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Abstract: Many applications involve estimation of a signal matrix from
a noisy data matrix. In such cases, it has been observed that estimators
that shrink or truncate the singular values of the data matrix perform well
when the signal matrix has approximately low rank. In this article, we gen-
eralize this approach to the estimation of a tensor of parameters from noisy
tensor data. We develop new classes of estimators that shrink or threshold
the mode-specific singular values from the higher-order singular value de-
composition. These classes of estimators are indexed by tuning parameters,
which we adaptively choose from the data by minimizing Stein’s unbiased
risk estimate. In particular, this procedure provides a way to estimate the
multilinear rank of the underlying signal tensor. Using simulation stud-
ies under a variety of conditions, we show that our estimators perform well
when the mean tensor has approximately low multilinear rank, and perform
competitively when the signal tensor does not have approximately low mul-
tilinear rank. We illustrate the use of these methods in an application to
multivariate relational data.
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1. Introduction

Tensor data arise in fields as diverse as relational data [23], neuroimaging [53,
31], psychometrics [27], chemometrics [42, 4], signal processing [9], and machine
learning [45], among others [30]. A tensor X ∈ R

p1×···×pK with pk ∈ {1, 2, . . .}
of order K is a K-way array where the elements X[i1,...,iK ] are indexed by ik ∈
{1, 2, . . . , pk} for k = 1, . . . ,K. For example, a multivariate relational dataset
can be expressed as a tensor, where element X[i,j,t] of the tensor is the tth
relation between actors i and j.

Often, a tensor is corrupted by noise. The model we consider for this is:

X = Θ+ E , E[i1,...,iK ] ∼ N(0, τ2) independent

for ik = 1, . . . , pk, and k = 1, . . . ,K,
(1)

where Θ ∈ R
p1×···×pK is the signal and E ∈ R

p1×···×pK is the additive Gaussian
measurement error or noise with mean 0 and various τ2. The performance of an
estimator t(X ) ∈ R

p1×···×pK can be evaluated by statistical risk under quadratic
loss, i.e. mean squared error (MSE):

MSE(t(X )) = EΘ[‖Θ− t(X )‖2] =
∑
i

EΘ[(Θ[i] − t(X )[i])
2], (2)

where i = (i1, . . . , iK) is a K-tuple of tensor indices.
In the matrix variate case, X ∈ R

p×n, an investigator often believes that
the mean is well approximated by a low rank matrix. There has been much
work on “denoising” (or mean estimation) in matrix variate data by using this
knowledge. A typical estimation scheme begins by computing the singular value
decomposition (SVD) of X:

X = UDV T , (3)

where, in the case n ≥ p, U ∈ R
p×p is orthogonal, D = diag(σ1, . . . , σp) with

σ1 ≥ . . . ≥ σp ≥ 0, and V ∈ R
n×p contains orthonormal columns. The columns

of U and V are, respectively, the left and right singular vectors of X and the
diagonal elements of D are the singular values. A key property of the SVD is
that the number of non-zero singular values of X is precisely the rank of X.
One widely studied approach to estimating Θ when it is assumed that Θ has
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nearly low rank is to shrink the singular values of X towards 0 while keep-
ing the singular vectors unchanged, thereby inducing an (approximately) low
rank estimate. The resulting “spectral” estimator t(X ) of Θ then takes the
form t(X ) = Uf(D)V T where f(D) = diag(f1(σ1), . . . , fK(σK)) and each fi(·)
shrinks the singular values towards 0. These estimators are orthogonally equiv-
ariant, meaning that t(WXZT ) = Wt(X)ZT for orthogonal matrices W,Z [40].

Early work on singular value shrinkage estimation from a non-statistical per-
spective began with [14], where they proved that the best rank r approximation
to the data matrix X ∈ R

p×n (in terms of sum of squared differences from X)
is found with the shrinkage function:

fi(σi) = σi1(i ≤ r), (4)

where 1(·) is the indicator function. We call (4) the truncation estimator. How-
ever, approximating the dataX well is not the same as estimating the underlying
signal Θ well. In terms of estimating Θ, the matrix X is unbiased, minimax, and
the maximum likelihood estimator under normally distributed errors. However,
it is well known that shrinkage estimators, such at that of [44] can uniformly
dominate X in terms of risk. This seminal shrinkage estimator, in the context
of matrix estimation, is given by

fi(σi) =

(
1− λ∑p

i=1 σ
2
i

)
σi, (5)

where λ > 0 is some tuning parameter. For data that exhibit associations be-
tween the rows and/or columns of the mean matrix, the estimator of [15], given
by

fi(σi) = σi −
λ

σi
, (6)

was introduced and results in different amounts of shrinkage for each singular
value. [18] improved upon this estimator with a generalization of both (5) and
(6), given by

fi(σi) =

(
1− γ∑p

i=1 σ
2
i

)
σi −

λ

σi
, (7)

where λ > 0 and γ > 0 are tuning parameters.
More recent work has focused on estimators whose functions fi(·) induce

sparsity in the singular values, which may be more appropriate than (5), (6), and
(7) in cases where the true signal itself has (approximately) low rank. Motivated
by penalized maximum likelihood estimation, the hard-thresholding estimator

fi(σi) = σi1(σi ≥ λ) (8)

and the soft-thresholding estimator

fi(σi) = (σi − λ)+ (9)



3706 D. Gerard and P. Hoff

Fig 1. Mode-specific singular values of simulated tensor with full rank along first mode and
low-ranks along second and third modes.

were introduced [6, for example]. Here, (y)+ = max(y, 0) is the “positive part”
function. A clever shrinkage function that includes (8), (9), and a truncated
version of (6) [50] as special cases is that of [25]:

fi(σi) = σi

(
1− λγ

σγ
i

)
+

. (10)

This estimator was inspired by the adaptive LASSO [56]. A variety of other
shrinkage estimators have also been developed [37, 40].

All of these estimators are specific to matrix-variate data. If one were to
apply these matrix methods to a tensor, one would first convert the tensor
into a matrix. For a K-dimensional tensor, such “matricization” destroys the
indexing structure along all but one of the dimensions. This may be detrimental
to estimation if, in addition to a data set having approximately low rank, it also
has approximately low multilinear rank (see Section 2), that is, “matricizing”
along each index set, or “mode”, results in a low rank matrix.

An extreme simulated example that exhibits this phenomenon is presented
in Figure 1. There, we plotted the mode-specific singular values of a tensor that
we generated to have full rank along one mode and low ranks along two modes.
That is, we plotted the singular values of each matricization of the tensor. If an
analyst were presented with a noisy version of this tensor and only matricizing
along the first mode, then they would only observe a noisy realization of the
solid lines, which would suggest the data are full rank. However, the second and
third modes have low-rank structure and shrinking the singular values along
these additional modes may improve estimation.

In this article, we introduce a family of estimators that shrink tensor-valued
data towards having (approximately) low multilinear rank. We perform this
shrinkage on a reparameterization of the higher-order singular value decomposi-
tion (HOSVD) of [11], where we shrink the mode-specific singular values of the
data tensor towards zero. We consider classes of such “higher-order spectral esti-
mators”, where a class is defined by a mode-specific shrinkage function indexed
by a tuning parameter. We propose to adaptively select the tuning parameters
by minimization of an unbiased estimate of the risk.
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Our paper is organized as follows. In Section 2, we review tensors and the
HOSVD. We then present how one may define functions that shrink the mode-
specific singular values of the HOSVD. In particular, we present two specific
estimators that shrink the data tensor towards having (approximately) low mul-
tilinear rank and provide some discussion on the intuition behind these estima-
tors. In Section 3, we review Stein’s unbiased risk estimates (SURE), then derive
the SURE for a broad class of higher-order spectral estimators. In Section 4 we
present simulations demonstrating that (1) tensor specific methods perform bet-
ter when the mean tensor has approximately low multilinear rank; (2) when the
mean tensor has low multilinear rank our methods accurately estimate the mul-
tilinear rank; and (3) tensor specific methods perform competitively when the
signal tensor does not have approximately low multilinear rank. In Section 5 we
illustrate the use of these methods in an application to multivariate relational
data. We finish with a discussion in Section 6.

2. The higher-order SVD and higher-order spectral estimators

Some tensor data sets have approximately low multilinear rank, which we now
define. Recall that the rank of a matrix is the dimension of the vector space
spanned by its columns and rows. Define the k-mode vectors of a tensor X ∈
R

p1×···×pK as the pk-dimensional vectors formed from X by varying ik and
keeping the other indices fixed. The k-mode rank rk is the dimension of the
span of the k-mode vectors, and the multilinear rank of the K-order tensor X
is the K-tuple, (r1, . . . , rK). Define the k-mode matricization [29], or k-mode

unfolding, of X to be X(k) ∈ R
pk×p/pk (with p =

∏K
k=1 pk) where element

(i1, . . . , iK) in X maps to element (ik, j) in X(k) where

j = 1 +

K∑
n=1
n �=k

(in − 1)Jn with Jn =

n−1∏
m=1
m �=k

pm.

Then, equivalently, rk is the rank of X(k).
The SVD, presented in Section 1, has been used to shrink matrix valued data

towards low rank. One generalization of the SVD to tensors is the HOSVD of
[11], which relates directly to multilinear rank.

Definition 1 (HOSVD of [11]). Let X(k) = UkDkV
T
k be the SVD of each

k-mode unfolding of X . Let S = (UT
1 , . . . , UT

K) · X , then

X = (U1, . . . , UK) · S (11)

is the higher-order singular value decomposition (HOSVD).

The product “·” in (11) between a list of matrices, {U1, . . . , UK} for Uk ∈
R

pk×pk , and a tensor, S ∈ R
p1×···×pK is called the Tucker product. The Tucker

product is defined through the k-mode matricizations of (U1, . . . , UK) · S:
X = (U1, . . . , UK) · S
⇔ X(k) = UkS(k)(U

T
K ⊗ · · · ⊗ UT

k+1 ⊗ UT
k−1 ⊗ · · · ⊗ UT

1 ) = UkS(k)U
T
−k,



3708 D. Gerard and P. Hoff

where “⊗” is the Kronecker product. The “core array”, S has the property of
all-orthogonality where

S(k)ST
(k) = D2

k for all k = 1, . . . ,K.

The HOSVD is multilinear rank-revealing in the same way the SVD is rank-
revealing. That is, let Dk = (S(k)ST

(k))
1/2 = diag(σk

1 , . . . , σ
k
pk
) be the mode

specific singular values of X . Then the multilinear rank of X is (r1, . . . , rK) if
Dk contains rk non-zero mode-specific singular values. In the core array, this
is equivalent to S containing zeros everywhere except in one of the “corners”:
S[1:r1,...,1:rK ], where 1 : rk = 1, . . . , rk. It is possible, then, to shrink S towards
having (approximately) low multilinear rank by shrinking the elements in S
towards 0. We propose doing this via a re-parameterization of S, given as follows:

X = (U1, . . . , UK) · (D1, . . . , DK) · (D−1
1 , . . . , D−1

K ) · S
= (U1, . . . , UK) · (D1, . . . , DK) · V ,

(12)

where S = (D1, . . . , DK) · V . Our higher-order spectral estimators shrink S
by shrinking each mode-specific Dk. We abuse notation a little by allowing
“·” to also represent a binary operator between two lists of matrices whose
operation is component-wise multiplication. This should not cause confusion
because (A1B1, . . . , AKBK) · C = (A1, . . . , AK) · [(B1, . . . , BK) · C].

Using reparameterization (12), we now define higher-order spectral estimators
of Θ under the model (1).

Definition 2. Let X = (U1, . . . , UK) · (D1, . . . , DK) · V as in (12) with Dk =
diag(σk

1 , . . . , σ
k
pk
). An estimator t(X ) of the form

t(X ) = (U1, . . . , UK) · (f1(D1), . . . , f
K(DK)) · V , (13)

where fk(Dk) = diag(fk
1 (σ

k
1 ), . . . , f

k
pk
(σk

pk
)), is called a higher-order spectral

estimator.

Each of the matrix shrinkage functions listed in Section 1 (4)-(10) may, in
principle, be applied to each mode in our higher-order spectral estimator (13).
We focus on two examples of higher-order spectral estimators. One of these
is a generalization of the matrix truncation estimator (4) and the other is a
generalization of the matrix soft-thresholding estimator (9). The former can be
used to choose the multilinear rank of Θ, the latter is for estimation of Θ when
we suspect that the mean tensor has approximately low multilinear rank.

Example: Truncated HOSVD to find the multilinear rank. The first
step in many tensor applications is to choose the multilinear rank of the un-
derlying signal, a difficult task [46, 26, 7]. The methods in this paper present a
way to choose the multilinear rank. The truncated HOSVD is one popular way
to induce low multilinear rank [11]. Given multilinear rank (r1, . . . , rK), it is
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found by taking the HOSVD (11) and setting all elements in S except the “cor-
ner” S[1:r1,...,1:rK ] to 0. The truncated HOSVD may be viewed as a higher-order
spectral estimator (13), where

fk
i (σ

k
i ) = σk

i 1(i ≤ rk). (14)

This sets to 0 all but rk of the mode-specific singular values, resulting in an
estimate of Θ that has multilinear rank (r1, . . . , rK). The set of all possible
multilinear ranks defines a class of reduced rank estimators of Θ. In this paper,
we suggest adaptively selecting an estimator from this class by minimizing an
unbiased estimate of the risk.

Example: Mode-specific soft-thresholding. Shrinking all of the singular
values can generally improve estimation over just truncating the smallest few
singular values. A popular form of shrinkage that accomplishes this, a result of
nuclear-norm regularization, is the soft-thresholding estimator (9). The second
estimator we explore is obtained by applying soft-thresholding to the mode-
specific singular values:

fk
i (σ

k
i ) = (σk

i − λk)+. (15)

As with the previous example, the set of (λ1, . . . , λK) defines a class of estima-
tors. We propose adaptively selecting a member of this class by minimizing an
unbiased estimate of the risk.

A few words are in order about the mode-specific soft-thresholding estimator
in (15). First, we note that the resulting core array,

(f1(D1)D
−1
1 , . . . , fK(DK)D−1

K ) · S,

is not generally all-orthogonal. Hence, the fk(Dk) are not actually the new
mode-specific singular values of the estimator t(X ). That is, it would be in-
correct to think that subtracting off λ1 from the first-mode singular values
means that the new first-mode singular values are σ1

i1
− λ1. We are altering

the mode-specific singular values, but the relationship is complex. Rather, the
proper intuition for shrinkage functions of the form (15) is that the larger
the value of λk, the more dispersed the resulting mode-specific singular val-
ues tend to be on a normalized scale. Likewise, the more negative the value of
λk to the singular values the less dispersed the resulting mode-specific singu-
lar values tend to be. To gain intuition regarding this phenomenon, we provide
an extreme case. We generated a 10 × 10 × 10 tensor where each mode had
approximately the same singular values. The first-mode specific singular val-
ues were (9.5, 8.7, 8.4, 8.0, 7.5, 7.0, 6.8, 6.0, 5.2, 4.7). We applied the mode specific
soft-thresholding function (15) to each mode with λ1 = 5, λ2 = 0, λ3 = −100.
We then calculated the mode-specific singular values of the resulting tensor and
compared these to the original mode-specific singular values, scaled to sum to
one. The comparisons can be found in Figure 2. The changed (and normal-
ized) singular values are more dispersed for the first mode, remain relatively
unchanged for the second, and are less dispersed for the third.
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Fig 2. Singular values for the three modes, before and after shrinkage, normalized to sum to
one.

We have found that we can improve performance (with respect to MSE)
by adding an overall scale tuning parameter. That is, we consider a shrinkage
estimator of the form:

t(X ) = c (U1, . . . , UK) · (f1(D1)D
−1
1 , . . . , fK(DK)D−1

K ) · S, (16)

where c > 0 is the overall scale parameter, fk(Dk) = diag(fk
1 (σ

k
1 ), . . . , f

k
pk
(σk

pk
)),

and fk
i (·) is from (15).

3. Stein’s unbiased risk estimate

Both shrinkage function (14) and (16) define classes of estimators, indexed by
tuning parameters. Ideally, we would like to choose these tuning parameters by
minimizing the risk (2). However, because the mean Θ is unknown, minimization
of (2) with respect to the tuning parameters is not possible. One approach for
selecting an estimator from one of these classes is to minimize a risk estimate
that does not depend on the unknown parameter. One such estimate is Stein’s
unbiased risk estimate:

Theorem 1 ([44]). Under the model (1), suppose t : Rp1×···×pK → R
p1×···×pK

is an almost differentiable function for which

EΘ

[∑
i

∣∣∣∣ d

dX[i]
ti(X[i])

∣∣∣∣
]
< ∞. (17)

Then

MSE(t(X )) = EΘ[‖Θ− t(X )‖2] = EΘ

[
‖t(X )−X‖2 + 2τ2 div(t(X ))− pτ2

]
,

where div(·) is the divergence of t(·), τ2 is the variance of each X[i], and p =∏K
k=1 pk. We denote Stein’s unbiased risk estimate (SURE) as

SURE(t) = ‖t(X )−X‖2 + 2τ2 div(t(X ))− pτ2. (18)
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“Almost differentiable” basically means differentiable everywhere except on
a set of Lebesgue measure zero [44, Definition 1]. Because the SURE (18) does
not depend on the parameter values Θ, we can minimize the SURE and use this
minimization as a proxy for minimizing the risk. In many cases, adaptive esti-
mators obtained by minimizing SURE over a class of estimators yields improved
risk performance, as was observed by [6] in the matrix case.

The difficult part of (18) is calculating the divergence. We will spend the next
two subsections performing this task. First, we will calculate the differentials for
the elements of the altered HOSVD (12) in Subsection 3.1. Then we will use
these differentials to derive the divergence of estimators of the form (13) in
Subsection 3.2. This divergence can then be inserted into (18) to obtain the
SURE.

3.1. Differentials of the HOSVD

In this subsection, we calculate the differentials for the elements in the altered
HOSVD (12). In what follows, we will assume that X has full multilinear rank.

Given that pk ≤ p/pk for all k = 1, . . . ,K, where p =
∏K

k=1 pk, this rank
condition is fulfilled almost surely for data X that have a p.d.f. that is absolutely
continuous with respect to Lebesgue measure on R

p1×···×pK [13, Proposition 7.2].

Theorem 2. The differentials of Dk, Uk, and V from (12) are given in equations
(19), (21), and (25), respectively.

An outline of the derivation is as follows: Because each Uk and Dk from
the HOSVD is from the SVD of X(k) = UkDkV

T
k , the calculation begins by

recognizing that the differentials of the Uk’s and the Dk’s are the same as in the
matrix case. The differentials can then be re-written as functions of the terms
in the HOSVD. To obtain the differential of V , we write X = (U1, . . . , UK) ·
(D1, . . . , DK) · V and apply the chain rule to each Uk, each Dk, then to V .
We then solve for the differential of V , which may be written in terms of the
differentials of the Uk’s and the Dk’s.

Proof of Theorem 2. Denote the differential of a function g at X with increment
Δ as dg[Δ]. Since Uk andDk are the left singular vectors and the singular values,
respectively, of X(k) for each k = 1, . . . ,K, the differentials, dUk[Δ] and dDk[Δ],
are the same as in [6] and have a closed form solution, given by

dσk
i [Δ] = (UT

k Δ(k)U−kS(k)D
−1
k )[i,i] for i = 1, . . . , pk and k = 1, . . . ,K, (19)

where

U−k = UK ⊗ · · · ⊗ Uk+1 ⊗ Uk−1 ⊗ · · · ⊗ U1.

This follows because the SVD of X(k) is UkDkV
T
k = UkS(k)U

T
−k which implies

that Vk = U−kST
(k)D

−1
k . We plug in Vk into equation (4.7) of [6] to get (19).
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Let ΩUk
[Δ] = UT

k dUk[Δ]. Then from (4.8) of [6] we have

ΩUk
[Δ][i,j]

=
−1(i �= j)

[
σk
j (U

T
k Δ(k)U−kS

T
(k)D

−1
k )[i,j] + σk

i (U
T
k Δ(k)U−kS

T
(k)D

−1
k )[j,i]

]
((σk

i )
2 − (σk

j )
2)

,

(20)

and so

dUk[Δ] = UΩUk
[Δ]. (21)

We now derive dV [Δ]. Let U = (U1, . . . , UK) and D = (D1, . . . , DK). Also
note that dX [Δ] = Δ. Using the chain rule, and following Chapter 8, Section 1,
Equations (15) and (16) of [34] for the differential of matrix multiplication and
the Kronecker product, we have

Δ = dX [Δ] = d(U ·D · V)[Δ]

=
K∑

k=1

dUk[Δ] ·D · V +
K∑

k=1

U · dDk[Δ] · V + U ·D · dV [Δ], (22)

where

dUk[Δ] = (U1, . . . , Uk−1, dUk[Δ], Uk+1, . . . , UK) and (23)

dDk[Δ] = (D1, . . . , Dk−1, dDk[Δ], Dk+1, . . . , DK). (24)

From (22), we solve for dV [Δ] and have

dV [Δ] = D−1 · UT ·Δ−
K∑

k=1

dFk[Δ] · V −
K∑

k=1

dGk[Δ] · V , (25)

where

dFk[Δ] = (Ip1 , . . . , Ipk−1
, D−1

k ΩUk
[Δ]Dk, Ipk+1

, . . . , IpK
) and (26)

dGk[Δ] = (Ip1 , . . . , Ipk−1
, D−1

k dDk[Δ], Ipk+1
, . . . , IpK

). (27)

3.2. Divergence of higher-order spectral estimators

In this section, we show that the divergence of higher-order spectral estimators
of the form (13) can be found in the following theorem.

Theorem 3. The divergence of estimators of the form (13) is

Sum

(
f(D) ·D−1 · C +

K∑
k=1

Hk · S2

)
, (28)
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where Sum(A) is the sum of all elements in the tensor A, S2 ∈ R
p1×···×pK such

that (S2)[i] = (S[i])
2,

Hk = (f1(D1)D
−1
1 , . . . , fk−1(Dk−1)D

−1
k−1, D

−1
k dfk(Dk)D

−1
k ,

fk+1(Dk+1), . . . , f
K(DK)),

(29)

and C ∈ R
p1×···×pK such that

C[i] = 1 +

K∑
k=1

pk∑
j=1,j �=ik

S2
[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

−

S2
[i]

K∑
k=1

⎛
⎝ 1

(σk
ik
)2

+

pk∑
m=1,m �=ik

1

(σk
m)2 − (σk

ik
)2

⎞
⎠ .

(30)

Proof. Let

Δi1,...,iK = Δi = U1[:,i1] ◦ · · · ◦ UK[:,iK ],

where ◦ is the outer product and Uk[:,ik] is the ikth column of Uk. Note that

(UT
1 , . . . , UT

K) ·Δi = Ei,

where Ei is the p1 × · · ·× pK array with a one in position (i1, . . . , iK) and zeros
everywhere else. Similar to the arguments of [6], also note that Δi forms an
orthonormal basis for Rp1×···×pK , and so

div(t(X )) =
∑
i

〈Δi, df [Δi]〉

=
∑
i

〈(UT
1 , . . . , UT

K) ·Δi, (UT
1 , . . . , UT

K) · df [Δi]〉

=
∑
i

〈Ei, (UT
1 , . . . , UT

K) · df [Δi]〉,

=
∑
i

((UT
1 , . . . , UT

K) · df [Δi])[i], (31)

where 〈, 〉 is the usual Euclidean inner product. From the chain rule, we have:

df [Δi] =

K∑
k=1

dUk[Δ
i] · f(D) · V +

K∑
k=1

U · df(D̃)k[Δ
i] · V + U · f(D) · dV [Δi],

where

f(D) = (f1(D1), . . . , f
K(DK)) and

df(D̃)k[Δ
i] = (f1(D1), . . . , f

k−1(Dk−1), d(f
k ◦Dk)[Δ

i],

fk+1(Dk+1), . . . , f
K(DK)),
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where “◦” now means composition. Hence,

UT · df [Δi]

=
K∑

k=1

dŨk[Δ
i] · f(D) · V +

K∑
k=1

df(D̃)k[Δ
i] · V + f(D) · dV [Δi],

(32)

where

dŨk[Δ
i] = (Ip1 , . . . , Ipk−1

,ΩUk
[Δi], Ipk+1

, . . . , IpK
). (33)

The outline of the derivation of the divergence is as follows. The ultimate
goal is to obtain the (i1, . . . , iK)th element of UT · df [Δi] in (32) and plug that
into (31). We will first calculate all of the differentials that are in (32), then we
will determine the (i1, . . . , iK)th element of UT · df [Δi]. Then we will simplify
(31). These latter two steps may be found in Appendix A.

We begin with the differentials. From (19), we have

dσk
j [Δ

i] = (UT
k Δi

(k)U−kS
T
(k)D

−1
k )[j,j]

= (Ei
(k)S

T
(k)D

−1
k )[j,j]

= 1(j = ik)S[i1,...,ik−1,j,ik+1,...,iK ]/σ
k
j . (34)

This is since Ei
(k)S

T
(k) ∈ R

pk×pk such that

(
Ei

(k)S
T
(k)

)
[�,j]

=

{
0 if � �= ik

S[i1,...,ik−1,j,ik+1,...,iK ] if � = ik.
(35)

Similarly, from (20), we have

ΩUk
[Δi][�,j]

=
−1(� �= j)

[
σk
j (U

T
k Δ(k)U−kS

T
(k)D

−1
k )[�,j] + σk

� (U
T
k Δ(k)U−kS

T
(k)D

−1
k )[j,�]

]
(σk

� )
2 − (σk

j )
2

=
−1(� �= j)

[
σk
j (E

i
(k)S

T
(k)D

−1
k )[�,j] + σk

� (E
i
(k)S

T
(k)D

−1
k )[j,�]

]
(σk

� )
2 − (σk

j )
2

=
[
S[i1,...,ik−1,j,ik+1,...,iK ]1(� = ik) + S[i1,...,ik−1,�,ik+1,...,iK ]1(j = ik)

]
× −1(� �= j)

(σk
� )

2 − (σk
j )

2
.

(36)

Also, from the chain rule, we have that

d(fk
j ◦ σk

j )[Δ
i] =

(
d

dσk
j

fk
j (σ

k
j )

)
dσk

j [Δ
i]

= δj,ik

(
d

dσk
j

fk
j (σ

k
j )

)
S[i1,...,ik−1,j,ik+1,...,iK ]/σ

k
j . (37)
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We have just completed all of the calculus necessary to obtain the divergence,
and the remainder of the calculation is simplification. That is, we can use equa-
tions (25), (31), (32), (34), (36), and (37) to calculate a closed-form expression
for the divergence. This simplification is relegated to Appendix A.

We now present the formula for the SURE for all higher-order spectral esti-
mators of the form (13):

Theorem 4 (SURE for (13)). Under the model (1), suppose t(·) in (13) is
almost differentiable and for which (17) holds. Then

SURE(t)

= ‖t(X )−X‖2 + 2τ2 Sum

(
f(D) ·D−1 · C +

K∑
k=1

Hk · S2

)
− pτ2.

(38)

For higher-order spectral estimators, the “almost differentiability” condition
is satisfied if each function fk(Dk) is almost differentiable. To see this, note that
the singular vectors (the Uk’s) and the singular values (the Dk’s) are almost
differentiable [34, Chapter 8, Section 8]. Since V = (D−1

1 , . . . , D−1
K ) · S, and S

is itself just derived from the right singular vectors of each matricization X(k)

multiplied with X [11], this implies that V is also almost differentiable. So we
consider the higher-order spectral estimators

t(X ) = (U1(X ), . . . , UK(X )) · (f1(D1(X )), . . . , fK(DK(X ))) · V(X ), (39)

where we emphasize in (39) that the Uk’s, Dk’s, and V are all functions of X . It
is now clear that the higher-order spectral estimators (39) are almost differen-
tiable if the fk’s are almost differentiable (since the compositions and products
of differentiable functions are differentiable). The soft-thresholding (15) and
truncation (14) functions are both almost differentiable.

This SURE formula is applicable for all shrinkage functions of the form (13)
where fk(Dk) = diag(fk

1 (σ
k
1 ), . . . , f

k
pk
(σk

pk
)). For such shrinkage functions, the

shrinkage being applied to each singular value is a function only of that singular
value. However, it is possible to construct estimators which use all of the mode
k singular values to shrink each mode k singular value, e.g. if we were to use a
shrinkage function analogous to those of (5) or (7). For such estimators, we prove
in Appendix C that the form of the divergence is very similar as in (28). The
only difference is that one replaces d

dσk
ik

fk
ik
(σk

ik
) with d

dσk
ik

fk
ik
(σk

1 , . . . , σ
k
pk
). That

is, for such shrinkage functions, dfk(Dk) is a diagonal matrix containing only the
diagonal of the Jacobian matrix of the transformation diag(Dk) �→ diag(f(Dk)).

Recall the overall scale tuning parameter we included in (16). Given the
SURE of an estimator t(X ), it is trivial to derive the SURE of a new estimator
u(X ) := ct(X ), where c is some constant. That is, since div(u(X )) = c div(t(X )),
we can merely replace t(X ) with ct(X ) in (18). We can then optimize the SURE
over c as well as any parameters in t(·).

Details of the optimization procedure for the soft-thresholding estimator (16)
may be found in Appendix B. In Appendix B, we also briefly discuss the com-
putational complexity of the optimization procedure.
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4. Simulation studies

In this section, we consider five competitors to the mode-specific soft-thresholding
estimator (with the overall scale tuning parameter) (16) and the truncated
HOSVD (14). We will compare these estimators assuming the error variance
τ2 is one. The first competitor is X , which is the maximum likelihood esti-
mator and the uniformly minimum variance unbiased estimator. However, the
risk-performance of this estimator is known to be dominated by our second
competitor, the James-Stein estimator (5) [44]. This estimator may be derived
from an empirical Bayes argument where Θ[i] ∼ N(0, γ2) [16]. As such, it should
perform well when the entries of Θ are centered about 0. For a matrix param-
eter Θ, [15] developed an empirical Bayes estimator that performs better than
the James-Stein estimator when Θ exhibits empirical correlation along the rows.
With this in mind, our third estimator is obtained by applying the Efron-Morris
estimator (6) to the first mode matricization of the data tensor. However, the
Efron-Morris estimator does not induce low rank estimates, and so our fourth
competitor is the matrix soft-thresholding estimator (9) applied to the first mode
matricization of X , and whose tuning parameter is chosen with the SURE for-
mula from [6]. This estimator should improve on the Efron-Morris estimator
when Θ(1) has approximately low rank. Our final estimator is the least-squares
low-multilinear rank approximation to the data tensor [10], where the multi-
linear rank is chosen by SURE using our truncated HOSVD estimator. We call
this estimator the HOOI for the optimization procedure used to compute it (the
higher-order orthogonal iteration).

We now describe the design of the simulation study. We evaluated the risk
of the mode-specific soft-thresholding, truncated HOSVD, HOOI, maximum
likelihood, James-Stein, Efron-Morris, and matrix soft-thresholding estimators
under six different values of Θ ∈ R

10×10×10, constructed as follows:

A. vec(Θ) ∼ Np(0, I1000).
B. vec(Θ) ∼ Np(0, I10 ⊗ I10 ⊗ F ), where F = diag(12, 22, . . . , 102).
C. vec(Θ) ∼ N1000(0, I10 ⊗ I10 ⊗ Σ) where Σ ∈ R

10×10 has an AR-1 (0.7)
covariance structure. That is, Σ[i,j] = 0.7|i−j|.

D. Θ(1) = U[:,1:5]D[1:5,1:5]V
T
[:,1:5] where UDV T is the SVD of a 10× 100 matrix

that has standard normal entries.
E. vec(Θ) ∼ Np(0, F ⊗ F ⊗ F ), where F = diag(12, 22, . . . , 102).
F. Θ is a rank (5, 5, 5) tensor where all of the non-zero mode-specific singular

values are the same along all modes.

For each scenario, we re-scaled Θ to have Frobenius norm
√
1000, so that

E[‖E‖2] = 1000 = ‖Θ‖2. For each Θ, we simulated X[i] ∼ N(Θ[i], 1), calcu-
lated the seven estimators given this data tensor, and calculated the squared
error loss for each estimator. We repeated this process 500 times. Box plots of
the losses for each of the six Θ values are given in Figure 3.

The James-Stein estimator (5) is expected to perform well in Scenario A as
it can be viewed as an empirical Bayes procedure for the prior with which Θ
was actually generated. Indeed, from Figure 3 (A), the James-Stein estimator
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does perform best, but the mode-specific soft-thresholding estimator performs
almost as well, even though there is no correlation along any of the modes of
the mean tensor.

For scenario B, we expect the matrix soft-thresholding estimator (9) to do
well. Since the mean tensor in this scenario has approximately low rank only
along the first mode, estimators that shrink towards the space of low multilinear
rank tensors should be over-fitting and should not perform well. From Figure 3
(B), the matrix soft-thresholding estimator does perform best, but surprisingly,
the mode-specific soft-thresholding estimator does equally well.

For Scenario C, we expect the matrix soft-thresholding estimator (9) and the
Efron-Morris estimator (6) to perform well. There is temporal correlation along
one of the modes of the mean tensor. We take into account the temporal corre-
lation of the mean by performing soft-thresholding along this mode. However,
from Figure 3 (C), we see that the mode-specific soft-thresholding estimator
performed best.

The matrix soft-thresholding estimator (9) was designed to do well when the
mean matrix is of low rank. This is exactly the situation in Scenario D, as a
tensor with low rank along one mode may be matricized to form a low rank
matrix. However, from Figure 3 (D), for our one Θ value, the mode-specific
soft-thresholding estimator performs best.

As for Scenario E, we expect the mode-specific soft-thresholding estimator
(16) to do well, as the mean tensor has approximately low multilinear rank, but
it is not exactly low multilinear rank. Figure 3 (E) reveals the mode-specific soft-
thresholding estimator does indeed perform better than the other estimators.

We expect the truncated HOSVD (14) and the HOOI to do well in Scenario
F because the mean tensor has low multilinear rank, and the truncated HOSVD
and HOOI are correctly shrinking toward this structure. From Figure 3 (F), we
see that the truncated HOSVD and HOOI do indeed perform best in terms
of loss. The HOOI performs slightly better (note, though, that for every other
scenario the HOOI and truncated HOSVD have comparable performances). The
mode-specific soft-thresholding estimator does not perform much worse. The
estimators that do not take into account the tensor indexing perform about
twice as bad as these tensor-specific estimators.

For scenarios C and D, we emphasize here that we are looking at the risk
only at a few points in the parameter space. There are likely points where the
matrix-soft thresholding estimator performs better than the tensor estimators.
However our mode-specific soft-thresholding estimator did not perform poorly
under any of our simulated mean tensors.

Our procedure for the truncated HOSVD produces a multilinear rank with
the smallest SURE. It is of interest to know if this multilinear rank provides a
good estimate of the true rank of Θ. We evaluated this possibility in simulation
Scenarios D and F. We also included two matrix-specific rank estimators for
comparison: using either a minimum-description length (MDL) criterion [51]
or parallel analysis [5]. We also tried to implement the methods from Yokota
et al. [52] but found that our implementation of it resulted in poor behavior
(at least for these data) and so we omit the results. In Scenario F, where the
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Fig 3. Box plots of losses for the seven estimators under different scenarios. The estimators
include the mode-specific soft-thresholding (ST), truncated HOSVD (Tr), least-squares low-
multlinear rank approximation (HO), matrix soft-thresholding (MS), Efron-Morris (EM),
James-Stein (JS), and maximum likelihood (X) estimators. In the scenarios, the mean tensor
was simulated to have (A) uncorrelated elements, (B) full rank but dispersed singular values
only along mode 1, (C) AR-1 covariance along mode 1, (D) low rank only along mode 1,
(E) full rank but dispersed singular values along all modes, and (F) rank (5, 5, 5) with all the
same non-zero singular values.

tensor had dimension (10, 10, 10) and the true multilinear rank was (5, 5, 5), our
SURE method correctly estimated the multilinear rank in 95% of trials, parallel
analysis correctly estimated the multilinear rank in 71% of trials, and the MDL
method correctly estimated the multilinear rank in 31% of the trials (Table 1).
In Scenario D, where the true multilinear rank was (5, 10, 10), the results of
the simulation study can be found in Figure 4. There, we see that the rank of
the first mode is correctly estimated in 96% of trials using our SURE method.
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Method Proportion Correct
MDL .31
PA .74
SURE .95

Table 1

Proportion of times the multilinear rank is estimated correctly in Scenario F using either
the minimum description length criterion (MDL), parallel analysis (PA), or Stein’s

unbiased risk estimate (SURE).

Fig 4. Proportion of trials in Scenario D a rank is estimated when using either the minimum
description length criterion (MDL), parallel analysis (PA), or Stein’s unbiased risk estimate
(SURE). The column facets distinguish between the different modes and the dashed vertical
lines indicate the true mode-specific rank.

The rank of the second and third modes are correctly estimated using SURE a
majority of the time. Parallel analysis and MDL have much worse performance,
particularly in modes 2 and 3 where the matricization of the mean tensor has
full rank.

5. Multivariate relational data example

In this section, we demonstrate the applicability of our estimators to multivari-
ate relational data. Such data may be viewed as a three-way tensor X where
entry X[i,j,k] is the value of relation type k from node i to node j. One example
of such a data set is a social network in which multiple types of relations are
measured between individuals. As another example, in sports statistics, round
robin interaction data consist of outcomes of competitions between teams. In
this section we illustrate our methods with round robin data from the 2014-2015
regular season of the National Basketball Association (NBA). The NBA consists
of a Western conference and an Eastern conference of fifteen teams each, where
intra-conference play has three to four games per year per pair of teams and
inter-conference play is limited to two games a season per pair of teams. For
each conference, we created a four dimensional tensor where element Y[i,j,k,�] is
statistic k obtained by team i while playing team j either during team i’s first
home (� = 1) or first away (� = 2) game against team j during the season. The
statistics we considered were free-throw percentage, two-point field goal per-
centage, and three-point field goal percentage. We thus have two tensors each
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of dimension 15×15×3×2, one for each of the two conferences. In this section,
we illustrate the utility of tensor shrinkage by predicting late season relational
basketball statistics from early season data. Our approach is analogous to that
of [17], who illustrated the utility of vector shrinkage estimation by predicting
late season baseball batting averages from data on early season batting averages.

The statistics in our data set are all empirical proportions. We model the
elements of Y with a binomial model,

ni,j,k,�Y[i,j,k,�] ∼ Bin(ni,j,k,�, pi,j,k,�),

where all elements are independent, given the pi,j,k,�’s. We apply an arc-sin
transformation to the data tensor to stabilize the variance:

X[i,j,k,�] = (ni,j,k,�)
1/2 arcsin(2Y[i,j,k,�] − 1).

From the central limit theorem, we have approximately

X[i,j,k,�] ∼ N(Θ[i,j,k,�], 1),

where Θ[i,j,k,�] = (ni,j,k,�)
1/2 arcsin(2pi,j,k,� − 1), resulting in the model in (1).

A commonly used representation of a mean tensor Θ is an ANOVA decom-
position, such as

Θ[i,j,k,�] = μ+ αi + βj + γk + δ� + Θ̃[i,j,k,�],

where Θ̃[i,j,k,�] contains all of the interaction effects. Note that 1T
p1
α = 0, 1T

p2
β =

0, 1p3γ = 0, and 1T
p4
δ = 0, where 1pk

is the vector of ones of length pk. The

tensor Θ̃ also satisfies Θ̃(k)1p/pk
= 0 for all k = 1, 2, 3, 4. Suppose we obtain

the maximum likelihood estimates of μ, α, β, γ, and δ by fitting a main-effects
ANOVA model. We then calculate the residual tensor,

R[i,j,k,�] =X[i,j,k,�] −
p1
p

∑
j′,k′,�′

X[i,j′,k′,�′] −
p2
p

∑
i′,k′,�′

X[i′,j,k′,�′]−

p3
p

∑
i′,j′,�′

X[i′,j′,k,�′] −
p4
p

∑
i′,j′,k′

X[i′,j′,k′,�] +
3

p

∑
i′,j′,k′,�′

X[i′,j′,k′,�′].

This residual tensor has an expected value of Θ̃. It was proposed in [43] and [15]
that we estimate the interaction effects Θ̃ with a vector shrinkage-type estimator
on the residuals. If the interactions Θ̃ are close to zero — when the interaction
effects are small — then such estimators will adaptively shrink the residuals
towards zero. However, these estimators were developed to adapt to patterns in
vectors or matrices of residuals, and not tensors of residuals. In contrast, our
approach should be able to adapt to these patterns along any of the four modes
of the residual tensor.

We applied mode-specific soft-thresholding and the truncated HOSVD to
the array of residuals R from the main effects ANOVA model. These methods
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suggest that the residual tensor should be heavily shrunk both towards zero and
towards low multilinear rank structure. For the West, the Frobenius norm of the
residual tensor was 38.38, while the Frobenius norm of the resulting shrunken
residual tensor using the mode-specific soft-thresholding estimator was 7.81.
In the East, the values were 38.95 and 6.97, respectively. We also used SURE
to estimate the multilinear rank of each residual tensor using the truncated
HOSVD. The estimated multilinear rank of the residual tensor of the Western
conference was 2 × 3 × 1 × 2, and for the Eastern conference the estimated
multilinear rank was 4× 2× 1× 1. These are very small ranks compared to the
dimensions of the tensors 15× 15× 3× 2.

An ad hoc evaluation of the performance of our estimators can be obtained
by predicting game statistics after the first home and first away games. Since
some teams only play each other three times, we do not have late season data on
all possible combinations of team pairs by home versus away games. For the late
season data we do have, we present the squared error losses for predicting the
statistics of the remaining part of the season for each conference in Table 2. The
different estimators are (1) the raw data array X , (2) the mean estimates of the
main-effects ANOVA model, (3) the mode-specific soft-thresholding shrunken
residual tensor added to the mean estimates of the main-effects ANOVA model,
(4) the truncated HOSVD shrunken residual tensor added to the mean estimates
of the main-effects ANOVA model, and (5) an estimator derived from logistic
regression using the main-effects of each mode. The losses are with respect
to the arc-sin transformed data. The poor performance of X is unsurprising.
The amount of shrinkage that our estimators produce indicates that the fully
saturated model is over-fitting and that most of the information is contained in
the main-effects. However, our mode-specific soft-thresholding estimator is also
fitting the fully saturated model and it performs comparable to the main-effects
ANOVA model, even improving the predictions for the Eastern conference.

Estimator East West
X 2410 2476

ANOVA 1344 1364
Mode-specific Soft-thresholding 1327 1385

Truncated HOSVD 1391 1451
Logistic Regression 1481 1552

Table 2

Squared error losses when predicting the statistics of the remaining games of the season.

6. Discussion

This paper introduced new classes of shrinkage estimators for tensor-valued
data that are higher-order generalizations of existing matrix spectral estima-
tors. Each class is indexed by tuning parameters whose values we chose by
minimizing an unbiased estimate of the risk. In terms of MSE, these estimators
outperform their matrix counterparts when the mean has approximately low
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multilinear rank and they perform competitively when the mean does not have
low multilinear rank.

There has been some recent work on penalized optimization methods for
estimating signal tensors in the presence of Gaussian noise [41, 48, 49, 33, 47].
Usually, these estimators are defined as the minimizers of a penalized squared
error empirical loss, where the penalty is usually some generalization of the
nuclear norm to tensors (for example, the sum of the nuclear norms of the
K matricizations of a tensor). These estimators, though similar in spirit, are
very different from our approach. The main advantage of our estimators is their
simplicity — they are simply functions of the HOSVD (13) for which there are
efficient and accurate numerical procedures to compute.

We have presented a way to adaptively choose the tuning parameters of
our higher-order spectral estimators by minimizing the SURE. This approach
is applicable, not just for the truncated HOSVD (14) and the mode-specific
soft-thresholding (16) estimators, but also for all estimators of the form (13)
that satisfy the conditions of Theorem 1. Although we found that adaptively
choosing the tuning parameters by minimizing the SURE worked well under the
scenarios we studied, there are other ways to select tuning parameters. In the
case of matrix spectral estimators, others have chosen the amount of shrinkage
by minimax considerations [15, 44], cross-validation [3, 38, 24], and asymptotic
considerations [20, 19]. Exploring these methods for our higher-order spectral
estimators (13) is a current research area of the authors.

In this paper, we focused on estimators of the form (13). If the mean tensor is
believed to have approximately low multilinear rank, we should shrink the core
array through the Tucker product along the modes to obtain this low multilinear
rank. The form of our higher-order spectral estimators (13) allows us to use the
mode-specific singular values to determine the form and amount of shrinkage
that should be performed to each mode of the core array. However, different
classes of higher-order spectral estimators can be studied. In Appendix D, we
explore functions that shrink each element of the core array individually:

t(X ) = (U1, . . . , UK) · g(S), where g(S)[i] = gi(S[i]).

This class of estimators can be used, for example, to induce zeros in the core
array, which has applications in increasing the interpretability of a higher-order
generalization of principal components analysis [22, 28, 36, 1, 12, 35].

Although the error variance τ2 in (1) might be known in some settings, such
as fMRI data sets [6], in most applied situations the variance would be unknown.
There are matrix-specific estimates of the variance that can be applied to tensor-
variate datasets by first matricizing along each mode. In our software, we have
implemented the methods described in Choi et al. [8] and Gavish and Donoho
[20]. Though, instead of plugging in an estimate of the variance into the SURE
formula (18), there has been a recent suggestion to use a generalized SURE
formula [39, 25]:

GSURE(t) =
||t(X )− X||2

(1− div(t(X ))/p)2
.
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This formula is motivated by generalized cross-validation [21] and is an approx-
imation to SURE [25]. Importantly, GSURE does not require the variance to
be known, and so its minimization may be accomplished without an estimate
of τ2. For our higher-order spectral estimators, we have already accomplished
the hard work of calculating the divergence in this paper, and implementing
GSURE is an easy application of this result. Our software allows for GSURE
implementation for the estimators discussed in this article.

There has been recent work in exploring matrix and tensor decomposition
methods in regression [55, 32, 54]. There, the authors assume the coefficient
matrix/tensor has some low rank structure. That is, they model

yi = 〈B,Xi〉+ Ei,

where yi is a scalar response for individual i, Xi ∈ R
p1×···×pK is a tensor of

covariates, B ∈ R
p1×···×pK is the coefficient tensor, Ei ∈ R

p1×···×pK is some
(possibly Gaussian) noise, and 〈·, ·〉 is the usual Euclidean inner product. They
then assume that B has low rank structure. These approaches require either
the selection of the rank of the coefficient matrix/tensor or, in the case of pe-
nalized regression, the selection of a tuning parameter — non-trivial tasks that
might benefit from the use of SURE-like methods. If one had enough samples
(n >

∏
pk), then one could apply our higher-order spectral estimators to the

ordinary least squares (OLS) estimates B̂ to obtain new estimated coefficients. If
the design is orthogonal (〈Xi,Xj〉 = 0 for all i �= j), then our methods would be
directly applicable. If not, then one could decorrelate the OLS estimates using
the design matrix (though this might destroy the tensor structure). However,
in most tensor settings we would expect n �

∏
pk, and so exploring penaliza-

tion methods might be of worth. In penalized regression settings with vector
coefficients, others have detailed how to use SURE for model selection [57] and
something similar might be applicable here in the tensor-regression setting. How-
ever, as our estimators are based on the HOSVD and were not formulated in a
penalization setting, extending the ideas from this paper to penalized coefficient
matrices/tensors is not trivial, and is thus a subject of future research.

All methods discussed in this paper are implemented in the R package hose
available at

https://github.com/dcgerard/hose.

Code and instructions to reproduce all of the results of this paper are available
at

https://github.com/dcgerard/reproduce sure.

Appendix A: Simplification of the divergence

We will need the (i1, . . . , iK)th element of UT · df [Δi] in (32). There are three
terms in (32). We will deal with them one by one. First, we will work with the

https://github.com/dcgerard/hose
https://github.com/dcgerard/reproduce_sure
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first term of (32),
∑K

k=1 dŨk[Δ
i] · f(D) · V . Note that, for A = f(D) · V , we have(

dŨk[Δ
i] · A

)
[i]

=
(
(Ip1 , . . . , Ipk−1

,ΩUk
[Δi], Ipk+1

, . . . , IpK
) · A

)
[i]

= −
pk∑

j=1,j �=ik

S[i1,...,ik−1,j,ik+1,...,iK ]A[i1,...,ik−1,j,ik+1,...,iK ]/[(σ
k
ik
)2 − (σk

j )
2]

= −
pk∑

j=1,j �=ik

[
fk
j (σ

k
j )S[i1,...,ik−1,j,ik+1,...,iK ]V[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

×

⎛
⎝ K∏

�=1,��=k

f �
i�
(σ�

i�
)

⎞
⎠]

= −

⎛
⎝ K∏

�=1,��=k

f �
i�
(σ�

i�
)

⎞
⎠

×
pk∑

j=1,j �=ik

fk
j (σ

k
j )S[i1,...,ik−1,j,ik+1,...,iK ]V[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

.

Now we work with the second term of (32),
∑K

k=1 df(D̃)k[Δ
i] · V . We have

that:

(
df(D̃)k[Δ

i] · V
)
[i]

=

⎛
⎝∏

j �=k

f j
ij
(σj

ij
)

⎞
⎠ d(fk

ik
◦ σk

ik
)[Δi]V[i] (40)

=

⎛
⎝∏

j �=k

f j
ij
(σj

ij
)

⎞
⎠(

d

dσk
ik

fk
ik
(σk

ik
)

)
V[i]S[i]/σ

k
ik

=

⎛
⎝∏

j �=k

f j
ij
(σj

ij
)/σj

ij

⎞
⎠(

d

dσk
ik

fk
ik
(σk

ik
)

)
S2
[i]/(σ

k
ik
)2, (41)

since V[i] =
(∏K

k=1 σ
k
ik

)−1

S[i].

It remains to work with the third term in (32), f(D) · dV [Δi]. We have:

(
f(D) · dV [Δi]

)
[i]

=

(
K∏

k=1

fk
ik
(σk

ik
)

)
dV [Δi][i]. (42)

We now need to obtain dV [Δi][i]. From (25), we have

dV [Δi] = D−1 · UT ·Δi −
K∑

k=1

dFk[Δ
i] · V −

K∑
k=1

dGk[Δ
i] · V ,

= D−1 · Ei −
K∑

k=1

dFk[Δ
i] · V −

K∑
k=1

dGk[Δ
i] · V . (43)
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There are three terms in (43). Let us deal with them one by one. The first term
in (43) is

(
D−1 · Ei

)
[i]

=

(
K∏

k=1

σk
ik

)−1

. (44)

The second term in (43) is

(
dFk[Δ

i] · V
)
[i]

=
(
(Ip1 , . . . , Ipk−1

, D−1
k ΩUk

[Δi]Dk, Ipk+1
, . . . , IpK

) · V
)
[i]

=

pk∑
j=1

(
D−1

k ΩUk
[Δi]Dk

)
[ik,j]

V[i1,...,ik−1,j,ik+1,...,iK ]

= −
pk∑

j=1,j �=ik

σk
j

σk
ik

S[i1,...,ik−1,j,ik+1,...,iK ]V[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

= −
pk∑

j=1,j �=ik

σk
j

σk
ik

S[i1,...,ik−1,j,ik+1,...,iK ]V[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

. (45)

The third term in (43) is

(
dGk[Δ

i] · V
)
[i]

=
(
V ×k D−1

k dDk[Δ
i]
)
[i]

= dσk
ik
[Δ]V[i]/σ

k
ik

= S[i]V[i]/(σ
k
ik
)2. (46)

To obtain the third term in (32), we need only plug in (44), (45), and (46) into
(43). And then we need to plug in (43) into (42).

We will now show that the divergence is of the form:

∑
i1,...,iK

[
C[i]

K∏
k=1

fk
ik
(σk

ik
)/σk

ik

+

K∑
k=1

⎛
⎝∏

j �=k

f j
ij
(σj

ij
)/σj

ij

⎞
⎠(

d

dσk
ik

fk
ik
(σk

ik
)

)
S2
[i1,...,ik]

/(σk
ik
)2

⎤
⎦

= Sum

(
f(D) ·D−1 · C +

K∑
k=1

Hk · S2

)
,

for Hk in (29) and C ∈ R
p1×···×pK in (30). The term f(D) · D−1 · C is from

the first and second parts of (32), whereas the terms
∑K

k=1 Hk · S2 are from
the second part of (32) and were already derived in (41). Let us find C. Let
fi1,...,ik = fi =

∏K
k=1 f

k
ik
(σk

ik
). Ignoring the second term in (32), we have that
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the sum of the first and third terms in (32) is equal to:

∑
i

{
−

K∑
k=1

pk∑
m=1,m �=ik

[
fi1,...,ik−1,m,ik+1,...,iK

×
S[i1,...,ik−1,m,ik+1,...,iK ]V[i1,...,ik−1,m,ik+1,...,iK ]

(σk
ik
)2 − (σk

m)2

]

+ fi

[(
K∏

k=1

σk
ik

)−1

+

K∑
k=1

pk∑
j=1,j �=ik

σk
j

σk
ik

S[i1,...,ik−1,j,ik+1,...,iK ]V[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

− S[i]V[i]

K∑
k=1

1

(σk
ik
)2

]}
.

After rearranging summands, we obtain:

∑
i

fi

[(
K∏

k=1

σk
ik

)−1

+

K∑
k=1

pk∑
j=1,j �=ik

σk
j

σk
ik

S[i1,...,ik−1,j,ik+1,...,iK ]V[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

− S[i]V[i]

K∑
k=1

⎛
⎝ 1

(σk
ik
)2

+

pk∑
m=1,m �=ik

1

(σk
m)2 − (σk

ik
)2

⎞
⎠]

.

And after factoring out
∏K

k=1(σ
k
ik
)−1, we get:

∑
i

fi

(
K∏

k=1

σk
ik

)−1
⎡
⎣1 + K∑

k=1

pk∑
j=1,j �=ik

S2
[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

−S2
[i]

K∑
k=1

⎛
⎝ 1

(σk
ik
)2

+

pk∑
m=1,m �=ik

1

(σk
m)2 − (σk

ik
)2

⎞
⎠
⎤
⎦ .

That is,

C[i] = 1 +

K∑
k=1

pk∑
j=1,j �=ik

S2
[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

−

S2
[i]

K∑
k=1

⎛
⎝ 1

(σk
ik
)2

+

pk∑
m=1,m �=ik

1

(σk
m)2 − (σk

ik
)2

⎞
⎠ .

(47)
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Appendix B: Details of optimization

We now provide some brief details on our optimization strategy when consider-
ing only the mode-specific soft-thresholding estimator. Let fi =

∏K
k=1 f

k
ik
(σk

ik
)

and σ̃i =
∏K

k=1 σ
k
ik
. The SURE is equal to:

‖f(D) ·D−1 · S − S‖2

+ 2τ2
∑
i

[(
f(D) ·D−1 · C

)
[i]
+

K∑
k=1

(
Hk · S2

)
[i]

]
− pτ2

(48)

=
∑
i

[ (
fiσ̃

−1
i S[i] − S[i]

)2
+ 2τ2fiσ̃

−1
i C[i]

+ 2τ2fiσ̃
−1
i S2

[i]

K∑
k=1

d
dσk

ik

fk
ik
(σk

ik
)

σk
ik
fk
ik
(σk

ik
)

]
− pτ2.

(49)

To update each λk, we simply apply a general purpose univariate optimizer (e.g.
Brent’s method [2]). To update c, we have

d

dc

[
c2f2

i σ̃
−2
i S2

[i] − 2cfiσ̃
−1
i S2

[i] + 2τ2cfiσ̃
−1
i C[i]

+ 2τ2cfiσ̃
−1
i S2

[i]

K∑
k=1

1

σk
ik
fk
ik
(σk

ik
)

]

= 2cf2
i σ̃

−2
i S2

[i] − 2fiσ̃
−1
i S2

[i] + 2τ2fiσ̃
−1
i C[i] + 2τ2fiσ̃

−1
i S2

[i]

K∑
k=1

1

σk
ik
fk
ik
(σk

ik
)
.

Let

a =
∑
i

f2
i σ̃

−2
i S2

[i],

b =
∑
i

fiσ̃
−1
i S2

[i],

d =
∑
i

τ2fiσ̃
−1
i C[i], and

e =
∑
i

τ2fiσ̃
−1
i S2

[i]

K∑
k=1

1

σk
ik
fk
ik
(σk

ik
)
,

where we are summing over the set of ik’s such that σk
ik

> λk for k = 1, . . . ,K.
Then the minimum c occurs at (b− d− e)/a. This is a global minimizer, condi-
tional on the λk’s, since a > 0.

Our optimization procedure then merely iterates between updating c and
each λk. Though a non-convex optimization problem, we have found that by
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starting each λk at 0 and starting c at 1 (the case of no shrinkage) works well
enough in practice that we generally only run the optimization procedure once.

We now briefly discuss the computational complexity of this optimization
procedure. Obtaining the HOSVD has compuational complexity

O
(
max(p1, . . . , pK)

K∏
k=1

pk

)
,

since this is the computational complexity when iterating through the K SVD’s
we need to calculate (assuming that pi ≤

∏
k:k �=i pk for all i). Thus, this is also

the computational complexity of calculating higher-order spectral estimators.
Obtaining the C array (30) given the HOSVD also has computational com-

plexity O
(
max(p1, . . . , pK)

∑K
k=1 pk

)
since each C[i] has on the order of

∑
k pk

computations and there are
∏

k pk elements in C. However, the computational
complexity of calculating the SURE conditioned on having the HOSVD and
the C array (30) is merely linear in the number of elements in the data tensor,

O(
∏K

k=1 pk) (e.g. see (49)). To see this, note that in (38) f(D), D, and Hk are
all diagonal matrices. Also note that

‖t(X )−X‖ = ‖(f1(D1)D
−1
1 , . . . , fK(DK)D−1

K ) · S − S‖. (50)

During the optimization of the SURE, we do not need to recalculate the HOSVD
and C.

Appendix C: General spectral functions

In Section 3.1, we assumed that the spectral functions were of the form:

fk(Dk) = diag(fk
1 (σ

k
1 ), . . . , f

k
pk
(σk

pk
)).

That is, we only used σk
i when determining the amount of shrinkage to per-

form on σk
i . In this section, we will extend these results to weakly differentiable

functions of the form:

fk : D+
pk

→ D+
pk
,

where D+
pk

is the space of pk by pk diagonal matrices with non-negative diagonal

elements. This will allow us to use σk
1 , . . . , σ

k
pk

to determine the amount of

shrinkage to perform on σk
i . These types of spectral functions might be desirable

if, for example, we wished to develop a generalization of estimator (7). Let
sk = (σk

1 , . . . , σ
k
pk
)T be the vector of the kth mode specific singular values. We

look at functions

gk : Rpk+ → R
pk+,

where R
pk+ is the space of pk vectors with non-negative elements. Then

fk(Dk) = diag(gk(sk))



Higher-order spectral estimators 3729

The derivation of the SURE is the same as in Section 3.1 except for the
second term in (32):

K∑
k=1

df(D̃)k[Δ
i] · V .

We have:

(
df(D̃)k[Δ

i] · V
)
[i]

=

⎛
⎝∏

j �=k

f j
ij
(σj

ij
)

⎞
⎠ d(fk ◦Dk)[Δ

i][ik,ik]V[i]

=

⎛
⎝∏

j �=k

f j
ij
(σj

ij
)

⎞
⎠ d(gk ◦ sk)[Δi][ik]V[i] (51)

By the chain rule:

d(gk ◦ sk)[Δi] = Jgk(sk)dsk[Δ],

where Jgk(sk) is the Jacobian matrix of gk evaluated at sk. We know from (37)
that

dsk[Δ
i][j] = 1(j = ik)S[i]/σ

k
j for j = 1, . . . , pk.

So dsk[Δ
i] contains zeros except in the ikth position. Hence

(Jgk(sk)dsk[Δ])[j] = Jgk(sk)[j,ik]S[i]/σ
k
ik

for j = 1, . . . , pk

And so

d(gk ◦ sk)[Δi][ik] = (Jgk(sk)dsk[Δ])[ik]

= Jgk(sk)[ik,ik]S[i]/σ
k
ik
. (52)

Inserting (52) into (51), we get:

(
df(D̃)k[Δ

i] · V
)
[i]

=

⎛
⎝∏

j �=k

f j
ij
(σj

ij
)

⎞
⎠ Jgk(sk)[ik,ik]S[i]/σ

k
ik
V[i].

That is, we only need the (ik, ik)th element of the Jacobian matrix of the spectral
function. Let

Jk(Dk) = diag(Jgk(sk)[1,1], . . . , Jgk(sk)[pk,pk]) for k = 1, . . . ,K.

Then

K∑
k=1

df(D̃)k[Δ
i] · V =

K∑
k=1

Qk · S2
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where

Qk = (f1(D1)D
−1
1 , . . . , fk−1(Dk−1)D

−1
k−1, Jk(Dk)D

−2
k ,

fk+1(Dk+1)D
−1
k+1, . . . , f

K(DK)D−1
K ).

The divergence is now of the form:

Sum

(
f(D) ·D−1 · C +

K∑
k=1

Qk · S2

)
.

Appendix D: SURE for estimators that shrink elements in S

Consider the HOSVD (11). In this section, we will find the SURE for estimators
of the form:

t(X ) = U · g(S), (53)

where

(g(S))[i] = gi(S[i]).

That is, we shrink each element of S separately. An example of such a function
is to soft-threshold each element of S:

gi(S[i]) = sign(S[i])(|S[i]| − λ)+,

where sign(x) is −1 of x < 0, 1 if x > 0, and 0 if x = 0. Such a function induces
0’s in the core array, which has applications to increasing interpretability of
higher-order PCA [22, 28, 36, 1, 12, 35]. Inducing 0’s in the core array is usually
performed by applying orthogonal rotations along each mode. Our approach
provides an alternative mechanism to induce 0’s in the core array.

Theorem 5. The differentials of Uk and S are given in equations (21) and
(54), respectively.

Proof. We have already calculated dUk[Δ] in Theorem 2. To obtain dS[Δ], we
apply the chain rule to the HOSVD (11) and solve for dS[Δ].

Δ = dX [Δ] = d(U · S)[Δ] =

K∑
k=1

dUk[Δ] · S + U · dS[Δ],

where dUk[Δ] is defined in (23). Hence,

dS[Δ] = UT ·Δ−
K∑

k=1

dŨk[Δ] · S (54)

where dŨk[Δ] is defined in (33).
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The derivation of the divergence for functions of the form (53) is very similar
to that in Section 3.2. The divergence may still be found from (31). From the
chain rule, we have:

dt[Δi] =
K∑

k=1

dUk[Δ
i] · g(S) + U · d(g ◦ S)[Δi],

where this “◦” means composition and dUk[Δ
i] is from (23). Hence,

UT · dt[Δi] =

K∑
k=1

dŨk[Δ
i] · g(S) + d(g ◦ S)[Δi], (55)

where dŨk[Δ
i] is from (33), noting that the relationship in (36) still holds.

From the chain rule we have:

d(f[i] ◦ S[i])[Δ
i][i] =

(
d

dS[i]
fi(S[i])

)
dS[i][Δ

i].

We need the (i1, . . . , iK)th element of(
UT · df [Δi]

)
[i]

=

(
K∑

k=1

dŨk[Δ
i] · f(S) + d(f ◦ S)[Δi]

)
[i]

=

K∑
k=1

(
dŨk[Δ

i] · f(S)
)
[i]
+

(
d

dS[i]
fi(S[i])

)
dS[i][Δ

i]

=

K∑
k=1

(
dŨk[Δ

i] · f(S)
)
[i]
+

(
d

dS[i]
fi(S[i])

)
dS[Δi][i]

=

K∑
k=1

(
dŨk[Δ

i] · f(S)
)
[i]

+

(
d

dS[i]
fi(S[i])

)((
UT ·Δi

)
[i]
−

K∑
k=1

(
dŨk[Δ

i] · S
)
[i]

)

=

K∑
k=1

(
dŨk[Δ

i] · f(S)
)
[i]

+

(
d

dS[i]
fi(S[i])

)(
Ei

[i] −
K∑

k=1

(
dŨk[Δ

i] · S
)
[i]

)

=

K∑
k=1

(
dŨk[Δ

i] · f(S)
)
[i]
+

(
d

dS[i]
fi(S[i])

)(
1−

K∑
k=1

(
dŨk[Δ

i] · S
)
[i]

)
. (56)
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Note that for any A ∈ R
p1×···×pK(

dŨk[Δ
i] · A

)
[i]

=
(
(Ip1 , . . . , Ipk−1

, dΩUk
[Δi], Ipk+1

, . . . , IpK
) · A

)
[i]

= −
pk∑

j=1,j �=ik

S[i1,...,ik−1,j,ik+1,...,iK ]A[i1,...,ik−1,j,ik+1,...,iK ]/[(σ
k
ik
)2 − (σk

j )
2].

Hence, from (56) we have,

div(g)

=
∑
i

⎡
⎣− K∑

k=1

pk∑
j=1,j �=ik

S[i1,...,ik−1,j,ik+1,...,iK ]f(S)[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

+

(
d

dS[i]
fi(S[i])

)⎛
⎝1 +

K∑
k=1

pk∑
j=1,j �=ik

S2
[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

⎞
⎠
⎤
⎦

=
∑
i

[
−

K∑
k=1

pk∑
j=1,j �=ik

S[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

× f[i1,...,ik−1,j,ik+1,...,iK ](S[i1,...,ik−1,j,ik+1,...,iK ])

+

(
d

dS[i]
fi(S[i])

)

×

⎛
⎝1 +

K∑
k=1

pk∑
j=1,j �=ik

S2
[i1,...,ik−1,j,ik+1,...,iK ]/[(σ

k
ik
)2 − (σk

j )
2]

⎞
⎠]

.

(57)

We can rearrange the summations in the left part of (57) by switching the
order of the j and the ik and then altering the notation of the dummy variables
to obtain:

div(g) =
∑
i

⎡
⎣S[i]fi(S[i])

K∑
k=1

pk∑
j=1,j �=ik

1/[(σk
ik
)2 − (σk

j )
2]

+

(
d

dS[i]
fi(S[i])

)⎛
⎝1 +

K∑
k=1

pk∑
j=1,j �=ik

S2
[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

⎞
⎠
⎤
⎦ .

Hence, the SURE for these higher-order spectral functions (53) is:

SURE(g(X )) = −pτ2 + ‖f(S)− S‖2

+ 2τ2
∑
i

⎡
⎣S[i]fi(S[i])

K∑
k=1

pk∑
j=1,j �=ik

1/[(σk
ik
)2 − (σk

j )
2]

+

(
d

dS[i]
fi(S[i])

)⎛
⎝1 +

K∑
k=1

pk∑
j=1,j �=ik

S2
[i1,...,ik−1,j,ik+1,...,iK ]

(σk
ik
)2 − (σk

j )
2

⎞
⎠
⎤
⎦ .
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