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behaviors are investigated in a Monte Carlo simulation study.
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1. Introduction

Suppose that the observations X1, . . . , Xn are generated by a stochastic process
(Xi)i≥1

∗Research supported by the German National Academic Foundation and Collaborative
Research Center SFB 823 Statistical modelling of nonlinear dynamic processes.

3633

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/17-EJS1323
mailto:annika.betken@rub.de


3634 A. Betken

Xi = μi + Yi,

where (μi)i≥1 are unknown constants and where (Yi)i≥1 is a stationary, long-
range dependent (LRD, in short) process with mean zero. A stationary process
(Yi)i≥1 is called “long-range dependent” if its autocovariance function ρ, ρ(k) :=
Cov(Y1, Yk+1), satisfies

ρ(k) ∼ k−DL(k), as k → ∞, (1)

where 0 < D < 1 (referred to as long-range dependence (LRD) parameter) and
where L is a slowly varying function.

Furthermore, we assume that there is a change point in the mean of the
observations, that is

μi =

{
μ, for i = 1, . . . , k0,

μ+ hn, for i = k0 + 1, . . . , n,

where k0 denotes the change point location and hn is the height of the level-
shift. Throughout the paper, we assume that k0 = �nτ� with 0 < τ < 1 and
with �x� denoting the greatest integer less than or equal to x for any x ∈ R.

In the following we differentiate between fixed and local changes. Under fixed
changes we assume that hn = h for some h �= 0. Local changes are characterized
by a sequence hn, n ∈ N, with hn −→ 0 as n −→ ∞; in other words, in a model
where the height of the jump decreases with increasing sample size n.

In order to test the hypothesis

H : μ1 = . . . = μn

against the alternative

A : μ1 = . . . = μk �= μk+1 = . . . = μn for some k ∈ {1, . . . , n− 1}

the Wilcoxon change point test can be applied. It rejects the hypothesis for large
values of the Wilcoxon test statistic defined by

Wn := max
1≤k≤n−1

|Wk,n| , where Wk,n :=

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
(see Dehling, Rooch and Taqqu (2013a)). Under the assumption that there is a
change point in the mean in k0 we expect the absolute value of Wk0,n to exceed
the absolute value of Wl,n for any l �= k0. Therefore, it seems natural to define
an estimator of k0 by

k̂W = k̂W (n) := min

{
k : |Wk,n| = max

1≤i≤n−1
|Wi,n|

}
.

Preceding papers that address the problem of estimating change point locations
in dependent observations X1, . . . , Xn with a shift in mean often refer to a
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family of estimators based on the CUSUM change point test statistics Cn(γ) :=
max1≤k≤n−1 |Ck,n(γ)|, where

Ck,n(γ) :=

(
k(n− k)

n

)1−γ
(
1

k

k∑
i=1

Xi −
1

n− k

n∑
i=k+1

Xi

)

with parameter 0 ≤ γ < 1. The corresponding change point estimator is defined
by

k̂C,γ = k̂C,γ(n) := min

{
k : |Ck,n(γ)| = max

1≤i≤n−1
|Ci,n(γ)|

}
. (2)

For long-range dependent Gaussian processes Horváth and Kokoszka (1997) de-

rive the asymptotic distribution of the estimator k̂C,γ under the assumption of
a decreasing jump height hn, i.e. under the assumption that hn approaches 0
as the sample size n increases. Under non-restrictive constraints on the depen-
dence structure of the data-generating process (including long-range dependent

time series) Kokoszka and Leipus (1998) prove consistency of k̂C,γ under the
assumption of fixed as well as decreasing jump heights. Furthermore, they es-
tablish the convergence rate of the change point estimator as a function of the
intensity of dependence in the data if the jump height is constant. Ben Hariz
and Wylie (2005) show that under a similar assumption on the decay of the au-
tocovariances the convergence rate that is achieved in the case of independent
observations can be obtained for short- and long-range dependent data, as well.
Furthermore, it is shown in their paper that for a decreasing jump height the
convergence rate derived by Horváth and Kokoszka (1997) under the assump-
tion of gaussianity can also be established under more general assumptions on
the data-generating sequences.

Bai (1994) establishes an estimator for the location of a shift in the mean
by the method of least squares. He proves consistency, determines the rate of
convergence of the change point estimator and derives its asymptotic distribu-
tion. These results are shown to hold for weakly dependent observations that
satisfy a linear model and cover, for example, ARMA(p, q)-processes. Bai ex-
tended these results to the estimation of the location of a parameter change
in multiple regression models that also allow for lagged dependent variables
and trending regressors (see Bai (1997)). A generalization of these results to
possibly long-range dependent data-generating processes (including fractionally
integrated processes) is given in Kuan and Hsu (1998) and Lavielle and Moulines
(2000). Under the assumption of independent data Darkhovskh (1976) estab-
lishes an estimator for the location of a change in distribution based on the
two-sample Mann-Whitney test statistic. He obtains a convergence rate that has
order 1

n , where n is the number of observations. Allowing for strong dependence
in the data Giraitis, Leipus and Surgailis (1996) consider Kolmogorov-Smirnov
and Cramér-von-Mises-type test statistics for the detection of a change in the
marginal distribution of the random variables that underlie the observed data.
Consistency of the corresponding change point estimators is proved under the
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assumption that the jump height approaches 0. A change point estimator based
on a self-normalized CUSUM test statistic has been applied in Shao (2011) to
real data sets. Although Shao assumes validity of using the estimator, the article
does not cover a formal proof of consistency. Furthermore, it has been noted by
Shao and Zhang (2010) that even under the assumption of short-range depen-
dence it seems difficult to obtain the asymptotic distribution of the estimate.

In this paper we shortly address the issue of estimating the change point
location on the basis of the self-normalized Wilcoxon test statistic proposed in
Betken (2016).

In order to construct the self-normalized Wilcoxon test statistic, we have
to consider the ranks Ri, i = 1, . . . , n, of the observations X1, . . . , Xn. These
are defined by Ri := rank(Xi) =

∑n
j=1 1{Xj≤Xi} for i = 1, . . . , n. The self-

normalized two-sample test statistic is defined by

SWk,n =

∑k
i=1 Ri − k

n

∑n
i=1 Ri{

1
n

∑k
t=1 S

2
t (1, k) +

1
n

∑n
t=k+1 S

2
t (k + 1, n)

}1/2
,

where

St(j, k) :=

t∑
h=j

(
Rh − R̄j,k

)
with R̄j,k :=

1

k − j + 1

k∑
t=j

Rt.

The self-normalized Wilcoxon change point test for the test problem (H,A) re-
jects the hypothesis for large values of Tn(τ1, τ2) = maxk∈{�nτ1�,...,�nτ2�} |SWk,n|,
where 0 < τ1 < τ2 < 1. Note that the proportion of the data that is included
in the calculation of the supremum is restricted by τ1 and τ2. A common choice
for these parameters is τ1 = 1− τ2 = 0.15; see Andrews (1993).

A natural change point estimator that results from the self-normalized Wil-
coxon test statistic is

k̂SW = k̂SW (n) := min

{
k : |SWk,n| = max

�nτ1�≤i≤�nτ2�
|SWi,n|

}
.

We will prove consistency of the estimator k̂SW under fixed changes and under
local changes whose height converges to 0 with a rate depending on the intensity
of dependence in the data. Nonetheless, the main aim of this paper is to charac-
terize the asymptotic behavior of the change point estimator k̂W . In Section 2
we establish consistency of k̂W and k̂SW , derive the optimal convergence rate
of k̂W and finally consider its asymptotic distribution. Applications to two well-
known data sets can be found in Section 3. The finite sample properties of the
estimators are investigated by simulations in Section 4. Proofs of the theoretical
results are given in Section 5.
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2. Main results

Recall that for fixed x, x ∈ R, the Hermite expansion of 1{G(ξi)≤x} − F (x) is
given by

1{G(ξi)≤x} − F (x) =

∞∑
q=1

Jq(x)

q!
Hq(ξi),

where Hq denotes the q-th order Hermite polynomial and where

Jq(x) = E
(
1{G(ξi)≤x}Hq(ξi)

)
.

Assumption 1. Let Yi = G(ξi), where (ξi)i≥1 is a stationary, long-range de-
pendent Gaussian process with mean 0, variance 1 and LRD parameter D. We
assume that 0 < D < 1

r , where r denotes the Hermite rank of the class of
functions 1{G(ξi)≤x} − F (x), x ∈ R, defined by

r := min {q ≥ 1 : Jq(x) �= 0 for some x ∈ R} .

Moreover, we assume that G : R −→ R is a measurable function and that (Yi)i≥1

has a continuous distribution function F .

Let

gD,r(t) := t
rD
2 L− r

2 (t)

and define

dn,r :=
n

gD,r(n)
cr, where cr :=

√
2r!

(1−Dr)(2−Dr)
.

Since gD,r is a regularly varying function, there exists a function g−D,r such that

gD,r(g
−
D,r(t)) ∼ g−D,r(gD,r(t)) ∼ t, as t → ∞,

(see Theorem 1.5.12 in Bingham, Goldie and Teugels (1987)). We refer to g−D,r

as the asymptotic inverse of gD,r.

The following result states that k̂W

n and k̂SW

n are consistent estimators for
the change point location under fixed as well as certain local changes.

Proposition 1. Suppose that Assumption 1 holds. Under fixed changes, k̂W

n and
k̂SW

n are consistent estimators for the change point location. The estimators are

also consistent under local changes if h−1
n = o

(
n

dn,r

)
and if F has a bounded

density f . In other words, we have

k̂W
n

P−→ τ,
k̂SW

n

P−→ τ

in both situations. Furthermore, it follows that the Wilcoxon test is consistent

under these assumptions (in the sense that 1
ndn,r

max1≤k≤n−1 |Wk,n| P−→ ∞).
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The following theorem establishes a convergence rate for the change point
estimator k̂W . Note that only under local changes the convergence rate depends
on the intensity of dependence in the data.

Theorem 1. Suppose that Assumption 1 holds and let mn := g−D,r(h
−1
n ). Then,

we have ∣∣∣k̂W − k0

∣∣∣ = OP (mn)

if either

• hn = h with h �= 0

or

• limn→∞ hn = 0 with h−1
n = o

(
n

dn,r

)
and F has a bounded density f .

Remark 1.

1. Under fixed changes mn is constant. As a consequence, |k̂W −k0| = OP (1).
This result corresponds to the convergence rates obtained by Ben Hariz
and Wylie (2005) for the CUSUM-test based change point estimator and
by Lavielle and Moulines (2000) for the least-squares estimate of the
change point location. Surprisingly, in this case the rate of convergence
is independent of the intensity of dependence in the data characterized by
the value of the LRD parameter D. An explanation for this phenomenon
might be the occurrence of two opposing effects: increasing values of the
LRD parameter D go along with a slower convergence of the test statis-
tic Wk,n (making estimation more difficult), but a more regular behavior
of the random component (making estimation easier) (see Ben Hariz and
Wylie (2005)).

2. Note that if h−1
n = o

(
n

dn,r

)
and mn = g−D,r(h

−1
n ), it holds that

• mn −→ ∞,

• mn

n −→ 0,

• dmn,r

mn
∼ hn,

as n −→ ∞.

Based on the previous results it is possible to derive the asymptotic distribu-
tion of the change point estimator k̂W :

Theorem 2. Let (BH(t))t∈R
be a (standard) fractional Brownian motion pro-

cess, i.e. BH is a Gaussian process with almost surely continuous sample paths,
EBH(t) = 0 for all t ∈ R and Cov(BH(t)BH(s)) = 1

2

{
|t|2H + |s|2H − |t− s|2H

}
for all s, t ∈ R (see Definition 3.23 in Beran et al. (2013)). Suppose that As-
sumption 1 holds with r = 1 and assume that F has a bounded density f . Let
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mn := g−D,1(h
−1
n ) and define h(s; τ) by

h(s; τ) =

⎧⎪⎨⎪⎩
s(1− τ)

∫
R

f2(x)dx if s ≤ 0,

−sτ

∫
R

f2(x)dx if s > 0.

If h−1
n = o

(
n

dn,1

)
, then, for all M > 0,

1

en

(
W 2

k0+�mns�,n −W 2
k0,n

)
, −M ≤ s ≤ M,

with en = n3hndmn,1, converges in distribution to

2τ(1− τ)

∫
R

f2(x)dx

(
BH(s)

∫
R

J1(x)dF (x) + h(s; τ)

)
, −M ≤ s ≤ M, (3)

in the Skorohod space D [−M,M ]. Furthermore, it follows that m−1
n (k̂W − k0)

converges in distribution to

argmax
−∞<s<∞

(
BH(s)

∫
R

J1(x)dF (x) + h(s; τ)

)
. (4)

Remark 2.

1. Under local changes the assumption on hn is equivalent to Assumption
C.5 (i) in Horváth and Kokoszka (1997). Moreover, the limit distribution
(4) closely resembles the limit distribution of the CUSUM-based change
point estimator considered in that paper.

2. The proof of Theorem 2 is mainly based on the empirical process non-
central limit theorem for subordinated Gaussian sequences in Dehling and
Taqqu (1989). The sequential empirical process has also been studied by
many other authors in the context of different models. See, among many
others, the following: Müller (1970) and Kiefer (1972) for independent
and identically distributed data, Berkes and Philipp (1977) and Philipp
and Pinzur (1980) for strongly mixing processes, Berkes, Hörmann and
Schauer (2009) for S-mixing processes, Giraitis and Surgailis (1999) for
long memory linear (or moving average) processes, Dehling, Durieu and
Tusche (2014) for multiple mixing processes. Presumably, in these situa-

tions the asymptotic distribution of k̂W can be derived by the same argu-
ment as in the proof of Theorem 2 for subordinated Gaussian processes. In
particular, Theorem 1 in Giraitis and Surgailis (1999) can be considered
as a generalization of Theorem 1.1 in Dehling and Taqqu (1989), i.e. with

an appropriate normalization the change point estimator k̂W , computed
with respect to long-range dependent linear processes as defined in Gi-
raitis and Surgailis (1999), should converge in distribution to a limit that
corresponds to (4) (up to multiplicative constants).
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3. In the proof of Theorem 2, convergence of m−1
n (k̂W − k0) is derived from

a continuous mapping theorem for the argmax functional which presumes
unimodality of the considered limit process. The limit process in formula
(3) attains its maximum at a unique point according to Lifshits’ crite-
rion for unimodality of Gaussian processes. For this reason, the argument
relies on the assumption that the Hermite rank r of the class of func-
tions 1{G(ξi)≤x} − F (x), x ∈ R, equals 1, guaranteeing a Gaussian limit
process. If r > 1, the limit process in formula (3) is non-Gaussian. Since
Lifshits’ criterion applies to Gaussian processes exclusively, an alternative
argument is needed for non-Gaussian limit processes. Moreover, an ap-
plication of Lemma 4 yields convergence of the sargmax computed with
respect to compact intervals [−M,M ] only. An extension of convergence to
the sargmax computed with respect to the whole real line is based on the
observation that the limit in (3) is subjected to a negative drift, meaning
that it diverges to −∞ as |s| tends to ∞. For the proof of Theorem 2, this
behavior is deduced from the law of the iterated logarithm for fractional
Brownian motion processes. In order to generalize Theorem 2 to limits
determined by a Hermite rank r > 1, a corresponding result for a more
general class of processes is required, e.g. a law of the iterated logarithm
for general Hermite processes; see Mori and Oodaira (1986).

3. Applications

We consider two well-known data sets which have been analyzed before. We
compute the estimator k̂W based on the given observations and put our results
into context with the findings and conclusions of other authors.

Fig 1. Measurements of the annual discharge of the river Nile at Aswan in 108m3 for the
years 1871-1970. The dotted line indicates the potential change point estimated by k̂W; the
dashed lines designate the sample means for the pre-break and post-break samples.

The plot in Figure 1 depicts the annual volume of discharge from the Nile river
at Aswan in 108m3 for the years 1871 to 1970. The data set is included in any
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standard distribution of R. Amongst others, Cobb (1978), Macneill, Tang and
Jandhyala (1991), Wu and Zhao (2007), Shao (2011) and Betken and Wendler
(2015) provide statistically significant evidence for a decrease of the Nile’s annual
discharge towards the end of the 19th century.

The construction of the Aswan Low Dam between 1898 and 1902 serves
as a popular explanation for an abrupt change in the data around the turn
of the century. Yet, Cobb gave another explanation for the decrease in water
volume by citing rainfall records which suggest a decline of tropical rainfall at
that time. In fact, an application of the change point estimator k̂W identifies a
change in 1898. This result seems to be in good accordance with the estimated
change point locations suggested by other authors: Cobb’s analysis of the Nile
data leads to the conjecture of a significant decrease in discharge volume in
1898. Moreover, computation of the CUSUM-based change point estimator k̂C,0

considered in Horváth and Kokoszka (1997) indicates a change in 1898. Balke
(1993) and Wu and Zhao (2007) suggest that the change occurred in 1899.

Fig 2. Monthly temperature of the Northern hemisphere for the years 1854-1989 from the data
base held at the Climate Research Unit of the University of East Anglia, Norwich, England.
The temperature anomalies (in degrees C) are calculated with respect to the reference period
1950-1979. The dotted line indicates the location of the potential change point; the dashed
lines designate the sample means for the pre-break and post-break samples.

The second data set consists of the seasonally adjusted monthly deviations of
the temperature (degrees C) for the Northern hemisphere during the years 1854
to 1989 from the monthly averages over the period 1950 to 1979. The data has
been taken from the longmemo package in R. It results from spatial averaging of
temperatures measured over land and sea. In view of the plot in Figure 2 it seems
natural to assume that the data generating process is non-stationary. Previous
analysis of this data offers different explanations for the irregular behavior of
the time series. Deo and Hurvich (1998) fitted a linear trend to the data, thereby
providing statistical evidence for global warming during the last decades. How-
ever, the consideration of a more general stochastic model by the assumption
of so-called semiparametric fractional autoregressive (SEMIFAR) processes in
Beran and Feng (2002) does not confirm the conjecture of a trend-like behavior.



3642 A. Betken

Neither does the investigation of the global temperature data in Wang (2007)
support the hypothesis of an increasing trend. It is pointed out by Wang that
the trend-like behavior of the Northern hemisphere temperature data may have
been generated by stationary long-range dependent processes. Yet, it is shown
in Shao (2011) and also in Betken and Wendler (2015) that under model as-
sumptions that include long-range dependence an application of change point
tests leads to a rejection of the hypothesis that the time series is stationary. Ac-
cording to Shao (2011) an estimation based on a self-normalized CUSUM test
statistic suggests a change around October 1924. Computation of the change
point estimator k̂W corresponds to a change point located around June 1924.
The same change point location results from an application of the previously
mentioned estimator k̂C,0 considered in Horváth and Kokoszka (1997). In this

regard estimation by k̂W seems to be in good accordance with the results of
alternative change point estimators.

4. Simulations

We will now investigate the finite sample performance of the change point esti-
mator k̂W and compare it to corresponding simulation results for the estimators
k̂SW (based on the self-normalized Wilcoxon test statistic) and k̂C,0 (based on
the CUSUM test statistic with parameter γ = 0). For this purpose, we consider
two different scenarios:

1. Normal margins: We generate fractional Gaussian noise time series (ξi)i≥1

and choose G(t) = t in Assumption 1. As a result, the simulated observa-
tions (Yi)i≥1 are Gaussian with autocovariance function ρ satisfying

ρ(k) ∼
(
1− D

2

)
(1−D) k−D.

Note that in this case the Hermite coefficient J1(x) is not equal to 0
for all x ∈ R (see Dehling, Rooch and Taqqu (2013a)) so that m = 1,
where m denotes the Hermite rank of 1{G(ξi)≤x}−F (x), x ∈ R. Therefore,
Assumption 1 holds for all values of D ∈ (0, 1).

2. Pareto margins: In order to get standardized Pareto-distributed data which
has a representation as a functional of a Gaussian process, we consider the
transformation

G(t) =

(
βk2

(β − 1)2(β − 2)

)− 1
2
(
k(Φ(t))−

1
β − βk

β − 1

)
with parameters k, β > 0 and with Φ denoting the standard normal dis-
tribution function. Since G is a strictly decreasing function, it follows by
Theorem 2 in Dehling, Rooch and Taqqu (2013a) that the Hermite rank
of 1{G(ξi)≤x} − F (x), x ∈ R, is m = 1 so that Assumption 1 holds for all
values of D ∈ (0, 1).
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To analyze the behavior of the estimators we simulated 500 time series of length
600 and added a level shift of height h after a proportion τ of the data. We have
done so for several choices of h and τ . The descriptive statistics, i.e. mean,
sample standard deviation (S.D.) and quartiles, are reported in Tables 1, 2, and

3 for the three change point estimators k̂W , k̂SW and k̂C,0.
The following observations, made on the basis of Tables 1, 2, and 3, corre-

spond to the expected behavior of consistent change point estimators:

• Bias and variance of the estimated change point location decrease when
the height of the level shift increases.

• Estimation of the time of change is more accurate for breakpoints located
in the middle of the sample than estimation of change point locations that
lie close to the boundary of the testing region.

• High values of H go along with an increase of bias and variance. This
seems natural since when there is very strong dependence, i.e. H is large,
the variance of the series increases, so that it becomes harder to accurately
estimate the location of a level shift.

A comparison of the descriptive statistics of the estimator k̂W (based on the

Wilcoxon statistic) and k̂SW (based on the self-normalized Wilcoxon statistic)
shows that:

• In most cases the estimator k̂SW has a smaller bias, especially for an early
change point location. Nevertheless, the difference between the biases of
k̂SW and k̂W is not big.

• In general the sample standard deviation of k̂W is smaller than that of
k̂SW . Indeed, it is only slightly better for τ = 0.25, but there is a clear
difference for τ = 0.5.

All in all, our simulations do not give rise to choosing k̂SW over k̂W . In
particular, better standard deviations of k̂W compensate for smaller biases of
k̂SW .

Comparing the finite sample performance of k̂W and the CUSUM-based
change point estimator k̂C,0 we make the following observations:

• For fractional Gaussian noise time series bias and variance of k̂C,0 tend to
be slightly better, at least when τ = 0.25 and especially for relatively high
level shifts. Nonetheless, the deviations are in most cases negligible.

• If the change happens in the middle of a sample with normal margins,
bias and variance of k̂W tend to be smaller, especially for relatively high
level shifts. Again, in most cases the deviations are negligible.

• For Pareto(3, 1) time series k̂W clearly outperforms k̂C,0 by yielding smaller
biases and decisively smaller variances for almost every combination of pa-
rameters that has been considered. The performance of the estimator k̂C,0

surpasses the performance of k̂W only for high values of the jump height h.

It is well-known that the Wilcoxon change point test is more robust against
outliers in data sets than the CUSUM-like change point tests, i.e. the Wilcoxon
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test outperforms CUSUM-like tests if heavy-tailed time series are considered.
Our simulations confirm that this observation is also reflected by the finite
sample behavior of the corresponding change point estimators.

Fig 3. The MAE of k̂W for different values of H.

As noted in Remark 1, k̂W −k0 = OP (1) under the assumption of a constant
change point height h. This observation is illustrated by simulations of the mean
absolute error

MAE =
1

m

m∑
i=1

∣∣∣k̂W,i − k0

∣∣∣ ,
where k̂W,i, i = 1, . . . ,m, denote the estimates for k0, computed on the basis of
m = 5000 different sequences of fractional Gaussian noise time series.

Figure 3 depicts a plot of MAE against the sample size n with n varying
between 1000 and 20000.

Since k̂W − k0 = OP (1) due to Theorem 1, we expect MAE to approach a
constant as n tends to infinity. This can be clearly seen in Figure 3 for H ∈
{0.6, 0.7, 0.8}. For a high intensity of dependence in the data (characterized by
H = 0.9) convergence becomes slower. This is due to a slower convergence of
the test statistic Wn(k) which, in finite samples, is not canceled out by the effect
of a more regular behavior of the sample paths of the limit process.

5. Proofs

In the following let Fk and Fk+1,n denote the empirical distribution functions
of the first k and last n− k realizations of Y1, . . . , Yn, i.e.

Fk(x) :=
1

k

k∑
i=1

1{Yi≤x},

Fk+1,n(x) :=
1

n− k

n∑
i=k+1

1{Yi≤x}.



W
ilco

xo
n
-ba

sed
ch

a
n
ge

po
in
t
estim

a
tio

n
3
6
4
5

Table 1. Descriptive statistics of the sampling distribution of k̂W for a change in the mean based on 500 fractional Gaussian noise and Pareto time
series of length 600 with Hurst parameter H and a change in mean in τ of height h.

margins τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9
normal 0.25 0.5 mean (S.D.) 193.840 (64.020) 227.590 (99.788) 252.408 (110.084) 270.646 (113.720)

quartiles (150, 168, 217.25) (150, 191, 284.25) (157, 226.5, 335.25) (172.75, 250, 353)
1 mean (S.D.) 164.244 (27.156) 176.362 (42.059) 188.328 (63.751) 215.108 (88.621)

quartiles (150, 153.5, 167) (150, 158, 190) (150, 159.5, 206.25) (150 176 256)
2 mean (S.D.) 153.604 (8.255) 156.656 (12.393) 164.338 (29.570) 173.610 (41.514)

quartiles (150, 151, 154) (150, 151, 158) (150, 151, 164) (150, 152, 180.25)

0.5 0.5 mean (S.D.) 299.506 (30.586) 301.870 (61.392) 300.774 (82.610) 298.930 (98.368)
quartiles (291, 300, 309) (274.75, 300.5, 320.25) (264, 299, 339.25) (233, 299, 353)

1 mean (S.D.) 300.014 (9.141) 300.438 (18.695) 302.592 (42.213) 300.902 (50.487)
quartiles (298, 300, 302) (297, 300, 304) (293, 300 307) (290, 300, 311)

2 mean (S.D.) 300.064 (1.294) 299.922 (3.215) 299.504 (5.520) 300.282 (7.494)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

Pareto(3, 1) 0.25 0.5 mean (S.D.) 158.166 (17.762) 164.080 (31.219) 179.512 (58.871) 194.126 (74.767)
quartiles (150, 151, 159.25) (150, 152, 168) (150, 154, 191.25) (150, 159, 218.25)

1 mean (S.D.) 154.160 (8.765) 156.090 (13.516) 164.712 (28.774) 178.174 (54.429)
quartiles (150, 151, 155) (150, 151, 157) (150, 152, 168) (150, 152, 186)

2 mean (S.D.) 152.256 (4.852) 155.592 (11.092) 160.686 (24.599) 169.374 (38.197)
quartiles (150, 150, 152) (150, 151, 155.25) (150, 151, 159) (150, 150, 172)

0.5 0.5 mean (S.D.) 298.072 (6.008) 296.432 (13.441) 293.060 (26.221) 289.946 (45.739)
quartiles (297, 300, 300) (296, 300, 300) (294, 300, 301) (291, 300, 301)

1 mean (S.D.) 299.178 (2.712) 298.744 (4.587) 296.674 (11.585) 296.168 (20.424)
quartiles (299, 300, 300) (299, 300, 300) (298, 300, 300) (300, 300, 300)

2 mean (S.D.) 299.798 (1.008) 299.716 (1.543) 299.384 (3.070) 298.896 (6.560)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)
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Table 2. Descriptive statistics of the sampling distribution of k̂SW for a change in the mean based on 500 replications of fractional Gaussian noise
and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

margins τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9
normal 0.25 0.5 mean (S.D.) 172.288 (63.639) 216.934 (110.934) 242.202 (119.655) 268.878 (122.615)

quartiles (135, 153, 183.25) (138, 171, 272.5) (143, 207.5, 333.5) (157, 243.5, 370.25)
1 mean (S.D.) 152.406 (24.840) 160.618 (39.834) 174.424 (70.673) 204.906 (99.648)

quartiles (140, 149, 158) (139, 150.5, 172.25) (136, 150, 188.25) (139.75, 161.5, 243.75)
2 mean (S.D.) 148.836 (9.007) 150.208 (13.575) 153.194 (28.251) 160.026 (40.979)

quartiles (144, 150, 152) (142.75, 150, 154) (138, 150, 158) (137.75, 150, 165)

0.5 0.5 mean (S.D.) 297.712 (43.291) 302.204 (77.719) 302.866 (96.511) 297.662 (110.175)
quartiles (277, 297, 320) (262, 300, 337) (248, 298.5, 369.5) (215, 301, 369.5)

1 mean (S.D.) 299.052 (16.132) 299.910 (28.907) 302.386 (55.267) 300.956 (62.821)
quartiles (290, 299, 308) (288, 300, 313) (277, 300, 324.25) (270, 300, 329)

2 mean (S.D.) 300.010 (6.054) 299.612 (10.079) 298.844 (14.059) 301.424 (21.022)
quartiles (297, 300, 303.25) (294, 300, 305) (291, 300, 307) (289, 300, 312)

Pareto(3, 1) 0.25 0.5 mean (S.D.) 151.562 (18.392) 155.034 (32.505) 165.260 (58.363) 182.706 (83.268)
quartiles (142, 150, 157) (140, 150, 163) (136, 150, 173) (136.75, 150, 196.25)

1 mean (S.D.) 150.206 (9.116) 150.272 (15.405) 152.824 (25.074) 166.602 (58.982)
quartiles (145, 150, 154) (143, 150, 156) (140, 150, 159.25) (136, 150, 174.25)

2 mean (S.D.) 149.210 (6.201) 149.934 (11.821) 151.946 (21.426) 156.836 (39.311)
quartiles (146, 150, 152) (143, 150, 153) (140, 150, 156) (136, 150, 160.25)

0.5 0.5 mean (S.D.) 300.524 (11.841) 299.488 (21.317) 299.664 (37.136) 295.048 (55.000)
quartiles (294, 300, 307) (290, 300, 310) (287, 300, 317) (280.75, 300, 318)

1 mean (S.D.) 300.498 (6.600) 300.560 (10.383) 299.520 (18.862) 297.766 (28.308)
quartiles (297, 300, 304) (296, 300, 306) (292, 300, 309.25) (289, 300, 312.25)

2 mean (S.D.) 300.444 (4.411) 300.234 (7.517) 300.524 (11.122) 298.840 (16.004)
quartiles (298, 300, 303) (296, 300, 304) (295.75, 300, 307) (292, 300, 308)
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Table 3. Descriptive statistics of the sampling distribution of k̂C,0 for a change in the mean based on 500 replications of fractional Gaussian noise
and Pareto time series of length 600 with Hurst parameter H and a change in mean in τ of height h.

margins τ h H = 0.6 H = 0.7 H = 0.8 H = 0.9
normal 0.25 0.5 mean (S.D.) 193.060 (64.917) 228.948 (101.442) 253.114 (111.182) 271.380 (114.590)

quartiles (150, 166.5, 222) (151, 191.5, 286.75) (156.75, 226, 341.5) (172.75, 249.5, 354.25)
1 mean (S.D.) 162.028 (22.948) 173.838 (39.845) 187.386 (63.865) 213.114 (87.356)

quartiles (150, 153, 164) (150, 156.5, 187.25) (150, 158, 206) (150, 173, 254.25)
2 mean (S.D.) 152.374 (6.249) 154.878 (10.395) 159.700 (22.064) 165.940 (33.124)

quartiles (150, 150, 152) (150, 150, 156) (150, 151, 158) (150, 150, 165)

0.5 0.5 mean (S.D.) 297.840 (30.249) 302.060 (63.878) 300.246 (84.346) 298.910 (97.904)
quartiles (290, 299, 308) (276, 301, 322) (261.75, 300, 340) (236.25, 299, 353.25)

1 mean(S.D.) 299.870 (9.356) 299.662 (21.281) 303.646 (42.245) 299.762 (52.492)
quartiles (298, 300, 302) (297, 300, 304) (293, 300, 307) (290, 300, 311)

2 mean (S.D.) 300.060 (1.473) 299.916 (3.199) 299.442 (5.234) 300.460 (8.179)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)

Pareto(3, 1) 0.25 0.5 mean (S.D.) 175.632 (48.517) 198.452 (79.303) 205.506 (88.482) 210.444(93.831)
quartiles (150, 159, 185) (150, 168, 223.75) (150, 173, 251.25) (150, 167, 259.5)

1 mean (S.D.) 156.586 (14.133) 160.350 (27.204) 170.278 (45.402) 177.278 (66.661)
quartiles (150, 152, 159) (150, 152, 161) (150, 153, 171) (150, 150, 174)

2 mean (S.D.) 150.314 (1.349) 150.566 (3.984) 152.474 (18.578) 155.496 (29.408)
quartiles (150, 150, 150) (150, 150, 150) (150, 150, 150) (150, 150, 150)

0.5 0.5 mean (S.D.) 296.260 (22.306) 292.904 (43.471) 289.192 (64.033) 287.966 (64.827)
quartiles (292, 300, 303.25) (288.75, 300, 305) (273.75, 300, 308.25) (285, 300, 303)

1 mean (S.D.) 298.240 (6.104) 297.306 (9.361) 293.116 (26.614) 292.864 (37.601)
quartiles (299, 300, 300) (299, 300, 300) (298, 300, 300) (300, 300, 300)

2 mean (S.D.) 299.604 (1.843) 299.228 (3.385) 298.350 (8.354) 297.632 (14.525)
quartiles (300, 300, 300) (300, 300, 300) (300, 300, 300) (300, 300, 300)
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For notational convenience we write Wn(k) instead of Wk,n, SWn(k) instead of
SWk,n, and

∫
instead of

∫
R
. The proofs in this section as well as the proofs in

the appendix are partially influenced by arguments that have been established
in Horváth and Kokoszka (1997), Bai (1994) and Dehling, Rooch and Taqqu
(2013a). In particular, some arguments are based on the empirical process non-
central limit theorem of Dehling and Taqqu (1989) which states that

d−1
n,r�nλ�(F�nλ�(x)− F (x))

D−→ 1

r!
Jr(x)Z

(r)
H (λ),

where r is the Hermite rank defined in Assumption 1, Z
(r)
H is an r-th order

Hermite process1, H = 1− rD
2 ∈

(
1
2 , 1

)
, and “

D−→” denotes convergence in dis-
tribution with respect to the σ-field generated by the open balls in D([−∞,∞]×
[0, 1]), equipped with the supremum norm.

We write

Xn(λ, x) := d−1
n,r�nλ�(F�nλ�(x)− F (x)),

X(λ, x) :=
1

r!
Jr(x)Z

(r)
H (λ),

so that Xn, n ∈ N, can be considered as a sequence of random variables
with values in D ([−∞,∞]× [0, 1]) converging in distribution to X. Note that

Jr is bounded and continuous. Moreover, the Hermite process Z
(r)
H is almost

surely continuous. With C ([−∞,∞]× [0, 1]) denoting the set of all continu-
ous, real-valued functions with domain [−∞,∞] × [0, 1], it follows that X ∈
C ([−∞,∞]× [0, 1]) with probability 1. Since C ([−∞,∞]× [0, 1]) is a separable
subset of D ([−∞,∞]× [0, 1]), the Dudley-Wichura version of Skorohod’s rep-
resentation theorem (see Shorack and Wellner (1986), Theorem 2.3.4) implies
that there exists another probability space (Ω′,F ′, P ′) and random variables

X ′
n, n ∈ N, and X ′ defined on it with X ′

n
D
= Xn, n ∈ N, and X ′ D

= X such that

sup
λ∈[0,1],x∈R

|X ′
n(λ, x)−X ′(λ, x)| −→ 0 (5)

almost surely. The line of argument in the proofs of Theorem 1 and Theorem 2
is partly based on this inference. In this context, it is important to note that,
for notational convenience, we write

sup
λ∈[0,1],x∈R

∣∣∣∣d−1
n,r�nλ�

(
F�nλ�(x)− F (x)

)
− 1

r!
Jr(x)Z

(r)
H (λ)

∣∣∣∣ −→ 0 a. s. (6)

only to indicate the convergence in (5). Generally speaking, it is not possible to
infer that supλ∈[0,1],x∈R

|Xn(λ, x)−X(λ, x)| converges to 0 a.s. Since, whenever
the argument in the proofs is based on the almost sure convergence in (6), we
are only interested in distributional properties, this notation is always justified
(although, in general, it is not possible to conclude that (6) holds).

1If r = 1, the Hermite process equals a standard fractional Brownian motion process with
Hurst parameter H = 1 − D

2
. We refer to Taqqu (1979) for a general definition of Hermite

processes.
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Proof of Proposition 1. The proof of Proposition 1 is based on an application
of Lemma 1 in the appendix. According to Lemma 1 it holds that, under the
assumptions of Proposition 1,

1

n2hn

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)
P−→ Cδτ (λ), 0 ≤ λ ≤ 1,

where δτ : [0, 1] −→ R is defined by

δτ (λ) =

{
λ(1− τ) for λ ≤ τ

(1− λ)τ for λ ≥ τ

and C denotes some non-zero constant.

It directly follows that 1
ndn,r

max1≤k≤n−1 |Wn(k)| P−→ ∞.

Furthermore,

1

n2hn
max

1≤k≤�n(τ−ε)�

∣∣∣∣∣∣
k∑

i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)∣∣∣∣∣∣
converges in probability to

C sup
0≤λ≤τ−ε

δτ (λ) = C(τ − ε)(1− τ)

for any 0 ≤ ε < τ .

For ε > 0 define

Zn,ε :=
1

n2hn
max

1≤k≤�nτ�
|Wn(k)| −

1

n2hn
max

1≤k≤�n(τ−ε)�
|Wn(k)| .

As Zn,ε
P−→ C(1−τ)ε, it follows that P (k̂W < �n(τ−ε)�) = P (Zn,ε = 0) −→ 0.

An analogous line of argument yields

P (k̂W > �n(τ + ε)�) −→ 0.

All in all, it follows that for any ε > 0

lim
n−→∞

P

(∣∣∣∣∣ k̂Wn − τ

∣∣∣∣∣ > ε

)
= 0.

This proves consistency of the change point estimator which is based on the
Wilcoxon test statistic.

In the following it is shown that 1
n k̂SW is a consistent estimator, too. For this

purpose, we consider the process SWn(�nλ�), 0 ≤ λ ≤ 1. According to Betken
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(2016) the limit of the self-normalized Wilcoxon test statistic can be obtained
by an application of the continuous mapping theorem to the process

1

an

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)
, 0 ≤ λ ≤ 1,

where an denotes an appropriate normalization. Therefore, it follows by the
corresponding argument in Betken (2016) that

SWn(�nλ�) P−→ |δτ (λ)|{∫ λ

0

(
δτ (t)− t

λδτ (λ)
)2

dt+
∫ 1

λ

(
δτ (t)− 1−t

1−λδτ (λ)
)2

dt

} 1
2

uniformly in λ ∈ [0, 1]. Elementary calculations yield

sup
�nτ1�≤k≤k0−nε

SWn(k)
P−→ sup

τ1≤λ≤τ−ε

√
3λ

√
1− λ

(τ − λ)
,

sup
k0+nε≤k≤�nτ2�

SWn(k)
P−→ sup

τ+ε≤λ≤τ2

√
3
√
λ(1− λ)

(τ − λ)
.

As SWn(k0)
P−→ ∞ due to Theorem 2 in Betken (2016), we conclude that

P (k̂SW > k0 + nε) and P (k̂SW < k0 − nε) converge to 0 in probability. This

proves 1
n k̂SW

P−→ τ .

Proof of Theorem 1. In the following we write k̂ instead of k̂W . For convenience,
we assume that h > 0 under fixed changes, and that for some n0 ∈ N hn > 0
for all n ≥ n0 under local changes, respectively. Furthermore, we subsume both
changes under the general assumption that limn→∞ hn = h (under fixed changes
hn = h for all n ∈ N, under local changes h = 0). In order to prove Theorem 1,
we need to show that for all ε > 0 there exists an n(ε) ∈ N and an M > 0 such
that

P
(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
< ε

for all n ≥ n(ε).
For M ∈ R

+ define Dn,M := {k ∈ {1, . . . , n− 1} | |k − k0| > Mmn}.
We have

P
(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
≤ P

(
sup

k∈Dn,M

|Wn(k)| ≥ |Wn(k0)|
)

≤ P1 + P2

with

P1 := P

(
sup

k∈Dn,M

(Wn(k)−Wn(k0)) ≥ 0

)
,



Wilcoxon-based change point estimation 3651

P2 := P

(
sup

k∈Dn,M

(−Wn(k)−Wn(k0)) ≥ 0

)
.

Note that Dn,M = Dn,M (1) ∪Dn,M (2), where

Dn,M (1) := {k ∈ {1, . . . , n− 1} | k0 − k > Mmn} ,
Dn,M (2) := {k ∈ {1, . . . , n− 1} | k − k0 > Mmn} .

Therefore, P2 ≤ P2,1 + P2,2, where

P2,1 := P

(
sup

k∈Dn,M (1)

(−Wn(k)−Wn(k0)) ≥ 0

)
,

P2,2 := P

(
sup

k∈Dn,M (2)

(−Wn(k)−Wn(k0)) ≥ 0

)
.

In the following we will consider the first summand only. (For the second sum-
mand analogous implications result from the same argument.)

For this, we define

Ŵn(k) := δn(k)Δ(hn),

where

δn(k) :=

{
k(n− k0), k ≤ k0

k0(n− k), k > k0

and

Δ(hn) :=

∫
(F (x+ hn)− F (x)) dF (x).

Note that

P2,1 ≤ P

(
sup

k∈Dn,M (1)

(
Ŵn(k)−Wn(k) + Ŵn(k0)−Wn(k0)

)
≥ Ŵn(k0)

)

≤ P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(�nλ�)− Ŵn(�nλ�)
∣∣∣ ≥ k0(n− k0)Δ(hn)

)
.

We have

sup
λ∈[0,τ ]

∣∣∣Wn(�nλ�)− Ŵn(�nλ�)
∣∣∣

= sup
λ∈[0,τ ]

∣∣∣∣∣
�nλ�∑
i=1

n∑
j=�nτ�+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)

+

�nλ�∑
i=1

�nτ�∑
j=�nλ�+1

(
1{Yi≤Yj} −

1

2

)∣∣∣∣∣.
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Due to Lemma 2 in the appendix and Theorem 1.1 in Dehling, Rooch and Taqqu
(2013a)

2 sup
λ∈[0,τ ]

∣∣∣Wn(�nλ�)− Ŵn(�nλ�)
∣∣∣ = OP (ndn,r) ,

i.e. for all ε > 0 there exists a K > 0 such that

P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(�nλ�)− Ŵn(�nλ�)
∣∣∣ ≥ Kndn,r

)
< ε

for all n. Furthermore, k0(n − k0)Δ(hn) ∼ Cn2hn for some constant C. Note
that Kndn,r ≤ k0(n− k0)Δ(hn) if and only if

K ≤ k0
n

n− k0
n

Δ(hn)

hn

nhn

dn,r
.

The right hand side of the above inequality diverges if hn = h is fixed or if

h−1
n = o

(
n

dn,r

)
. Therefore, it is possible to find an n(ε) ∈ N such that

P2,1 ≤ P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(�nλ�)− Ŵn(�nλ�)
∣∣∣ ≥ k0(n− k0)Δ(hn)

)

≤ P

(
2 sup
λ∈[0,τ ]

∣∣∣Wn(�nλ�)− Ŵn(�nλ�)
∣∣∣ ≥ Kndn,r

)
< ε

for all n ≥ n(ε).
We will now turn to the summand P1. We have P1 ≤ P1,1 + P1,2, where

P1,1 := P

(
sup

k∈Dn,M (1)

Wn(k)−Wn(k0) ≥ 0

)
,

P1,2 := P

(
sup

k∈Dn,M (2)

Wn(k)−Wn(k0) ≥ 0

)
.

In the following we will consider the first summand only. (For the second sum-
mand analogous implications result from the same argument.)

We define a random sequence kn, n ∈ N, by choosing kn ∈ Dn,M (1) such
that

sup
k∈Dn,M (1)

(
Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0)

)
= Wn(kn)− Ŵn(kn) + Ŵn(k0)−Wn(k0).

Note that for any sequence kn, n ∈ N, with kn ∈ Dn,M (1)

Ŵn(k0)− Ŵn(kn) = (n− k0)lnΔ(hn)
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where ln := k0 − kn. Since kn ∈ Dn,M (1) and mn −→ ∞ we have

ln
dln,r

= l1−H
n L− r

2 (ln) ≥ (Mmn)
1−HL− r

2 (Mmn)

for n sufficiently large. Thus, we have

1

ndln,r

(
Ŵn(k0)− Ŵn(kn)

)
≥ n− k0

n

mn

dmn,r
M1−H L

r
2 (mn)

L
r
2 (Mmn)

Δ(hn).

If hn is fixed, the right hand side of the inequality diverges. Under local changes
the right hand side asymptotically behaves like

(1− τ)M1−H

∫
f2(x)dx,

since, in this case, hn ∼ dmn,r

mn
due to the assumptions of Theorem 1.

In any case, for δ > 0 it is possible to find an n0 ∈ N such that

1

ndln,r

(
Ŵn(k0)− Ŵn(kn)

)
≥ M1−H(1− τ)

∫
f2(x)dx− δ

for all n ≥ n0.
All in all, the previous considerations show that there exists an n0 ∈ N and

a constant K such that for all n ≥ n0

P1,1 ≤ P

(
sup

k∈Dn,M (1)

1

ndk0−k,r

(
Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0)

)
≥ b(M)

)
where b(M) := KM1−H − δ with δ > 0 fixed.

Some elementary calculations show that for k ≤ k0

Wn(k)− Ŵn(k) + Ŵn(k0)−Wn(k0) = An,1(k) +An,2(k) +An,3(k) +An,4(k),

where

An,1(k) := −(n− k0)(k0 − k)

∫
(Fk+1,k0(x+ hn)− F (x+ hn)) dFk0+1,n(x),

An,2(k) := −(n− k0)(k0 − k)

∫
(Fk0+1,n(x)− F (x)) dF (x+ hn),

An,3(k) := (k0 − k)k

∫
(Fk(x)− F (x)) dFk+1,k0(x),

An,4(k) := −k(k0 − k)

∫
(Fk+1,k0(x)− F (x)) dF (x).

Thus, for n ≥ n0

P1,1 ≤ P

(
sup

k∈Dn,M (1)

1

ndk0−k,r

4∑
i=1

|An,i(k)| ≥ b(M)

)

≤
4∑

i=1

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,i(k)| ≥

1

4
b(M)

)
.
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For each i ∈ {1, . . . , 4} it will be shown that

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,i(k)| ≥

1

4
b(M)

)
<

ε

4

for n and M sufficiently large.

1. Note that

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,1(k)|

≤ sup
k∈Dn,M (1)

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣ .
Due to stationarity

sup
k∈Dn,M (1)

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣
D
= sup

k∈Dn,M (1)

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))

∣∣∣ .
Note that

sup
k∈Dn,M (1)

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))

∣∣∣
≤ sup

k∈Dn,M (1)

sup
x∈R

∣∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

∣∣∣∣
+

1

r!

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R

|Jr(x)| .

Since

sup
x∈R

∣∣∣∣d−1
n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

∣∣∣∣ −→ 0 a.s.

if n −→ ∞, and as k0 − k ≥ Mmn with mn −→ ∞, it follows that

sup
k∈Dn,M (1)

sup
x∈R

∣∣∣∣d−1
k0−k,r(k0 − k) (Fk0−k(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

∣∣∣∣
converges to 0 almost surely. Therefore,

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,1(k)| ≥

1

4
b(M)

)

≤ P

(
sup

k∈Dn,M (1)

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣ ≥ 1

4
b(M)

)

≤ P

(
1

r!

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R

|Jr(x)| ≥
1

4
b(M)

)
+

ε

8
.
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for n sufficiently large. Note that supx∈R
|Jr(x)| < ∞. Furthermore, it is

well-known that all moments of Hermite processes are finite. As a result,
it follows by Markov’s inequality that for some M0 ∈ R

P

(
1

r!

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R

|Jr(x)| ≥
1

4
b(M)

)
≤ E

∣∣∣Z(r)
H (1)

∣∣∣ 4r!

sup
x∈R

|Jr(x)| b(M)
<

ε

8

for all M ≥ M0.
2. We have

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,2(k)|

≤
∣∣∣∣d−1

n,r(n− k0)

∫
(Fk0+1,n(x)− F (x)) dF (x+ hn)

∣∣∣∣
for n sufficiently large. As a result,

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,2(k)| ≤ sup

x∈R

∣∣d−1
n,r(n− k0) (Fk0+1,n(x)− F (x))

∣∣ .
Due to the empirical process non-central limit theorem of Dehling and
Taqqu (1989) we have

sup
x∈R

∣∣d−1
n,r(n− k0) (Fk0+1,n(x)− F (x))

∣∣ D−→ 1

r!

∣∣∣Z(r)
H (1)− Z

(r)
H (τ))

∣∣∣ sup
x∈R

|Jr(x)| .

Moreover,

1

r!

∣∣∣Z(r)
H (1)− Z

(r)
H (τ)

∣∣∣ sup
x∈R

|Jr(x)| D
=

1

r!
(1− τ)H

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R

|Jr(x)|

since Z
(r)
H is a H-self-similar process with stationary increments. Thus, we

have

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,2(k)| ≥

1

4
b(M)

)

≤ P

(
1

r!
(1− τ)H

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R

|Jr(x)| ≥
1

4
b(M)

)
+

ε

8

for n sufficiently large. Again, it follows by Markov’s inequality that

P

(
1

r!
(1− τ)H

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R

|Jr(x)| ≥
1

4
b(M)

)
<

ε

8

for M sufficiently large.
3. Note that

1

ndk0−k,r
|An,3(k)| ≤

∣∣∣∣d−1
n,rk

∫
(Fk(x)− F (x)) dFk+1,k0(x)

∣∣∣∣
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for n sufficiently large. Therefore,

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,3(k)| ≤ sup

x∈R,0≤λ≤1

∣∣d−1
n,r�nλ�

(
F�nλ�(x)− F (x)

)∣∣ .
The expression on the right hand side of the inequality converges in dis-
tribution to

1

r!
sup

0≤λ≤1

∣∣∣Z(r)
H (λ)

∣∣∣ sup
x∈R

|Jr(x)|

due to the empirical process non-central limit theorem. Since{
Z

(r)
H (λ), 0 ≤ λ ≤ 1

}
D
=

{
λHZ

(r)
H (1), 0 ≤ λ ≤ 1

}
,

we have

sup
0≤λ≤1

∣∣∣Z(r)
H (λ)

∣∣∣ D
= |Z(r)

H (1)|.

As a result, the aforementioned argument yields

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,3(k)| ≥

1

4
b(M)

)

≤ P

(
1

r!

∣∣∣Z(r)
H (1)

∣∣∣ sup
x∈R

|Jr(x)| ≥
1

4
b(M)

)
+

ε

8

<
ε

4

for n and M sufficiently large.
4. We have

sup
k∈Dn,M (1)

1

ndk0−k,r
|An,4(k)|

≤ sup
k∈Dn,M (1)

sup
x∈R

∣∣∣d−1
k0−k,r(k0 − k) (Fk+1,k0(x)− F (x))

∣∣∣ .
Hence, the same argument that has been used to obtain an analogous
result for An,1 can be applied to conclude that

P

(
sup

k∈Dn,M (1)

1

ndk0−k,r
|An,4(k)| ≥

1

4
b(M)

)
<

ε

4

for n and M sufficiently large.

All in all, it follows that for all ε > 0 there exists an n(ε) ∈ N and an M > 0
such that

P
(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
< ε

for all n ≥ n(ε). This proves Theorem 1.
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Proof of Theorem 2. Note that

W 2
n(k0 + �mns�)−W 2

n(k0)

= (Wn(k0 + �mns�)−Wn(k0)) (Wn(k0 + �mns�) +Wn(k0)) .

We will show that (with an appropriate normalization)Wn(k0+�mns�)−Wn(k0)
converges in distribution to a non-deterministic limit process whereas Wn(k0 +
�mns�) + Wn(k0) (with stronger normalization) converges in probability to a
deterministic expression. For notational convenience we write dmn instead of

dmn,1, J instead of J1, k̂ instead of k̂W and we define ln(s) := k0 + �mns�. We
have

Wn(k0 + �mns�)−Wn(k0) = Ṽn(ln(s)) + Vn(ln(s)),

where

Ṽn(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

k0∑
i=l+1

n∑
j=k0+1

(
1{Yi≤Yj+hn} − 1{Yi≤Yj}

)
if s < 0

−
k0∑
i=1

l∑
j=k0+1

(
1{Yi≤Yj+hn} − 1{Yi≤Yj}

)
if s > 0

and

Vn(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l∑

i=1

k0∑
j=l+1

(
1{Yi≤Yj} − 1

2

)
−

k0∑
i=l+1

n∑
j=k0+1

(
1{Yi≤Yj} − 1

2

)
if s < 0

l∑
i=k0+1

n∑
j=l+1

(
1{Yi≤Yj} − 1

2

)
−

k0∑
i=1

l∑
j=k0+1

(
1{Yi≤Yj} − 1

2

)
if s > 0

.

We will show that 1
ndmn

Ṽn(ln(s)) converges to h(s; τ) in probability and that
1

ndmn
Vn(ln(s)) converges in distribution to BH(s)

∫
J(x)dF (x) in D [−M,M ].

We rewrite Ṽn(ln(s)) in the following way:

Ṽn(ln(s))

= −(k0 − ln(s))(n− k0)

∫ (
Fln(s)+1,k0

(x+ hn)− Fln(s)+1,k0
(x)

)
dFk0+1,n(x)

if s < 0,

Ṽn(ln(s)) = −k0(ln(s)− k0)

∫
(Fk0(x+ hn)− Fk0(x)) dFk0+1,ln(s)(x)

if s > 0.
For s < 0 the limit of 1

ndmn
Ṽn(ln(s)) corresponds to the limit of

−(1− τ)d−1
mn

(k0 − ln(s))

∫
(F (x+ hn)− F (x)) dF (x)
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due to Lemma 3 and stationarity of the random sequence Yi, i ≥ 1. Note that

d−1
mn

(k0 − ln(s))

∫
(F (x+ hn)− F (x)) dF (x)

= −d−1
mn

�mns�hn

∫
1

hn
(F (x+ hn)− F (x)) dF (x).

The above expression converges to −s
∫
f2(x)dx, since hn ∼ dmn

mn
.

For s > 0 the limit of 1
ndmn

Ṽn(ln(s)) corresponds to the limit of

−τd−1
mn

(ln(s)− k0)

∫
(F (x+ hn)− F (x)) dF (x)

due to Lemma 3 and stationarity of the random sequence Yi, i ≥ 1. Note that

d−1
mn

(ln(s)− k0)

∫
(F (x+ hn)− F (x)) dF (x)

= d−1
mn

�mns�hn

∫
1

hn
(F (x+ hn)− F (x)) dF (x)

The above expression converges to s
∫
f2(x)dx, since hn ∼ dmn

mn
.

All in all, it follows that 1
ndmn

Ṽn(ln(s)) converges to h(s; τ) defined by

h(s; τ) =

{
s(1− τ)

∫
f2(x)dx if s ≤ 0

−sτ
∫
f2(x)dx if s > 0

.

In the following it is shown that 1
ndmn

Vn(ln(s)) converges in distribution to

BH(s)

∫
J(x)dF (x), −M ≤ s ≤ M.

Note that if s < 0,

Vn(ln(s)) =− ln(s)(k0 − ln(s))

∫ (
Fln(s)+1,k0

(x)− F (x)
)
dFln(s)(x)

− (k0 − ln(s))(n− k0)

∫ (
Fln(s)+1,k0

(x)− F (x)
)
dFk0+1,n(x)

+ ln(s)(k0 − ln(s))

∫
(Fln(s)(x)− F (x))dF (x)

+ (k0 − ln(s))(n− k0)

∫
(Fk0+1,n(x)− F (x)) dF (x).

If s > 0, we have

Vn(ln(s)) =(ln(s)− k0)(n− ln(s))

∫ (
Fk0+1,ln(s)(x)− F (x)

)
dFln(s)+1,n(x)

+ k0(ln(s)− k0)

∫ (
Fk0+1,ln(s)(x)− F (x)

)
(x)dFk0(x)
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− (ln(s)− k0)(n− ln(s))

∫ (
Fln(s)+1,n(x)− F (x)

)
dF (x)

− k0(ln(s)− k0)

∫
(Fk0(x)− F (x)) dF (x).

The arguments that appear in the proof of Lemma 3 can also be applied to show
that the limit of 1

ndmn
Vn(ln(s)) corresponds to the limit of

1

ndmn

(A1,n(s) +A2,n(s) +A3,n(s)) ,

where

A1,n(s) := (−ln(s)− n+ k0)(k0 − ln(s))

∫ (
Fln(s)+1,k0

(x)− F (x)
)
dF (x)

if s < 0,

A1,n(s) := (n− ln(s) + k0)(ln(s)− k0)

∫ (
Fk0+1,ln(s)(x)− F (x)

)
dF (x)

if s > 0,

A2,n(s) :=

{
(k0 − ln(s))ln(s)

∫
(Fln(s)(x)− F (x))dF (x) if s < 0

−(ln(s)− k0)(n− ln(s))
∫ (

Fln(s)+1,n(x)− F (x)
)
dF (x) if s > 0

,

A3,n(s) :=

{
(k0 − ln(s))(n− k0)

∫
(Fk0+1,n(x)− F (x)) dF (x) if s < 0

−(ln(s)− k0)k0
∫
(Fk0(x)− F (x)) dF (x) if s > 0

.

Note that for s < 0

1

ndmn

A2,n(s) = − 1

ndmn

�mns�ln(s)
∫

(Fln(s)(x)− F (x))dF (x).

The above expression converges to 0 uniformly in s ∈ [−M, 0], since mn

dmn
= o( n

dn
)

and since

sup
−M≤s≤0

∣∣∣∣d−1
n ln(s)

∫
(Fln(s)(x)− F (x))dF (x)

∣∣∣∣
≤ sup

x,λ

∣∣d−1
n �nλ�(F�nλ�(x)− F (x))−BH(λ)J(x)

∣∣
+ sup

0≤λ≤1
|BH(λ)|

∣∣∣∣∫ J(x)dF (x)

∣∣∣∣ ,
i.e. sup−M≤s≤0

∣∣d−1
n ln(s)

∫
(Fln(s)(x)− F (x))dF (x)

∣∣ is bounded in probability.

Analogously, it follows that 1
ndmn

A2,n(s) converges to 0 uniformly in s ∈ [0,M ].

Moreover, it can be shown by an analogous argument that 1
ndmn

A3,n(s) con-

verges to 0 uniformly in s ∈ [−M,M ] if n tends to ∞.
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Therefore, it remains to show that 1
ndmn

A1,n converges in distribution to a

non-deterministic expression. Due to stationarity

1

ndmn

A1,n(s)

D
=

n− �mns�
n

d−1
mn

(�mns�)
∫ (

F�mns�(x)− F (x)
)
dF (x), s ∈ [0,M ] .

As a result, 1
ndmn

A1,n(s), s ∈ [0,M ], converges in distribution to BH(s)×∫
J(x)dF (x), s ∈ [0,M ], in D [0,M ]. Furthermore, we have

1

ndmn

A1,n(s)

D
= −n+ �mns�

n
d−1
mn

(−�mns�)
∫ (

F−�mns�(x)− F (x)
)
dF (x), s ∈ [−M, 0] .

Note that

− n+ �mns�
n

d−1
mn

(−�mns�)
∫ (

F−�mns�(x)− F (x)
)
dF (x)

= −n+ �mns�
n

d−1
mn

(
mn(−s)�)
∫ (

F�mn(−s)�(x)− F (x)
)
dF (x)

= −n+ �mns�
n

d−1
mn

�mn |s|�
∫ (

F�mn|s|�(x)− F (x)
)
dF (x) + oP (1).

As a result, 1
ndmn

A1,n(s), s ∈ [−M, 0], converges in distribution to −BH(−s)×∫
J(x)dF (x), s ∈ [−M, 0], in D [−M, 0].
Considering 1

ndmn
A1,n(s), s ∈ [−M,M ], as a stochastic process with path

space D [−M,M ], we note that for s ∈ [0,M ] and t ∈ [−M, 0](
1

ndmn

A1,n(s),
1

ndmn

A1,n(t)

)

D
=

(
en(s− t)− en(−t)

−en(−t)

)
+ oP (1),

where

en(t) :=

∫
d−1
mn

�mnt�
(
F�mnt�(x)− F (x)

)
dF (x).

Therefore, it follows from an application of the continuous mapping theorem and
the empirical process non-central limit theorem of Dehling and Taqqu (1989)
that(

1

ndmn

A1,n(s),
1

ndmn

A1,n(t)

)

D−→ (BH(s− t)−BH(−t),−BH(−t))



.

The limit is Gaussian with mean 0 and covariances Cov(BH(s − t) − BH(−t),
−BH(−t)) = 1

2

(
|s|2H + |t|2H − |s− t|2H

)
, i.e. the covariance function of the
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limit variable corresponds to the covariances of a (standard) fractional Brown-
ian motion with index set R as defined in Theorem 2. By an extension of the
argument to (

1

ndmn

A1,n(t1),
1

ndmn

A1,n(t2), . . . ,
1

ndmn

A1,n(tk)

)


with k ∈ N and t1, t2, . . . , tk ∈ [−M,M ], t1 < t2 < . . . < tk, the marginal
distributions of the limit variable correspond to the marginal distributions of
BH(s)

∫
J(x)dF (x), s ∈ [−M,M ]. Moreover, tightness of 1

ndmn
A1,n inD[−M, 0]

and in D[0,M ] implies that 1
ndmn

A1,n is tight in D[−M,M ]. All in all, it follows

that

1

ndmn

(Wn(k0 + �mns�)−Wn(k0))
D−→ BH(s)

∫
J(x)dF (x) + h(s; τ)

in D[−M,M ].
Furthermore, it follows that with the stronger normalization hnn

2 the limit
of 1

hnn2Wn(k0 + �mns�) corresponds to the limit of 1
hnn2Wn(k0).

We have

1

hnn2
Wn(k0) =

1

hnn2
k0(n− k0)

∫
(Fk0(x+ hn)− Fk0(x)) dFk0+1,n(x)

+
1

hnn2

k0∑
i=1

n∑
j=k0+1

(
1{Yi≤Yj} −

1

2

)
.

The second summand on the right hand side vanishes as n tends to ∞,
since h−1

n = o (n/dn). Due to Lemma 3 the limit of d−1
n k0

∫
(Fk0(x + hn) −

Fk0(x))dFk0+1,n(x) corresponds to the limit of d−1
n k0

∫
(F (x+hn)−F (x))dF (x).

Therefore,

h−1
n

∫
(Fk0(x+ hn)− Fk0(x)) dFk0+1,n(x) −→

∫
f2(x)dx a.s.

In addition, k0

n
(n−k0)

n −→ τ(1− τ).
From this we can conclude that

1

hnn2
(Wn(k0 +mns) +Wn(k0))

P−→ 2τ(1− τ)

∫
f2(x)dx

in D[−M,M ]. This completes the proof of the first assertion in Theorem 2.
In order to show that

m−1
n (k̂ − k0)

D−→ argmax
−∞<s<∞

(
BH(s)

∫
J(x)dF (x) + h(s; τ)

)
,

we make use of Lemma 4.
For this purpose, we note that according to Lifshits’ criterion for unimodality

of Gaussian processes (see Theorem 1.1 in Ferger (1999)) the random function
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GH,τ (s) = BH(s)
∫
J(x)dF (x) + h(s; τ) attains its maximal value in [−M,M ]

at a unique point with probability 1 for every M > 0. Hence, an application of
Lemma 4 in the appendix yields

sargmax
s∈[−M,M ]

1

en

(
W 2

n(k0 + �mns�)−W 2
n(k0)

) D−→ argmax
s∈[−M,M ]

GH,τ (s).

It remains to be shown that instead of considering the sargmax in [−M,M ]
we may as well consider the smallest argmax in R. By the law of the iterated

logarithm for fractional Brownian motions we have lim|s|→∞
BH(s)

s = 0 a.s. so
that BH(s)

∫
J(x)dF (x) + h(s; τ) −→ −∞ a.s. if |s| → ∞. Therefore, the limit

corresponds to argmaxs∈(−∞,∞) GH,τ (s) if M is sufficiently large.
For M > 0 define

ˆ̂
k(M) := min

{
k : |k0 − k| ≤ Mmn, |Wn(k)| = max

|k0−i|≤Mmn

|Wn(i)|
}
.

Note that ∣∣∣sargmax
s∈[−M,M ]

(
W 2

n(k0 + �mns�)−W 2
n(k0)

)
− sargmax

s∈(−∞,∞)

(
W 2

n(k0 + �mns�)−W 2
n(k0)

)∣∣∣
= m−1

n

∣∣∣ˆ̂k(M)− k̂
∣∣∣+OP (1).

Therefore, we have to show that for some M ∈ R

m−1
n

∣∣∣ˆ̂k(M)− k̂
∣∣∣ P−→ 0

as n tends to infinity. Note that

P
(
k̂ =

ˆ̂
k(M)

)
= P

(∣∣∣k̂ − k0

∣∣∣ ≤ Mmn

)
= 1− P

(∣∣∣k̂ − k0

∣∣∣ > Mmn

)
.

Furthermore, we have

lim
M→∞

lim inf
n→∞

(
1− P

(
|k̂ − k0| > Mmn

))
= 1− lim

M→∞
lim sup
n→∞

P
(
|k̂ − k0| > Mmn

)
= 1

because |k̂ − k0| = OP (mn) by Theorem 1. As a result, we have

lim
M→∞

lim inf
n→∞

P
(
k̂ =

ˆ̂
k(M)

)
= 1.

Hence, for all ε > 0 there is an M0 ∈ R and an n0 ∈ N such that

P
(
k̂ �= ˆ̂

k(M)
)
< ε

for all n ≥ n0 and all M ≥ M0. This concludes the proof of Theorem 2.
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Appendix A: Auxiliary results

In the following we prove some Lemmas that are needed for the proofs of our
main results. Lemma 1 characterizes the asymptotic behavior of the Wilcoxon
process under the assumption of a change-point in the mean. It is used to prove
consistency of the change-point estimators k̂W and k̂SW .

Lemma 1. Define δτ : [0, 1] −→ R by

δτ (λ) =

{
λ(1− τ) for λ ≤ τ

(1− λ)τ for λ ≥ τ
.

Assume that Assumption 1 holds and that either

a) hn = h with h �= 0,

or

b) limn→∞ hn = 0 with h−1
n = o

(
n

dn,r

)
and F has a bounded density f .

Then, we have

1

n2hn

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)
P−→ Cδτ (λ), 0 ≤ λ ≤ 1,

where

C :=

{
1
h

∫
(F (x+ h)− F (x)) dF (x) if hn = h, h �= 0,∫

f2(x)dx if limn→∞ hn = 0 and h−1
n = o

(
n

dn,r

) .

Proof. First, consider the case hn = h with h �= 0. For �nλ� ≤ �nτ� we have

1

n2

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)

=
1

n2

�nλ�∑
i=1

n∑
j=�nτ�+1

(
1{Yi≤Yj+h} −

1

2

)
+

1

n2

�nλ�∑
i=1

�nτ�∑
j=�nλ�+1

(
1{Yi≤Yj} −

1

2

)
.

By Lemma 1 in Betken (2016) the first summand on the right hand side of
the equation converges in probability to λ(1 − τ)

∫
(F (x+ h)− F (x)) dF (x)

uniformly in λ ≤ τ . The second summand vanishes as n tends to ∞.
If �nλ� > �nτ�,

1

n2

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)

=
1

n2

�nτ�∑
i=1

n∑
j=�nλ�+1

(
1{Yi≤Yj+h} −

1

2

)
+

1

n2

�nλ�∑
i=�nτ�+1

n∑
j=�nλ�+1

(
1{Yi≤Yj} −

1

2

)
.
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In this case, the first summand on the right hand side of the equation converges
in probability to (1− λ)τ

∫
(F (x+ h)− F (x)) dF (x) uniformly in λ ≥ τ due to

Lemma 1 in Betken (2016) while the second summand converges in probability
to zero. All in all, it follows that

1

n2

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)
P−→ δτ (λ)

∫
(F (x+ h)− F (x)) dF (x)

uniformly in λ ∈ [0, 1].
If limn→∞ hn = 0, the process

1

ndn,r

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)

− n

dn,r
δτ (λ)

∫
(F (x+ hn)− F (x)) dF (x), 0 ≤ λ ≤ 1,

converges in distribution to

1

r!

∫
Jr(x)dF (x)

(
Z

(r)
H (λ)− λZ

(r)
H (1)

)
, 0 ≤ λ ≤ 1,

due to Theorem 3.1 in Dehling, Rooch and Taqqu (2013b). By assumption

h−1
n = o

(
n

dn,r

)
, so that

1

n2hn

�nλ�∑
i=1

n∑
j=�nλ�+1

(
1{Xi≤Xj} −

1

2

)
P−→ δτ (λ)

∫
f2(x)dx, 0 ≤ λ ≤ 1.

The proof of Theorem 1, which establishes a convergence rate for the estima-
tor k̂W, requires the following result:

Lemma 2. Suppose that Assumption 1 holds and let hn, n ∈ N, be a sequence
of real numbers with limn→∞ hn = h.

1. The process

1

ndn,r

�nλ�∑
i=1

n∑
j=�nτ�+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
, 0 ≤ λ ≤ τ,

converges in distribution to

(1− τ)
1

r!
Z

(r)
H (λ)

∫
Jr(x+ h)dF (x)

− λ
1

r!

(
Z

(r)
H (1)− Z

(r)
H (τ)

)∫
Jr(x)dF (x+ h)

uniformly in λ ≤ τ .
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2. The process

1

ndn,r

�nτ�∑
i=1

n∑
j=�nλ�+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
, τ ≤ λ ≤ 1,

converges in distribution to

(1− λ)
1

r!
Z

(r)
H (τ)

∫
Jr(x+ h)dF (x)

− τ
1

r!

(
Z

(r)
H (1)− Z

(r)
H (λ)

)∫
Jr(x)dF (x+ h)

uniformly in λ ≥ τ .

Proof. We give a proof for the first assertion only as the convergence of the sec-
ond term follows by an analogous argument. The steps in this proof correspond
to the argument that proves Theorem 1.1 in Dehling, Rooch and Taqqu (2013a).

For λ ≤ τ it follows that

�nλ�∑
i=1

n∑
j=�nτ�+1

1{Yi≤Yj+hn} = (n− �nτ�) �nλ�
∫

F�nλ�(x+ hn)dF�nτ�+1,n(x).

This yields the following decomposition:

1

ndn,r

�nλ�∑
i=1

n∑
j=�nτ�+1

(
1{Yi≤Yj+hn} −

∫
F (x+ hn)dF (x)

)
(7)

=
n− �nτ�

n
d−1
n,r�nλ�

∫ (
F�nλ�(x+ hn)− F (x+ hn)

)
dF�nτ�+1,n(x)

+
n− �nτ�

n
d−1
n,r�nλ�

∫
F (x+ hn)d

(
F�nτ�+1,n − F

)
(x).

For the first summand we have

sup
0≤λ≤τ

∣∣∣d−1
n,r�nλ�

∫ (
F�nλ�(x+ hn)− F (x+ hn)

)
dF�nτ�+1,n(x)

− 1

r!
Z

(r)
H (λ)

∫
Jr(x+ h)dF (x)

∣∣∣
≤ sup

0≤λ≤τ

∣∣∣∫ d−1
n,r�nλ�

(
F�nλ�(x+ hn)− F (x+ hn)

)
− 1

r!
Z

(r)
H (λ)Jr(x+ hn)dF�nτ�+1,n(x)

∣∣∣
+

1

r!
sup

0≤λ≤τ

∣∣∣Z(r)
H (λ)

∣∣∣ ∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h)) dF�nτ�+1,n(x)

∣∣∣∣
+

1

r!
sup

0≤λ≤τ

∣∣∣Z(r)
H (λ)

∣∣∣ ∣∣∣∣∫ Jr(x+ h)d
(
F�nτ�+1,n − F

)
(x)

∣∣∣∣ .
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We will show that each of the summands on the right hand side converges
to 0. The first summand converges to 0 because of the empirical non-central
limit theorem of Dehling and Taqqu (1989). In order to show convergence of

the second and third summand, note that sup0≤λ≤τ |Z
(r)
H (λ)| < ∞ a.s. since the

sample paths of the Hermite processes are almost surely continuous.
Furthermore, we have∫
Jr(x+ h)dF�nτ�+1,n(x) = −

∫ ∫
1{x+h≤G(y)}Hr(y)ϕ(y)dydF�nτ�+1,n(x)

= −
∫ ∫

1{x≤G(y)−h}dF�nτ�+1,n(x)Hr(y)ϕ(y)dy

= −
∫

F�nτ�+1,n(G(y)− h)Hr(y)ϕ(y)dy.

Analogously, it follows that∫
Jr(x+ hn)dF�nτ�+1,n(x) = −

∫
F�nτ�+1,n(G(y)− hn)Hr(y)ϕ(y)dy.

Therefore, we may conclude that∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h)) dF�nτ�+1,n(x)

∣∣∣∣
≤ 2 sup

x∈R

∣∣F�nτ�+1,n(x)− F (x)
∣∣ ∫ |Hr(y)|ϕ(y)dy

+

∫
|F (G(y)− hn)− F (G(y)− h)| |Hr(y)|ϕ(y)dy.

The first expression on the right hand side converges to 0 by the Glivenko-
Cantelli theorem and the fact that

∫
|Hr(y)|ϕ(y)dy < ∞; the second expression

converges to 0 due to continuity of F and the dominated convergence theorem.
To show convergence of the third summand note that∣∣∣∣∫ Jr(x+ h)d

(
F�nτ�+1,n(x)− F (x)

)∣∣∣∣
=

1

n− �nτ�

∣∣∣∣∣∣
n∑

i=�nτ�+1

(Jr(Yi + h)− E Jr(Yi + h))

∣∣∣∣∣∣
≤ n

n− �nτ�
1

n

∣∣∣∣∣
n∑

i=1

(Jr(Yi + h)− E Jr(Yi + h))

∣∣∣∣∣
+

�nτ�
n− �nτ�

1

�nτ�

∣∣∣∣∣∣
�nτ�∑
i=1

(Jr(Yi + h)− E Jr(Yi + h))

∣∣∣∣∣∣ .
For both summands on the right hand side of the above inequality the ergodic
theorem implies almost sure convergence to 0.
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For the second summand in (7) we have

n− �nτ�
n

d−1
n,r�nλ�

∫
F (x+ hn)d

(
F�nτ�+1,n − F

)
(x)

= −�nλ�
n

d−1
n,r(n− �nτ�)

∫ (
F�nτ�+1,n(x)− F (x)

)
dF (x+ hn).

Since �nλ�
n −→ λ uniformly in λ, consider∣∣∣∣∣d−1
n,r(n− �nτ�)

∫ (
F�nτ�+1,n(x)− F (x)

)
dF (x+ hn)

− 1

r!
(Z

(r)
H (1)− Z

(r)
H (τ))

∫
Jr(x)dF (x+ hn)

∣∣∣∣∣
≤

∣∣∣∣∫ d−1
n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)dF (x+ h)

∣∣∣∣
+

∣∣∣∣∫ d−1
n,r�nτ�

(
F�nτ�(x)− F (x)

)
− 1

r!
Z

(r)
H (τ)Jr(x)dF (x+ hn)

∣∣∣∣
+

1

r!

∣∣∣Z(r)
H (1)− Z

(r)
H (τ)

∣∣∣ ∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣ .
The first and second summand on the right hand side converge to 0 because
of the empirical process non-central limit theorem. For the third summand we
have∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣ = ∣∣∣∣∫ (Jr(x− hn)− Jr(x− h)) dF (x)

∣∣∣∣ .
As shown before in this proof, convergence to 0 follows by the Glivenko-Cantelli
theorem and the dominated convergence theorem.

Lemma 3 and Lemma 4 are needed for the proof of Theorem 2.

Lemma 3. Suppose that Assumption 1 holds and let ln, n ∈ N, and hn, n ∈ N,
be two sequences with ln → ∞, limn→∞ hn = h and ln = O(n). Then, it holds
that

sup
0≤s≤1

∣∣∣∣∣d−1
ln,r

�lns�
∫ (

F�lns�(x+ hn)− F�lns�(x+ h)
)
dFn(x)

− d−1
ln,r

�lns�
∫

(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣ (8)

and

sup
0≤s≤1

∣∣∣∣∣d−1
ln,r

�lns�
∫

(Fn(x+ hn)− Fn(x+ h)) dF�lns�(x)
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− d−1
ln,r

�lns�
∫

(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣ (9)

converge to 0 almost surely.

Proof. For the expression (8) the triangle inequality yields

sup
0≤s≤1

∣∣∣∣∣d−1
ln,r

�lns�
∫ (

F�lns�(x+ hn)− F�lns�(x+ h)
)
dFn(x)

− d−1
ln,r

�lns�
∫

(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣
≤ 2 sup

s∈[0,1],x∈R

∣∣∣∣d−1
ln,r

�lns�
(
F�lns�(x)− F (x)

)
− 1

r!
Z

(r)
H (s)Jr(x)

∣∣∣∣
+

1

r!
sup

0≤s≤1

∣∣∣Z(r)
H (s)

∣∣∣ ∣∣∣∣∫ (Jr(x+ hn)− Jr(x+ h))dFn(x)

∣∣∣∣
+

∣∣∣∣d−1
ln,r

ln

∫
(F (x+ hn)− F (x+ h)) d (Fn − F ) (x)

∣∣∣∣ .
The first summand converges to 0 because of the empirical non-central limit

theorem. Moreover, sup0≤s≤1

∣∣∣Z(r)
H (s)

∣∣∣ < ∞ a.s. due to the fact that Z
(r)
H

is continuous with probability 1. It is shown in the proof of Lemma 2 that∣∣∫ (Jr(x+ hn)− Jr(x+ h))dFn(x)
∣∣ −→ 0. As a result, the second summand

vanishes as n tends to ∞.
Furthermore, note that∣∣∣∣d−1

ln,r
ln

∫
(F (x+ hn)− F (x+ h)) d (Fn − F ) (x)

∣∣∣∣
≤ K

∣∣∣∣∫ (
d−1
n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

)
dF (x+ hn)

∣∣∣∣
+K

∣∣∣∣∫ (
d−1
n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

)
dF (x+ h)

∣∣∣∣
+K

1

r!

∣∣∣Z(r)
H (1)

∣∣∣ ∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣
for some constant K and n sufficiently large, since ln = O(n). The first and
second summand on the right hand side of the above inequality converge to 0
due to the empirical process non-central limit theorem. In addition, we have∣∣∣∣∫ Jr(x)d (F (x+ hn)− F (x+ h))

∣∣∣∣ = ∣∣∣∣∫ (Jr(x− hn)− Jr(x− h)) dF (x)

∣∣∣∣
Therefore, it follows by the same argument as in the proof of Lemma 2 that the
third summand converges to 0.
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Considering the term in (9), note that

sup
0≤s≤1

∣∣∣∣∣d−1
ln,r

�lns�
∫

(Fn(x+ hn)− Fn(x+ h)) dF�lns�(x)

− d−1
ln,r

�lns�
∫

(F (x+ hn)− F (x+ h)) dF (x)

∣∣∣∣∣
≤ 2 sup

0≤s≤1,x∈R

∣∣∣∣d−1
ln,r

�lns�
(
F�lns�(x)− F (x)

)
− 1

r!
Z

(r)
H (s)Jr(x)

∣∣∣∣
+

1

r!
sup

0≤s≤1

∣∣∣Z(r)
H (s)

∣∣∣ ∣∣∣∣∫ Jr(x)d (Fn(x+ hn)− Fn(x+ h))

∣∣∣∣
+ 2K sup

x∈R

∣∣∣∣d−1
n,rn (Fn(x)− F (x))− 1

r!
Z

(r)
H (1)Jr(x)

∣∣∣∣
+

1

r!

∣∣∣Z(r)
H (1)

∣∣∣ ∫ |Jr(x+ hn)− Jr(x+ h)| dF (x)

for some constant K and n sufficiently large. The first and third summand on
the right hand side of the above inequality converge to 0 due to the empirical
process non-central limit theorem. The last summand converges to 0 due to the
corresponding argument in the proof of Lemma 2. It holds that∣∣∣∣∫ Jr(x)d (Fn(x+ hn)− Fn(x+ h))

∣∣∣∣
=

∣∣∣∣∫ (Fn(G(y)− hn)− Fn(G(y)− h))Hr(y)ϕ(y)dy

∣∣∣∣
≤

(
2 sup
x∈R

|Fn(x)− F (x)|+ sup
x∈R

|F (x− hn)− F (x− h)|
)∫

|Hr(y)|ϕ(y)dy.

The right hand side of the above inequality converges to 0 almost surely due
to the Glivenko-Cantelli theorem and because F is uniformly continuous. As a
result, the second summand converges to 0, as well.

Lemma 4 establishes a condition under which convergence in distribution of
a sequence of random variables entails convergence of the smallest argmax of
the sequence.

Lemma 4. Let K be a compact interval and denote by D(K) the corresponding
Skorohod space, i.e. the collection of all functions f : K −→ R which are right-
continuous with left limits. Assume that Zn, n ∈ N, are random variables taking

values in D(K) and that Zn
D−→ Z, where (with probability 1) Z is continuous

and Z has a unique maximizer. Then sargmax(Zn)
D−→ argmax(Z).

Proof. Due to Skorohod’s representation theorem there exist random variables

Z̃n and Z̃ defined on a common probability space (Ω̃, F̃ , P̃ ), such that Z̃n
D
= Zn,

Z̃
D
= Z and Z̃n

a.s.−→ Z̃. Due to Lemma 2.9 in Seijo et al. (2011) the smallest
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argmax functional is continuous at W (with respect to the Skorohod-metric
and the sup-norm metric) if W ∈ D(K) is a continuous function which has
a unique maximizer. Since (with probability 1) Z is continuous with unique

maximizer, sargmax(Z̃n)
a.s.−→ argmax(Z̃). As almost sure convergence implies

convergence in distribution, we have sargmax(Z̃n)
D−→ argmax(Z̃) and therefore

sargmax(Zn)
D−→ argmax(Z).

References

Andrews, D. W. K. (1993). Tests for parameter instability and structural
change with unknown change point. Econometrica 61 821–856. MR1231678

Bai, J. (1994). Least squares estimation of a shift in linear processes. Journal
of Time Series Analysis 15 453–472. MR1292161

Bai, J. (1997). Estimation of a change point in multiple regression models.
Review of Economics and Statistics 79 551–563.

Balke, N. S. (1993). Detecting level shifts in time series. Journal of Business
& Economic Statistics 11 81–92.

Ben Hariz, S. and Wylie, J. J. (2005). Convergence rates for estimating
a change-point with long-range dependent sequences. Comptes Rendus de
l’Académie des Sciences Paris - Series I 341 765–768. MR2188874

Beran, J. and Feng, Y. (2002). SEMIFAR models - a semiparametric frame-
work for modelling trends, long-range dependence and nonstationarity. Com-
putational Statistics & Data Analysis 40 393–419. MR1924017

Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). Long-memory pro-
cesses. Springer-Verlag Berlin Heidelberg. MR3075595
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