, especially when observed
points lie in a high-dimensional space. In this paper we develop a new,
computationally tractable Reproducing Kernel Hilbert Space (RKHS) for-
mulation for the inhomogeneous Poisson process. We model the square root
of the intensity as an RKHS function. Whereas RKHS models used in su-
pervised learning rely on the so-called representer theorem, the form of
the inhomogeneous Poisson process likelihood means that the representer
theorem does not apply. However, we prove that the representer theorem
does hold in an appropriately transformed RKHS, guaranteeing that the
optimization of the penalized likelihood can be cast as a tractable finite-
dimensional problem. The resulting approach is simple to implement, and
readily scales to high dimensions and large-scale datasets.
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1. Introduction

Poisson processes are ubiquitous in statistical science, with a long history span-
ning both theory (e.g. [20]) and applications (e.g. [12]), especially in the spatial
statistics and time series literature. Despite their ubiquity, fundamental ques-
tions in their application to real datasets remain open. Namely, scalable non-
parametric models for intensity functions of inhomogeneous Poisson processes
are not well understood, especially in multiple dimensions since the standard ap-
proaches, based on kernel smoothing, are akin to density estimation and hence
scale poorly with dimension. In this contribution, we propose a step towards
such scalable nonparametric modeling and introduce a new Reproducing Kernel
Hilbert Space (RKHS) formulation for inhomogeneous Poisson process model-
ing, which is based on the Empirical Risk Minimization (ERM) framework. We
model the square root of the intensity as an RKHS function and consider a
risk functional given by a penalized version of the inhomogeneous Poisson pro-
cess likelihood. However, standard representer theorem arguments do not apply
directly due to the form of the likelihood. Namely, the fundamental difference
arises since the observation that no points occur in some region is just as impor-
tant as the locations of the points that do occur. Thus, the likelihood depends
not only on the evaluations of the intensity at the observed points, but also on
its integral across the domain of interest. As we will see, this difficulty can be
overcome by appropriately adjusting the RKHS under consideration. We prove
a version of the representer theorem in this adjusted RKHS, which coincides
with the original RKHS as a space of functions but has a different inner prod-
uct structure. This allows us to cast the estimation problem as an optimization
over a finite-dimensional subspace of the adjusted RKHS. The derived method
is demonstrated to give better performance than a näıve unadjusted RKHS
method which resorts to an optimization over a subspace without representer
theorem guarantees. We describe cases where adjusted RKHS can be described
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with explicit Mercer expansions and propose numerical approximations where
Mercer expansions are not available. We observe strong performance of the pro-
posed method on a variety of synthetic, environmental, crime and bioinformatics
data.

2. Background and related work

2.1. Poisson process

We briefly state relevant definitions for point processes over domains S ⊂ RD,
following [8]. For Lebesgue measurable subsets T ⊂ S, N(T ) denotes the number
of events in T ⊂ S. N(·) is a stochastic process characterizing the point process.
Our focus is on providing a nonparametric estimator for the first-order intensity
of a point process, which is defined as:

λ(s) = lim
|ds|→0

E[N(ds))]/|ds|. (2.1)

The inhomogeneous Poisson process is driven solely by the intensity function
λ(·):

N(T ) ∼ Poisson(

∫
T

λ(x)dx). (2.2)

In the homogeneous Poisson process, λ(x) = λ is constant, so the number of
points in any region T simply depends on the volume of T , which we denote
|T |:

N(T ) ∼ Poisson(λ|T |). (2.3)

For a given intensity function λ(·), the likelihood of a set of N = N(S) points
x1, . . . , xN observed over a domain S is given by:

L(x1, . . . , xN |λ(·)) =
N∏
i=1

λ(xi)e
−

∫
S
λ(x)dx (2.4)

2.2. Reproducing kernel Hilbert spaces

Given a non-empty domain S and a positive definite kernel function k : S×S →
R, there exists a unique reproducing kernel Hilbert space (RKHS)Hk. An RKHS
is a space of functions f : S → R, in which evaluation is a continuous functional,
meaning it can be represented by an inner product f(x) = 〈f, k(x, ·)〉Hk

for all
f ∈ Hk, x ∈ S (this is known as the reproducing property), cf. Berlinet and
Thomas-Agnan [5]. While Hk is in most interesting cases an infinite-dimensional
space of functions, due to the classical representer theorem [19], [29, Section
4.2], optimization over Hk is typically a tractable finite-dimensional problem.
In particular, if we have a set of N observations x1, . . . , xN , xi ∈ S and consider
the problem:

min
f∈Hk

{R (f(x1), . . . , f(xN )) + Ω (‖f‖Hk
)} . (2.5)
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where R (f(x1), . . . , f(xN )) depends on f through its evaluations on the set
of observations only, and Ω is a non-decreasing function of the RKHS norm
of f , there exists a solution to Eq. (2.5) of the form f∗(·) =

∑N
i=1 αik(xi, ·),

and the optimization can thus be cast in terms of the so-called dual coef-
ficients α ∈ RN . This formulation is widely used in the framework of reg-
ularized Empirical Risk Minimization (ERM) for supervised learning, where

R (f(x1), . . . , f(xN )) = 1
N

∑N
i=1 L(f(xi), yi) is the empirical risk corresponding

to a loss function L, e.g. squared loss for regression, logistic or hinge loss for
classification.

If domain S is compact and kernel k is continuous, one can assign to k its
integral kernel operator Tk : L2(S) → L2(S), given by Tkg =

∫
S
k(x, ·)g(x)dx,

which is positive, self-adjoint and compact. There thus exists an orthonormal
set of eigenfunctions {ej}∞j=1 of Tk and the corresponding eigenvalues {ηj}∞j=1,
with ηj → 0 as j → ∞. This spectral decomposition of Tk leads to Mercer’s
representation of kernel function k [29, Section 2.2]:

k(x, x′) =
∞∑
j=1

ηjej(x)ej(x
′), x, x′ ∈ S (2.6)

with uniform convergence on S × S. Any function f ∈ Hk can then be written
as f =

∑
j bjej where ‖f‖2Hk

=
∑

j b
2
j/ηj < ∞.

Note that above we have focused on Mercer expansion with respect to the
Lebesgue measure, but other base measures are also often considered in litera-
ture, e.g. [28, section 4.3.1].

2.3. Related work

The classic approach to nonparametric intensity estimation is based on smooth-
ing kernels [27, 11] and has a form closely related to the kernel density estimator:

λ̂(x) =

N∑
i=1

κ(xi − x) (2.7)

where κ is a smoothing kernel (related to but distinct from the RKHS kernels
described in the previous section), that is, any bounded function integrating to
1. Early work in this area focused on edge-corrections and methods for choosing
the bandwidth [11, 6, 7]. Connections with RKHS have been considered by,
for example, Bartoszynski et al. [4] who use a maximum penalized likelihood
approach based on Hilbert spaces to estimate the intensity of a Poisson process.
There is long literature on maximum penalized likelihood approaches to density
estimation, which also contain interesting connections with RKHS, e.g. [30].

Much recent work on estimating intensities for point processes has focused on
Bayesian approaches to modeling Cox processes. The log Gaussian Cox Process
[24] and related parameterizations of Cox (doubly stochastic) Poisson processes
in terms of Gaussian processes have been proposed, along with Monte Carlo
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[1, 12, 31], Laplace approximation [17, 10, 15] and variational [22, 21] inference
schemes.

Another related body of literature concerns Cox processes with intensities pa-
rameterized as the sum of squares of k Gaussian processes, called the permanent
process [23]. Interestingly, calculating the density of the permanent process re-
lies on a kernel transformation similar to the one we propose below. Unlike these
approaches, however, we are not working in a doubly stochastic (Cox process)
framework; rather we are taking a penalized maximum likelihood estimation
perspective to estimate the intensity of an inhomogeneous Poisson process. As
future work, it would be worthwhile to explore deeper connections between our
formulation and the permanent process, e.g. by considering an RKHS formu-
lation of Cox processes or by considering an inhomogeneous Poisson process
whose intensity is the sum of squares of functions in an RKHS.

3. Proposed method and kernel transformation

Let S be a compact domain of observations. Let k : S×S → R be a continuous
positive definite kernel, and Hk its corresponding RKHS of functions f : S → R.
We model the intensity function λ(·) of an inhomogeneous Poisson process as:

λ(x) := af2(x), x ∈ S, (3.1)

which is parameterized by f ∈ Hk and an additional scale parameter a > 0.
The flexibility of choosing k means that we can encode structural assumptions
of our domain, e.g. periodicity in time or periodic boundary conditions (see
Section 4.1.1). Note that we have squared f to ensure that the intensity is non-
negative on S, a pragmatic choice that has previously appeared in the literature
(e.g. [22]). While we lose identifiability (since f and −f are equivalent), as shown
below we end up with a finite dimensional, and thus tractable, optimization
problem.

The rationale for including a is that it allows us to decouple the overall scale
and units of the intensity (e.g. number of points per hour versus number of
points per year) from the penalty on the complexity of f which arises from the
classical regularized Empirical Risk Minimization framework (and which should
depend only on how complex, i.e. “wiggly” f is).

We use the inhomogeneous Poisson process likelihood from Eq. (2.4) to
write the log-likelihood of a Poisson process corresponding to the observations
{x1, . . . , xN}, for xi ∈ S, and intensity λ(·):

�(x1, . . . , xN |λ) =
N∑
i=1

log(λ(xi))−
∫
S

λ(x)dx. (3.2)

We will consider the problem of minimization of the penalized negative log
likelihood, where the regularization term corresponds to the squared Hilbert
space norm of f in parametrization Eq. (3.1):
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min
f∈Hk

{
−

N∑
i=1

log(af2(xi)) + a

∫
S

f2(x)dx+ γ‖f‖2Hk

}
. (3.3)

This objective is akin to a classical regularized empirical risk minimization
framework over RKHS: there is a term that depends on evaluations of f at
the observed points x1, . . . , xN as well as a term corresponding to the RKHS
norm. However, the representer theorem does not apply directly to Eq. (3.3):
since there is also a term given by the L2-norm of f , there is no guarantee that
there is a solution of Eq. (3.3) that lies in span{k(xi, ·)}Ni=1. We will show that
Eq. (3.3) fortunately still reduces to a finite-dimensional optimization problem
corresponding to a different kernel function k̃ which we define below.

Using the Mercer expansion of k in Eq. (2.6), we can write the objective
Eq. (3.3) as follows:

J [f ] = −
N∑
i=1

log(af2(xi)) + a‖f‖2L2(S) + γ‖f‖2Hk
(3.4)

= −
N∑
i=1

log(af2(xi)) + a

∞∑
j=1

b2j + γ

∞∑
j=1

b2j
ηj

. (3.5)

The last two terms can now be merged together, giving

a

∞∑
j=1

b2j + γ

∞∑
j=1

b2j
ηj

=

∞∑
j=1

b2j
aηj + γ

ηj
=

∞∑
j=1

b2j
ηj(aηj + γ)−1

.

Now, if we define kernel k̃ to be the kernel corresponding to the integral operator
Tk̃ := Tk(aTk + γI)−1, i.e., k̃ is given by:

k̃(x, x′) =
∞∑
j=1

ηj
aηj + γ

ej(x)ej(x
′), x, x′ ∈ S,

we see that:

J [f ] = −
N∑
i=1

log(af2(xi)) + ‖f‖2Hk̃
. (3.6)

Thus, we have merged the two squared norm terms into a squared norm in
a new RKHS. We note that a similar idea has previously been used to modify
Gaussian process priors in [9], albeit in a different context, and that a similar
transformation appears in the expression for the distribution of a permanent
process [23]. We are now ready to state the representer theorem in terms of
kernel k̃.

Theorem 1. There exists a solution of Eq. (3.3) for observations x1, . . . , xN ,

which takes the form f∗(·) =
∑N

i=1 αik̃(xi, ·).

Proof. Since
∑

j

b2j
ηj

< ∞ if and only if
∑

j

b2j
ηj(aηj+γ)−1 < ∞, i.e. f ∈ Hk ⇐⇒

f ∈ Hk̃, we have that the two spaces correspond to exactly the same set of
functions. Optimization over Hk is therefore equivalent to optimization over Hk̃.



Poisson intensity estimation with reproducing kernels 5087

The proof now follows by applying the classical representer theorem in k̃ to
the representation of the objective function in Eq. (3.6). We decompose f ∈ Hk̃

as the sum of two functions:

f(·) =
N∑
j=1

αj k̃(xj , ·) + v (3.7)

where v is orthogonal in Hk̃ to the span of {k̃(xj , ·)}j . We prove that the first

term in the objective J [f ] given in Eq. (3.6), −
∑N

i=1 log(af
2(xi)), is indepen-

dent of v. It depends on f only through the evaluations f(xi) for all i. Using
the reproducing property we have:

f(xi) = 〈f, k̃(xi, ·)〉Hk̃
=

∑
j

αj k̃(xj , xi) + 〈v, k̃(xi, ·)〉Hk̃
=

∑
j

αj k̃(xj , xi)

(3.8)
where the last step is by orthogonality. Next we substitute into the regulariza-
tion term:

γ‖
∑
j

αj k̃(xj , ·) + v‖2Hk̃
= γ‖

∑
j

αj k̃(xj , ·)‖2Hk̃
+ ‖v‖2Hk̃

≥ γ‖
∑
j

αj k̃(xj , ·)‖2Hk̃
.

(3.9)

Thus, the choice of v has no effect on the first term in J [f ] and a non-zero v
can only increase the second term ‖f‖2Hk̃

, so we conclude that v = 0 and that

f∗ =
∑N

j=1 αj k̃(xj , ·) is the minimizer.

Remark 1. The notions of the inner product in Hk and Hk̃ are different and

thus in general span{k(xi, ·)} �= span{k̃(xi, ·)}.
Remark 2. Notice that unlike in a standard ERM setting, γ = 0 does not
recover the unpenalized risk, because γ appears in k̃. Notice further that the
overall scale parameter a also appears in k̃. This is important in practice, because
it allows us to decouple the scale of the intensity (which is controlled by a) from
its complexity (which is controlled by γ).

Illustration. The eigenspectrum of k̃ where k is a squared exponential kernel
is shown in Figure 1 for various settings of a and γ. Reminiscent of spectral
filtering studied by Muandet, Sriperumbudur and Schölkopf [25], in the top plot
we see that depending on the settings of a and γ, eigenvalues of k̃ are shrunk
or inflated as compared to k(x, x′) which is shown in black. In the bottom plot,
the values of k(0, x) are shown for the same set of kernels.

4. Computation of k̃

In this section, we consider first the case in which an explicit Mercer expansion
is known, and then we consider the more commonly encountered situation in
which we only have access to the parametric form of the kernel k(x, x′), so we
must approximate k̃. We show experimentally that our approximation is very
accurate by considering the Sobolev kernel, which can be expressed in both ways.
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Fig 1. Eigenspectrum of k̃ (top) and values of k̃ (bottom) for various settings of a and γ.
The original kernel k is shown in solid black in both figures.

4.1. Explicit Mercer expansion

We start by assuming that we have a kernel k with an explicit Mercer expansion
with respect to a base measure of interest (usually the Lebesgue measure on S),
so we have eigenvectors {ej(x)}j∈J and eigenvalues {ηj}j∈J :

k(x, x′) =
∑
j∈J

ηjej(x)ej(x
′), (4.1)
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with an at most countable index set J . Given a and γ we can calculate:

k̃(x, x′) =
∑
j∈J

ηj
aηj + γ

ej(x)ej(x
′) (4.2)

up to a desired precision as informed by the spectral decay in {ηj}j∈J . Below
we consider kernels for which explicit Mercer expansions are known: a kernel on
the Sobolev space [0, 1] with a periodic boundary condition, and the squared
exponential kernel. We also show how our formulation can be extended to mul-
tiple dimensions using a tensor product formulation. Although not practical for
large datasets, the Mercer expansions given below, summing terms up to j = 50
(for which the error is less than 10−5), can be used to evaluate approximations
for the cases in which Mercer expansions are not available.

4.1.1. Sobolev space on [0, 1] with a periodic boundary condition

We consider a kernel on the Sobolev space on [0, 1] with a periodic boundary
condition, proposed by Wahba [32, chapter 2] and recently used in Bach [2]. The
kernel is given by:

k(x, y) = 1 +

∞∑
m=1

2 cos (2πm (x− y))

(2πm)2s

= 1 +
∞∑

m=1

2

(2πm)2s
[cos (2πmx) cos (2πmy) + sin (2πmx) sin (2πmy)] ,

= 1 +
(−1)s−1

(2s)!
B2s({x− y}),

where s = 1, 2, . . . denotes the order of the Sobolev space and B2s({x − y}) is
the Bernoulli polynomial of degree 2s applied to the fractional part of x−y. The
corresponding RKHS is the space of functions on [0, 1] with absolutely contin-
uous f, f ′, . . . , f (s−1) and square integrable f (s) satisfying a periodic boundary
condition f (l)(0) = f (l)(1), l = 0, . . . , s − 1. For more details, see [32, Chapter
2].

Bernoulli polynomials admit a simple form for low degrees. In particular,

B2(t) = t2 − t+
1

6
,

B4(t) = t4 − 2t3 + t2 − 1

30
,

B6(t) = t6 − 3t5 +
5

2
t4 − 1

2
t2 +

1

42
.

Moreover, note that:∫ 1

0

2 cos (2πmx) sin (2πm′x) dx = 0,
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0

2 cos (2πmx) cos (2πm′x) dx = δ(m−m′),∫ 1

0

2 sin (2πmx) sin (2πm′x) dx = δ(m−m′).

Thus, the desired Mercer expansion (with respect to the Lebesgue measure) is
given by k(x, y) =

∑
m∈Z

ηmem(x)em(y) with eigenfunctions e0(x) = 1 and for

m = {1, 2, . . .}, em(x) =
√
2 cos (2πmx), e−m(x) =

√
2 sin (2πmx) and corre-

sponding eigenvalues η0 = 1, ηm = η−m = (2πm)−2s.
Now, the adjusted kernel k̃(x, y) from (4.2) is given by

k̃(x, y) =
∑
m∈Z

ηm
ηm + γ

em(x)em(y)

=
1

1 + γ
+

∞∑
m=1

2 cos (2πm (x− y))

1 + γ(2πm)2s
.

4.1.2. Squared exponential kernel

A Mercer expansion for the squared exponential kernel was proposed in [36]
and refined in [13]. However, this expansion is with respect to a Gaussian mea-
sure on R, i.e., it consists of eigenfunctions which form an orthonormal set in
L2(R, ν) where ν = N (0, �2I). The formalism can therefore be used to esti-
mate Poisson intensity functions with respect to such Gaussian measure. In the
classical framework, where the intensity is with respect to a Lebesgue measure,
numerical approximations of Mercer expansion, as described in Section 4.2 are
needed. Following the exposition in [28, section 4.3.1] and the relevant errata1

we parameterize the kernel as:

k(x, x′) = exp(−‖x− x′‖2
2σ2

) (4.3)

The Mercer expansion with respect to ν = N (0, �2I) then has the eigenvalues

ηi =

√
2a

A
Bi, (4.4)

and eigenfunctions

ei(x) =
1√√
a/c 2ii!

exp(−(c− a)x2)Hi(
√
2cx) (4.5)

where Hi is the i-th order (physicist’s) Hermite polynomial, a = 1
4σ2 , b = 1

2�2 ,

c =
√
a2 + 2ab, A = a + b + c, and B = b/A. Thus we have the following

eigenvalues for k̃:

η̃i =
ηi

aηi + γ
=

1

a+ γ
√

A
2aB

−i
(4.6)

while the eigenfunctions remain the same.

1http://www.gaussianprocess.org/gpml/errata.html

http://www.gaussianprocess.org/gpml/errata.html
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4.1.3. Extending the Mercer expansion to multiple dimensions

The extension of any kernel to higher dimensions can be constructed by con-
sidering tensor product spaces: Hk1⊗k2 (where k1 and k2 could potentially be
different kernels with different hyperparameters). If k1 has eigenvalues ηi and
eigenfunctions ei and k2 has eigenvalues δj and eigenfunctions fj , then the eigen-
values of the product space are then given by the Cartesian product ηiδj , ∀i, j,
and similarly the eigenfunctions are given by ei(x)fj(y). Our regularized kernel
has the following Mercer expansion:

k̃1 ⊗ k2((x, y), (x
′, y′)) =

∑
ij

ηiδj
aηiδj + γ

ei(x)ei(x
′)fj(y)fj(y

′) (4.7)

Notice that k̃1 ⊗ k2 is the kernel corresponding to the integral operator (Tk1 ⊗
Tk2)(aTk1 ⊗ Tk2 + γI)−1 which is different than k̃1 ⊗ k̃2.

Notice that this approach does not lead to a method that scales well in high
dimensions, which is further motivation for the approximations developed below.

4.2. Numerical approximation when Mercer expansions are not
available

We propose an approximation to k̃ given access only to a kernel k for which we
do not have an explicit Mercer expansion with respect to Lebesgue measure. We
only assume that we can form Gram matrices corresponding to k and calculate
their eigenvectors and eigenvalues. As a side benefit, this representation will also
enable scalable computations through Toeplitz / Kronecker algebra [10, 16, 15]
or primal reduced rank approximations [34].

Let us first consider the one-dimensional case where S = [0, 1] and construct
a uniform grid u = (u1, . . . , um) on [0, 1]. We consider the relationship between
the eigendecomposition of Kuu and the eigenvalues and eigenfunctions of the
integral kernel operator Tk. The integral kernel operator Tk can be approximated
with the (scaled) kernel matrix 1

mKuu : Rm → Rm, where [Kuu]ij = k(ui, uj).
Let λu

i , e
u
i be the eigenvalue/eigenvector pairs of the matrix Kuu, i.e., its

eigendecomposition is given by Kuu = QΛQ� =
∑m

i=1 λ
u
i e

u
i (e

u
i )

�. Then the
estimates of the eigenvalues/eigenfunctions of the integral operator Tk are given
by the Nyström method (see Rasmussen and Williams [28, Section 4.3] and
references therein, especially Baker [3]):

η̂i =
1

m
λu
i , êi(x) =

√
m

λu
i

Kxue
u
i , (4.8)

with Kxu = [k(x, u1), . . . , k(x, um)]. We now combine this with Eq. (4.2) to
estimate k̃:

̂̃
k(x, x′) =

m∑
i=1

η̂i
aη̂i + γ

êi(x)êi(x
′) (4.9)
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=

m∑
i=1

1
mλu

i
a
mλu

i + γ
· m

(λu
i )

2
Kxue

u
i (e

u
i )

�Kux′

= Kxu

{
m∑
i=1

1(
a
mλu

i + γ
)
λu
i

eui (e
u
i )

�

}
Kux′ .

For an estimate of the whole matrix K̃xx we thus have

̂̃Kxx = Kxu

{
m∑
i=1

1(
a
mλu

i + γ
)
λu
i

eui (e
u
i )

�

}
Kux

= KxuQ
( a

m
Λ2 + γΛ

)−1

Q�Kux. (4.10)

The above is reminiscent of the Nyström method [34] proposed for speeding
up Gaussian process regression. It has computational cost O(m3 + N2m). A
reduced rank representation for Eq. (4.10) is straightforward by considering only
the top p eigenvalues/eigenvectors of Kuu. Furthermore, a primal representation
with the features corresponding to kernel k̃ is readily available and is given by

φ̃(x) =
( a

m
Λ2 + γΛ

)−1/2

Q�Kux, (4.11)

which allows linear computational cost in the number N of observations.
For D > 1 dimensions, one can exploit Kronecker and Toeplitz algebra ap-

proaches. Without loss of generality, we assume that vol(S) = 1 (otherwise we
would have to multiply the kernel matrices below by vol(S)). Assuming that the
Kuu matrix corresponds to a Cartesian product structure of the one-dimensional
grids of size m, one can write Kuu = K1⊗K2 · · ·⊗KD. Thus, the eigenspectrum
can be efficiently calculated by eigendecomposing each of the smaller m × m
matrices K1, . . . ,KD and then applying standard Kronecker algebra, thereby
avoiding ever having to form the prohibitively large mD ×mD matrix Kuu. For
regular grids and stationary kernels, each small matrix will be Toeplitz struc-
tured, yielding further efficiency gains [35]. The resulting approach thus scales
linearly in dimension D.

An even simpler alternative to the above is to sample the points u1, . . . , um

uniformly from the domain S using Monte Carlo or Quasi-Monte Carlo (see [26]
for a discussion in the context of RKHS). We found this approach to work well
in practice in high-dimensions (D = 15), even when m was fixed, meaning that
the scaling was effectively independent of the dimension D.

Using the Sobolev kernel in Sec. 4.1.1, we compared the exact calculation of
K̃uu with s = 1, a = 10, and γ = .5 to our approximate calculation. For illus-
tration we compared a coarse grid of size 10 on the unit interval (left) to a finer
grid of size 100. The RMSE was 2E-3 for the coarse grid and 1.6E-5 for the fine
grid, as shown in Fig. 2. In the same figure we compared the exact calculation
of K̃xx with s = 1, a = 10, and γ = .5 to our Nyström-based approximation,
where x1, . . . , x400 ∼ Beta(.5, .5) distribution. The RMSE was 0.98E-3. A low-
rank approximation using only the top 5 eigenvalues gives the RMSE of 1.6E-2.



Poisson intensity estimation with reproducing kernels 5093

As Figure 2, demonstrates, good approximation is possible with a fairly coarse
grid u = (u1, . . . , um) as well as with a low-rank approximation.

Fig 2. Using the Sobolev kernel in Sec. 4.1.1, we compared the exact calculation of K̃uu

with s = 1, a = 10, and γ = .5 to our approximate calculation. For illustration we tried a
coarse grid of size 10 on the unit interval (top left) to a finer grid of size 100 (top right).
The RMSE was 2E-3 for the coarse grid and 1.6E-5 for the fine grid. We compare the exact
calculation of K̃xx with s = 1, a = 10, and γ = .5 to our Nyström-based approximation,
where x1, . . . , x400 ∼ Beta(.5, .5) distribution (bottom left). The RMSE was 0.98E-3. A low-
rank approximation using only the top 5 eigenvalues gives the RMSE of 1.6E-2 (bottom right).

5. Inference

The penalized risk can be readily minimized with gradient descent.2 Let α =
[α1, . . . , αN ]� and K̃ be the Gram matrix corresponding to k̃ such that K̃ij =

k̃(xi, xj). Then [f(x1), . . . , f(xN )]� = K̃α and the gradient of the objective
function J from (3.6) is given by

∇αJ = −∇α

∑
i

log(af2(xi)) + γ∇α‖f‖2Hk̃

= −∇α

∑
i

log(a(
∑
j

k̃ijαj)
2) + γ∇αα

�K̃α

= −
∑
i

2a(
∑

j k̃ijαj)∇α

∑
j k̃ijαj

a(
∑

j k̃ijαj)2
+ 2γK̃α

2While the objective is not convex (we square the function f meaning it is not identified
up to sign), in practice we observed very fast convergence, and stable results given random
starting points.
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= −
∑
i

2K̃·i∑
j k̃ijαj

+ 2γK̃α

= −2
∑
i

(K̃·i./(K̃α)) + 2γK̃α

where ./ denotes element-wise division. Computing K̃ requires O(N2) time and
memory, and each gradient and likelihood computation requires matrix-vector
multiplications which are also O(N2). Overall, the running time is O(qN2) for
q iterations of the gradient descent method, where q is usually very small in
practice.

5.1. Hyperparameter selection

Analogously to the classical problem of bandwidth selection in kernel intensity
estimation (e.g. [11, 6, 7]), some criteria must be adopted in order to select
hyperparameters of the kernel k and also γ and a. We suggest crossvalidating on
the negative log-likelihood of the inhomogeneous Poisson process (i.e. before we
introduced the penalty term) from Eq. (3.2). The difficulty with this approach is
that we must deal with the integral

∫
S
f2(u)du of the intensity over the domain,

which, for our model f(·) =
∑N

j=1 αj k̃(xj , ·) is generally intractable. As an
approximation, we suggest either grid or Monte Carlo integration. Recall that
in Section 4.2 we approximated k̃ using a set of locations u = (u1, . . . , um). We
can reuse these points to approximate the integral:∫

S

f2(u)du ≈ 1

m

∑
i

f2(ui). (5.1)

As f(ui) = K̃uixα, this approximation is given by 1
mα�K̃xuK̃uxα.

6. Näıve RKHS model

In this section, we compare the proposed approach, which uses the represen-
ter theorem in the transformed kernel k̃, to the näıve one, where a solution to
Eq. (3.3) of the form f(·) =

∑N
j=1 αjk(xj , ·) is sought even though the repre-

senter theorem in k need not hold. Despite being theoretically suboptimal, this
is a natural model to consider, and it might perform well in practice.

The corresponding optimization problem is:

min
f∈Hk

{
−

N∑
i=1

log(af2(xi)) + a

∫
S

f2(x)dx+ γ‖f‖2Hk

}

While the first and the last term are straightforward to calculate for any
f(·) =

∑
j αjk(xj , ·),

∫
S
f2(x)dx needs to be estimated. As in the previous
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section, we consider a uniform grid or set of sampled points u = (u1, . . . , um)
covering the domain and use approximation∫

S

f2(u)du ≈ 1

m

∑
i

f2(ui) =
1

n
α�KxuKuxα. (6.1)

The optimization problem thus reads:

min
α∈RN

{
−

N∑
i=1

log(a(α�Kxxi)
2) + α�

(a

n
KxuKux + γKxx

)
α

}
. (6.2)

As above, the gradient of this objective with respect to α can be readily calcu-
lated, and optimized with gradient descent.

7. Experiments

We use cross-validation to choose the hyperparameters in our methods: a, the
fixed intensity, γ, the roughness penalty, and the length-scale of the kernel k,
minimizing the negative log-likelihood as described in Section 5.1.

To calculate RMSE, we either make predictions at a grid of locations and
calculate RMSE compared to the true intensity at that grid or for the high-
dimensional synthetic example we pick new uniform samples of locations over
the domain and calculate the RMSE at these locations. We used limited mem-
ory Broyden–Fletcher–Goldfarb–Shanno (BFGS) in all experiments involving
optimization, and found that it converged very quickly and was not sensitive
to initial values. Code for our experiments is available at https://github.com/
BigBayes/kernelpoisson.

7.1. 1-d synthetic example

We generated a synthetic intensity using the Mercer expansion of a squared
exponential kernel with lengthscale 0.5, producing a random linear combination
of 64 basis functions, weighted with iid draws α ∼ N (0, 1). In Fig. 3 we com-
pare ground truth to estimates made with: our RKHS method with squared
exponential kernel, the näıve RKHS approach with squared exponential kernel,
and classical kernel intensity estimation with bandwidth selected by crossvali-
dation. The results are typical of what we observed on 1D and 2D examples:
given similar kernel choices, each method performed similarly, and numerically
there was not a significant difference in terms of the RMSE compared to the
true underlying intensity.

7.2. Environmental datasets

Next we demonstrate our method on a collection of two-dimensional environ-
mental datasets giving the locations of trees. Intensity estimation is a standard

https://github.com/BigBayes/kernelpoisson
https://github.com/BigBayes/kernelpoisson
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Fig 3. A synthetic dataset, comparing our RKHS method, the näıve model, and kernel smooth-
ing to a synthetic intensity “true”. The rug plot at bottom gives the location of points in the
realized point pattern. The RMSE for each method was similar.

first step in both exploratory analysis and modelling of these types of datasets,
which were obtained from the R package spatstat. We calculated the intensity
using various approaches: our proposed RKHS method with k̃ with a squared ex-
ponential kernel, the näıve RKHS method with squared exponential kernel, and
classical kernel intensity estimation (KIE) with edge correction. Each method
used a squared exponential kernel. We report average held-out cross-validated
likelihoods in Table 1. With the exception of our method performing better on
the Red oak dataset, each method had comparable performance. It is interesting
to note, however, that our method does not require any explicit edge correction3,
because we are optimizing a likelihood which explicitly takes into account the
window. A plot of the resulting intensity surfaces for each method and the effect
of edge correction are shown in Fig. 4 for the Black oak dataset.

7.3. High dimensional synthetic examples

We generated random intensity surfaces in the unit hypercube for dimensions
D = 2, . . . , 15. The intensity was given by a constant multiplied by the square of
the sum of 20 multivariate Gaussian pdfs with random means and covariances.
The constant was automatically adjusted so that the number of points in the
realizations would be held close to constant, in the range 190–210. We expected
this to be a relatively simple synthetic example for kernel intensity estimation
with a Gaussian kernel in low dimensions, but not in high dimensions. From

3Because no points are observed outside the window S, intensity estimates near the edge
are biased downwards [18].
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Fig 4. Location of white oak trees in Lansing, Michigan, smoothed with various approaches.
Squared exponential kernels are used throughout. Edge correction makes a noticeable difference
for classical kernel intensity estimation. Comparing (a) and (c) it is clear that our method
is automatically performing edge correction.

each random intensity, we generated two random realizations, and trained our
model using 2-fold crossvalidation with these two datasets. We predicted the
intensity at a randomly chosen set of points and calculated the mean squared
error as compared to the true intensity. For each dimension we repeated this
process 100 times comparing kernel intensity estimation, the näıve approach,
and our approach with k̃.

Using the same procedure, but a sum of 20 multivariate Student-t distribu-
tions with 5 degrees of freedom, random means and covariances, and number of
points in the realizations ranging from 10 to 1000, we generated 500 random sur-
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Table 1

Tree Point Patterns from R Package spatstat

Dataset
Kernel intensity

estimation
Näıve

approach
Our approach with k̃

Lansing: Black oak (n = 135) 234 233 227
Hickory (n = 703) 1763 1746 1757
Maple (n = 514) 1239 1228 1233
Misc (n = 105) 179 177 172

New Zealand (n = 86) 119 119 119
Red oak (n = 346) 726 726 739

Redwoods in California (n = 62) 79 84 77
Spruces in Saxonia (n = 134) 215 212 212

Swedish pines (n = 71) 91 89 90
Waka national park (n = 504) 1142 1141 1144

White oak (n = 448) 992 992 996

faces, with dimension D = 2, . . . , 25. We expected this to be a difficult synthetic
example for all of the methods due to a potential for model misspecification,
as we continue to use squared exponential kernels, but the intensity surface is
non-Gaussian.

As shown in Fig. 5(a) once we reach dimension 9 and above, our RKHS
method with k̃ begins to outperform kernel intensity estimation, where per-
formance is measured as the fraction of times that the MSE is smaller across
100 random datasets for each D. Our method also significantly outperforms the
näıve RKHS method as shown in Fig. 5(b). For D = 15 the difference between
the two RKHS methods is not significant. This could be due to the fact that the
number of points in the point pattern remains fixed, so the problem becomes
very hard in high dimensions.4 As shown in the Fig. 5(c), kernel intensity es-
timation is almost always better than the näıve RKHS approach, although the
difference is not significant in high dimensions.

For the Student-t experiment, as shown in Fig. 5(d)-(f), our RKHS method
always outperforms kernel intensity estimation and is better than the näıve
method in dimensions below D = 20. To assess the amount of improvement,
rather than just its statistical significance, we compared the percent improve-
ment in terms of MSE gained by our method versus the competitors, just fo-
cusing on D = 10 in Fig. 6. On this metric (intuitively, “how much do you
expect to improve on average”) our method shows reasonably stable results as
compared to KIE, while the performance of the näıve method is revealed to
be very variable. Indeed, the standard deviation across the random surfaces for
D = 10 of the MSE was 56 for both our method and KDE but 166 for the näıve
method, perhaps due to overfitting.

4Note that our experiments are sensitive to the overall number of points in the synthetic
point patterns; since kernel density estimation is a consistent method [33], we should expect
kernel intensity estimation to become more accurate as the number of points grows. However,
consistency in the sense of classical statistics is not necessarily useful in point processes,
because our observations are not iid; the number of points that we observe is in fact part of
the dataset since it reflects the underlying intensity.
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Fig 5. Three methods were compared: our RKHS method, the näıve RKHS method, and kernel
intensity estimation, based on 100 random surfaces for each dimension D in two experimental
setups. In (a)-(c), the intensity surface was the squared sum of skewed multivariate Gaus-
sians. In (d)-(f) the surface was a mixture of skewed multivariate Student-t distributions,
with 5 degrees of freedom. In (a) and (d): comparison of our RKHS method versus KIE. In
(b) and (e): our RKHS method versus the näıve RKHS method. In (c) and (f): comparison of
KIE and the näıve RKHS approach. We used squared exponential kernels for all methods. In
the Gaussian case (a)-(c), our method significantly outperforms kernel intensity estimation
as the dimension increases, and outperforms the näıve method throughout. Kernel intensity
estimation almost always outperforms the näıve approach. In the Student-t case (d)-(f), our
method always outperforms kernel intensity estimation, and outperforms the näıve approach
until very high dimensions. Neither kernel intensity estimation nor the näıve approach are
consistently better than each other.

7.4. Computational complexity

Using the synthetic data experimental setup, we evaluated the time complex-
ity of our method with respect to dimensionality d, number of points in the
point pattern dataset n, and number of points s used to estimate k̃ (Fig. 7b),
confirming our theoretical analysis.
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Fig 6. To understand the practical (as opposed to statistical) significance of the results in
Fig. 5(d)-(f), where we generated random surfaces by squaring the sums of multivariate
Student-t distributions, we considered dimension D = 10, in which our RKHS method was
better than both the näıve method and kernel intensity estimation (KIE) but there was not a
significant difference between KIE and the näıve method, and calculated the percent improve-
ment in terms of MSE comparing our RKHS method to KIE (a) and our RKHS method to
näıve method (b). The improvement of our method over KIE is apparent, albeit perhaps only
modest in this example. Meanwhile, our method is sometimes quite a bit better than the näıve
method, which is often very inaccurate.

Fig 7. (a): Run-time of our method versus number of points in the point pattern dataset. (b):
Run-time of our method versus number of sample points used to calculate k̃.

The effect of the dimensionality d was negligible in practice, because the main
calculations rely only on an n× n Gram matrix whose calculation is relatively
fast even for high dimensions. Our method’s time complexity scales as O(n2)
as shown in Fig. 7a (but as discussed in Section 4.2, a primal representation is
available which would give linear scaling.) where we used s = 200 sample points
to estimate k̃. While a small s worked well in practice, we investigated much
larger values of s. As shown in Fig. 7b the time complexity scaled as O(s2)
where the number of points was fixed to be 150; note that we fixed the rank of
the eigendecomposition to be 20.
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Fig 8. Log-likelihood for various frequencies of a periodic spatiotemporal kernel in a dataset
of 18,441 geocoded, date-stamped theft events from Chicago, using our RKHS model. The
dataset is for 12 weeks starting January 1, 2004, and the maximum log-likelihood is attained
when the frequency is 12, meaning that there is a weekly cycle in the data. Results using
the näıve model were less sensible, with a maximum at period 1 (indicating no periodicity),
with periods 5 and 2 (corresponding to a 16.8 day cycle and a 42 day cycle) also having high
likelihoods.

7.5. Spatiotemporal point pattern of crimes

To demonstrate the ability to use domain specific kernels and learn interpretable
hyperparameters, we used 12 weeks (84 days) of geocoded, date-stamped reports
of theft obtained from Chicago’s data portal (data.cityofchicago.org) starting
January 1, 2004, a relatively large spatiotemporal point pattern consisting of
18,441 events. We used the following kernel: exp(−.5s2/λ2

s)(exp(−2 sin2(tπp))+
1)(exp(−.5t2/λ2

t )) which is the product of a separable squared exponential space
and decaying periodic time kernel (with frequency p in a time domain normal-
ized to range from 0 to 1) plus a separable squared exponential space and time
kernel. After finding reasonable values for the lengthscales and other hyperpa-
rameters of k̃ through exploratory data analysis, we used 2-fold cross-validation
and calculated average test log-likelihoods for the number of total cycles p in the
84 weeks = 1, 2, . . . , 14 or equivalently a period of length 12 weeks (meaning no
cycle), 6 weeks, ..., 6 days. These log-likelihoods are shown in Fig. 8; we found
that the most likely frequency is 12, or equivalently a period lasting 1 week.
This makes sense given known day-of-week effects on crime.

8. Conclusion

We presented a novel approach to inhomogeneous Poisson process intensity esti-
mation using a representer theorem formulation in an appropriately transformed
RKHS, providing a scalable approach giving strong performance on synthetic
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and real-world datasets. Our approach outperformed the classical baseline of
kernel intensity estimation and a näıve approach for which the representer the-
orem guarantees did not hold. In future work, we will consider marked Poisson
processes and other more complex point process models, as well as Bayesian
extensions akin to Cox process modeling.
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