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vival analytic applications. Theoretic justifications typically rely on the as-
sumption of existing intensity functions which is equivalent to an exclusion
of ties among the event times. However, such ties are omnipresent in prac-
tical studies. It turns out that the wild bootstrap should only be applied in
a modified manner that corrects for altered limit variances and emerging
dependencies. This again ensures the asymptotic exactness of inferential
procedures. An analogous necessity is the use of the Greenwood-type vari-
ance estimator for Nelson-Aalen estimators which is particularly preferred
in tied data regimes. All theoretic arguments are transferred to bootstrap-
ping Aalen-Johansen estimators for cumulative incidence functions in com-
peting risks. An extensive simulation study as well as an application to real
competing risks data of male intensive care unit patients suffering from
pneumonia illustrate the practicability of the proposed technique.
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1. Introduction

In non- and semiparametric survival analysis, one of the most frequent assump-
tions is imposed by the existence of hazard rates. Such a rate quantifies the
instantaneous probability of an event occurrence given the survival up to the
present time. In the case of its existence, it can be expressed with the help of
the survival function and its first derivative. On the other hand, the survival
function can then be written as an exponential function that involves an inte-
gral of the hazard rate. In this case, the occurrence of several individuals with
exactly the same event time is theoretically excluded.

However, following [21], p. 65, there are two reasons for tied survival times,
i.e. at least two individuals having exactly the same recorded event time: either
due to rounding of continuous underlying data or because the event times are
genuinely discrete, such as the “number of menstrual cycles until pregnancy”
in a “study of effectiveness of birth control methods”. In case of rounding, the
recorded event times are usually rounded to the whole day, week, month, year, or
some other fixed time unit. This rounding procedure almost always implicates
the appearance of tied event times. Strictly speaking, this rounding of times
alters the underlying survival function by inflicting discrete components. In this
case, the product-integral representation of the survival function does not reduce
to the above-mentioned exponential function formula; cf. [15].

There are many procedures which are able to cope with tied survival data.
The perhaps most famous of those is the Kaplan-Meier estimator [17] which
consistently estimates survival functions possibly having discrete components;
cf. e.g. Section 3.9 in [24]. Furthermore, the classical bootstrap for survival data,
as proposed by [13], is able to reproduce the limit distribution of the Kaplan-
Meier process, even if ties are present; cf. [1]. For estimating its unknown limit
variances (or those of the related Nelson-Aalen estimators) it is well-known (e.g.
[3]) that Greenwood-type estimators should be utilized in the presence of ties:
They result from predictable variation processes of martingales which are “suf-
ficiently general to handle discrete, continuous, and mixed cases” [16, p. 164].
Furthermore, the same authors state on p. 171 that, in contrast to other variance
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estimators, the Greenwood estimate “has the advantage of providing a natural
bridge between the discrete and continuous cases”. [2] even found a general
preference (also under left-truncation) for this kind of estimator. There is a vast
number of further work with a focus on estimation or model fitting under tied
survival data. We only briefly mention the following: In Section 7.6 of [9], it is
suggested for the modeling of discrete-time survival models with covariates to
either replace the proportional hazards model by a logistic model involving the
discrete hazard function or to treat tied data as if they were generated from
continuous-time models. [14] discusses the use of logistic regression techniques
for fitting parametric survival curves while allowing for ties in the case of cen-
sored data. Smoothing techniques for discrete survival data and model checking
methods are described in [23].

Due to the complicated limit behaviour of process-valued estimators in sur-
vival analysis, such as the general Aalen-Johansen estimator for state transition
probabilities in Markovian multi-state models (e.g. Chapter IV.4 in [3]), re-
sampling methods are mandatory for deducing inference methods. The perhaps
most convenient resampling method in non- and semiparametric survival anal-
ysis is not the classical bootstrap but rather the wild bootstrap; cf. [18], [20],
[5]. One of its advantages is the capability of creating martingale residuals with
approximately the right variances in semiparametric applications, even in the
case of various different covariates. Typically, however, large sample properties
of the wild bootstrap are verified by using the assumption of existing hazard
rates which is sometimes too restrictive as discussed above. See [6] and [7] for a
wild bootstrap treatment of, respectively, the general Nelson-Aalen and Aalen-
Johansen estimators under absolute continuity.

In this article, we will consider the nonparametric inference problem of con-
fidence band construction for cause-specific cumulative hazard or cumulative
incidence functions in the case of right-censored competing risks set-ups. At the
same time, we allow these true, underlying functions to have both, discrete and
absolutely continuous components. While this allows for theoretical generality,
it practically also implies that data may be collected with different levels of
precision. Even though the underlying unknown functions are altered in this
process, the wild bootstrap adjustment as developed in this article shall be able
to reproduce the asymptotic distribution of the estimators in any case.

The present article is organized as follows: In Section 2, we first discuss the
consequences resulting from not using Greenwood-type estimators and from
utilizing the usual wild bootstrap procedure. We propose a discontinuity ad-
justment for the wild bootstrap in Section 3, accompanied by our first main
result: a conditional central limit theorem for this new technique. In the follow-
ing Section 4, we show that the Nelson-Aalen estimators for different competing
risks are in general asymptotically dependent. Therefore, we present in a next
step an extension of the first proposal for the wild bootstrap adjustment that
guarantees the correct limit dependence structure between the components for
different risks. This technique has some direct implications on resampling the
Aalen-Johansen estimator for cumulative incidence functions as these depend
on all cause-specific hazard functions and, therefore, also on their dependencies.
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We present conditional central limit theorems corresponding to this set-up in
Section 5, where also variance estimators for these Aalen-Johansen estimators
and time-simultaneous confidence bands for cumulative incidence functions are
deduced. The performance of these bands in terms of coverage probabilities is
analyzed in a simulation study in Section 6 and there it is compared to the be-
haviour of confidence bands based on the usual, unadjusted wild bootstrap. In
this connection, we consider different variations of discretization coarseness and
discretization probabilities. All considered resampling techniques are applied to
a real data example with competing risks in Section 7, where confidence bands
for the probability of an alive discharge of male patients with pneumonia from
intensive care units are constructed. We conclude with a discussion in Section 8.
All proofs and various detailed derivations are presented in Appendices A–E.

2. Implications of the unadjusted wild bootstrap

In general, we will assumme that there are discrete components in the event
time distribution and that the event, if observed, can be classified to one out of
k P N, k ě 2 different causes, i.e. competing risks. If T denotes a random event
time, this implies that the function

αptq “ lim
ΔtÓ0

1

Δt
P pT P rt, t ` Δts | T ě tq

does not exist. Suppose that n P N i.i.d. individuals participate in our study, but
that their observability may be independently right-censored by i.i.d. censoring
variables. Based on these observations, all available collected information is
described by the counting and at risk processes,

Njiptq “ 1t“ individual i is observed to fail in r0, ts due to risk j” u

and Yiptq “ 1t“ individual i is under observation at time t ´ ” u

respectively, with j “ 1, . . . , k and i “ 1, . . . , n. This notation may be used to
extend the arguments below to also incorporate independent left-truncation in
the sense of [3], Chapter III. For the rest of this section, we fix an arbitrary
j P t1, . . . , ku and define Huc

j ptq “ EpNj1ptqq and H̄ptq “ EpY1ptqq. Now, the

sum Njptq “
řn

i“1 Njiptq has the compensator

Λjptq “

n
ÿ

i“1

Λjiptq “

ż t

0

Y puqdAjpuq “

n
ÿ

i“1

ż t

0

YipuqdAjpuq,

where Ajptq “
şt

0
H̄puq´1dHuc

j puq is the cumulative hazard function for a type
j event. Therefore, pMjptq “ Njptq ´ Λjptqqtě0 is a square-integrable martin-
gale. The Nelson-Aalen estimator for Ajptq is defined as the stochastic inte-

gral pAjptq “
şt

0
Y ´1dNj , where we let 0{0 “ 0. The limit covariance func-

tion of the normalized process Wj “
?
np pAj ´ Ajq is determined by the pre-

dictable and optional variation processes of the square-integrable martingales
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M1i : t ÞÑ N1iptq ´ Λ1iptq denoted by xM1iyptq and rM1isptq, respectively, which
simplify considerably in the special case of absolute continuity; cf. Section II.4
in [3] for detailed derivations.

In the case of ties, however, the differing structure of both variation processes
cause asymptotic (co)variance functions which differ from those in the absolutely
continuous case. Therefore, the Greenwood-type variance estimators

pσ2
j ptq “ n

ż t

0

1 ´ Δ pAj

Y
d pAj

should be utilized which are uniformly consistent for the true asymptotic vari-
ance

σ2
j ptq “

ż t

0

1 ´ ΔAj

H̄
dAj

on any compact interval r0,Ks Ă r0,8q such that AjpKq ă 8 irrespective of the
presence of ties. These variance estimators are obtained by replacing all unknown
quantities in any of the variation processes of the martingale representation
of pAj by their canonical estimators. Note that ignoring the ties and using the

estimator n
şt

0
Y ´1d pAj instead of pσ2

j ptq would result in a consistent estimator for
şt

0
H̄´1dAj ‰ σ2

j ptq. The difference between both quantities obviously increases
the more the survival times are discretized. See e.g. Example 3.9.19 in [24] for a
textbook treatment of the Nelson-Aalen estimator in the presence of ties using
empirical processes. The variances of Aalen-Johansen estimators show a similar
behaviour when comparing the absolutely continuous case with the case allowing
for ties.

Now, the typical wild bootstrap procedure, as applied in survival and event
history analysis (see e.g. [18], [20], [5] or [6]) exhibits a similar shortcoming as
the non-Greenwood-type estimators: Applied to Nelson-Aalen estimators, this
widely used resampling procedure produces stochastic processes which, given all
data, converge in distribution on Skorohod spaces to Gaussian processes with
variance functions being the limits of n

şt

0
Y ´1d pAj ‰ pσ2

j ptq. This is due to the
nature of how martingale residuals are replaced in the resampling step: the (in-
dependent) martingale increments dMjipuq in the martingale representation of
?
np pAj ´ Ajq are replaced by independently weighted counting process incre-

ments, i.e., by ξidNjipuq. Here, the wild bootstrap weights ξi are i.i.d. with zero
mean and variance 1. Given Njipuq, however, the resampled residual has the
conditional variance

varpξidNjipuq | Njipuqq “ varpξiqdNjipuq “ dNjipuq ‰ p1 ´ ΔAjpuqqdNjipuq.

But only the latter would have succeeded in recovering the correct asymptotic
variance structure. We see from these calculations that the usual wild boot-
strap generally overestimates the variance of the Nelson-Aalen estimator in the
presence of ties. A similar problem persists when considering asymptotic covari-
ances between multiple components of the Nelson-Aalen estimator: In the case
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of ties, the Nelson-Aalen estimators are in general not asymptotically indepen-
dent, whereas the commonly applied wild bootstrap only produces independent
components; cf. [6]. However, a negative correlation between all Nelson-Aalen
estimators arises quite naturally: if several type j events occur at a certain point
of time, then this reduces the number of possible type � ‰ j events at the same
time. All these properties obviously also have implications on Aalen-Johansen
estimators and their resampling counterparts which will be treated later on.

3. Adjusted wild bootstrap: single Nelson-Aalen estimators

The non-trivial problem described in the previous section calls for a general so-
lution. In the present article, we exemplify the subsequent solution in the right-
censored competing risks set-up. Extensions and modifications to wild bootstrap
versions of more general Nelson-Aalen estimators or of Aalen-Johansen estima-
tors in general Markovian situations may be obtained in a similar manner, but
the limit variances will be much more complicated. The crucial defect in the
wild bootstrap resampling scheme described above is that the martingale incre-
ments dMjipuq should not be replaced by ξidNjipuq but rather by something
which – considered again as a martingale – reproduces the correct (co)variation
structure. Therefore, we suggest to replace

dMjipuq by dxMjipuq “ ξi

b

1 ´ Δ pAjpuqdNjipuq,

which has a promising conditional variance:

varpdxMjipuq | Njipuqq “ varpξiqp1 ´ Δ pAjpuqqdNjipuq “ p1 ´ Δ pAjpuqqdNjipuq;

remember that we desired variances approximately equal to p1´ΔAjpuqqdNjipuq.
This results in the following wild bootstrap resampling version of the normal-
ized Nelson-Aalen estimator:

xWjptq “
?
n

n
ÿ

i“1

ξi

ż t

0

b

1 ´ Δ pAjpuq
dNjipuq

Y puq
.

In a way similar to [6], one can show that pxWjptqqtPr0,Ks is a martingale with
respect to the filtration pFtqtPr0,Ks given by

Ft “ σpξiNjipuq, Njipvq, Yipvq : u P r0, ts, v P r0,Ks, i “ 1, . . . , nq.

It is easy to see that its predictable and optional variation processes are given
by

pσ2
j : t ÞÝÑ xxWjyptq “n

ż t

0

p1 ´ Δ pAjpuqq
d pAjpuq

Y puq

and qσ2
j : t ÞÝÑ rxWjsptq “n

n
ÿ

i“1

ξ2i

ż t

0

p1 ´ Δ pAjpuqq
dNjipuq

Y 2puq
.
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As explained above, the Greenwood-type variance estimator pσ2
j is uniformly

consistent for σ2
j . Assuming the existence of the fourth moments of ξi, a simple

application of Chebyshev’s inequality shows the (conditional) consistency of the
second estimator; the uniformity in the conditional convergence in probability
follows from a Pólya-type argument. The conditional weak convergence of the
finite-dimensional marginal distributions of the wild bootstrapped Nelson-Aalen
process follows easily by an application of Theorem A.1 in [5]. This also shows
that the proposed wild bootstrap approach succeeds in maintaining the correct
asymptotic covariance function which had been our aim in the first place.

Denote by D “ tt P r0,Ks :
řk

j“1 ΔAjptq ą 0u the subset of time points
for which ties among any event type are possible. Throughout the rest of the
article, we assume the following technical condition in order to conclude the
conditional tightness of the wild bootstrapped Nelson-Aalen process.

Condition 3.1. The set of discontinuity time points D has finitely many ele-
ments.

In practical applications, this assumption is naturally satisfied: A finite end-
of-study time and measurements on a daily or weekly basis result in a finite
lattice. A proof of conditional tightness finally yields the following conditional

central limit theorem for the Nelson-Aalen process, where
d

ÝÑ denotes conver-
gence in distribution:

Theorem 3.2. Assume Condition 3.1. Given F0 and as n Ñ 8, we have for
each j “ 1, . . . , k the following conditional weak convergence

xWj
d

ÝÑ Uj „ Gaussp0, σ2
j q in outer probability

on the càdlàg function space Dr0,Ks equipped with the supremum distance
topology, where Uj is a Gaussian zero-mean martingale with variance function
t ÞÑ σ2

j ptq.

The theorem entails that the modified wild bootstrap succeeds in reproducing
the same limit process of the Nelson-Aalen process, in particular, if ties are
present. Its proof is given in Appendix B. We conclude this section with an
application of the present approach to the Kaplan-Meier estimator.

Remark 3.3. Consider the case of only one risk, i.e. k “ 1 and W “ W1. The
Kaplan-Meier estimator for the survival function Sptq “ P pT ą tq is pSptq “
ś

0ďuďtp1 ´ pApduqq, t P r0,Ks, and it exhibits the martingale representation

WSptq “
?
np pSptq ´ Sptqq “ Sptq

ż t

0

W pduq

1 ´ ΔApuq
` opp1q.

Thus, the discontinuity-adjusted wild bootstrapped normalized Kaplan-Meier es-
timator is

xWS “ pS

ż ¨

0

xW pduq

1 ´ Δ pApuq
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and Theorem 3.2 in combination with the continuous mapping theorem yields
the correct limit process distribution, i.e. a zero-mean Gaussian process with
covariance function given by

ps, tq ÞÑ SpsqSptq

ż s^t

0

dApuq

p1 ´ ΔApuqqH̄puq
,

where s ^ t “ minps, tq; cf. e.g. Example 3.9.31 in [24].

4. Resampling the multivariate Nelson-Aalen estimator

When resampling a functional of a multivariate Nelson-Aalen estimator such as
the Aalen-Johansen estimator, it is mandatory to also take the covariance struc-
ture between all cause-specific Nelson-Aalen estimators into account. In order to
reflect this in the resampling scheme, a further adjustment needs to be done as
we will see below. In the absolutely continuous case, the asymptotic covariance
function of two different cause-specific Nelson-Aalen estimators vanishes due to
their asymptotic independence; cf. [3], Theorem IV.1.2. In the presence of ties,
however, the situation is quite different: Here we have for the martingales M1i

and M2i of Section 2 that both variation processes, xM1i,M2iy and rM1i,M2is

do not vanish; cf. the derivations in Section II.4 in [3]. The following theorem
describes the asymptotic dependence structure of a multivariate Nelson-Aalen
estimator in detail.

Theorem 4.1. As n Ñ 8, we have on the product càdlàg function space
Dkr0,Ks, equipped with the max-sup-norm, that

pW1,W2, . . . ,Wkq
d

ÝÑ pU1, U2, . . . , Ukq,

where U1, U2, . . . , Uk are zero-mean Gaussian martingales with variance func-
tions

t ÞÑ σ2
j ptq “

ż t

0

1 ´ ΔAjpuq

H̄puq
dAjpuq, j “ 1, 2, . . . , k

and covariance functions (for j ‰ �)

ps, tq ÞÑ covpUjpsq, U�ptqq “ ´

ż s^t

0

ΔA�puq

H̄puq
dAjpuq “: σj�ps ^ tq.

We refer to Appendix C for a derivation of this asymptotic covariance func-
tion. In order to account for this dependence structure in a joint convergence
consideration, the wild bootstrap of the previous section needs to be adjusted
once more. The general aim is to find resampling versions of the martingales
Mji that will yield the asymptotic variances σ2

j ptq and also the negative cor-
relation described by σj�ps ^ tq. To this end, the wild bootstrap multipliers
involved in one of the resampled Nelson-Aalen estimators need to be involved
in the remaining resampled cause-specific Nelson-Aalen estimators as well. Fur-
thermore, they are required to a appear with alternating signs. Therefore, let
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ξj�i, j, � “ 1, . . . , k, i “ 1, . . . , n, be i.i.d. random variables with Epξ111q “ 0 and

Epξ2111q “ 1, which are also independent of the data. Denote by N “
řk

j“1 Nj

the number of all kinds of events and by pA “
řk

j“1
pAj the all-cause Nelson-

Aalen estimator which estimates the all-cause cumulative hazard function A “
řk

j“1 Aj . We propose the following wild bootstrap version of the multivariate
Nelson-Aalen estimator pW1, . . . ,Wkq in terms of its single components:

xWjptq “
?
n

n
ÿ

i“1

ξjji

ż t

0

b

1 ´ Δ pApuq
dNjipuq

Y puq
`

c

n

2

k
ÿ

�“1

signp� ´ jq

ˆ

n
ÿ

i“1

”

ξj�i

ż t

0

b

Δ pAjpuq
dN�ipuq

Y puq
` ξ�ji

ż t

0

b

Δ pA�puq
dNjipuq

Y puq

ı

,

where signpxq “ 1tx ą 0u ´ 1tx ă 0u is the signum function. Ignoring, for the

time being, the second part of the above representation of xWj , we see that the re-

sulting asymptotic covariance function would be ps, tq ÞÑ
şs^t

0
p1´ΔApuqqdAjpuq

which is too small and, additionally, the covariance structure of several cause-
specific Nelson-Aalen estimates would not be reflected accordingly because of
the mutual (conditional given F0) independence of the first parts of xW1, . . . , xWk.

Now, the second parts of xWj , j “ 1, . . . , k, remedy both problems at the same
time. First, further variability is introduced due to the addition of other condi-
tionally independent terms. Second, the involved signum function ensures the
required negative covariances between all resampled Nelson-Aalen estimators
and the asymptotic covariances exactly equal the required ones.

Note that the same asymptotic effect would have been achieved by choosing

the second part of xWjptq to be
?
n

řk
�“1 signp�´jq

řn
i“1 ξj�i

şt

0

b

Δ pAjpuq
dN�ipuq

Y puq

(even more choices are possible) but we decided in favor of the variant in the
previous display which is symmetric in j, � “ 1, . . . , k.

Theorem 4.2. Assume Condition 3.1. Given F0 and as n Ñ 8, we have the
following conditional weak convergence on the product càdlàg function space
Dkr0,Ks, equipped with the max-sup-norm:

pxW1, xW2, . . . , xWkq
d

ÝÑ pU1, U2, . . . , Ukq in outer probability,

where pU1, U2, . . . , Ukq is the same Gaussian martingale as in Theorem 4.1.

The proof is given in Appendix D. Note that, if we are interested in just a
single univariate Nelson-Aalen estimator, the present approach yields the same
limit distribution as the wild bootstrap technique proposed in Section 3. Hence,
it does – asymptotically – not matter which of both techniques is applied to the
univariate Nelson-Aalen estimator.

Variance and covariance estimators (also for the wild bootstrap versions) are
again motivated by the predictable and optional covariation processes of the
involved martingales. The resulting estimators turn out to be same as those



3682 D. Dobler

obtained by the plug-in method:

pσ2
j ptq “ n

ż t

0

1 ´ Δ pAjpuq

Y puq
d pAjpuq,

pσj�ptq “ ´n

ż t

0

Δ pAjpuq

Y puq
d pA�puq,

1 ď j ‰ � ď k, are the usual Greenwood-type (co)variance estimators and

qσ2
j ptq “ n

n
ÿ

i“1

ξ2jji

ż t

0

p1 ´ Δ pAjpuqq
dNjipuq

Y 2puq

`
n

2

ÿ

�‰j

”
n

ÿ

i“1

ξ2j�i

ż t

0

Δ pAjpuq
dN�ipuq

Y 2puq
`

n
ÿ

i“1

ξ2�ji

ż t

0

Δ pA�puq
dNjipuq

Y 2puq

ı

,

qσj�ptq “ ´
n

2

”

n
ÿ

i“1

ξ2j�i

ż t

0

Δ pAjpuq
dN�ipuq

Y 2puq
`

n
ÿ

i“1

ξ2�ji

ż t

0

Δ pA�puq
dNjipuq

Y 2puq

ı

,

1 ď j ‰ � ď k, are the optional process-type (co)variance estimators moti-
vated from the wild bootstrap martingale properties. Assume that all ξ111 have
finite fourth moments. By applications of Glivenko-Cantelli theorems in combi-
nation with the continuous mapping theorem, the Greenwood-type (co)variance
estimators pσ2

j and pσj� are shown to be uniformly consistent for σ2
j and σj�, re-

spectively. For the wild bootstrap-type (co)variance estimators, we can parallel
the arguments in the proof of Theorem 3.2, after first assuming the existence of
fourth moments Epξ4111q ă 8: In points of continuity of all cumulative hazard
functions, i.e. on r0,KszD, Rebolledo’s martingale central limit theorem applies
and it also implies the uniform consistency of the optional variation process in-
crements. In points of discontinuity, which are finitely many by assumption, we
approximate qσ2

j by pσ2
j and apply the conditional Chebyshev inequality (given

F0) in order to show the negligibility of the differences qσ2
j ´ pσ2

j in probabil-
ity. The last argument can be repeated for the covariance estimators. A final
application of the continuous mapping theorem yields

pσ2
j , qσ2

j
p

ÝÑ σ2
j and pσj�, qσj�

p
ÝÑ σj�

uniformly on r0,Ks in (conditional outer) probability for all j ‰ � as n Ñ 8,

where
p

ÝÑ denotes convergence in probability.

5. Resampling the deduced Aalen-Johansen estimator

We wish to extend the results of the previous section to functionals of the multi-
variate Nelson-Aalen estimator. In particular, we focus on resampling the Aalen-
Johansen estimator for a cumulative incidence function in the presence of ties.
Denote these cumulative incidence functions by Fjptq “

şt

0
Spu´qdAjpuq, j “

1, . . . , k, which specify the probabilities to have a type j event during the time
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interval r0, ts. For ease of presentation, we consider the situation of k “ 2
competing risks which is achieved by aggregating all but the first risk to be
the second competing risk. Utilizing the functional delta-method in combi-
nation with the weak convergence results for the Nelson-Aalen estimator, we
as well obtain a weak convergence theorem for the Aalen-Johansen estimator
pF1ptq “

şt

0
pSpu´qd pA1puq for F1ptq:

Theorem 5.1. As n Ñ 8, we have on the càdlàg space Dr0,Ks

WF1 “
?
np pF1 ´ F1q

d
ÝÑ UF1

“

ż ¨

0

1 ´ F2pu´q ´ F1p¨q

1 ´ ΔApuq
dU1puq `

ż ¨

0

F1pu´q ´ F1p¨q

1 ´ ΔApuq
dU2puq,

where UF1 is a zero-mean Gaussian process with covariance function

σ2
F1

: ps, tq ÞÑ

ż s^t

0

p1 ´ F2pu´q ´ F1psqqp1 ´ F2pu´q ´ F1ptqq

H̄puq

dA1puq

1 ´ ΔApuq

`

ż s^t

0

pF1pu´q ´ F1psqqpF1pu´q ´ F1ptqq

H̄puq

dA2puq

1 ´ ΔApuq

`
ÿ

uPD
uďs,t

S2pu´q

H̄puq

ΔA1puqΔA2puq

p1 ´ ΔApuqq2
.

Remark 5.2. The general result for more than two competing risks is obtained
by replacing U2, A2, and F2 in the above representation by U ´U1, A´A1, and
1 ´ S ´ F1, respectively.

For the application of the functional delta-method, note that the Aalen-
Johansen estimator in the present competing risks framework is a combination
of the Wilcoxon and the product integral functional applied to the multivariate
Nelson-Aalen estimator. Both of these functionals are Hadamard-differentiable
as shown for example in Section 3.9 of [24]. A derivation of the above asymptotic
covariance function is presented in Appendix E.

Now, an appropriate wild bootstrap version of
?
np pF1 ´F1q is given by plug-

ging in the canonical estimators for all unknown quantities and the wild boot-
strapped martingales for all unknown counting process martingales, i.e.

xWF1ptq “

ż ¨

0

1 ´ pF2pu´q ´ pF1p¨q

1 ´ Δ pApuq
dxW1puq `

ż ¨

0

pF1pu´q ´ pF1p¨q

1 ´ Δ pApuq
dxW2puq,

where xW1 and xW2 are again the wild bootstrap versions of the Nelson-Aalen
estimators as presented in Section 4. Using similar martingale arguments as in
Appendix B, we obtain the following conditional central limit theorem for the
wild bootstrap version of the Aalen-Johansen estimator:

Theorem 5.3. Assume Condition 3.1. Given F0 and as n Ñ 8, we have the
following weak convergence on the càdlàg function space Dr0,Ks, equipped with
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the sup-norm:

xWF1

d
ÝÑ UF1 in outer probability,

where UF1 is the same Gaussian process as in Theorem 5.1.

If based on the same wild bootstrapped multivariate Nelson-Aalen estimator
pxW1, . . . , xWkq, one can similarly argue that the joint convergence of all resam-

pled Aalen-Johansen estimators, say pxWF1 , . . . ,
xWFk

q, towards the same limit

distribution of p
?
np pFj ´ Fjqqkj“1 holds.

Remark 5.4 (The weird bootstrap). Note that the very same proofs may
be applied to verify that the above conditional central limit theorems hold for
the weird bootstrap as well. This resampling scheme corresponds to choosing
ξj�i ` 1 „ BinpY pXiq,maxp1, Y pXiqq´1q, where Xi is the censoring or event
time of individual i, whichever comes first. This is a particular choice of the
data-dependent multiplier bootstrap of [12]. In their article, heuristic arguments
for the second order correctness under absolute continuity of the data have shown
that centered unit Poisson variates and weird bootstrap multipliers perform fa-
vorably in comparison to standard normal wild bootstrap weights. In order to
also check the preference of either of the first two resampling procedures in the
present set-up, where ties are allowed, we included the weird bootstrap in the
subsequent simulation study, yielding competing inference methods.

An estimator for σ2
F1

and its wild bootstrap variant are obtained similarly as
such estimators for the Nelson-Aalen (co)variances, i.e. via plug-in:

pσ2
F1

: ps, tq ÞÑ

ż s^t

0

p1 ´ pF2pu´q ´ pF1psqqp1 ´ pF2pu´q ´ pF1ptqq

p1 ´ Δ pApuqq2
dpσ2

1puq

`

ż s^t

0

p pF1pu´q ´ pF1psqqp pF1pu´q ´ pF1ptqq

p1 ´ Δ pApuqq2
dpσ2

2puq

`

ż s^t

0

p1 ´ pF2pu´q ´ pF1psqqp pF1pu´q ´ pF1ptqq

p1 ´ Δ pApuqq2
dpσ12puq

`

ż s^t

0

p1 ´ pF2pu´q ´ pF1ptqqp pF1pu´q ´ pF1psqq

p1 ´ Δ pApuqq2
dpσ21puq.

Similarly, qσ2
F1

is obtained by replacing all estimators pσ2
j and pσj�, j ‰ �, by their

wild bootstrap counterparts qσ2
j and qσj�, respectively. Their uniform (condi-

tional) consistencies for σ2
F1

on r0,Ks follow immediately by the uniform consis-
tency of the Nelson-Aalen (co)variance estimators and the continuous mapping
theorem.

Remark 5.5 (Deduced confidence bands). Following the lines of [5], time-
simultaneous confidence bands for F1 can be deduced. In particular, let φpsq “

logp´ logp1´sqq be a transformation applied to F1 in order to ensure band bound-

aries between 0 and 1 and let g1psq “ logp1 ´ pF1psqq{pρpsq and g2psq “ logp1 ´
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pF1psqq{p1 ` pρ2psqq be weight functions leading to the usual equal precision and

Hall-Wellner bands, respectively; see [3]. Here pρ2psq “ pσ2
F1

psq{p1´ pF1psqq2. Let pg1
and pg2 be their wild bootstrap counterparts, i.e. the variance estimates pσ2

F1
are re-

placed by qσ2
F1
. The confidence bands for F1 are then derived from the asymptotics

of the supremum distance Z1� “ supuPrt1,t2s |
?
ng�puqpφp pF1puqq ´ φpF1puqqq|

and its wild bootstrap counterpart pZ1� “ supuPrt1,t2s |pg�puqφ1p pF1puqqxWF1puq|,
where rt1, t2s Ă r0,Ks and � P t1, 2u. Let q0.95,� be the conditional 95% quan-

tile of pZ1� given the data. The resulting asymptotic 95% confidence bands are

1 ´ p1 ´ pF1psqqexpp˘n´1{2q0.95,�{g�psqq, s P rt1, t2s, � P t1, 2u.

6. Small sample behaviour

We empirically assess the difference between the common wild bootstrap ap-
proach and the adjusted wild bootstrap proposed in this article via simulation
studies. We simulated the wild bootstrap procedures based on standard nor-
mal and centered unit Poisson multipliers as well as the weird bootstrap of
Remark 5.4. These methods are compared in terms of the simulated coverage
probabilities of the confidence bands described in Remark 5.5. We consider a
simulation set-up motivated by [10], i.e. we chose the cause-specific hazard rates
α1ptq “ expp´tq and α2ptq “ 1 ´ expp´tq which yield the cumulative function
of the first risk F1ptq “ 0.5p1 ´ expp´2tqq. In order to allow for tied data, we
pre-specify different discretization lattices and round different proportions of
the population to the nearest discretization point. In particular, we choose the
discretization lattices to be t0, 1

k ,
2
k , . . . u, where k P t5, 10, 20u, and the dis-

cretization probabilities to be p P t0, 0.25, 0.5, 0.75, 1u. The resulting theoretic
cumulative incidence functions

F p,k
1 ptq “ pF1

´

rkt ´ 0.5s

k
`

0.5

k

¯

` p1 ´ pqF1ptq

for p ą 0 are presented in Figure 1. Here rss denotes the integer closest to s P R.

For simulating data, which have the desired cumulative incidence function F p,k
1 ,

it is mandatory to first round the event times Ti, and then generate the event
types εi in a second step, according to the formula

P
´

εi “ 1 |
rTiks

k
“ u

¯

“
F1pu `

1
2k q ´ F1pmaxpu ´

1
2k , 0qq

Spmaxpu ´
1
2k , 0qq ´ Spu `

1
2k q

,

where S : t ÞÑ expp´tq denotes the survival function of the continuous random
variables Ti.

Censoring is introduced by i.i.d. standard exponentially distributed random
variables. If the ith survival time is discretized, then we discretize the ith cen-
soring time as well. Finally, we take the minimum out of each such pair and
mark an individual as censored whenever the (discretized) censoring time pre-
cedes the (discretized) survival time. The sample size increases from n “ 50 to
n “ 250 in steps of 25. We choose the time interval, along which asymptotic
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95% confidence bands shall be constructed, to be r0.25, 0.75s. The simulations
have been conducted using R version 3.2.3 [22] using 10,000 outer Monte Carlo
iterations and 999 wild bootstrap replicates.

Tables 1 to 3 contain the simulated coverage probabilities of equal precision
and Hall-Wellner bands for simulation set-ups with a discrete component in the
cumulative incidence function, i.e. p ą 0. The columns of simulation results
corresponding to the common wild / weird bootstrap procedures are entitled
old, whereas the columns showing the results of the respective adjusted wild /
weird bootstrap are entitled new.

At first, we start with a discussion on the choice of multipliers. For equal pre-
cision bands and in almost all set-ups, there is a pronounced superiority of the
wild bootstrap with centered unit Poisson multipliers and the weird bootstrap
over the respective coverage probabilities of the bands based on standard normal
weights. This is true for the common resampling procedures as well as for the
proposed adjusted bootstraps. For Hall-Wellner bands, this superiority is not as
much pronounced and sometimes even the confidence bands based on standard
normal multipliers yield the most accurate coverage probabilities. But in cases,
where this is so, the deviance is only very small. The phenomenon, that standard
normal multipliers yield a worse performance than those with skewness equal
to one, is in line with the findings of [12] where also heuristic theoretic argu-
ments for a second-order correctness of both superior resampling procedures are
provided. As there is, all in all, not much of a difference between the simulated
coverage probabilities of the centered unit Poisson wild bootstrap and the weird
bootstrap, we only focus on the results of the Poisson choice. In general, the
equal precision bands appear to be more accurate than the Hall-Wellner bands,
except for some very small sample set-ups or sometimes for p “ 1.

In almost any scenario, the discretization-adjusted wild bootstrap yielded
coverage probabilities closer to the nominal level in comparison to the unad-
justed wild bootstrap. The deviances between these coverage probabilities of
each of those two resampling procedures appear to be larger the higher the
discretization probability p and the coarser the discretization lattice is. For in-
stance, this difference even amounts to 4.1 percentage points in case of the
Hall-Wellner bands, n “ 50, k “ 5, and p “ 1 and to 3.8 percentage points in
case of equal precision bands and the same n, k and p.

In case of k P t5, 10u, the coverage probabilities of the common wild boot-
strap do not appear to converge at all towards 95% as the sample size increases.
Instead, the simulated probabilities fluctuate around 93% or even 92%. On the
other hand, the discretization-adjusted equal precision wild bootstrap bands
yield much better coverage probabilities which are greater than 94% or at least
in the high 93%-region for larger sample sizes. In contrast to the unadjusted
procedure, we observe for small samples and for the adjusted confidence bands
coverage probabilities closer to the nominal level for higher discretization prob-
abilities p. This is only reasonable as p “ 100% corresponds to a multivariate,
but not an infinite-dimensional statistical problem. We do not see this tendency
for the unadjusted procedure in case of k P t5, 10u, which again stresses that it
is not suitable for these kinds of tied data regimes.
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The better coverage probabilities of the adjusted wild bootstrap may be ex-
plained by means of the asymptotic covariance function σ2

F1
ps, tq given in The-

orem 5.1: This covariance is generally increased in comparison to the case of no
ties which would lead to the covariance

ż s^t

0

p1 ´ F2puq ´ F1psqqp1 ´ F2puq ´ F1ptqq
dA1puq

H̄puq

`

ż s^t

0

pF1puq ´ F1psqqpF1puq ´ F1ptqq
dA2puq

H̄puq
.

The unadjusted wild bootstrap, however, only results in processes with limit
distributions having the latter covariance. That is, the unadjusted wild boot-
strap does not account for the increased variability due to tied data and this
is reflected in its bad performance in the simulation study. Similarly, when fo-
cus is on inference methods for cumulative hazard functions, the common wild
bootstrap generally overestimates the variability of the Nelson-Aalen estimator.

Finally, Table 4 shows the corresponding results for the scenario in which
the continuous F1 is the true cumulative incidence function and the usual wild
bootstrap technique yields asymptotically exact inference procedures. Here, it
surprises to see that the adjusted wild bootstrap again yields more accurate
confidence bands than the unadjusted procedure. Therefore, there is apparently
no loss at all in utilizing the discretization adjustment, even if the data contain
no ties.

All in all, we conclude that the proposed discontinuity adjustment should
always be applied in order to greatly improve the coverage probabilities of con-
fidence bands for F p,k

1 . The present simulation results show this improvement,
which amounts to up to two or three percentage points for smaller samples
and in many conducted simulation scenarios. As the standard normal variate-
based wild bootstrap disappoints in general, our final advice is to combine the
present discontinuity adjustment with the wild bootstrap based on the Poisson-
distributed random variables or the weird bootstrap. Additionally, equal pre-
cision bands should be preferred to Hall-Wellner confidence bands due to the
slight but frequent superiority of the first in terms of coverage probabilities.

Note that, even with the best combination of the kind of confidence band
and the choice of multipliers, the adjusted wild bootstrap proposed in this
article still produces slightly too narrow confidence bands. For instance, this
phenomenon has been observed similarly by [4], [12] and [11]. In the latter it
is seen that the Kolmogorov-Smirnov-type statistic applied to Aalen-Johansen
estimators in right-censored competing risks set-ups and in combination with
the wild bootstrap yields a quite liberal test procedure when testing equality
of cumulative incidence functions. In their simulation studies, moderately large
sample sizes are required in order to obtain empirical type I error rates close
to the nominal level. This behaviour may be due to the infinite dimensionality
of the problem of constructing nonparametric confidence bands for cumulative
incidence functions.
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Fig 1. Cumulative incidence functions F p,k
1 underlying the present simulations.
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equal precision Hall-Wellner
set-ups Np0, 1q Poip1q ´ 1 weird Np0, 1q Poip1q ´ 1 weird
p n old new old new old new old new old new old new

50 87.3 88.5 89.4 90.6 88.9 90.4 88.7 89.9 89.3 90.8 88.9 90.2
75 89.5 90.4 91.6 92.2 91.1 92.0 89.8 90.6 90.6 91.5 90.4 91.3
100 90.6 91.3 92.3 93.0 92.2 92.6 90.5 91.1 90.9 91.8 91.1 91.9
125 91.2 92.0 92.4 93.1 93.4 93.8 90.9 91.7 91.1 91.8 91.1 91.9

25% 150 91.1 91.7 92.5 93.0 93.4 93.8 91.4 91.7 91.5 92.2 92.2 92.7
175 91.7 92.1 93.1 93.2 93.2 93.6 91.8 92.2 92.8 93.2 92.7 93.2
200 92.0 92.5 93.3 93.8 93.6 94.1 92.2 92.7 92.2 92.6 92.3 92.7
225 92.5 93.0 93.3 93.7 93.6 94.0 92.2 92.7 92.8 93.2 92.6 93.1
250 92.5 92.9 93.7 93.9 93.4 93.8 92.4 93.0 92.5 93.1 92.4 92.7
50 87.4 89.3 89.1 91.3 89.8 91.3 87.7 90.4 88.5 90.9 88.8 91.1
75 89.4 91.0 91.3 92.7 91.0 92.6 89.2 91.1 89.5 91.4 89.9 91.9
100 90.0 91.5 92.4 93.6 91.9 93.3 89.9 91.6 90.3 91.9 90.6 92.2
125 90.6 91.9 93.0 93.9 92.3 93.4 90.9 92.3 91.3 92.7 91.0 92.4

50% 150 90.6 91.9 92.4 93.4 93.0 94.1 91.0 92.3 91.3 92.8 91.2 92.6
175 91.2 92.2 92.6 93.5 92.7 93.7 91.4 92.7 91.8 92.8 91.1 92.4
200 91.2 92.3 92.3 93.3 93.2 94.2 91.8 93.0 92.2 93.6 91.8 92.9
225 91.4 92.6 92.7 93.7 93.3 94.2 91.7 92.9 91.7 93.0 91.9 93.1
250 91.7 92.8 93.1 94.3 93.1 94.1 91.4 92.8 92.0 93.2 91.7 93.0
50 87.2 90.6 89.1 91.6 89.5 92.1 87.4 90.8 88.7 92.1 88.3 91.8
75 90.1 92.6 91.0 93.2 91.3 93.8 90.0 92.4 90.6 93.4 90.1 93.2
100 90.6 92.9 92.1 94.2 91.6 93.8 89.9 92.6 90.3 93.3 90.2 93.0
125 90.8 93.0 92.1 94.3 91.8 94.1 90.5 93.0 91.0 93.4 91.0 93.6

75% 150 90.8 93.1 92.0 93.9 92.3 94.4 90.6 93.0 91.2 93.8 91.2 93.7
175 90.8 93.1 91.7 93.9 92.3 94.0 91.0 93.4 91.5 94.0 90.9 93.4
200 90.9 93.1 92.5 94.5 92.5 94.5 91.3 93.5 91.0 93.5 91.3 93.4
225 91.2 93.4 92.5 94.5 92.2 94.1 91.6 93.8 91.7 93.5 91.1 93.6
250 91.8 93.8 92.4 94.4 92.7 94.5 91.4 93.6 91.6 93.8 92.0 94.2
50 87.7 92.0 89.1 92.9 89.6 93.2 89.0 92.9 89.6 93.7 89.7 93.4
75 88.8 92.7 90.3 93.7 90.2 93.6 90.3 93.7 90.7 94.3 90.2 94.0
100 89.9 93.3 90.9 94.1 90.5 93.8 90.6 94.0 91.2 94.4 90.6 94.1
125 89.8 93.1 90.9 93.9 90.4 93.6 91.3 94.6 91.8 94.8 91.6 94.6

100% 150 89.6 93.2 90.8 94.0 91.0 93.9 91.6 94.6 91.4 94.5 91.2 94.6
175 90.1 93.2 90.5 93.5 91.3 94.0 91.5 94.6 91.95 94.8 91.0 94.2
200 90.3 93.6 91.1 94.0 91.1 94.1 91.8 94.7 91.8 94.7 91.8 94.7
225 90.0 93.1 91.3 94.2 91.1 94.3 91.9 94.9 91.9 94.8 91.6 94.6
250 89.7 93.2 90.9 93.9 90.8 93.9 92.4 94.9 91.9 94.8 91.4 94.5

Table 1

Simulated coverage probabilities of equal precision (left) and Hall-Wellner bands (right) in
per cent where k “ 5. Those closest to the nominal level of 95% are printed in bold-type.
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equal precision Hall-Wellner
set-ups Np0, 1q Poip1q ´ 1 weird Np0, 1q Poip1q ´ 1 weird
p n old new old new old new old new old new old new

50 87.7 88.6 89.4 90.7 89.9 90.8 87.2 88.7 89.3 90.5 89.0 90.4
75 89.2 90.2 91.9 92.6 91.8 92.4 89.2 90.1 90.9 91.6 90.7 91.5
100 90.7 91.2 92.4 93.1 93.1 93.3 90.5 90.9 91.9 92.6 91.4 91.9
125 91.1 91.6 93.1 93.5 93.4 93.8 91.5 92.0 92.5 92.9 91.6 92.3

25% 150 91.6 92.2 93.5 93.8 93.5 93.8 92.5 92.8 92.3 92.9 92.2 92.7
175 91.8 92.1 93.9 94.2 93.8 93.9 92.6 92.9 92.9 93.1 92.7 93.2
200 91.9 92.4 93.8 93.9 93.7 93.9 92.3 92.8 92.7 92.9 92.8 93.2
225 92.4 92.8 93.5 93.9 93.7 94.0 92.9 93.4 93.0 93.3 93.0 93.4
250 92.2 92.6 94.0 94.3 94.2 94.6 92.4 92.8 92.9 93.3 93.2 93.5
50 87.2 88.6 89.2 90.7 89.2 90.5 87.3 89.1 88.9 90.5 89.2 90.8
75 89.8 90.8 91.5 92.5 91.2 92.2 89.9 91.2 91.1 92.3 90.7 91.8
100 90.2 91.3 92.6 93.3 92.5 93.5 91.2 92.4 91.1 92.3 91.5 92.6
125 91.2 92.1 93.0 93.7 93.1 93.8 91.1 92.2 91.6 92.5 91.9 92.8

50% 150 91.6 92.5 93.3 94.0 93.2 94.0 92.0 92.8 91.9 92.8 92.0 93.0
175 92.7 93.3 92.7 93.3 93.1 93.7 92.4 93.1 92.5 93.2 92.7 93.4
200 92.2 92.9 93.4 94.0 93.5 94.2 92.2 92.8 92.4 93.4 92.6 93.3
225 92.2 93.0 94.1 94.8 93.1 94.0 92.3 93.2 92.8 93.4 92.9 93.6
250 93.0 93.5 93.7 94.2 93.4 93.9 92.1 92.7 92.7 93.4 92.1 92.7
50 87.6 89.8 89.2 91.4 89.0 90.9 88.2 90.6 88.3 91.0 89.5 91.7
75 89.5 91.5 92.0 93.4 91.4 93.0 90.4 92.2 91.3 93.0 90.4 92.3
100 90.3 91.9 92.5 93.8 92.5 94.0 91.3 92.7 91.0 92.7 91.2 93.0
125 91.4 92.9 92.9 94.0 92.8 94.1 91.8 93.2 92.0 93.3 91.6 93.1

75% 150 91.5 92.8 93.2 94.5 93.2 94.2 91.7 92.9 91.7 93.0 91.9 93.3
175 91.5 92.8 93.0 94.2 93.7 94.6 92.3 93.6 92.5 93.8 92.1 93.3
200 92.0 93.1 93.9 94.9 93.8 94.9 92.3 93.5 92.1 93.5 92.1 93.5
225 92.2 93.1 93.6 94.6 93.2 94.1 92.4 93.6 92.4 93.9 92.9 94.1
250 92.5 93.8 93.5 94.6 93.7 94.8 92.7 93.8 92.4 93.7 92.6 93.7
50 88.3 91.1 90.2 92.8 90.3 92.7 89.0 92.0 89.5 92.7 89.6 92.8
75 89.8 92.2 91.7 93.9 91.8 93.6 91.1 93.6 91.1 93.6 90.9 93.8
100 90.5 92.7 92.1 94.0 92.1 94.0 90.8 93.1 92.1 94.3 91.7 93.8
125 91.1 93.2 92.6 94.4 92.7 94.5 92.1 93.8 92.1 94.2 92.3 94.3

100% 150 91.4 93.4 92.8 94.6 92.8 94.8 92.0 93.9 92.6 94.7 92.6 94.6
175 91.6 93.6 92.8 94.6 92.8 94.8 92.4 94.2 92.9 94.7 92.3 94.4
200 91.5 93.5 93.0 94.8 93.3 95.0 92.3 94.2 93.1 94.9 93.0 94.9
225 92.3 94.0 92.9 94.7 93.4 95.0 92.7 94.3 93.3 94.9 93.1 94.9
250 91.8 93.8 92.8 94.6 93.0 94.7 93.3 94.9 92.7 94.4 92.9 94.6

Table 2

Simulated coverage probabilities of equal precision (left) and Hall-Wellner bands (right) in
per cent where k “ 10. Those closest to the nominal level of 95% are printed in bold-type.
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equal precision Hall-Wellner
set-ups Np0, 1q Poip1q ´ 1 weird Np0, 1q Poip1q ´ 1 weird
p n old new old new old new old new old new old new

50 87.2 88.0 89.9 90.9 90.2 90.7 88.4 89.5 89.9 91.2 89.1 90.1
75 89.8 90.3 92.2 92.5 91.8 92.4 90.4 91.0 90.7 91.4 90.7 91.5
100 91.0 91.6 93.1 93.5 92.7 93.1 91.4 91.9 91.8 92.3 91.9 92.3
125 92.1 92.3 94.0 94.2 93.3 93.7 91.7 92.2 92.5 93.0 92.5 92.9

25% 150 91.9 92.4 93.6 93.8 93.7 93.9 92.1 92.5 92.6 92.8 92.9 93.3
175 92.4 92.7 94.0 94.4 94.2 94.4 92.2 92.6 92.8 93.0 92.8 93.1
200 92.8 93.0 94.2 94.4 93.8 94.1 93.0 93.3 92.6 93.0 93.0 93.2
225 93.2 93.4 94.5 94.8 94.0 94.2 93.1 93.3 93.0 93.3 93.2 93.4
250 92.8 93.1 93.9 94.1 94.2 94.4 92.9 93.0 93.6 93.7 93.1 93.3
50 88.0 89.2 89.6 90.9 89.6 90.8 88.8 90.0 89.3 90.7 89.5 90.9
75 89.9 90.7 92.4 93.3 92.3 93.0 90.4 91.4 91.3 92.3 90.9 91.9
100 91.0 91.7 93.2 93.7 93.0 93.7 91.7 92.5 92.0 92.7 91.9 92.6
125 92.0 92.5 93.4 93.8 93.9 94.2 92.1 92.8 92.5 93.1 92.1 92.6

50% 150 91.9 92.5 93.6 94.0 94.0 94.3 92.1 92.6 93.1 93.6 92.6 93.2
175 93.0 93.4 94.0 94.4 94.1 94.5 92.4 93.0 93.0 93.3 93.0 93.5
200 92.8 93.1 94.1 94.4 93.7 94.0 92.9 93.2 93.1 93.5 92.7 93.3
225 92.8 93.3 94.2 94.5 94.3 94.7 92.7 93.0 93.2 93.9 93.5 93.9
250 93.0 93.3 93.9 94.3 93.8 94.0 93.4 93.6 93.0 93.5 92.7 93.3
50 88.4 89.9 90.8 92.1 90.5 92.0 89.2 90.8 89.7 91.5 89.7 91.4
75 90.3 91.5 92.7 93.9 92.9 93.7 91.0 92.2 91.3 92.4 91.2 92.3
100 91.4 92.5 93.3 94.2 93.0 93.9 91.2 92.1 92.4 93.2 92.3 93.4
125 91.4 92.3 93.8 94.6 93.6 94.1 92.2 93.2 92.6 93.4 92.5 93.5

75% 150 92.7 93.3 94.0 94.8 93.5 94.3 92.6 93.4 93.1 94.0 92.7 93.5
175 92.4 93.1 94.4 95.0 94.1 94.8 92.5 93.2 93.3 93.9 92.7 93.4
200 93.0 93.8 94.1 94.7 94.0 94.6 92.7 93.4 93.3 94.2 93.1 93.8
225 93.3 93.9 94.4 95.0 94.1 94.7 92.9 93.5 93.2 94.0 93.6 94.1
250 93.0 93.6 94.3 94.9 94.3 94.8 93.3 94.0 93.8 94.4 92.9 93.7
50 88.9 90.7 91.0 92.8 91.2 92.7 90.1 92.3 90.7 92.8 90.5 92.9
75 91.0 92.6 93.2 94.3 93.0 94.2 91.2 92.7 92.6 94.1 91.9 93.4
100 92.0 93.3 93.7 95.0 93.7 94.7 92.0 93.6 93.1 94.4 92.5 93.8
125 92.9 93.9 93.7 94.9 94.1 95.1 92.4 93.5 93.3 94.6 93.6 94.6

100% 150 92.8 93.9 94.2 95.1 94.6 95.5 92.8 94.1 93.5 94.6 93.3 94.4
175 93.2 94.3 94.9 95.6 94.9 95.7 93.2 94.4 93.7 94.8 94.0 94.9
200 93.5 94.5 94.4 95.3 94.6 95.3 93.9 94.7 93.8 94.8 93.9 94.8
225 94.1 94.8 94.6 95.6 94.7 95.4 93.7 94.6 94.3 95.1 93.7 94.7
250 93.1 94.3 95.0 95.8 94.8 95.6 93.6 94.6 93.9 95.0 94.2 95.1

Table 3

Simulated coverage probabilities of equal precision (left) and Hall-Wellner bands (right) in
per cent where k “ 20. Those closest to the nominal level of 95% are printed in bold-type.
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equal precision Hall-Wellner
set-ups Np0, 1q Poip1q ´ 1 weird Np0, 1q Poip1q ´ 1 weird

n old new old new old new old new old new old new
50 87.1 88.1 89.6 90.4 89.4 90.5 87.6 88.6 88.8 90.0 88.7 89.8
75 89.4 90.2 91.8 92.3 91.6 92.1 90.2 90.8 90.7 91.5 90.7 91.5
100 90.7 91.2 93.2 93.4 92.4 92.7 90.8 91.3 91.1 91.6 91.8 92.2
125 91.4 91.8 93.0 93.4 93.2 93.5 91.7 92.1 92.0 92.3 91.6 92.2
150 91.3 91.5 93.6 93.9 93.5 93.8 92.3 92.5 92.6 92.9 92.9 93.2
175 92.5 92.6 93.9 94.1 94.1 94.4 92.3 92.5 92.5 92.8 92.9 93.2
200 92.9 93.0 93.7 93.8 93.5 93.8 92.7 92.9 92.9 93.0 93.2 93.3
225 92.7 92.9 93.9 94.1 94.2 94.2 93.0 93.1 92.6 92.7 93.3 93.7
250 93.2 93.4 93.7 93.8 94.3 94.3 92.8 93.0 92.9 93.1 93.1 93.3

Table 4

Simulated coverage probabilities of confidence bands for F1 in per cent where p “ 0. Those
closest to the nominal level of 95% are printed in bold-type.

7. Real data example

We applied the present discretization adjustment to the sir.adm data-set of the
R package mvna. It consists of competing risks data of patients who are in an
intensive care unit (ICU), where the event of primary interest, “alive discharge
out of ICU”, competes against the secondary event “death in ICU”. For seeing
the difference between the common and the new approach more clearly, we
analyzed the subset of all male patients suffering from pneumonia. Out of these
n “ 63 individuals, five have been right-censored and 41 out of all 44 type 1
events fell into the time interval r5, 55s, which we chose for confidence band
construction. Due to the worse performance of the wild bootstrap based on
standard normal multipliers as seen in Section 6, we only derived centered unit
Poisson variate-based bands. In order to minimize the computational error in the
quantile-finding process, 99,999 wild bootstrap iterations have been conducted.
The confidence bands resulting from the weird bootstrap almost coincide with
those just described. Therefore, they are not shown.

The resulting confidence bands are presented in Figure 2. For both kinds of
bands, (equal precision bands in the upper panel, Hall-Wellner bands in the
lower panel), we see that the discretization adjustment leads to a widening in
comparison to the unadjusted bands. This is in line with the discussion and
the simulation results of Section 6, where the unadjusted bands appeared to be
the most liberal, i.e. the narrowest. In particular, the adjusted equal precision
bands cover an additional area of 2.1 percentage points at the terminal time
point t “ 55, whereas this deviance even amounts to 3.3 percentage points for
the Hall-Wellner bands. This might not appear to be much at a first glance at the
plots in Figure 2. But in fact, it may be the cause for a formidable improvement
of the bands’ coverage probability: The simulation results of Section 6 for k “ 20,
discretization probability p “ 100%, and sample sizes n P t50, 75u suggest that
the adjusted wild bootstrap procedure might improve the coverage probabilities
of both kinds of bands by approximately two percentage points. With a view
towards the liberal behaviour of the unadjusted bands, these enhancements of
the coverage probabilities are highly worthwhile.
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Fig 2. Asymptotic 95% equal precision (upper) and Hall-Wellner bands (lower panel) for the
cumulative incidence function of the competing risk “alive discharge out of ICU” for male
patients suffering from pneumonia.

8. Discussion and future research

In this article, we analyzed a discontinuity adjustment of the common wild boot-
strap applied to right-censored competing risks data. This adjustment is abso-
lutely necessary, as ties in the data introduce an asymptotic dependence between
multiple cause-specific Nelson-Aalen estimators and the asymptotic variances of
univariate Nelson-Aalen estimators are decreased in general. The common wild
bootstrap fails in reproducing these effects since it establishes independence for
all sample sizes. The problem is even more involved for Aalen-Johansen estima-
tors of cumulative incidence functions, which are non-linear functionals of all
cause-specific hazards. Simulation results reported the striking liberality of the
unadjusted bands which also fail to keep the nominal level asymptotically. In-
stead, the discretization-adjusted wild bootstrap greatly improves the coverage



3694 D. Dobler

probability. This effect is more pronounced the more discrete the event times
are. But even in the absolutely continuous case, the suggested procedure ap-
pears to perform preferably. Therefore, we advise to always use the adjustment
when right-censored competing risks data shall be analyzed. The real data ex-
ample reveals that the discontinuity adjustment does actually only lead to slight
widening of the common wild bootstrap-based bands which is already enough
to improve the coverage accuracy greatly.

The presented wild bootstrap approach may be extended to more general
Markovian multi-state models since the martingale arguments of Appendix B
still apply. A still open question is, whether the common wild bootstrap also
fails in case of tied survival data which are assumed to follow the Cox propor-
tional hazards model [8]. See [19] for the wild bootstrap applied to absolutely
continuous survival data following the Cox model. And, if it fails, whether the
method proposed in this article requires further modification.

Appendix A: Detailed derivation of the asymptotic variance of the
Nelson-Aalen estimator

Define Hucptq “
řk

j“1 ENj1ptq as the probability that an uncensored event due

to any cause occurs until time t. According to [24], p. 383f, we have
?
np pA ´

Aq
d

ÝÑ
ş¨

0
Mucpduq{H̄puq, where Mucptq “ Gucptq´

şt

0
ḠpuqdApuq is a zero-mean

Gaussian martingale. Its variance function is determined by

EGuc
psqGuc

ptq “ Huc
ps ^ tq ´ Huc

psqHuc
ptq,

EḠpsqḠptq “ H̄ps _ tq ´ H̄psqH̄ptq,

EGuc
psqḠptq “ pHuc

psq ´ Huc
pt´qq1tt ď su ´ Huc

psqH̄ptq.

Note that Aptq “
şt

0
Hucpduq{H̄puq. Thus, for s ď t, the covariance function of

Muc at ps, tq is

EpMuc
psqMuc

ptqq

“Huc
psq ´ Huc

psqHuc
ptq `

ż s

0

ż t

0

H̄pu _ vq ´ H̄puqH̄pvq

H̄puqH̄pvq
dHuc

pvqdHuc
puq

´

ż t

0

rpHuc
psq ´ Huc

pu´qq1tu ď su ´ Huc
psqH̄puqs

dHucpuq

H̄puq

´

ż s

0

rpHuc
ptq ´ Huc

pv´qq1tv ď tu ´ Huc
ptqH̄pvqs

dHucpvq

H̄pvq

“Huc
psq ´ Huc

psqHuc
ptq `

ż s

0

ż t

u

” 1

H̄puq
´ 1

ı

dHuc
pvqdHuc

puq

`

ż s

0

ż u

0

” 1

H̄pvq
´ 1

ı

dHuc
pvqdHuc

puq

´ pHuc
psq ` Huc

ptqqApsq ` 2

ż s

0

Huc
pu´qdApuq ` 2Huc

psqHuc
ptq
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“Huc
psq ` Huc

psqHuc
ptq `

ż s

0

pHuc
ptq ´ Huc

puqq

” 1

H̄puq
´ 1

ı

dHuc
puq

`

ż s

0

pApuq ´ Huc
puqqdHuc

puq ´ pHuc
psq ` Huc

ptqqApsq

` 2

ż s

0

Huc
pu´qdApuq

“Huc
psq ` Huc

psqHuc
ptq ` Huc

ptqApsq ´ Huc
ptqHuc

psq ´

ż s

0

Huc
puqdApuq

`

ż s

0

Huc
puqdHuc

puq `

ż s

0

pApuq ´ Huc
puqqdHuc

puq

´ pHuc
psq ` Huc

ptqqApsq ` 2

ż s

0

Huc
pu´qdApuq

“Huc
psq ´ Huc

psqApsq ´

ż s

0

Huc
puqdApuq `

ż s

0

ApuqdHuc
puq

` 2

ż s

0

Huc
pu´qdApuq

“Huc
psq ´

ż s

0

Huc
puqdApuq `

ż s

0

Huc
pu´qdApuq

“

ż s

0

H̄puqdApuq ´

ż s

0

ΔHuc
puqdApuq “

ż s

0

H̄puqp1 ´ ΔApuqqdApuq

We conclude, as in [24], that

?
np pA ´ Aq

d
ÝÑ

ż ¨

0

1

H̄puq
dMuc

puq „ Gauss
´

0,

ż ¨

0

1 ´ ΔApuq

H̄puq
dApuq

¯

as n Ñ 8, where Gauss again indicates that the limit process is a Gaussian
martingale.

The very same calculations hold true if each Huc is replaced with Huc
j for

the subdistribution function of an uncensored type j event, j “ 1, . . . , k. There-
fore, we have for Nelson-Aalen estimators for cause-specific cumulative hazard
functions that, as n Ñ 8,

?
np pAj ´ Ajq

d
ÝÑ

ż ¨

0

1

H̄puq
dMuc

j puq „ Gauss
´

0, σ2
j p¨q

¯

,

where Muc
j ptq “ Guc

j ptq ´
şt

0
ḠpuqdAjpuq involves similar quantities as Muc, but

which are now cause-specific.

Appendix B: Consistency of the wild bootstrap for the univariate
Nelson-Aalen estimator

Proof. Without loss of generality, assume that 0,K P D for simplifying notation.
Write D “ td0, d1, . . . , dJu with the natural ordering dj ă dj`1 for all j “
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0, 1, . . . , J ´ 1. Then r0,KszD “
J
Ť

j“1

pdj´1, djq. For simplifying the notation, we

subsequently only consider the Nelson-Aalen estimator corresponding to the first
competing risk. As argued in [6], it is now straightforward to show that each

process pxW1ptq ´ xW1pdj´1qqt on each interval rdj´1, djq, j “ 1, . . . , J , defines
a square-integrable martingale. Since such martingales can be extended to the
right boundary of the time interval, we may define the boundary values xW1pdjq´

xW1pdj´1q :“ limtÒdj
xW1ptq ´ xW1pdj´1q, and this procedure introduces square-

integrable martingales on the whole rdj´1, djs.

First, we notice that the conditional weak convergence in probability of the
processes pxW1ptq ´ xW1pdj´1qqt on each interval rdj´1, djs, j “ 1, . . . , J , is al-
ready implied by exactly the same Rebolledo’s martingale central limit theo-
rem arguments as in [6]. Denote the limit Gaussian martingale processes as
pŨ1jptqqtPrdj´1,djs, j “ 1, . . . , J . Due to the martingale extension above, Re-

bolledo’s limit theorem implies the almost sure continuity of Ũ1j on each time
interval. Furthermore, these are zero-mean processes with variance function
t ÞÑ σ2

1ptq ´ σ2
1pdj´1q.

Due to the continuity of the limit processes Ũ1j on the intervals rdj´1, djs, we
are able to switch from the Skorohod topology to the more convenient sup-norm
metrization; see the discussion in Section II.8 in [3]. At each t “ dj , the weak

conditional convergence in distribution of ΔxW1pdjq holds in probability by the
already argued convergence of all finite-dimensional conditional distributions.
Therefore, the independence of the (bootstrapped) Nelson-Aalen increments
imply that, as n Ñ 8, the conditional distribution of

´

ΔxW1pd0q, xW1pt0q ´ xW1pd0q,ΔxW1pd1q,

. . . , xW1ptJ´1q ´ xW1pdJ´1q,ΔxW1pdJ q

¯

t0Prd0,d1s,...,tJ´1PrdJ´1,dJ s

given F0 converges weakly in probability to the distribution of

pŨ1pd0q, Ũ11pt1q, Ũ1pd1q, . . . , Ũ1JptJq, Ũ1pdJqqt1Prd0,d1s,...,tJPrdJ´1,dJ s

on the product Space R ˆ Drd0, d1s ˆ R ˆ ¨ ¨ ¨ ˆ DrdJ´1, dJ s ˆ R equipped with
the sup-max-norm. Here, all components are independent, and the normally
distributed random variables Ũ1pdjq have mean zero and variance Δσ2

1pdjq, j “

1, . . . , J .

Applying the following functional, which is continuous with respect to the
max-sup-norm,

ψ :R ˆ Drd0, d1s ˆ R ˆ ¨ ¨ ¨ ˆ DrdJ´1, dJ s ˆ R

ÝÑ Drd0, d1s ˆ ¨ ¨ ¨ ˆ DrdJ´1, dJ s ˆ R,

px0, y1pt1q, x1, . . . , yJptJq, xJ qt1,...,tJ
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ÞÝÑ

´

x0 ` y1pt1q, x0 ` y1pd1q ` x1 ` y2pt2q, . . . ,

x0 `

J´1
ÿ

j“1

pyjpdjq ` xjq ` yJ ptJq, x0 `

J
ÿ

j“1

pyjpdjq ` xjq

¯

t1,...,tJ

to the previous limit theorem, the continuous mapping theorem implies that,
given F0 and as n Ñ 8, the conditional distribution of

´

xW1pt1q, . . . , xW1ptJq, xW1pdJq

¯

t1Prd0,d1s,...,tJPrdJ´1,dJ s

converges weakly (on the product-function spaceDrd0, d1sˆ¨ ¨ ¨ˆDrdJ´1, dJ sˆR

equipped with the max-sup-norm) in probability to the distribution of
´

U1pt1q, . . . , U1ptJ q, U1pdJq

¯

t1Prd0,d1s,...,tJPrdJ´1,dJ s
.

Here the right boundary values are again considered as the left-hand limits
given by the martingale extension theorem. The process pU1ptqqtPr0,Ks is a zero-
mean Gaussian martingale with variance function t ÞÑ σ2

1ptq with, in general,
discontinuous sample paths.

Finally, we apply the continuous functional

φ : Drd0, d1s ˆ ¨ ¨ ¨ ˆ DrdJ´1, dJ s ˆ R ÝÑ Dr0,Ks,

py1pt1q, . . . , yJptJq, xJ qt1,...,tJ ÞÝÑ

´
J

ÿ

j“1

yjptq ¨ 1rdj´1,djqptq ` xJ ¨ 1tKuptq
¯

tPr0,Ks

in order to obtain the desired conditional weak convergence for pxW1ptqqtPr0,Ks

in probability.

Appendix C: Derivation of the asymptotic covariance of multiple
Nelson-Aalen estimators for cumulative cause-specific
hazards

Consider the situation of two competing risks. In order to derive the asymptotic
covariance of two cause-specific Nelson-Aalen estimators, we first note that, as
n Ñ 8,

?
np pA ´ Aq “

2
ÿ

j“1

?
np pAj ´ Ajq

d
ÝÑ U1 ` U2 “ U

by the continuous mapping theorem. The covariance function of U is given by

covpUpsq, Uptqq “ σ2
ps ^ tq “

ż s^t

0

1 ´ ΔApuq

H̄puq
dApuq

but on the other hand

covpUpsq, Uptqq “

2
ÿ

j“1

covpUjpsq, Ujptqq ` covpU1psq, U2ptqq ` covpU1ptq, U2psqq.
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Solving for the unknown covariances on the right-hand side of the previous
display, we obtain

covpU1psq, U2ptqq ` covpU1ptq, U2psqq

“

ż s^t

0

1 ´ ΔApuq

H̄puq
dApuq ´

2
ÿ

j“1

ż s^t

0

1 ´ ΔAjpuq

H̄puq
dAjpuq

“ ´

ż s^t

0

ΔA1puq

H̄puq
dA2puq ´

ż s^t

0

ΔA2puq

H̄puq
dA1puq

“ ´2
ÿ

uďs^t

ΔA1puqΔA2puq

H̄puq
.

Due to symmetry and inductively, it follows that

σj�ps ^ tq “ covpUjpsq, U�ptqq “ ´

ż s^t

0

ΔAjpuq

H̄puq
dA�puq

for j ‰ �, j, � “ 1, . . . , k, even in the situation of k P N competing risks.

Appendix D: Consistency of the discretization-adjusted wild
bootstrap for the multivariate Nelson-Aalen estimator

The proof of tightness follows along the same lines as that of Theorem 3.2
because the wild bootstrapped Nelson-Aalen estimators retain their martingale
properties. It only remains to calculate the finite-dimensional marginal limit dis-
tributions. These are calculated with the help of Theorem A.1 in [5]: Therefore,
we abbreviate

xWjptq “

n
ÿ

i“1

ξjjiZn,jji`

k
ÿ

�“1

signp�´jq

n
ÿ

i“1

ξj�iZ̃n,j�i`

k
ÿ

�“1

signp�´jq

n
ÿ

i“1

ξ�jiZ̃n,�ji.

Further, consider arbitrary points of time 0 ď t1 ď ¨ ¨ ¨ ď tm ď K and the vector

pxW1pt1q, . . . , xW1ptmq, xW2pt1q, . . . , xW2ptmq . . . , xWkpt1q, . . . , xWkptmqq.

Due to analogy, it is enough to calculate the entries corresponding to both pairs
pxW1pt1q, xW1pt2qq and pxW1pt1q, xW2pt2qq of the limit of the matrix

pΓ :“
´

1tj “ j̃u

n
ÿ

i“1

”

Zn,jjiptaqZn,jjiptbq

`
ÿ

�‰j

Z̃n,j�iptaqZ̃n,j�iptbq `
ÿ

�‰j

Z̃n,�jiptaqZ̃n,�jiptbq

ı

´ 1tj ‰ j̃u

n
ÿ

i“1

”

Z̃n,jj̃iptaqZ̃n,jj̃iptbq ` Z̃n,j̃jiptaqZ̃n,j̃jiptbq

ı¯

a,b“1,...,m; j,j̃“1,...,k
.
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We start by calculating the entry for a “ 1, b “ 2, j “ j̃ “ 1, that is,

n
ÿ

i“1

”

Zn,11ipt1qZn,11ipt2q `

k
ÿ

�“2

Z̃n,1�ipt1qZ̃n,1�ipt2q `

k
ÿ

�“2

Z̃n,�1ipt1qZ̃n,�1ipt2q

ı

“ n
n

ÿ

i“1

ż t1

0

Y puq ´ ΔNpuq

Y puq

dN1ipuq

Y 2puq

`
1

2

k
ÿ

�“2

”

n
n

ÿ

i“1

ż t1

0

ΔN1puq

Y puq

dN�ipuq

Y 2puq
` n

n
ÿ

i“1

ż t1

0

ΔN�puq

Y puq

dN1ipuq

Y 2puq

ı

“ n

ż t1

0

Y puq ´ ΔNpuq

Y 2puq

dN1puq

Y puq

`
1

2

k
ÿ

�“2

”

n

ż t1

0

ΔN1puq

Y 2puq

dN�puq

Y puq
` n

ż t1

0

ΔN�puq

Y 2puq

dN1puq

Y puq

ı

“ n

ż t1

0

Y puq ´ ΔN1puq

Y 2puq

dN1puq

Y puq
.

Here, the last equality follows from ΔN1dN� “ ΔN�dN1 for all �. By the
Glivenko-Cantelli theorem in combination with the continuous mapping the-
orem, it follows that the quantity in the previous display converges to σ2

1pt1q in
probability as n Ñ 8.

Now, consider the entry of pΓ for a “ 1, b “ 2, j “ j̃ “ 2:

´

n
ÿ

i“1

”

Z̃n,12ipt1qZ̃n,12ipt2q ` Z̃n,21ipt1qZ̃n,21ipt2q

ı

“ ´
1

2

”

n

ż t1

0

ΔN1puq

Y 2puq

dN2puq

Y puq
` n

ż t1

0

ΔN2puq

Y 2puq

dN1puq

Y puq

ı

.

By the same arguments as before, this is a consistent estimator for σ12pt1q as
n Ñ 8.

Appendix E: Derivation of the asymptotic covariance function of an
Aalen-Johansen estimator in the competing risks
set-up

In order to derive the the covariance function of
ż ¨

0

1 ´ F2pu´q ´ F1p¨q

1 ´ ΔApuq
dU1puq `

ż ¨

0

F1pu´q ´ F1p¨q

1 ´ ΔApuq
dU2puq,

at any ps, tq P r0,Ks2, we exemplarily calculate the covariance function of the
first integral and the covariance function between both integrals. Hence, as the
covariance function ps, tq ÞÑ σ2

1ps ^ tq of U1 only increases along the diagonal,

cov
´

ż s

0

1 ´ F2pu´q ´ F1psq

1 ´ ΔApuq
dU1puq,

ż t

0

1 ´ F2pu´q ´ F1ptq

1 ´ ΔApuq
dU1puq

¯
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“

ż s^t

0

p1 ´ F2pu´q ´ F1psqqp1 ´ F2pu´q ´ F1ptqq

p1 ´ ΔApuqq2
dσ2

1puq

“

ż s^t

0

p1 ´ F2pu´q ´ F1psqqp1 ´ F2pu´q ´ F1ptqq

H̄puq

1 ´ ΔA1puq

p1 ´ ΔApuqq2
dA1puq.

Furthermore, we similarly have for the covariance between both integrals that

cov
´

ż s

0

1 ´ F2pu´q ´ F1psq

1 ´ ΔApuq
dU1puq,

ż t

0

F1pu´q ´ F1ptq

1 ´ ΔApuq
dU2puq

¯

“

ż s^t

0

p1 ´ F2pu´q ´ F1psqqpF1pu´q ´ F1ptqq

p1 ´ ΔApuqq2
dσ12puq

“ ´

ż s^t

0

p1 ´ F2pu´q ´ F1psqqpF1pu´q ´ F1ptqq

H̄puq

ΔA1puq

p1 ´ ΔApuqq2
dA2puq.

Finally, including also the remaining two analogous terms, we obtain the fol-
lowing asymptotic covariance function of the Aalen-Johansen estimator for the
first cumulative incidence function as the sum of all four covariance functions:

ps, tq ÞÑ

ż s^t

0

p1 ´ F2pu´q ´ F1psqqp1 ´ F2pu´q ´ F1ptqq

H̄puq

1 ´ ΔA1puq

p1 ´ ΔApuqq2
dA1puq

`

ż s^t

0

pF1pu´q ´ F1psqqpF1pu´q ´ F1ptqq

H̄puq

1 ´ ΔA2puq

p1 ´ ΔApuqq2
dA2puq

´

ż s^t

0

p1 ´ F2pu´q ´ F1psqqpF1pu´q ´ F1ptqq

H̄puq

ΔA1puq

p1 ´ ΔApuqq2
dA2puq

´

ż s^t

0

p1 ´ F2pu´q ´ F1ptqqpF1pu´q ´ F1psqq

H̄puq

ΔA2puq

p1 ´ ΔApuqq2
dA1puq.

Expanding the terms 1 ´ ΔA1 “ 1 ´ ΔA ` ΔA2 (similarly for j “ 2) and
rearranging all integrals, the covariance function simplifies to

ż s^t

0

p1 ´ F2pu´q ´ F1psqqp1 ´ F2pu´q ´ F1ptqq

H̄puq

dA1puq

1 ´ ΔApuq

`

ż s^t

0

pF1pu´q ´ F1psqqpF1pu´q ´ F1ptqq

H̄puq

dA2puq

1 ´ ΔApuq

`

ż s^t

0

rp1 ´ F2pu´q ´ F1psqq ´ pF1pu´q ´ F1psqqs

ˆ rp1 ´ F2pu´q ´ F1ptqq ´ pF1pu´q ´ F1ptqqs
ΔA1puq

H̄puqp1 ´ ΔApuqq2
dA2puq

“

ż s^t

0

p1 ´ F2pu´q ´ F1psqqp1 ´ F2pu´q ´ F1ptqq

H̄puq

dA1puq

1 ´ ΔApuq

`

ż s^t

0

pF1pu´q ´ F1psqqpF1pu´q ´ F1ptqq

H̄puq

dA2puq

1 ´ ΔApuq

`
ÿ

uďs^t

S2pu´qΔA1puqΔA2puq

H̄puqp1 ´ ΔApuqq2
.
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The latter representation of the covariance function shows that this covariance
function in general increases when ties in the data are present.
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