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1. Introduction

We consider the problem of predicting an unknown d-dimensional vector μ ∈ R
d

from its noisy measurements V ∈ R
d. Given a collection of parametric pre-

dictors of μ, we focus on the selection of the predictor μ̂ that minimizes the
discrepancy with the unknown vector μ. For instance, this includes the prob-
lem of selecting the best predictors from the set of Least Absolute Shrinkage
and Selection Operator (LASSO) solutions [44] obtained for all possible choices
of regularization parameters. To this end, the common approach is to select μ̂
that minimizes an unbiased estimate of the expected squared loss E||μ − μ̂||2,
typically, with the Stein unbiased risk estimator (SURE) [43]. Such estimators
are classically built on some statistical modeling of the noise, e.g., as being
distributed within the exponential family. In this context, we investigate the
interest of going beyond squared losses by rather estimating a loss function
grounded on an information based criterion, namely, the Kullback-Leibler di-
vergence. We will first recall some basic properties of the exponential family, give
a quick review on risk estimation and motivate the use of the Kullback-Leibler
divergence.

Exponential family. We assume that in the aforementioned recovery prob-
lem the noise distribution belongs to the exponential family. Formally, the recov-
ery problem can be reparametrized using two one-to-one mappings ψ : Rd → R

d

and φ : Rd → R
d such that Y = ψ(V ) has a probability measure Pθ charac-

terized by a probability density or mass function with respect to the Lebesgue
measure dy of the following form

p(y; θ) = h(y) exp (〈y, θ〉 −A(θ)) (1.1)

where θ = φ(μ) ∈ R
d. The distribution Pθ is said to be within the natural

exponential family. We call θ the natural parameter, Y a sufficient statistic for
θ, h : Rd → R

+ the base measure, and A : Rd → R the log-partition function.
Classical and important properties of the exponential family include A that
is convex, E[Y ] = ∇A(θ) and Var[Y ] = ∇∇tA(θ) (see, e.g., [3]). Here and in
the following, E[Y ] =

∫
Y dPθ denotes the expectation of the random vector Y

with respect to the measure dPθ, and Var[Y ] = E[(Y − E[Y ])(Y − E[Y ])t] is its
so-called variance-covariance matrix.

Without loss of generality, we consider that Y is a minimal sufficient statistic.
As a consequence, ∇A is one-to-one and we can choose φ as the canonical link
function satisfying φ = (∇A)−1 (as coined in the language of generalized linear
models). An immediate consequence is that Y has expectation E[Y ] = μ and its
variance is a function of μ given by Var[Y ] = Λ(μ) where Λ = (∇∇tA) ◦ φ. The
function Λ : Rd → R

d×d is the so-called variance function (see, e.g., [36]), also
known as the noise level function (in the language of signal processing).

Table 1 gives five examples of univariate distributions of the exponential
family – two of them are defined in a continuous domain, the other three are
defined in a discrete domain.
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Table 1

Examples of univariate distributions of the exponential family. The variable y denotes an
outcome of the random variable Y , μ = E[Y ] is the unknown (location) parameter of

interest, and the variables in brackets are known nuisance (scale and shape) parameters.

Distribution law θ = φ(μ) Λ(μ) h(y) A(θ)

Gaussian (σ > 0)
1√
2πσ

exp

(
− (y − μ)2

2σ2

)
μ

σ2
σ2 e

− y2

2σ2

√
2πσ

σ2θ2

2
μ ∈ R

Gamma (L > 0)
LLyL−1

Γ(L)μL
e
−Ly

μ 1R+(y)
−L

μ

μ2

L

LLyL−1

Γ(L)
1R+(y) −L log(−θ/L)

μ > 0

Poisson
μye−μ

y!
1N(y) logμ μ

1N(y)

y!
exp θ

μ > 0

Binomial (n > 0)(
n

y

)
p
y(1− p)n−y

1[0,n](y) log
μ

n− μ
−μ2

n
+ μ

(
n

y

)
1[0,n](y) n log(1 + eθ)

μ = np, p ∈ [0, 1]

Negative Binomial (r > 0)
Γ(r + y)

y!Γ(r)
p
y(1− p)r1N(y) log

μ

r + μ

μ2

n
− μ

Γ(r + y)

y!Γ(r)
1N(y) −r log(1− eθ)

μ = rp/(1− p), p ∈ [0, 1]

Risk estimation. We now assume that the predictor μ̂ of μ is a function of
Y only, hence, we write it μ̂(Y ), and we focus on estimating the loss associated
to μ̂(Y ) with respect to μ. When the noise has a Gaussian distribution with
independent entries, SURE [43] can be used to estimate the mean squared error
(MSE), or in short the risk, defined as: MSEμ = E||μ − μ̂(Y )||2. The resulting
estimator, being independent on the unknown predictor μ, can serve in practice
as an objective for parameter selection. Eldar [15] builds on Stein’s lemma [43],
a generalization of SURE valid for some continuous distributions of the expo-
nential family. It provides an unbiased estimate of the “natural” risk, defined
as: MSEθ = E||φ(μ)− φ(μ̂(Y ))||2, i.e., the risk with respect to θ = φ(μ). In the
same vein, when the distribution is discrete, Hudson [26] provides another result
for estimating the “exp-natural” risk: MSEη = E|| expφ(μ)−expφ(μ̂(Y ))||2, i.e.,
the risk with respect to η = exp θ, where exp : Rd → R

d is the entry-wise expo-
nential. As φ is assumed one-to-one, there is no doubt that if such loss functions
cancel then μ̂(Y ) = μ. In this sense, they provide good objectives for selecting
μ̂(Y ). However, within a family of parametric predictors and without strong
assumptions on μ, such a loss function might never cancel. In such a case, it
becomes unclear what its minimization leads it to select, all the more when φ or
exp ◦φ are non-linear. Furthermore, even when they are linear (e.g., exp ◦φ = id
for Poisson noise), minimizing MSEμ = E||μ−μ̂(Y )||2 might not even be relevant



3144 C.-A. Deledalle

as it does not compensate for the heteroscedasticity of the noise (this will be
made clear in our experiments). Estimating the reweighted or Mahanalobis risk
given by E||Λ(μ)−1/2(μ − μ̂(Y ))||2 could be more relevant in this case, but its
estimation is more intricate.

Kullback-Leibler divergence. The Kullback-Leibler (KL) divergence [27] is
a measure of information loss when an alternative distribution P1 is used to ap-
proximate the underlying one P0. Its formal definition is given by D(P0‖P1) =∫
dP0 log

dP0

dP1
. Unlike squared losses, it does not measure the discrepancy be-

tween an unknown parameter and its estimate, but between the unknown dis-
tribution P0 of Y and its estimate P1. As a consequence, it is invariant with
one-to-one reparametrization of the parameters and, hence, becomes a serious
competitor to squared losses. Remark that it is also invariant under one-to-
one transformations of Y because such transforms do not affect the quantity
of information carried by Y . Interestingly, provided P0 and P1 belongs to the
same member of the natural exponential family respectively with parameters θ0
and θ1, the KL divergence can be written in terms of the Bregman divergence
associated with A for points θ0 and θ1, i.e.,

D(P0‖P1) = A(θ1)−A(θ0)− 〈∇A(θ0), θ1 − θ0〉 . (1.2)

While squared losses are defined irrespective of the noise distribution, the KL
divergence adjusts its penalty with respect to the scales and the shapes of the
deviations. In particular, it accounts for heteroscedasticity.

Contributions. In this paper, we address the problem of estimating KL
losses, i.e., losses based on the KL divergence. As it is a non symmetric dis-
crepancy measure, we can define two KL loss functions. The first one

MKLA = E[D(Pθ‖Pθ̂(Y ))] (MKLA)

will be referred to as the mean KL analysis loss as it can be given the following
interpretation: “how well might Pθ̂(Y ) explain independent copies of Y ”. The
mean KL analysis loss is inherent to many statistical problems as it takes as
reference the true underlying distribution. It is at the heart of the maximum
likelihood estimator and is typically involved in non-parametric density esti-
mation, oracle inequalities, mini-max control, etc. (see, e.g., [22, 17, 41]). The
second one will be referred to as the mean KL synthesis loss given by

MKLS = E[D(Pθ̂(Y )‖Pθ)] (MKLS)

which can be given the following interpretation: “how well might Pθ̂(Y ) generate
independent copies of Y ”. The mean KL synthesis loss has also been considered
in different statistical studies. For instance, the authors of [48] consider this
loss function to design a James Stein-like shrinkage predictor. Hannig and Lee
address a very similar problem to ours, by designing a consistent estimator
of MKLS used as an objective for bandwidth selection in kernel smoothing
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Table 2

Summary of what can be estimated provided y �→ μ̂(y) is sufficiently regular.

Continuous Discrete

MSEμ if φ(μ) = αμ+ β if φ(μ) = log(αμ+ β)
⎫⎪⎪⎬
⎪⎪⎭ S

te
in

&
H
u
d
so
n

(Gaussian) (Poisson)

MSEθ yes

MSEη yes

MKLA if φ(μ) = αμ+ β if φ(μ) = log(αμ+ β)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ O

u
r

co
n
tr
ib
u
ti
o
n
s

(Gaussian) (Poisson)

yes, when Y results from a large sample mean
(Gaussian, Gamma, . . . ) (Poisson, NegBin, Binomial, . . . )

MKLS∗ yes
∗consistently for kernel smoothing under Gamma [24] and Poisson noises [25].

problems subject to Gamma [24] and Poisson noise [25]. Table 2 gives a summary
of our contributions. It highlights which loss can be estimated and under which
conditions of the exponential family. The main contributions of our paper are:

1. provided y 	→ μ̂(y) and the base measure h are both weakly differentiable,
MKLS can be unbiasedly estimated (Theorem 4.1),

2. for any mapping y 	→ μ̂(y), MKLA can be unbiasedly estimated for Poisson
variates (Theorem 4.2),

3. provided y 	→ μ̂(y) is k ≥ 3 times differentiable with bounded k-th deriva-
tive, MKLA can be estimated with vanishing bias when Y results from a
large sample mean of independent random vectors with finite k-th order
moments (Theorem 4.3).

It is worth mentioning that a symmetrized version of the mean Kullback-Leibler
loss: MKLA+MKLS, can be estimated as soon as MKLA and MKLS can both
be estimated (e.g., for continuous distributions according to Table 2).

2. Risk estimation under Gaussian noise

This section recalls important properties of the MSE and the definition of SURE
under additive noise models of the form Y = μ+Z where Z ∼ N (0, σ2Idd) and
Idd denotes the d× d identity matrix.

Before turning to the unbiased estimation of MSEμ, it is important to recall
that for any additive models and zero-mean noise with variance σ2Idd, provided
the following quantities exists, we have

MSEμ = E||Y − μ̂(Y )||2 − dσ2︸ ︷︷ ︸
expected data fidelity

+2 trCov(Y, μ̂(Y ))︸ ︷︷ ︸
model complexity

(2.1)

where Cov(Y, μ̂(Y )) = E[(Y − E[Y ])(μ̂(Y ) − E[μ̂(Y )])t] is the cross-covariance
matrix between Y and μ̂(Y ). Equation (2.1) gives a variational interpretation of
the minimization of the MSE as the optimization of a trade-off between overfit-
ting (first term) and complexity (second term). In fact, σ−2 tr Cov(Y, μ̂(Y )) is a
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classical measure of the complexity of a statistical modeling procedure, known
as the degrees of freedom (DOF), see, e.g., [13]. The DOF plays an important
role in model validation and model selection rules, such as, Akaike information
criteria (AIC) [1], Bayesian information criteria (BIC) [42], and the generalized
cross-validation (GCV) [20].

For linear predictors of the form μ̂(y) = Wy, W ∈ R
d×d (think of least-square

or ridge regression), the DOF boils down to trW . As a consequence, the random
quantity ||Y − μ̂(Y )||2 − dσ2 + 2 trW becomes an unbiased estimator of MSEμ,
that depends solely on Y without prior knowledge of μ. If W is a projector,
the DOF corresponds to the dimension of the target space, and we retrieve
the well known Mallows’ Cp statistic [35] as well as the aforementioned AIC.
The SURE provides a generalization of these results that is not only restricted
to linear predictors but can be applied to weakly differentiable mappings. A
comprehensive account on weak differentiability can be found in e.g., [16, 18].
Let us now recall Stein’s lemma [43].

Lemma 1 (Stein lemma). Assume f is weakly differentiable with essentially
bounded weak partial derivatives on R

d and Y ∼ N (μ, σ2Idd), then

tr Cov(Y, f(Y )) = σ2
E

[
tr

∂f(y)

∂y

∣∣∣∣
Y

]
.

A direct consequence of Stein’s Lemma, provided μ̂ fulfills the assumptions of
Lemma 1, is that

SURE = ||Y − μ̂(Y )||2 − dσ2 + 2σ2 tr
∂μ̂(y)

∂y

∣∣∣∣
Y

(2.2)

satisfies ESURE = MSEμ. Applications of SURE emerged for choosing the
smoothing parameters in families of linear predictors [30] such as for model
selection, ridge regression, smoothing splines, etc. After its introduction in the
wavelet community with the SURE-Shrink algorithm [11], it has been widely
used to various image restoration problems, e.g., with sparse regularizations
[2, 38, 6, 37, 5, 32, 39, 45] or with non-local filters [46, 12, 9, 47].

3. Risk estimation for the exponential family and beyond

In this section, we recall how SURE has been extended beyond Gaussian noises
towards noises distributed within the natural exponential family.

Continuous exponential family. We first consider continuous noise models,
e.g., Gamma noise. To begin, we recall a well known result derived by Eldar [14],
that can be traced back to Hudson1 in the case of independent entries [26], and
that can be seen as a generalization of Stein’s lemma.

1In his paper, Hudson mentioned that Stein already knew about this result.
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Lemma 2 (Generalized Stein’s lemma). Assume f is weakly differentiable with
essentially bounded weak partial derivatives on R

d and Y follows a distribution
of the natural exponential family with natural parameter θ, provided h is also
weakly differentiable on R

d, we have

E 〈θ, f(Y )〉 = −E

[〈
∇h(Y )

h(Y )
, f(Y )

〉
+ tr

∂f(y)

∂y

∣∣∣∣
Y

]
.

Lemma 2, whose proof can be found in [14], provides an estimator of the dot
product E 〈θ, f(Y )〉 that solely depends on Y without reference to θ. As a
consequence, the Generalized SURE (as coined by [14]) defined by

GSURE = ||θ̂(Y )||2 + 2

〈
∇h(Y )

h(Y )
, θ̂(Y )

〉
+ 2 tr

∂θ̂(y)

∂y

∣∣∣∣∣
Y

+
1

h(Y )
tr

∂2h(y)

∂y2

∣∣∣∣
Y

(3.1)

is an unbiased estimator of MSEθ, i.e., EGSURE = MSEθ, provided θ̂, h and
∇h are weakly differentiable2. Note that omitting the last term in (3.1) leads
to the seminal definition of GSURE given in [14] which provides an unbiased
estimate of MSEθ − ||θ||2, even though ∇h is not weakly differentiable.

The GSURE can be specified for Gaussian noise, and in this case GSURE =
σ−4SURE and the “natural” risk boils down to the risk as MSEθ = σ−4MSEμ.
In general, such a linear relationship between the “natural” risk and the risk
of interest might not be met. For instance, under Gamma noise3 with scale
parameter L (see Table 1), with expectation μ and independent entries, the
GSURE reads as

GSURE
Gamma

=

d∑
i=1

L2

μ̂i(Y )2
− 2L(L− 1)

Yiμ̂i(Y )
+

2L

μ̂i(Y )2
∂μ̂i(y)

∂yi

∣∣∣∣
Y

+
(L− 1)(L− 2)

Y 2
i

(3.2)

which, as soon as L > 2 and μ̂ fulfills the assumptions of Lemma 2, unbiasedly
estimates MSEθ = L2

E||μ−1 − μ̂(Y )−1||2, where (·)−1 is the entry-wise inver-
sion4. We will see in practice that minima of MSEθ can strongly depart from
those of interest. As the GSURE can only measure discrepancy in the “natural”
parameter space, its applicability in real scenarios can thus be seriously limited.

2Eq. (3.1) is obtained by applying Lemma 2 on
〈
θ, θ̂(Y )

〉
, 〈θ, θ〉 and

〈
h(Y )−1∇h(Y ), θ

〉
.

3A random variable Y follows a Gamma distribution with scale parameter L if it results
from the mean of L independent and identically distributed exponential random variables.
For this reason, L is often referred to as the number of looks and controls the spread of the

distribution as Var[Y ] = Λ(μ) = μ2

L
. This distribution is widely used to describe fluctuations

of speckle in coherent laser imagery [21].
4L > 2 implies that h and ∇h are weakly differentiable. By omitting the last term of

GSURE, an unbiased estimate of L2
E||μ−1−μ̂(Y )−1||2−L2||μ−1||2 is obtained as soon as L>1.
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Discrete exponential family. We now consider discrete noises distributed
within the natural exponential family, e.g., Poisson or binomial. Before turning
to the general result, let us focus on Poisson noise with mean μ and independent
entries for which the Poisson unbiased risk estimator (PURE) defined as

PURE= ||μ̂(Y )||2 − 2 〈Y, μ̂↓(Y )〉+ 〈Y, Y −1〉 where μ̂↓(Y )i= μ̂i(Y −ei),
(3.3)

unbiasedly estimates MSEμ, see, e.g., [7, 26]. The vector ei is defined as (ei)i = 1
and (ei)j = 0 for j �= i. The PURE is in fact the consequence of the following
lemma also due to Hudson [26].

Lemma 3 (Hudson’s lemma). Assume Y follows a discrete distribution on Z
d

of the natural exponential family with natural parameter θ, then

E 〈exp θ, f(Y )〉 = E

[〈
h↓(Y )

h(Y )
, f↓(Y )

〉]
where h↓(Y )i = h(Y − ei)

holds for every mapping f : Zd → R where exp is the entry-wise exponential.

Hudson’s lemma provides an estimator of the dot product E 〈exp θ, f(Y )〉
that solely depends on Y without reference to the parameter η = exp θ. As a
consequence, we can define a Generalized PURE (GPURE) as

GPURE = || exp θ̂(Y )||2 − 2

〈
h↓(Y )

h(Y )
, exp θ̂↓(Y )

〉
+

〈
h↓(Y )

h(Y )
,

(
h↓
h

)
↓
(Y )

〉
(3.4)

which unbiasedly estimates MSEη for the discrete natural exponential family5.

As for GSURE, GPURE cannot in general measure discrepancy in the pa-
rameter space of interest, and for this reason, its applicability in real scenarios
can also be limited. However, under Poisson noise, the “exp-natural” space coin-
cides with the parameter space of interest as η = exp(φ(μ)) = μ, hence, leading
to the PURE. Another interesting case, already investigated in [26], is the one
of noise with a negative binomial distribution with mean μ and independent
entries, for which the “exp-natural” space does not match with the one of μ but
with the one of the underlying probability vector p ∈ [0, 1]d as defined in Table
1 (we have θi = log pi). In such a case, GPURE reads, for r ∈ R

+
∗ /{1, 2}, as

GPURE
negbin

= ||p̂(Y )||2 − 2

d∑
i=1

Yip̂i(Yi − 1)

Yi + r − 1
+

d∑
i=1

Yi(Yi − 1)

(Yi + r − 1)(Yi + r − 2)
(3.5)

and is an unbiased estimator of E
[
||p̂(Y )− p||2

]
.

5 Eq. (3.4) is obtained by applying three times Lemma 3.
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Other related works. It is worth mentioning that there have been several
works focusing on estimating mean squared errors in other scenarios. For in-
stance, when Y has an elliptical-contoured distribution with a finite known
covariance matrix Σ, the works of [28, 23] provide a generalization of Stein’s
lemma that can also be used to estimate the risk associated to μ. In [40], the
authors provide a versatile approach that provides unbiased risk estimators in
many cases, including, all members of the exponential family (continuous or
discrete), the Cauchy distribution, the Laplace distribution, and the uniform
distribution [40]. The authors of [33] use a similar approach to design such an
estimator in the case of the non-centered χ2 distribution [33].

4. Kullback-Leibler loss estimation for the exponential family

We now turn to our first contribution that provides, for continuous distributions
of the natural exponential family, an unbiased estimator of the Kullback-Leibler
synthesis loss.

Theorem 4.1 (Stein Unbiased KLS estimator). Assume y 	→ μ̂(y) is weakly
differentiable with essentially bounded weak partial derivatives on R

d and Y
follows a distribution of the natural exponential family with natural parameter
θ, provided h is weakly differentiable on R

d, the following

SUKLS =

〈
θ̂(Y ) +

∇h(Y )

h(Y )
, μ̂(Y )

〉
+ tr

∂μ̂(y)

∂y

∣∣∣∣
Y

−A(θ̂(Y ))

where θ̂(Y ) = φ(μ̂(Y )), is an unbiased estimator of MKLS−A(θ).

Proof. Remark that MKLS = E

[〈
θ̂(Y )− θ, μ̂(Y )

〉
−A(θ̂(Y ))

]
+ A(θ) since

∇A(θ̂(Y )) = μ̂(Y ). Hence, Lemma 2 leads to

E [〈θ, μ̂(Y )〉] = −E

[〈
∇h(Y )

h(Y )
, μ̂(Y )

〉
+ tr

∂μ̂(y)

∂y

∣∣∣∣
Y

]
, (4.1)

which concludes the proof.

As GSURE, SUKLS can be specified for Gaussian noise, and in this case
SUKLS = (2σ2)−1(SURE−||Y ||2+dσ2) and the Kullback-Leibler synthesis loss
boils down to the risk as MKLS = (2σ2)−1MSEμ. More interestingly, consider
the following example of Gamma noise.

Example 1. Under Gamma noise with expectation μ, shape parameter L (as
defined in Table 1) and independent entries, SUKLS reads as

SUKLS
Gamma

=

d∑
i=1

[
(L− 1)μ̂(Y )i

Yi
− L log(μ̂(Y )i)− L

]
+ tr

∂μ̂(y)

∂y

∣∣∣∣
Y

(4.2)
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which, up to a constant, and provided L > 1, unbiasedly estimates

MKLS
Gamma

=
d∑

i=1

E

[
L
μ̂(Y )i
μi

− L log

(
μ̂(Y )i
μi

)
− L

]
. (4.3)

In our experiments, we will see that minimizing MKLS (or its SUKLS estimate)
leads to relevant selections, unlike minimizing MSEθ (or its GSURE estimate).
Note that the authors of [24] have proposed a consistent estimator of MKLS
when L = 1 (they did not study the case where L > 1), their estimator has
been however designed only for kernel smoothing problems.

Theorem 4.1 is a straightforward application of Lemma 2 that applies since
MKLS − A(θ) depends only on θ through a dot product 〈θ, f(Y )〉 for some
mappings f . For discrete distributions, Lemma 3 only provides an estimate of
〈exp(θ), f(Y )〉 and hence cannot be applied to estimate MKLS. Alternatively,
we can focus on estimating the Kullback-Leibler analysis loss MKLA. To this
end, a formula that provides an estimate of 〈∇A(θ), f(Y )〉 for some mappings
f is needed. Of course, if ∇A(θ) = θ for some continuous distributions, Lemma
2 applies and can be used to design an estimator of MKLA. However, the only
distribution satisfying ∇A(θ) = θ is the normal distribution, for which SURE
can already be used to estimate MKLA = (2σ2)−1MSEμ. More interestingly,
if ∇A(θ) = exp(θ) for some discrete distributions, Lemma 3 applies and can
be used to design an unbiased estimator of MKLA. The Poisson distribution
satisfies this relation leading us to state the following theorem.

Theorem 4.2 (Poisson Unbiased KLA estimator). Assume Y follows a Poisson
distribution with expectation μ and independent entries, then

PUKLA = ||μ̂(Y )||1 − 〈Y, log μ̂↓(Y )〉 ,

is an unbiased estimator of MKLA
Poisson

+ ||μ||1 − 〈μ, logμ〉 where

MKLA
Poisson

= E [||μ̂(Y )||1 − 〈μ, log μ̂(Y )− log μ〉]− ||μ||1

and log is the entry-wise logarithm.

Proof. The expression of MKLA follows directly from Table 1 and Equation
(1.2) since exp θ = μ. From Lemma 3, we get

E [〈μ, log(μ̂(Y ))〉] = E

[〈
exp θ, θ̂(Y )

〉]
= E

[〈
h↓(Y )

h(Y )
, θ̂↓(Y )

〉]
, (4.4)

which concludes the proof as h↓(y)/h(y) = y and θ̂↓(Y ) = log μ̂↓(Y ).

With such results at hand, only the Poisson distribution admits an unbiased
estimator of the mean Kullback-Leibler analysis loss. In order to design an
estimator of MKLA for a larger class of natural exponential distributions, we
will make use of the following proposition.
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Proposition 1. For any probability density or mass function y 	→ p(y; θ) of
the natural exponential family of parameter θ, the Kullback-Leibler analysis loss
associated to y 	→ θ̂(y) can be decomposed as follows

MKLA = −E log
p(Y ; θ̂(Y ))

p(Y ; θ)︸ ︷︷ ︸
expected data fidelity loss

+trCov
(
θ̂(Y ), Y

)
︸ ︷︷ ︸
model complexity

,

where − E log
p(Y ; θ̂(Y ))

p(Y ; θ)
= E

[
A(θ̂(Y ))−A(θ)−

〈
Y, θ̂(Y )− θ

〉]
and tr Cov

(
θ̂(Y ), Y

)
= E

[〈
Y − μ, θ̂(Y )

〉]
.

Proof. Subtracting and adding
〈
Y, θ̂(Y )− θ

〉
in the MKLA definition leads to

MKLA = E

[
A(θ̂(Y ))−A(θ)−

〈
Y, θ̂(Y )− θ

〉
+
〈
Y −∇A(θ), θ̂(Y )− θ

〉]
.

As − log p(Y ; θ) = − log h(Y ) − 〈Y, θ〉 + A(θ) and ∇A(θ) = μ = E[Y ], this
concludes the proof.

In the same vein as for the decomposition (2.1), Proposition 1 provides a
variational interpretation of the minimization of MKLA, valid for noise distri-
butions within the exponential family. Minimizing MKLA leads to a maximum
a posteriori selection promoting faithful models with low complexity. It boils
down to (2.1) when specified for Gaussian noise. As for the MSE, the fidelity
term can always be unbiasedly estimated, up to an additive constant, without
knowledge of θ. Only the complexity term trCov(θ̂(Y ), Y ), which generalizes
the notion of degrees of freedom, is required to be estimated. Except for the
Poisson distribution, none of the previous lemmas can be applied to unbiasedly
estimate this term. However, we will show that it can be biasedly estimated,
with vanishing bias depending on both the “smoothness” of θ̂ and the behavior
of the moments of Y . Towards this goal, let us first recall the Delta method.

Lemma 4 (Delta method). Let Yn = 1
n (Z1+ . . .+Zn), n ≥ 1, where Z1, Z2, . . .

is an infinite sequence of independent and identically distributed random vectors
in R

d with EZi = μ, Var[Zi] = Σ and finite moments up to order k ≥ 3. Let
f : Rd → R be k times totally differentiable with bounded k-th derivative, then

E [f(Yn)− f(μ)] =
1

2n
tr

(
Σ

∂2f(y)

∂y2

∣∣∣∣
μ

)
+O(n−2) = O(n−1).

Lemma 4 is a direct d-dimensional extension of [29] (Theorem 5.1a, page 109),
that allows us to introduce our biased estimator of MKLA.

Theorem 4.3 (Delta KLA estimator). Let Yn = 1
n (Z1 + . . . + Zn), n ≥ 1,

where Z1, Z2, . . . is an infinite sequence of independent random vectors in R
d
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identically distributed within the natural exponential family with natural param-
eter θ, log-partition function A, expectation μ, variance function Λ and finite
moments up to order k ≥ 3. As a result, the distribution of Yn is also in the
natural exponential family parametrized by θn = nθ with log-partition function
An(θn) = nA(θn/n), expectation μ and variance function Λn = Λ/n. Provided

θ̂n reads as θ̂n = nθ̂, and θ̂ : Rd → R
d is k times totally differentiable with

bounded k-th derivative, then

DKLAn = An(θ̂n(Yn))−
〈
Yn, θ̂n(Yn)

〉
+ tr

(
Λn(Yn)

∂θ̂n(y)

∂y

∣∣∣∣∣
Yn

)

satisfies EDKLAn = MKLAn − 〈μ, θn〉+An(θn) +O(n−1)

where MKLAn is the KL analysis loss associated to θ̂n with respect to θn.

Proof. Let f(y) =
〈
θ̂(y), y − μ

〉
. We have f(μ) = 0 and ∂2f(y)

∂y2

∣∣∣
μ
= 2 ∂θ̂(y)

∂y

∣∣∣
μ
.

Under the assumptions on θ̂, the second-order approximation of Lemma 4 applies

tr Cov(θ̂(Yn), Yn) � E [f(Yn)− f(μ)] =
1

n
tr

⎛
⎝Λ(μ)

∂θ̂(y)

∂y

∣∣∣∣∣
μ

⎞
⎠+O(n−2) .

(4.5)

Moreover, under the assumptions on θ̂ and as Λ is in C∞, the first-order ap-
proximation of Lemma 4 applies and

E

[
tr

(
Λ(Yn)

∂θ̂(y)

∂y

∣∣∣∣∣
Yn

)]
= tr

⎛
⎝Λ(μ)

∂θ̂(y)

∂y

∣∣∣∣∣
μ

⎞
⎠+O(n−1) . (4.6)

Subsequently, we have

EDKLAn −MKLAn + 〈∇An(θn), θn〉 −An(θn)

= E

[
tr

(
Λn(Yn)

∂θ̂n(y)

∂y

∣∣∣∣∣
Yn

)
− tr Cov

(
θ̂n(Yn), Yn

)]
(4.7)

= nE

[
1

n
tr

(
Λ(Yn)

∂θ̂(y)

∂y

∣∣∣∣∣
Yn

)
− tr Cov

(
θ̂(Yn), Yn

)]
= O(n−1) (4.8)

and as ∇An(θn) = μ, this concludes the proof.

It is worth mentioning that Theorem 4.3 can be applied to Gaussian noise,
with DKLA boiling down to SURE, as DKLA = (2σ2)−1(SURE− ||Y ||2 + dσ2).
However, the conclusion is not as strong, as by virtue of Lemma 1, DKLA would
be in fact an unbiased estimator provided only that μ̂ is weakly differentiable.
More interestingly, consider the two following examples.
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Example 2. Gamma random vectors Yn with expectation μ ∈ (R+
∗ )

d and shape
parameter Ln = n (as defined in Table 1) results from the sample mean of
n independent exponential random vectors with expectation μ (entries of the
vectors are supposed to be independent). As exponential random vectors have
finite moments, provided μ̂ is sufficiently smooth and since φ is continuously
differentiable in (R+

∗ )
d, Theorem 4.3 applies and we get

DKLAn
Gamma

=

d∑
i=1

−Ln log μ̂i(Yn) +
Ln(Yn)i
μ̂i(Yn)

+
(Yn)

2
i

μ̂i(Yn)2
∂μ̂i(y)

∂yi

∣∣∣∣
Yn

satisfies EDKLAn
Gamma

= MKLAn
Gamma

+ Ln

d∑
i=1

log(μi)− Ln +O(n−1) (4.9)

where MKLAn
Gamma

= Ln

d∑
i=1

E

[
− log(μ̂i(Yn)) +

μi

μ̂i(Yn)
+ log(μi)− 1

]
.

Example 3. Consider Yn the sample mean of n independent Poisson random
vectors with expectation μ ∈ (R+

∗ )
d. We have that Yn, for all n, belongs to the

natural exponential family with An(θn) = n exp(θn/n) and θn = n log μ (entries
of the vectors are supposed to be independent). As Poisson random vectors have
finite moments, provided μ̂ is sufficiently smooth and since φ is continuously
differentiable in (R+

∗ )
d, Theorem 4.3 applies and we get

DKLAn
Poisson

= n||μ̂(Yn)||1 −
〈
Yn, n log μ̂(Yn) + diag

(
∂ log μ̂(y)

∂y

∣∣∣∣
Yn

)〉

satisfies EDKLAn
Poisson

= MKLAn
Poisson

− n 〈μ, logμ〉+ n||μ||1 +O(n−1) (4.10)

where MKLAn
Poisson

= nE [||μ̂(Yn)||1 − 〈μ, log μ̂(Yn)− log μ〉 − ||μ||1] .

Interestingly, remark that PUKLA(μ̂, Y ) ≈ DKLA(μ̂, Y ), as soon as we have
both μ̂(Y − 1) ≈ μ̂(Y )− μ̂′(Y ) and |μ̂(Y )| � |μ̂′(Y )|.

5. Reliability study

In this section, we aim at studying and comparing the sensitivity of the pre-
viously studied risk estimators. Little is known about the variance of SURE:

Var[SURE] = E

[
(SURE−MSE)

2
]
. It is in general an intricate problem and

some studies [37, 31] focus instead on the reliability E

[
(SURE− SE)

2
]
where

SE = ||μ− μ̂(Y )||2 (note that MSE = E[SE]). Here, we do not aim at providing
tight bounds on the reliability as this would require specific extra assumptions
for each pair of loss functions and estimators. The next proposition provides
only crude bounds on the reliability of each estimator.
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Proposition 2. Assume y 	→ θ̂(y) is weakly differentiable. Then, provided the
following quantities are finite, we have

1

2
E

[(
GSURE− SEθ

)2]1/2 ≤ E

[〈∇h(Y )

h(Y )
+ θ, θ̂(Y )

〉2
]1/2

+ E

⎡
⎣(tr

∂θ̂(y)

∂y

∣∣∣∣∣
Y

)2
⎤
⎦1/2

E

[(
SUKLS−KLS

)2]1/2 ≤ E

[〈∇h(Y )

h(Y )
+ θ, μ̂(Y )

〉2
]1/2

+ E

[(
tr

∂μ̂(y)

∂y

∣∣∣∣
Y

)2
]1/2

1

2
E

[(
PURE− SEμ

)2]1/2 ≤ E

[
〈μ, μ̂(Y )〉2

]1/2
+ E

[〈
Y, μ̂↓(Y )

〉2]1/2
E

[(
PUKLA−KLA

)2]1/2 ≤ E

[
〈μ, log μ̂(Y )〉2

]1/2
+ E

[〈
Y, log μ̂↓(Y )

〉2]1/2

E

[(
DKLA−KLA

)2]1/2 ≤ E

[〈
Y − μ, θ̂(Y )

〉2
]1/2

+ E

⎡
⎣tr

(
Λ(Y )

∂θ̂(y)

∂y

∣∣∣∣∣
Y

)2
⎤
⎦1/2

where KLA = D(Pθ‖Pθ̂(Y )) (note that E[KLA] = MKLA), and KLS is defined
similarly. The over-line refers to quantities for which additive constant with
respect to μ̂(Y ) are skipped, e.g., SEμ = SEμ − ||μ||2 = ||μ̂(Y )||2 − 2 〈μ̂(Y ), μ〉
and KLA = KLA+A(θ)− 〈∇A(θ), θ〉.

Proof. This is a straightforward consequence of Cauchy-Schwartz’s inequality.

Proposition 2 allows us to compare the relative sensitivities of the different
estimators. Comparing GSURE and SUKLS, one can notice that the bounds are
similar but the first one is controlled by θ̂(Y ) while the second one is controlled
by μ̂(Y ). While it is difficult to make a general statement, we believe SUKLS
estimates might be more stable than GSURE since μ̂(Y ) has usually better

control than θ̂(Y ), given the non-linearity of the canonical link function φ.

6. Implementation details for the proposed estimators

In this section, we explain how the proposed risk estimators can be evaluated
in practice within a reasonable computation time.

All risk estimators designed for continuous distributions rely on the compu-

tation of tr

[
g(y) ∂f(y)

∂y

∣∣∣
y

]
for some mappings g : Rd → R

d×d and f : Rd → R
d.

For instance, SURE requires to compute such a a quantity with g(y) = Idd and
f = μ̂ (see eq. (2.2)). In general, the computation of these terms requires at
least O(d2) operations and thus prevents the use of such risk estimators in prac-
tice. Fortunately, following [19, 38], we can approximate such terms by using
Monte-Carlo simulations, thanks to the following relation

tr

[
g(y)

∂f(y)

∂y

∣∣∣∣
y

]
= E

〈
ζ, g(y)

∂f(y)

∂y

∣∣∣∣
y

ζ

〉
for ζ ∼ N (0, Idd), (6.1)
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where the directional derivatives in the direction ζ ∈ R
d can be computed by

using finite differences or algorithm differentiations as described in [10]. This
leads in general to a much faster evaluation in O(d) operations.

In the Poisson setting, risk estimators rely on the computation of 〈y, f↓(y)〉
for some mapping f : Rd → R

d. For instance, PUKLA requires to compute such
a quantity with f = − log μ̂ (see Theorem (4.2)). Again, the computation of
such terms requires at least O(d2) operations in general. Based on first order
expansions, we have empirically chosen to perform Monte-Carlo simulations on
the following approximation

〈y, f↓(y)〉 ≈
〈
y, f(y)− diag

((
∂f(y)

∂y

∣∣∣∣
y

ζ

)
ζt

)〉
, (6.2)

where ζ ∈ {−1,+1}d is Bernoulli distributed with p = 0.5. In our numerical
experiments, this approximation led to O(d) operations and satisfactory results
even though f was chosen to be non-linear. This approximation clearly deserves
more attention but is considered here to be beyond the scope of this study.

7. Numerical experiments

In this section, we will perform numerical experiments showing the interest of
the proposed Kullback-Leibler risk estimators in two different applications.

7.1. Application to image denoising

We first consider that Y and μ are d dimensional vectors representing images
on a discrete grid of d pixels, such that entries with index i are located at pixel
location δi ∈ Δ ⊂ Z

2. A realization y of Y represents a noisy observation of the
image μ. The estimate μ̂ of μ is a denoised version of y.

Performance evaluation. In order to evaluate the proposed loss functions
and their estimates, visual inspection will be considered to assess the image
quality in terms of noise variance reduction and image content preservation.
In order to provide an objective measure of performance, taking into account
heteroscedasticity and tails of the noise, we will evaluate the mean normalized
absolute deviation error defined as MNAE = d−1

√
π/2||Λ(μ)−1/2(μ − μ̂(Y ))||1.

The MNAE measures to which extent μ̂(Y ) might belong to a confident interval
around μ with dispersion related to Λ(μ). The MNAE is expected to be 1 when
μ̂(Y ) ∼ N (μ,Λ(μ)), and should get closer to 0 when μ̂(Y ) improves on Y itself.

Simulations in linear filtering. We consider here that μ̂ is the linear filter

μ̂(y) = Wy with Wi,j =
exp(−||δi − δj ||2/τ2)∑
j exp(−||δi − δj ||2/τ2)

, (7.1)
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Fig 1. (a, b) Original and noisy image contaminated by Gamma noise with L = 3 (square-root
of the images are displayed for better visual inspection). (c, d, e) Results of linear filtering for
the optimal bandwidth with respect to the natural risk MSEθ MKLS and MKLA. The MNAE
is indicated. (f,g,h) Risks and their estimates as a function of the bandwidth. The optimal
bandwidth τ� is indicated. Red shows unbiased estimation and blue biased estimation.

where W ∈ R
d×d is a circulant matrix encoding a discrete convolution with a

Gaussian kernel of bandwidth τ > 0. In this context, we will evaluate the rele-
vance of the different proposed loss functions and their estimates as objectives
to select a bandwidth τ offering a satisfying denoising.

Figure 1 gives an example of a noisy observation y of an image μ represent-
ing fingerprints whose pixel values are independently corrupted by Gamma noise
with shape parameter L = 3. We have evaluated the relevance of the natural risk
MSEθ given by ||μ−1− μ̂(Y )−1||2, MKLS and MKLA in selecting the bandwidth
τ . Visual inspection of the results obtained at the optimal bandwidth for each
criterion shows that the natural risk MSEθ fails in selecting a relevant band-
width while MKLS and MKLA both provide a better trade-off. The natural risk
strongly penalizes small discrepancies at the lowest intensities while not being
sensitive enough for discrepancies at higher intensities. As the noisy image has
several isolated pixel values approaching 0, the natural risk will strongly penalize
smoothing effects of such isolated structures preventing satisfying noise variance
reduction. The Kullback-Leibler loss functions take into account that Gamma
noise has a constant signal to noise ratio. Hence, it does not favor the restora-
tion of either bright or dark structures more, allowing satisfying smoothing for
both, as assessed by the MNAE. Finally, estimators of these loss functions with
respectively GSURE, SUKLS and DKLA are given. Note that for L = 3, the
Gamma distribution is far from reaching the asymptotic conditions of Theorem
4.3. As a result, bias is not negligible (it becomes obvious for the lowest values of
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Fig 2. (a,b,c) Risks and their estimates as a function of the bandwidth in the same setting as
in Figure 1 but for Gamma noise with L = 100. The optimal bandwidth τ� and the MNAE
are indicated. Red shows unbiased estimation and blue biased estimation.

τ in Figure 1.h). Nevertheless, minimizing DKLA can still provide an accurate
location of the optimal parameter for MKLA.

Figure 2 reproduces the same experiment but with Gamma noise with L =
100, i.e., with a much better signal to noise ratio. Interestingly, the bias of
DKLA gets much smaller than in the previous experiment. This was indeed
expected as with L = 100, the Gamma distribution fulfills much better the
asymptotic conditions of Theorem 4.3. Remark that MNAE values are still in
favor of Kullback-Leibler objectives, but the gains are much smaller. In fact,
all MNAE values get closer to 1 since noise reduction with signal preservation
using linear filtering becomes much harder in such a low signal to noise ratio
setting.

Simulations in non-linear filtering. We consider here that μ̂ is the non-
local filter [4] defined by

μ̂(y) = W (y)y with Wi,j(y) = exp

(
−d(Piy,Pjy)

τ

)
(7.2)

where Pi ∈ R
p×n is a linear operator extracting a patch (a small window of

fixed size) at location δi, d : Rp×R
p → R

+ is a dissimilarity measure (infinitely
differentiable and adapted to the exponential family following [8]) and τ > 0
a bandwidth parameter. Remark as W (y) ∈ R

d×d depends on y, μ̂(y) is non-
linear. In this context, we will evaluate again the relevance of the proposed loss
functions and their estimates as objectives to select the bandwidth τ .

Figure 3 gives an example of a noisy observation y of an image μ representing
a bright two dimensional chirp signal shaded gradually into a dark homogeneous
region. The noisy observation y is contaminated by noise following a Gamma
distribution with shape parameter L = 3. We have again evaluated the relevance
of the natural risk MSEθ given by ||μ−1 − μ̂(Y )−1||2, MKLS and MKLA in
selecting the bandwidth parameter. Visual inspection of the results obtained
at the optimal bandwidth for each criterion shows that the natural risk fails
in selecting a relevant bandwidth while MKLS and MKLA both provide more
satisfying results. As the image μ is very smooth in the darker region, the
natural risk favors strong variance reduction leading to a strong smoothing of
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Fig 3. (a, b) Original and noisy image contaminated by Gamma noise with L = 3 (squared
root versions of the images are displayed for better visual inspection). (c, d, e) Results of
non-local filtering for the optimal bandwidth with respect to the natural risk MSEθ MKLS
and MKLA. The MNAE is indicated. (f,g,h) Risks and their estimates as a function of the
bandwidth. The optimal bandwidth τ� is indicated. Red shows unbiased estimation and blue
biased estimation.

the texture in the brightest area. Again, the Kullback-Leibler loss functions
find a good trade-off preserving simultaneously the bright texture and reducing
the noise in the dark homogeneous region, as assessed by the MNAE. Finally,
estimators of these loss functions with respectively GSURE, SUKLS and DKLA
are given.

Figure 4 gives a similar example where the image μ represents a two di-
mensional chirp signal shaded gradually into a bright homogeneous region.
The image is displayed in log-scale to better assess the variations of the tex-
ture in the darkest region. The noisy observation y is corrupted by indepen-
dent noise following a Poisson distribution. We have evaluated the relevance
of the risks MSEμ, MKLS and MKLA in selecting the bandwidth parameter.
Visual inspection of y shows that darker regions are more affected by noise
than brighter ones. This is due to the fact that Poisson corruptions lead to a
signal to noise ratio evolving as

√
μ. It follows that the MSE essentially pe-

nalizes the residual variance of the brightest region hence leading to a strong
smoothing of the texture in the darkest area. Again, Kullback-Leibler losses
lead to selecting a more relevant bandwidth, smoothing less the brightest area
but preserving better the texture, as assessed by the MNAE. Finally, estimators
of the MSE with PURE and MKLA with PUKLA and DKLA are given. Note
that estimators of MKLS are not available for non-local filtering under Poisson
noise.
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Fig 4. (a, b) Original and noisy image contaminated by Poisson noise (log of the images
are displayed for better visual inspection). (c, d, e) Results of non-local filtering for the op-
timal bandwidth with respect to the risk MSEμ MKLS and MKLA. The MNAE is indicated.
(f,g,h) Risks and their estimates (when available) as a function of the bandwidth. The optimal
bandwidth τ� is indicated. Red shows unbiased estimation and blue biased estimation.

7.2. Application to variable selection

We now consider the problem of variable selection in linear regression problems,
i.e., in finding the non-zero components of a vector β ∈ R

q that fulfills the
assumption that an observed vector y ∈ R

d has expectation μ = Xβ where
X ∈ R

d×q is the so-called design matrix. To this aim, we consider the Least
Absolute Shrinkage and Selection Operator (LASSO) [44] given, for λ > 0, by

β̂(y) ∈ argmin
β∈Rq

− log p(y; θ = φ(Xβ)) + λ||β||1 .

In this case the predictor μ̂ is given by μ̂(y) = Xβ̂(y). The LASSO is known
to promote sparse solutions, i.e., such that the number of non-zero entries of
β̂ is small compared to q. The level of sparsity is indirectly controlled by the
regularization parameter λ, the larger λ is, the sparser β̂ will be. Finding the
optimal parameter λ, and then selecting the relevant variables (columns of X)
explaining y, is a challenging problem that can be addressed by minimizing an
estimator of the risk. In this context, we will evaluate again the relevance of
the different proposed loss functions and their estimates as objectives to select
a regularization parameter λ offering a relevant selection of variables.

Figure 5 and Table 3 provide results obtained on such a linear regression
problem where X is an orthogonal matrix and d = q = 16, 384. The vector β
was chosen such that 28% of its entries are non-zero. We have generated 200
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Fig 5. Risks and their estimates as a function of the regularization parameter λ averaged on
200 realizations (their corresponding 90% confidence intervals are also indicated in shaded
colors). Red shows unbiased estimation and blue biased estimation.

Table 3

Performance in terms of errors, false negatives (FN) and false positives (FP) of the LASSO
in solving a variable selection problem contaminated with Gamma noise (with scale

parameter L = 8) and guided by different specific objectives. The noise model is considered

correctly specified (L̂ = L) or misspecified (|1− L̂/L| = 0.1). Results are given in average
with plus and minus their standard deviations on 200 noise realizations.

Errors FN FP

Correctly specified
MSEθ 34.64 ± 3.09 11.36 ± 1.28 23.27 ± 4.36
GSURE 34.00 ± 4.34 11.74 ± 1.95 22.25 ± 6.26
MKLS 26.24 ± 0.28 15.68 ± 0.16 10.56 ± 0.23
SUKLS 26.84 ± 1.17 15.31 ± 0.82 11.52 ± 1.95
MKLA 26.24 ± 0.28 15.68 ± 0.16 10.56 ± 0.23
DKLA 28.31 ± 1.62 14.37 ± 0.95 13.94 ± 2.54

Misspecified
GSURE 35.94 ± 4.44 10.93 ± 1.81 25.01 ± 6.22
SUKLS 28.67 ± 1.45 14.13 ± 0.81 14.53 ± 2.22
DKLA 30.20 ± 1.90 13.34 ± 0.96 16.86 ± 2.84

independent realizations y of Y using a Gamma distribution model with scale
parameter L = 8. We have again evaluated the relevance of the natural risk
MSEθ given by ||μ−1− μ̂(Y )−1||2, MKLS and MKLA in selecting the regulariza-
tion parameter. Figure 5 shows the evolution of these objectives as a function of
λ. It shows that KL objectives lead to selecting a larger λ parameter than with
the natural risk. Performance in terms of average percentages of false negatives
(FN: β̂i = 0 and βi �= 0), false positives (FP: β̂i = 0 and βi �= 0) and errors
(FP or FN) are reported in Table 3. It shows that tuning the parameter λ with
respect to KL objectives leads to lower numbers of errors than with the natural
risk. One can observe that the subsequent LASSO estimators work at different
trade-offs: KL objectives favor FN over FP, while the natural risk favors FP
over FN. Finally, performances with estimators of MSEθ with GSURE, MKLS
with SUKLS, and MKLA with DKLA are also given. It can be observed that
risk estimators offer in average comparable results than their oracle counter-
parts but have higher variance. Note that the LASSO is not differentiable, such
that DKLA is not guaranteed to be asymptotically unbiased (as the conditions
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of Theorem 3 are not fulfilled), which explains the large discrepancies observed
between the results obtained by MKLA and DKLA. Nevertheless, even though
DKLA is not asymptotically unbiased in this case variable selections with the
LASSO guided by DKLA still provides a good objective for variable selection,
with similar results as if it was guided by the oracle MKLA objective.

A last important question is to know whether our risk estimators are robust
against model misspecification, i.e., when the generative model (1.1) is only
approximately known. Indeed, Lv and Liu [34] demonstrated the advantage of
using KL divergence principle for model selection problems in both correctly
specified and misspecified models. Along these lines, we have also shown in
Table 3 the results obtained under misspecification. We have chosen to evaluate
the performance of the LASSO guided by the aforementioned estimators of the
risk when the shape parameter L of the Gamma distribution is misestimated by
a factor 0.1%: |1− L̂/L| = 0.1. We found that the performance of all estimators
drop in this case. Nevertheless, their relative performance are preserved: KL
objectives lead to lower numbers of errors than with the natural risk.

8. Conclusion

We addressed the problem of using and estimating Kullback-Leibler losses for
model selection in recovery problems involving noise distributed within the ex-
ponential family. Our conclusions are threefold: 1) Kullback-Leibler losses have
shown empirically to be more relevant than squared losses for model selection in
the considered scenarios; 2) Kullback-Leibler losses can be estimated in many
cases unbiasedly or with controlled bias depending on the regularity of both
the predictor and the noise; 3) Even though the estimation is subject to vari-
ance and bias, the subsequent selection has shown empirically to be close to
the optimal one associated to the loss being estimated. Future works should
focus on understanding under which conditions such a behavior can be guar-
anteed. This includes establishing tighter bounds on the reliability, consistency
with respect to the data dimension d and asymptotic optimality results for some
given class of predictors. Estimation of Kullback-Leibler losses and other dis-
crepancies (e.g., Battacharyya, Hellinger, Mahanalobis, Rényi or Wasserstein
distances/divergences) beyond the exponential family and requiring less regu-
larity on the predictor should also be investigated.
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