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1Université Paris-Dauphine, PSL Research University,
CNRS, CEREMADE, 75016 Paris, France

2Seminar für Statistik, ETH Zürich,
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Abstract: Location mixture models, resulting in shifting a common dis-
tribution with some probability, have been widely used to account for ex-
istence of clusters in the data. Assuming only symmetry of this common
distribution allows for great flexibility, especially when the traditional nor-
mality assumption is violated. This semi-parametric model has been studied
in several papers, where the mixture parameters are first estimated before
constructing an estimator for the non-parametric component. The plug-in
method suggested by Hunter et al. (2007) has the merit to be easily imple-
mentable and fast to compute. However, no result is available on the limit
distribution of the obtained estimator, hindering for instance construction
of asymptotic confidence intervals. In this paper, we give sufficient condi-
tions on the symmetric distribution for asymptotic normality to hold. In
case the symmetric distribution admits a log-concave density, our assump-
tions are automatically satisfied. The obtained result has to be used with
caution in case the mixture location are too close or the mixing probability
is close to 0 or 1. Three examples are considered where we show that the
estimator is not to be advocated when the mixture components are not well
separated.

Received December 2016.

1. Introduction

1.1. A brief overview

Consider the two-component location mixture model

F (x) = π G(x− μ1) + (1− π) G(x− μ2) (1.1)

where π ∈ [0, 1], −∞ < μ1 ≤ μ2 < ∞ and G is a symmetric distribution around
zero, that is, G(−x) = 1 − G(x−) for x ∈ R. This model is semi-parametric
since the unknown parameters are the 3-dimensional vector (π, μ1, μ2) and the
symmetric distribution G. It has been considered by several authors, e.g. Bordes
et al. (2006), Hunter et al. (2007), Chee and Wang (2013), Butucea and Van-
dekerkhove (2014), and more recently Balabdaoui and Doss (2016). Whether
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the goal is to estimate the mixed distribution or to classify new members in
each of the existing clusters, (1.1) offers more flexibility than the Gaussian mix-
ture model when G is not the distribution function of a normal variable. The
simulation study carried out by Hunter et al. (2007) shows evidence that the
estimators obtained under (1.1) outperforms the maximum likelihood estima-
tor (MLE) under the Gaussian mixture model for the heavy-tailed distributions
they considered. When testing for presence of mixing, the numerical results ob-
tained in Balabdaoui and Doss (2016) for the asymptotic power also show the
higher performance of the symmetric log-concave MLE when compared to the
Gaussian one. In Chang and Walther (2007), the authors considered a more
general mixture model where the mixture components are assumed to have log-
concave densities. See also the clustering example of Cule et al. (2010) in a
two-dimensional setting using the Wisconsin Breast cancer study. The afore-
mentioned log-concave mixture models are of course more general than the lo-
cation mixture model in (1.1) but suffer from being non-identifiable. See e.g.
the counterexamples given in the Concluding Discussion section in Cule et al.
(2010).

To estimate the distribution G, the focus in all the aforementioned papers on
the mixture model in (1.1) is on first estimating the parameters of the mixture
μ1, μ2 and π. In some way, these mixture parameters are viewed as nuisance
parameters. In Butucea and Vandekerkhove (2014), an estimator of these pa-
rameters was constructed by converting symmetry of the density of G (assumed
to exist) to the fact that the imaginary part of its Fourier transform has to be
equal to 0. The authors showed that their estimator is consistent and established
that it is asymptotically normal, under the assumption that the mixture model
is identifiable. In fact, they used the identifiability conditions found by Hunter
et al. (2007), which we now discuss. Hunter et al. (2007) considered the more
flexible notion of 2-identifiability defined as follows. Consider the sets

Θ = {θ = (π, μ1, μ2) : π ∈ [0, 1],−∞ < μ1 < μ2 < ∞}, (1.2)

S =
{
G : G is a symmetric c.d.f.

}
,

and

M =
{
F : F = π G(x− μ1) + (1− π) G(x− μ2), (π, μ1, μ2, G) ∈ Θ× S

}
.

Let ϕ be the application defined on Θ × S onto M such that F = ϕ(G, θ) is
given by (1.1). An element F ∈ M is said to be 2-identifiable if ϕ−1(F ) is a
singleton in Θ× S. See also Definition 1 in Hunter et al. (2007). The first goal
of the authors was to determine the largest subset in Θ yielding 2-identifiable
distribution functions F ∈ M. They showed that this set is precisely

Θ∗ = {θ = (π, μ1, μ2) ∈ Θ : π ∈ (0, 1) \ {1/2}}. (1.3)

In other words, the only distributions which are not 2-identifiable are those
which are themselves symmetric; see their Theorem 2. This result is proved by
first showing that a necessary and sufficient condition for the vector parameter
to yield a 2-identifiable mixed distribution given by (1.1) is that
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Δ(π,−μ1,−μ2) := πδ−μ1 + (1− π)δ−μ2

is the unique distribution that gives a symmetric distribution around zero when
convolved with

Δ(π, μ1, μ2) := πδμ1 + (1− π)δμ2

where δa is the Dirac distribution at some real a; see Theorem 1 of Hunter et al.
(2007). In the sequel, θ0 = (π0, μ0

1, μ
0
2) ∈ Θ∗ denotes the true mixture parame-

ters, F 0 = G0 �Δ(θ0) the true mixed distribution and G0 the true associated
symmetric distribution, where � is the usual notation for the convolution op-
erator. The previous preliminary result gives the following very useful identity,
exploited in this paper at various places when deriving the asymptotics of the
estimator of (π0, μ0

1, μ
0
2):

π0
(
1− F 0(μ0

1 − t)− F 0(μ0
1 + t)
)
+ (1− π0)

(
1− F 0(μ0

2 − t)− F 0(μ0
2 + t)
)

= 0 (1.4)

for all t ∈ R. This identity is satisfied only by π = π0, μ1 = μ0
1, μ2 = μ0

2 and
hence characterizes the true vector θ0. To give the reader some background, the
identity in (1.4) is an immediate consequence of two facts. The first one is

F 0 �Δ(π,−μ1,−μ2) = G0 �
(
Δ(π0, μ0

1, μ
0
2) �Δ(π,−μ1,−μ2)

)
for any (π, μ1, μ2) ∈ Θ∗. The second one is that the distribution on the right-
hand side is symmetric if and only if Δ(π0, μ0

1, μ
0
2)�Δ(π,−μ1,−μ2) is symmetric.

As discussed above, the latter implies that π = π0, μ1 = μ0
1 and μ2 = μ0

2 since
θ0 is the only vector in Θ∗ satisfying this property. Therefore, we have that
F 0�Δ(π0,−μ0

1,−μ0
2) = (1−F 0(−·))�Δ(π0, μ0

1, μ
0
2), which is exactly the identity

given in (1.4). Then, it follows that

D2(θ0) =

∫
R

{
π0
(
1− F 0(μ0

1 − t)− F 0(μ0
1 + t)
)

+(1− π0)
(
1− F 0(μ0

2 − t)− F 0(μ0
2 + t)
)}2

dt

= 0.

Note that the latter is nothing but saying that the L2 distance between F 0 �
Δ(π0,−μ0

1,−μ0
2) and (1− F 0(−·)) �Δ(π0, μ0

1, μ
0
2) is equal to 0.

1.2. The plug-in estimator

Replacing θ0 by an element θ to obtain D2(θ) and taking the empirical coun-
terpart of the resulting expression, one can now construct the plug-in estimator
of the mixture parameters through minimizing

D2
n(θ) =

∫
R

{
π
(
1− Fn(μ1 − t)− Fn(μ1 + t)

)
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+(1− π)
(
1− Fn(μ2 − t)− Fn(μ2 + t)

)}2
dt (1.5)

over Θ∗, where Fn is the empirical distribution. Let θ̂n denote this estimator. To
compute the symmetric log-concave MLE of the density of G0, Balabdaoui and
Doss (2016) replace first the vector of the unknown mixture parameters by θ̂n
and then maximize the log-likelihood over the class of symmetric and log-concave
densities on R. Choosing this estimator was motivated by the fact that it is very
easy to implement and also fast to compute. Balabdaoui and Doss (2016) used
the R-code of Hunter et al. (2007) made available on the web page of the first
author. Moreover, Hunter et al. (2007) show, under some conditions, that the
estimator convergences at the

√
n- rate. Assuming that these conditions hold,

the fast rate of convergence of θ̂n guarantees convergence of the nonparametric
log-concave MLE of Balabdaoui and Doss (2016) to the true symmetric density
at the (usual) n2/5-rate in the L1 distance. See Theorem 4.1 in Balabdaoui and
Doss (2016).

1.3. Problem, motivation and limitations

in their Theorem 3 Hunter et al. (2007) show almost sure convergence of θ̂n to
the truth but no explicit proof on asymptotic normality was provided. Instead,
Hunter et al. (2007) give in their Theorem 4 conditions under which θ̂n con-
verges at the

√
n-rate to a 3-dimensional centered Gaussian distribution with

a dispersion matrix given by J−1ΣJ−1. The matrix J is the Hessian matrix of
θ �→ D2(θ), assuming that it exists and is positive definite. The matrix Σ is
the covariance matrix of a 3-dimensional vector playing the role of a gradient
of E[fθ(x, Y )] at θ0 where fθ is given below in (4.9); see also condition (iii) in
Theorem 4 of Hunter et al. (2007). The three conditions given by Hunter et al.
(2007) for Theorem 4 are connected to the theory of V -processes, since D2

n(θ)
can be identified as such.

In a personal communication with David Hunter, the validity of the condi-
tions of Theorem 4 has never been checked. Thus, the rate of convergence of θ̂n
and its limit are, up to now, open questions. Without this knowledge, it is not
possible to construct asymptotic tests or confidence intervals for any of the mix-
ture parameters. In this paper, we show that θ̂n is indeed asymptotically normal
under some sufficient conditions. The approach we have taken is based on the
theory of empirical processes, which is well-suited for M -estimators. Although
certain results from this theory can be used off the shelf, a substantial effort
has been made to re-adapt them in the current setting. The fact is that the
estimator θ̂n minimizes a functional that is quadratic in Fn whereas most of the
results in van der Vaart and Wellner (1996) are tailored for empirical processes
that are linear in Fn. Thus, we believe that some of the techniques developed
in this article are of its interest in their own right, and may be applicable in
some other M -estimation problems where the dependence on Fn is non-linear.
Investigation of the weak convergence of θ̂n allowed to have a clearer insight
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into when this estimator can or cannot be used. The expression of the variance-
covariance matrix obtained in Section 2 can be used to compute Monte-Carlo
approximations of the asymptotic variances. The examples of Section 3 clearly
indicate that the estimator is not to be advocated in case the mixture locations
are two close to each other, or if the mixing probability is close to 0 or 1.

1.4. Organization of the paper

While thinking about the asymptotic behavior of θ̂n, we realized that existence
of θ̂n is yet to be confirmed. Although the estimator was defined in a very
intuitive way, a formal proof of existence has not been provided in Hunter et al.
(2007) nor in a separate note (personal communication with David Hunter). A

formal proof that θ̂n exists is given in Section 4.1. The structure of the remaining
results is as follows: Section 2 is devoted to deriving the asymptotic distribution
under some sufficient conditions on the density g0 of the unknown symmetric
distribution G0. In Section 3 we give some examples to illustrate the theory. As
mentioned above, the examples show that the estimator can be very inefficient
when the mixture components are not well separated. In Section 4.2 we gather
the proofs of the results yielding the

√
n-rate of convergence of θ̂n. The proof

of the asymptotic distribution of the estimator along with some useful formulae
are deferred to Supplement A (Balabdaoui, 2017).

2. Asymptotics of the (Hogdes-Lehmann) estimator

This section is devoted to the main subject of this paper: establishing the asymp-
totic distribution of the estimator θ̂n. The approach we chose to follow might
look like a detour from V-processes, which may have been a more natural way to
go as the functional to be minimized is a quadratic function of Fn. Our attempts
to check the conditions of Theorem 4 of Hunter et al. (2007) were not very suc-
cessful. In the meantime, we realized that the theory of M -estimators can be
applied in the current context. However, some effort was needed to be made to
cast the problem into the theory of empirical processes. The proof is divided
into four steps so that it is possible to apply the argmax continuous mapping
theorem (or rather the argmin continuous mapping theorem here) for processes
that converge weakly to a tight limit in C([−K,K]3), the space of continuous
functions defined on the 3-dimensional compact [−K,K]3 for some K > 0. Our
main reference is Theorem 3.2.2 of van der Vaart and Wellner (1996). In the
sequel, the symmetric distribution G0 is assumed to have a density g0 with re-
spect to Lebesgue measure. In the next section, we will show that θ̂n converges
to θ0 at the parametric rate

√
n.

2.1. Deriving the
√
n-rate of convergence

The first step towards establishing the rate of convergence is showing consis-
tency. The latter follows from Theorem 3 of Hunter et al. (2007).
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Theorem 2.1. Assume that g0 admits a finite first moment. Then

θ̂n → θ0

almost surely as n → ∞.

To be able to refine this result we will appeal for the theory of empirical
processes. As we will show below, the centered and rescaled processs

√
n
(
D2

n(θ)− D2(θ)− (D2
n(θ0)− D2(θ0))

)
can be decomposed into processes whose maximal expectation over a neighbor-
hood of θ0 can be controlled using the theory of VC-classes. To pave the way to
showing the main result of this section, we shall adopt the notation

θt =
(
π, μ1 − t, μ1 + t, μ2 − t, μ2 + t

)
for a given t ∈ R. Also, we shall consider the collection of functions mθt defined
as

mθt(x) = π
(
1x>μ1−t − 1x≤μ1+t

)
+ (1− π)

(
1x>μ2−t − 1x≤μ2+t

)
for θ = (π, μ1, μ2) ∈ Θ. The symbols Pn and P will be used for the empirical
and true measure respectively. The starting point here is to rewrite D2

n(θ) as

D2
n(θ) =

∫
R

(Pnmθt)
2
dt

=

∫
R

(
Pn(mθt −mθ0

t
) + Pnmθ0

t

)2
dt

=

∫
R

(
Pn(mθt −mθ0

t
)
)2
dt+ 2

∫
R

Pn(mθt −mθ0
t
) Pnmθ0

t
dt

+

∫
R

(
Pnmθ0

t

)2
dt

where the last term on the left side is equal to Dn(θ
0). Developing D(θ) in a

similar way and using the fact that for all t ∈ R

Pmθ0
t

= π0
(
1− F 0(μ0

1 − t)− F 0(μ0
1 + t)
)

+(1− π0)
(
1− F 0(μ0

2 − t)− F 0(μ0
2 + t)
)
= 0

using (1.4) yields D2(θ) =
∫
R

(
P(mθt −mθ0

t
)
)2
dt. Hence,

D2
n(θ)− D2(θ)− (D2

n(θ
0)− D2(θ0))

=

∫
R

[(
Pn(mθt −mθ0

t
)
)2 − (P(mθt −mθ0

t
)
)2]

dt

+ 2

∫
R

Pn(mθt −mθ0
t
) Pnmθ0

t
dt
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=

∫
R

[(
Pn(mθt −mθ0

t
)
)2 − (P(mθt −mθ0

t
)
)2]

dt

+ 2

∫
R

(Pn − P)(mθt −mθ0
t
) (Pn − P)mθ0

t
dt

+ 2

∫
R

P(mθt −mθ0
t
) (Pn − P)mθ0

t
dt,

using again (1.4)

=

∫
R

(Pn − P)(mθt −mθ0
t
) (Pn + P)(mθt −mθ0

t
) dt

+ 2

∫
R

(Pn − P)(mθt −mθ0
t
) (Pn − P)mθ0

t
dt

+ 2

∫
R

P(mθt −mθ0
t
) (Pn − P)mθ0

t
dt.

It follows that

√
n
∣∣D2

n(θ)− D2(θ)− (D2
n(θ

0)− D2(θ0))
∣∣

≤
√
n

∫
R

(Pn − P)2(mθt −mθ0
t
)dt

+ 2

∫
R

√
n
∣∣∣(Pn − P)(mθt −mθ0

t
)
∣∣∣ P∣∣mθt −mθ0

t

∣∣ dt
+ 2

∫
R

√
n
∣∣∣(Pn − P)(mθt −mθ0

t
)
∣∣∣ ∣∣∣(Pn − P)mθ0

t

∣∣∣ dt
+ 2

∫
R

P
∣∣mθt −mθ0

t

∣∣ √n
∣∣∣(Pn − P)mθ0

t

∣∣∣ dt. (2.6)

Let

‖θt − θ0t ‖∞ = ‖θ − θ0‖∞ = max(|π − π0|, |μ1 − μ0
1|, |μ2 − μ0

2|).

Recall that G0 is assumed to have a density g0 with respect to Lebesgue mea-
sure. To derive the

√
n-rate of convergence of θ̂n, we will show the following

intermediate theorem.

Theorem 2.2. Suppose that
∫
R
(g0(t))1/2dt < ∞. Then, there exists a constant

C > 0 depending only on g0 and μ0
2 − μ0

1 such that for δ > 0 small enough we
have that

E sup
‖θ−θ0‖∞<δ

[√
n
∣∣D2

n(θ)−D2(θ)− (D2
n(θ

0)−D2(θ0))
∣∣ ]≤C

(
δ+

δ1/2√
n

)
=φn(δ).

The proof of the above bound will involve two main steps. In the first one,
we shall control the maximal expectation of the process

Gn(mθt −mθ0
t
) :=

√
n(Pn − P)(mθt −mθ0

t
)
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over the class

Mt,δ =
{
mθt −mθ0

t
: ‖θt − θ0t ‖∞ = ‖θ − θ0‖∞ < δ

}
for a fixed δ > 0. We will achieve this by showing that Mt,δ can be embedded
in the sum of VC-subgraphs. This will enable us to show that we have control
on its entropy as if it were itself a VC-subgraph. The bound we will obtain for
the supremum of the expectation of the process Gn(mθt −mθ0

t
) will depend on

t ∈ R, the variable of integration. In the second step, and under some suitable
assumptions on the true symmetric density g0, we will show that this control is
strong enough to allow for integrating the resulting supremum and hence obtain
the desired bound given in Theorem 2.2. For a fixed t ∈ R let Fi,t, i = 1, . . . , 6,
be the functions defined as

F1,t(x) = π01x∈[μ0
1−δ+t,μ0

1+δ+t]

F2,t(x) = π01x∈[μ0
1−δ−t,μ0

1+δ−t]

F3,t(x) = (1− π0)1x∈[μ0
2−δ+t,μ0

1+δ+t]

F4,t(x) = (1− π0)1x∈[μ0
2−δ−t,μ0

1+δ−t]

F5,t(x) = δ1x∈[μ0
1−δ+t,μ0

2+δ+t]

F6,t(x) = δ1x∈[μ0
1−δ−t,μ0

2+δ−t]. (2.7)

The following theorem gives the necessary ingredients for completing the first
step of the proof as described above.

Theorem 2.3. The following holds true:

1. The class of funtions

I =
{
c1(a,b], a, b, c ∈ R

}
is a VC-subgraph of index 4. The same holds true if (a, b] is replaced by
[a, b).

2. Let F be a class of functions such that F = F1 + . . . + Fm for some
integer m > 0 and Fi are VC-classes with envelopes Fi for i = 1, . . . ,m
respectively. Then, F is P -Donsker and there exists a constant M > 0
such that

E[‖Gn‖F ] ≤ m M‖F1 + . . .+ Fm‖P,2, and

E[‖Gn‖2F ] ≤ m2 M‖F1 + . . .+ Fm‖2P,2

3. There exists a constant M > 0 such that for all t ∈ R

E[‖Gn‖Mt,δ
] ≤ 6M‖F1,t + . . .+ F6,t‖P,2, and

E[‖Gn‖2Mt,δ
] ≤ 36M‖F1,t + . . .+ F6,t‖2P,2.

where the functions Fi,t, i = 1, . . . , 6 were defined in (2.7).

In the following proposition we give sufficient conditions for the first require-
ment for deriving the rate of convergence of an M -estimator using Theorem
3.2.5 of van der Vaart and Wellner (1996).
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Proposition 2.4. Assume that g0 satisfies that

•
∫
R
|t|g0(t)dt < ∞,

• it admits a derivative, (g0)′, almost everywhere that is bounded on R.

Then, there exists a small neighborhood of θ0 = (π0, μ0
1, μ

0
2) and a constant κ > 0

such that for all θ = (π, μ1, μ2) in this neighborhood we have that

D2(θ)− D2(θ0) ≥ κ ‖θ − θ0‖∞.

Theorem 2.2 and Proposition 2.4 yield now the rate of convergence of the
estimator of Hunter et al. (2007).

Proposition 2.5. Under the assumptions of Theorem 2.2 and Proposition 2.4
we have that

√
n‖θ̂n − θ0‖∞ = Op(1).

2.2. Deriving the asymptotic distribution

Fix K > 0 and let h1, h2, h3 ∈ [−K,K]. In the following, we will write

μ0
1,n,h1

= μ0
1 +

h1√
n
, μ0

2,n,h2
= μ0

2 +
h2√
n
, π0

n,h3
= π0 +

h3√
n

for n ≥ 1. Write h = (h1, h2, h3) and consider the process

Qn(h) := nD2
n(θ

0 + h/
√
n)

= n

∫
R

{
π0
n,h3

(
1− Fn(μ

0
1,n,h1

− t)− Fn(μ
0
1,n,h1

+ t)
)

+(1− π0
n,h3

)
(
1− Fn(μ

0
2,n,h2

− t)− Fn(μ
0
2,n,h2

+ t)
)}2

dt

= n

∫
R

{
π0
(
1− Fn(μ

0
1,n,h1

− t)− Fn(μ
0
1,n,h1

+ t)
)

+(1− π0)
(
1− Fn(μ

0
2,n,h2

− t)− Fn(μ
0
2,n,h2

+ t)
)

+
h3√
n

(
Fn(μ

0
2,n,h2

− t) + Fn(μ
0
2,n,h2

+ t)

−Fn(μ
0
1,n,h1

− t)− Fn(μ
0
1,n,h1

+ t)
)}2

dt

= Tn,1(h1, h2) + Tn,2(h) + Tn,3(h)

where

Tn,1(h1, h2) = n

∫
R

{
π0
(
1− Fn(μ

0
1,n,h1

− t)− Fn(μ
0
1,n,h1

+ t)
)

+(1− π0)
(
1− Fn(μ

0
2,n,h2

− t)− Fn(μ
0
2,n,h2

+ t)
) }2

dt,
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Tn,2(h) = 2h3

∫
R

√
n
{
π0
(
1− Fn(μ

0
1,n,h1

− t)− Fn(μ
0
1,n,h1

+ t)
)

+(1− π0)
(
1− Fn(μ

0
2,n,h2

− t)− Fn(μ
0
2,n,h2

+ t)
)}

×
(
Fn(μ

0
2,n,h2

− t) + Fn(μ
0
2,n,h2

+ t)

−Fn(μ
0
1,n,h1

− t)− Fn(μ
0
1,n,h1

+ t)
)
dt

and

Tn,3(h) = h2
3

∫
R

(
Fn(μ

0
2,n,h2

− t) + Fn(μ
0
2,n,h2

+ t)

−Fn(μ
0
1,n,h1

− t)− Fn(μ
0
1,n,h1

+ t)
)2

dt.

Theorem 2.6. Let K > 0, h = (h1, h2, h3) ∈ [−K,K]3 and U be a standard
Brownian bridge from (0, 0) to (1, 0). Also, let s = μ0

2 − μ0
1 and ḡs(t) = (g0(t−

s) + g0(t+ s))/2. We assume that

• g0 is bounded on R,
• g0 changes direction of monotonicity only a finite number of times,
• g0 admits a derivative (g0)′ almost everywhere such that (g0)′ is bounded

on R and changes direction of monotonicity only a finite number of times,

• there exists α ∈ (0, 1/2) such that
∫
R

[
G0(t)(1−G0(t)

]1/2−α
dt < ∞ where

G0 is the CDF of g0.

Then, under the above assumptions

Qn ⇒ Q0

in C([−K,K]3), where

Q0(h) = hAhT + hV+ C

with A a 3× 3 matrix whose entries are given by

A11 = 4(π0)2
∫
R

(
π0g0(t) + (1− π0)ḡs(t)

)2
dt,

A22 = 4(1− π0)2
∫
R

(
(1− π0)g0(t) + π0ḡs(t)

)2
dt,

A33 =

∫
R

(
G0(t+ s)−G0(t− s)

)2
dt,

A12 = A21 = 4π0(1− π0)

×
∫
R

(
π0g0(t) + (1− π0)ḡs(t)

)(
(1− π0)g0(t) + π0ḡs(t)

)
dt,

A13 = A31
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= −2π0

∫
R

(
π0g0(t) + (1− π0)ḡs(t)

)(
G0(t+ s)−G0(t− s)

)
dt,

A23 = A32

= −2(1− π0)

∫
R

(
(1− π0)g0(t) + π0ḡs(t)

)(
G0(t+ s)−G0(t− s)

)
dt,

V a vector R whose components are distributed as

V1 =d 4π0

∫
R

(
π0g0(t) + (1− π0)g0s(t)

)
×(

π0
(
U(F 0(μ0

1 − t)) + U(F 0(μ0
1 + t))

)
+(1− π0)

(
U(F 0(μ0

2 − t)) + U(F 0(μ0
2 + t))

))
dt,

V2 =d 4(1− π0)

∫
R

(
(1− π0)g0(t) + π0ḡs(t)

)
×(

π0
(
U(F 0(μ0

1 − t)) + U(F 0(μ0
1 + t))

)
+(1− π0)

(
U(F 0(μ0

2 − t)) + U(F 0(μ0
2 + t))

))
dt,

V3 =d −2

∫
R

(
π0
(
U(F 0(μ0

1 − t)) + U(F 0(μ0
1 + t))

)
+

(1− π0)
(
U(F 0(μ0

2 − t)) + U(F 0(μ0
2 + t))

))
×
(
G0(t+ s)−G0(t− s)

)
dt,

and

C = d

∫
R

{
π0
(
U(F 0(μ0

1 − t)) + U(F 0(μ0
1 + t))

)
+(1− π0)

(
U(F 0(μ0

2 − t)) + U(F 0(μ0
2 − t))

)}2
dt.

We can now state the main theorem of the paper.

Theorem 2.7. Suppose that the conditions of Theorem 2.2 and Theorem 2.6
hold true. Also, suppose that the symmetric density g0 satisfies

∫
R
|t|5g0(t)dt <

∞. Then, the matrix A defined above is definite positive and the process Q0

admits a unique minimizer h0 given by the solution of the linear equation

Ah0 = −V

2
.

Furthermore, we have that
√
n(θ̂n − θ0) →d h0.
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Remark 2.8. The assumptions made above are satisfied by a variety of distri-
butions. In particular, this is the case if we assume that the unknown symmetric
density g0 is log-concave on its support as done in ?. Then, the density g0 is
bounded and changes direction of monotonicity only once since log-concavity im-
plies unimodality. By Theorem 2.3 of Finner and Roters (1993), we know that
G0 and 1−G0 are both log-concave ion R. Hence, Lemma 2 of Schoenberg (1951)
can be applied to g0, G0 and 1−G0 and we can find constants a > 0, b > 0 such
that g0(|t|) ≤ a exp(−b|t|) for all t ∈ R, G0(t) ≤ a exp(−b|t|) for all t ≤ 0 and
1−G0(t) ≤ a exp(−bt) for all t > 0. Therefore, we have that∫

R

(g0(t))1/2dt < ∞,

∫
R

[G0(t)(1−G0(t))]γdt < ∞,

∫
R

|t|γg0(t)dt < ∞.

for any γ > 0, and in particular for γ ∈ (0, 1/2).

Remark 2.9. Recall that Hunter et al. (2007) have shown that the mixture
model is identifiable whenever π0 ∈ (0, 1) \ {1/2} and μ0

1 < μ0
2. Thus, it is not

surprising that the matrix A is singular if π0 ∈ {0, 1/2, 1} or μ0
1 = μ0

2. To show
this, it is sufficient to exhibit h �= (0, 0, 0) which satisfies hAhT = 0. As noted
in Supplement A,

hAhT =

∫
R

{
π0
(
f(μ0

1 + t) + f(μ0
1 − t)
)
h1 + (1− π0)

(
f(μ0

2 + t) + f(μ0
2 − t)
)
h2

−
(
F (μ0

2 + t)− F (μ0
1 + t) + F (μ0

2 − t)− F (μ0
1 − t)
)
h3

}2
.

In case π0 = 0 (π0 = 1), then hAhT = 0 for h = (1, 0, 0) (h = (0, 1, 0)).
If π0 /∈ {0, 1} and μ0

1 = μ0
2, then hAhT = 0 for (−(1 − π0), π0, 0). Lastly, if

π0 = 1/2, then f(μ0
1+ t)+f(μ0

1− t) = f(μ0
2+ t)+f(μ0

2− t) = g0(t)+g0s(t) using
the section on useful formulae in Supplement A. This implies that hAhT = 0
for h = (−1, 1, 0).

Remark 2.10. One may wonder whether the Hodges-Lehmann estimator is ef-
ficient. The question is obviously related to finding the efficient bound in this
semi-parametric model. The tangent space with respect to the symmetric com-
ponent g0 is given by

Γ =

{
π0k(· − μ0

1) + (1− π0)k(· − μ0
2)

f0
,

such that k is even and

∫
R

k(x)dx = 0

}
,

and

Γ⊥ =
{
h : there exist c ∈ R such that

π0(h(·+ μ0
1) + h(− ·+μ0

1)) + (1− π0)(h(·+ μ0
2) + h(− ·+μ0

2) = c
}

the corresponding orthogonal space. To obtain the latter, one can follow the
lines of the proof given by Ma and Yao (2015) (page 467) in the context a two-
component mixture model where one component has a parametric form. In this
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problem, one can relatively easily guess how projection of the score functions on
the space Γ⊥ and hence the efficient scores. Finding these efficient scores for
the mixture parameters in our semi-parametric model is a much harder problem.
The main difficulty stems from the fact that one needs to solve a nonstandard
functional equation in the space of even functions that integrate to zero. Thus,
finding the efficient bound on the variance and answering the question whether
θ̂n attains this bound asymptotically are questions that remain open.

2.3. Some comments on the asymptotic variance

It follows from the previous section that under the assumptions made on g0 we
have that

√
n(θ̂n − θ0) →d N (0,Σ)

where

Σ =
1

4
A−1ΓA−1 (2.8)

and Γ is the 3× 3 dispersion matrix of V. The components of Γ can be related
to the covariance of U; i.e., Cov(U(x),U(y)) = x ∨ y − xy for x, y ∈ [0, 1].
However, the expressions obtained cannot be used to get explicit values. To give
an example, we can write Γ1,1, the variance of V1, as

Γ1,1 = 4(π0)2
∫
R

∫
R

(
π0g0(x) + (1− π0)g0s(x)

)(
π0g0(y) + (1− π0)g0s(y)

)
×S(x, y)dxdy

where S = (π0)2S1 + π0(1− π0)S2 + (1− π0)2S3 with

S1(x, y) = 2
(
F 0(μ0

1 − x) ∧ F 0(μ0
1 − y)− F 0(μ0

1 − x)F 0(μ0
1 − y)

+F 0(μ0
1 + x) ∧ F 0(μ0

1 − y)− F 0(μ0
1 + x)F 0(μ0

1 − y)
)
,

S2(x, y) = 4
(
F 0(μ0

1 − x) ∧ F 0(μ0
2 − y)− F 0(μ0

1 − x)F 0(μ0
2 − y)

+F 0(μ0
1 + x) ∧ F 0(μ0

2 − y)− F 0(μ0
1 + x)F 0(μ0

2 − y)
)
, and

S3(x, y) = 2
(
F 0(μ0

2 − x) ∧ F 0(μ0
2 − y)− F 0(μ0

2 − x)F 0(μ0
2 − y)

+F 0(μ0
2 + x) ∧ F 0(μ0

2 − y)− F 0(μ0
2 + x)F 0(μ0

2 − y)
)
.

From these expressions, we see that the terms F 0(μ0
j − x)F (μ0

j − y), i, j = 1, 2,

and F 0(μ0
1 − x)F (μ0

2 − y) are the main obstacle when trying to get a general
formula for the integral defining Γ1,1.

In Theorem Hunter et al. (2007), four sufficient conditions were given to

ensure that the estimator θ̂n has an asymptotic Gaussian distribution. The
asymptotic variance given in the theorem is different from the one that we have
found. When comparing the formula in (2.8) with the one in Hunter et al. (2007),
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we see that the matrix A should play the role of J appearing in Condition (i)
of Hunter et al. (2007). The latter should be equal to the second derivative of
the function θ �→ D2(θ) at the true value θ0, under the additional assumption
that is positive definite. From our calculations, we can see that the matrix
A is not linked directly to the second derivative of θ �→ D2(θ) but rather to
the application h �→ nD2(θ0 + hn−1/2). Condition (iii) of Hunter et al. (2007)
assumes existence of a function Δ such that E[Δ(X)] = 0, E[‖Δ‖2] < ∞, and
where π1fθ(x) − π1fθ0(x) = (θ − θ0)Δ(x) + ‖θ − θ0‖rθ(x) with rθ satisfying
some uniform integrability condition in the neighborhood of θ0. Here, fθ is the
same function defined in (4.9). Using the definition of π1 we have π1fθ(x) =
E[fθ(x,X)] − D2(θ). We know that D2(θ) takes the value 0 at θ0 and has its
gradient equal to 0 at the same value, and hence one should focus on E[fθ(x,X)]
to get Δ(X). Despite our efforts, it seems hard to connect the vector V given
in Theorem 2.6 and the vector Δ(X) we obtain.

In the next section, we investigate numerically how the variances of the es-
timators π̂n, μ̂1,n, μ̂2,n behave as a function of the true span μ0

2 − μ0
1 and the

mixing probability π0.

3. Limitations of the asymptotic normality: Some examples

We consider the following three symmetric distributions

• N (0, 1): the standard Gaussian distribution
• U [−1, 1]: the uniform distribution on [−1, 1]
• L(1): the double exponential (Laplace) on R with intensity equal to 1

for which we compute the asymptotic variance of the estimators π̂n, μ̂1,n, μ̂2,n for
different ranges of μ0

1, μ
0
2 and π0. To be more precise, we compute Monte-Carlo

estimates for these variances based the formula in (2.8) and Brownian bridge
approximation. For the latter we sampled N = 104 of independent uniform
random variables and computed ŨN (t) =

√
N(G̃N (t) − t), t ∈ [0, 1] where G̃N

is the empirical distribution of the obtained uniform sample. We estimated the
variance matrix Γ of the vector V using B replications of ŨN and approximating
the integrals defining Vj , j = 1, 2, 3 by a finite sum over an equally spaced grid
with chosen lower and upper endpoints and a given mesh. The matrix A can
be explicitly computed for any θ0 for U [−1, 1] and L(1). For the distribution
N (0, 1) closed formulas can be found for the entries A11,A12 and A22, whereas
the remaining ones can be approximated using the same discretization described
above. The explicit formulas can be found in Supplement A.

In Table 1 we give the values of n× the empirical variances of the Hodges-
Lehmann estimators of the mixture parameters π0, μ0

1 and μ0
2 for the three

symmetric (and log-concave) distributions used to illustrate the theory, and
those of the corresponding theoretical asymptotic variances; i.e., the diagonal
entries of the covariance matrix Σ given in (2.8). The main goal here is to obtain
a numerical confirmation of our asymptotic result. The mixture parameters are
chosen in a way that the mixture components are well-separated. The empirical
variances are based on samples of size n = 10000 and 500 Monte Carlo repli-
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cations, whereas an approximation of the asymptotic variances is obtained by
taking N = 105 independent uniform random variables, a grid step to 0.01, and
−60 and 60 as the upper and lower integration bounds and B = 800 replications
of the vector V. The obtained values are clearly close and we expect them to be
much closer for larger sample sizes and finer approximation of the asymptotic
covariance matrix.

Law Variance (π0, μ0
2) = (0.3, 3) (π0, μ0

2) = (0.2, 4) (π0, μ0
2) = (0.25, 5)

Empirical (8.10, 3.35, 0.35) (7.51, 1.65, 0.20) (4.25, 1.64, 0.20)N (0, 1)
Asymptotic (7.28, 3.04, 0.40) (7.76, 1.60, 0.19) (5.03, 1.59, 0.19)
Empirical (1.20, 0.47, 0.21) (1.90, 0.37, 0.16) (1.37, 0.46, 0.18)U [−1, 1]
Asymptotic (1.01, 0.48, 0.20) (1.80, 0.47, 0.16) (1.45, 0.42, 0.20)
Empirical (8.15, 2.65, 0.48) (10.84, 1.59, 0.23) (6.95, 1.62, 0.24)L(1)
Asymptotic (9.10, 2.31, 0.43) (11.99, 1.73, 0.27) (6.99, 1.66, 0.24)

Table 1

Values of n× the empirical variance of the Hodges-Lehmann estimators of π0, μ0
1 and μ0

2
(Empirical) and those of the corresponding asymptotic variance (Asymptotic). To obtain the

empirical variances the sample size was taken to be n = 10000 with 500 Monte Carlo
replications. In computing the asymptotic variances, the Brownian bridge was approximated

using N = 105 independent uniform random variables and the integral defining V is
approximated using a grid step to 0.01, [−60, 60] as the interval of integration and B = 800
Monte Carlo replications of V (see text for more details). The true mixture parameters are

π0 and μ0
2 are as shown in the table, whereas μ0

1 = 0 in all the examples.

Let us now turn to another aspect of our asymptotic result. The plots in Fig-
ure 1 show the variance of the estimators of μ0

1, μ
0
2 on the left and π0 on the right

as a function of π0 ∈ [0.01, 0.49]∪ [0.51, 0.99] for the fixed value (μ0
1, μ

0
2) = (0, 1)

and in the case where the true symmetric density is Gaussian. The variances
obtained are extremely large for small and large values of π0, especially for the
estimates of the mixture locations, reaching a maximal value of 1.85 × 106 for
the estimate of μ0

1 when the true mixing probability is π0 = 0.01! The vari-
ances are also very large for the estimate of π0 with a maximal value of 1600.
A similar phenomenon can be seen in Figure 4 and 7 when the true density
is U [−1, 1] and L(1) respectively for the same range of π0 and the fixed value
(μ0

1, μ
0
2) = (0, 0.5). The variances seem to be take somewhat smaller values,

although still large, when the true span is increased; see Figure 2, 5 and 8.
Although the results are disappointing, they are somehow expected as the esti-
mation procedure fails to be efficient when the mixture components are not well
separated. This is confirmed by the reasonable values obtained in Figure 3 and
Figure 6. The variances are plotted as a function of the span μ0

2−μ0
1 ∈ [2, 10] for

N (0, 1) and μ0
2−μ0

1 ∈ [2.5, 10] for U [−1, 1], and when the true mixing probability
is π0 = 0.3.

Although our numerical results are only shown for the Gaussian, uniform and
double exponential distributions, they give a clear warning that the Hodges-
Lehmann is not be used when it is believed that the mixture proportion is very
small or large or that the components are not well separated. The difficulty lies
of course in the fact that such an information is contained in the values of the pa-
rameters that we would like to estimate and hence cannot be known in advance.
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Fig 1. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed
line (left) and variance of the Hodges-Lehmann estimator for π0 (right) as a function of π0.
Here, μ0

1 = 0, μ0
2 = 1 and the true symmetric distribution is N (0, 1).

Fig 2. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed
line (left) and variance of the Hodges-Lehmann estimator for π0 (right) as a function of π0.
Here, μ0

1 = 0, μ0
2 = 3 and the true symmetric distribution is N (0, 1).

4. Proofs

4.1. Proof of existence of the (Hogdes-Lehmann) estimator

Existence of θ̂n = (π̂n, μ̂1,n, μ̂2,n) can be established using standard results
from optimization. Hunter et al. (2007) established a very useful alternative
representation of Dn(θ)

2 given in (4.10). For θ = (π, μ1, μ2) ∈ Θ in (1.2), let fθ
be the function defined on R× R by
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Fig 3. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed line
(left) and variance for the Hodges-Lehmann estimator π0 (right) as a function of s = μ0

2−μ0
1.

Here, π0 = 0.3 and the true symmetric distribution is N (0, 1).

Fig 4. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed
line (left) and variance of the Hodges-Lehmann estimator for π0 (right) as a function of π0.
Here, μ0

1 = 0, μ0
2 = 0.5 and the true symmetric distribution is U(−1, 1).

fθ(x, y)

= π2
(
|x+ y − 2μ1| − |x− y|

)
+ (1− π)2

(
|x+ y − 2μ2| − |x− y|

)
+π(1− π)

(
2|x+ y − μ1 − μ2| − |x− y + μ1 − μ2| − |x− y + μ2 − μ1|

)
= π2ψ1(x, y, μ1, μ2) + (1− π)2ψ2(x, y, μ1, μ2) + π(1− π)ψ3(x, y, μ1, μ2)

=
(
ψ1(x, y, μ1, μ2) + ψ2(x, y, μ1, μ2)− ψ3(x, y, μ1, μ2)

)
π2
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Fig 5. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed
line (left) and variance of the Hodges-Lehmann estimator for π0 (right) as a function of π0.
Here, μ0

1 = 0, μ0
2 = 2 and the true symmetric distribution is U(−1, 1).

Fig 6. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed line
(left) and variance for the Hodges-Lehmann estimator π0 (right) as a function of s = μ0

2−μ0
1.

Here, π0 = 0.3 and the true symmetric distribution is U(−1, 1).

+
(
− 2ψ2(x, y, μ1, μ2) + ψ3(x, y, μ1, μ2

)
π + ψ2(x, y, μ1, μ2) (4.9)

with

ψ1(x, y), μ1, μ2) = |x+ y − 2μ1| − |x− y|,
ψ2(x, y), μ1, μ2) = |x+ y − 2μ2| − |x− y|,
ψ3(x, y), μ1, μ2) = 2|x+ y − μ1 − μ2| − |x− y + μ1 − μ2| − |x− y + μ2 − μ1|.
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Fig 7. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed
line (left) and variance of the Hodges-Lehmann estimator for π0 (right) as a function of π0.
Here, μ0

1 = 0, μ0
2 = 0.5 and the true symmetric distribution is L(1).

Fig 8. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed
line (left) and variance of the Hodges-Lehmann estimator for π0 (right) as a function of π0.
Here, μ0

1 = 0, μ0
2 = 2.5 and the true symmetric distribution is L(1).

Now, formula (15) of Hunter et al. (2007) yields

Dn(θ)
2 =

1

n2

n∑
j=1

n∑
i=1

fθ(Xi, Xj)

=
[
ψ̄1(μ1, μ2) + ψ̄2(μ1, μ2)− ψ̄3(μ1, μ2)

]
π2

+
[
− 2ψ̄2(μ1, μ2) + ψ̄3(μ1, μ2)

]
π + ψ̄2(μ1, μ2) (4.10)
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Fig 9. Variance for the Hodges-Lehmann estimators of μ0
1 in solid line and μ0

2 in dashed line
(left) and variance for the Hodges-Lehmann estimator π0 (right) as a function of s = μ0

2−μ0
1.

Here, π0 = 0.3 and the true symmetric distribution is L(1).

where ψ̄k(μ1, μ2) = n−2
∑n

j=1

∑n
i=1 ψk(Xi, Xj , μ1, μ2) for k ∈ {1, 2, 3}. To have

a simpler framework, one can extend the space of minimization to the closed set
Θ̃ = [0, 1] × {(μ1, μ2) ∈ R2 : μ1 ≤ μ2}. For fixed μ1 and μ2, the function in π
defined (4.10) is a parabola. Hence, straightforward calculations show that the
optimal value of D2(θ) in π for the fixed μ1 and μ2 is given by

Dn(π̃, μ1, μ2)
2 =

4ψ̄1(μ1, μ2)ψ̄2(μ1, μ2)− [ψ̄3(μ1, μ2)]
2

4
[
ψ̄1(μ1, μ2) + ψ̄2(μ1, μ2)− ψ̄3(μ1, μ2)

]
whenever ψ̄1(μ1, μ2) + ψ̄2(μ1, μ2)− ψ̄3(μ1, μ2) > 0, and

π̃(μ1, μ2) =
2ψ̄2(μ1, μ2)− ψ̄3(μ1, μ2)

2
[
ψ̄1(μ1, μ2) + ψ̄2(μ1, μ2)− ψ̄3(μ1, μ2)

] ∈ [0, 1].

The goal now is to show that letting μ1 → −∞ and μ2 → ∞ does not make the
target function θ �→ Dn(θ)

2 any smaller. There are two cases to consider:

• there exists c > 0 such that |μ1 + μ2| ≤ c
• μ1 + μ2 → −∞ or μ1 + μ2 → ∞.

We consider the first case. Let us denote Tn = n−2
∑n

j=1

∑n
i=1(Xi+Xj) = 2X̄n,

Dn = n−2
∑n

j=1

∑n
i=1 |Xi − Xj | and Sn(μ1, μ2) = n−2

∑n
j=1

∑n
i=1 |Xi + Xj −

(μ1 + μ2)|. Then, for |μ1| and μ2 large enough it is easy to see that

ψ̄1(μ1, μ2) = −2μ1 + Tn −Dn,

ψ̄2(μ1, μ2) = 2μ2 − Tn −Dn,

ψ̄3(μ1, μ2) = −2(μ2 − μ1) + 2Sn(μ1, μ2). (4.11)
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Hence,

π̃(μ1, μ2) =
3μ2 − μ1 − (Tn +D+

n )− Sn(μ1, μ2)

4(μ2 − μ1)− 2D+
n − 2Sn(μ1, μ2)

.

Note that π̃(μ1, μ2) > 0 for |μ1| and μ2 large enough. Also, 1 − π̃(μ1, μ2) has
the same sign as μ2 − 3μ1 + Tn −Dn − Sn(μ1, μ2) and hence π̃(μ1, μ2) < 1 for
|μ1| and μ2 large enough. After some algebra, it follows that

Dn(π̃, μ1, μ2)
2

=
1

4(μ2 − μ1)− 2Dn − 2Sn(μ1, μ2)

×
(
D2

n − T 2
n + 2(μ1 + μ2)Tn − (μ1 + μ2)

2 − Sn(μ1, μ2)
2

+2 (μ2 − μ1)(Sn(μ1, μ2)−Dn)
)

→ 1

2
(Sn(μ1, μ2)−Dn)

=
1

2

⎡⎣ 1

n2

n∑
j=1

n∑
i=1

|Xi +Xj − μ1 − μ2| −
1

n2

n∑
j=1

n∑
i=1

|Xi −Xj |

⎤⎦
as |μ1|, μ2 → ∞. To get the convergence to the above limit, we used the fact
that |μ1 + μ2| ≤ c for some c > 0 as it is the assumption in this first case. But
note that if we take μ1 and μ2 such that −μ1, μ2 ∈ [|X(n)|, |X(n)| + c], where
X(n) = max1≤i≤n Xi, then μ1 + μ2 ∈ [−c, c] and still have ψ̄k(μ1, μ2) given by
the expressions in (4.11) for j = 1, 2, 3. Now, taking π = 1/2 yields

D2
n(1/2, μ1, μ2) =

1

4

(
ψ̄1(μ1, μ2) + ψ̄2(μ1, μ2) + ψ̄3(μ1, μ2)

)
=

1

2
(Sn(μ1, μ2)−Dn)

=
1

2

⎡⎣ 1

n2

n∑
j=1

n∑
i=1

|Xi +Xj − μ1 − μ2| −
1

n2

n∑
j=1

n∑
i=1

|Xi −Xj |

⎤⎦ .
Thus, we have found a point in the compact set [0, 1] ×

[
− |X(n)|, |X(n)| +

c
]2
, yielding the same value of the target function θ �→ D2

n(θ) as the limit of
D2

n(π̃(μ1, μ2), μ1, μ2) when |μ1|, |μ2| → ∞ under the additional constraint that
|μ1 + μ2| ≤ c. Now, we consider the second case and assume that μ1 + μ2 =
μ2 − |μ1| → ∞ as the other case can be handled similarly. Note that only the
expression of ψ̄3(μ1, μ2) differs in this case as we have that

ψ̄3(μ1, μ2) = 4μ1 − 2Tn.

Some algebra yields

π̃(μ1, μ2) =
2(μ2 − μ1)−Dn

2
(
μ2 − 3μ1 −Dn + Tn

)
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which can be shown to be in (0, 1) for |μ1|, μ2 large enough. More algebra yields

Dn(π̃, μ1, μ2)
2

=
−4μ1

(
μ2 + μ1 − Tn

)
+ 2
(
μ2 + μ1

)
Tn −Dn(μ2 − μ1) +D2

n − 2T 2
n

−6μ1 + 2μ2 − 2Dn + 2Tn
→ ∞

as |μ1| → ∞, μ2 → ∞, μ1+μ2 → ∞. To see this, we use the facts that μ1 = −|μ1|
and

μ2 − |μ1|
|μ1|
(
μ2 − |μ1| − Tn

) =
1

|μ1|
1

1− Tn/(μ2 − |μ1|)
→ 0

and

μ2

|μ1|
(
μ2 − |μ1| − Tn

) =
μ2 − |μ1|

|μ1|
(
μ2 − |μ1| − Tn

) + 1

μ2 − |μ1| − Tn
→ 0

so that the claimed limit follows after dividing both the numerator and denom-

inator by 4|μ1|
(
μ2 − |μ1| − Tn

)
.

We conclude that the minimization problem can be performed on the compact

set [0, 1] ×
{
(μ1, μ2) ∈ R2 : {−D ≤ μ1 ≤ μ2 ≤ D}

}
for some constant D > 0.

Combining this with continuity of Dn (since fθ is continuous) gives existence

of θ̂n. Almost sure convergence of θ̂n to the true parameter (see Theorem 2.1

below) will ensure that θ̂n ∈ Θ∗ with probability one for n large enough.

4.2. Proofs of the
√
n-rate of convergence of θ̂n

We start with showing Theorem 2.3.

Proof of Theorem 2.3. The proof of (1) goes along the lines of the hint given in
van der Vaart and Wellner (1996) for Problem 20, page 153. Take three points
(x1, t1), (x2, t2), and (x3, y3) ∈ R2 such that x1 ≤ x2 ≤ x3. Then, the class of all
subgraphs

{
c1(a,b], a, b, c ∈ R

}
pick out the point (x2, t2) unless t2 > max(t1, t3).

Now, take four points (x1, t1), (x2, t2), (x3, t3) and (x4, t4) ∈ R2 such that
x1 ≤ x2 ≤ x3 ≤ x4. We want to show that these points are not shattered by the
considered class of subgraphs. Suppose they are shattered. Then, this implies
that every subset of three points with nondecreasing xi is also shattered. Hence,
we should have t2 > max(t1, t3), t3 > max(t2, t4) (and also t2 > max(t1, t4) and
t3 > max(t1, t4)), which is impossible. We conclude that the considered class is
a VC-subgraph of index 4.

To show (2), let us fix ε > 0. Note that F̃ = F1 + . . . + Fm is an envelope
for each of the classes Fj , j = 1, . . . ,m. Consider the covering numbers Nj =

N (ε‖F̃‖Q,2,Fj , L2(Q)) for some probability measure Q. An element f ∈ F can
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be written as f = f1+. . .+fm for (f1, . . . , fm) ∈ F1×. . .×Fm. Let (fi1 , . . . , fim)
be the m-tuple such that ‖fj − fij‖ ≤ ε‖F̃‖Q,2 for j = 1, . . . ,m. Then,

‖f −
m∑
j=1

fij‖Q,2 ≤ m ‖F̃‖Q,2 ε.

Hence, N(ε m ‖F̃‖Q,2,F , L2(Q)) ≤
∏m

j=1 Nj . Using Theorem 2.6.7 of van der
Vaart and Wellner (1996), it follows that there exist universal constant Kj >
0, j = 1, . . . ,m such that for any probability measure Q such that ‖Fj‖Q,2 > 0
for j = 1, . . . ,m

N
(
ε m ‖F̃‖Q,2,F , L2(Q)

)
≤

m∏
j=1

KjVj (16e)
∑m

j=1 Vj

(
1

ε

)2(∑m
j=1 Vj−m)

where Vj ≥ 1 is an upper bound for the VC-index of the class Fj . Now, note

that mF̃ = m(F1 + F2 + . . .+ Fm) ≥ (F1 + F2 + . . .+ Fm) is also an envelope
for F . Using the notation of van der Vaart and Wellner (1996), set

J(η,F) = sup
Q

∫ η

0

√
1 + logN(εm‖F̃‖Q,2,F , L2(Q))dε

where the supremum is taken over all probability measuresQ such that ‖Fj‖Q,2 >

0. Set K = log(
∏m

j=1 KjVj (16e)
∑m

j=1 Vj ) and γ = 2(
∑m

j=1 Vj − m). Then, by
the calculations above we have that

J(η,F) ≤
∫ η

0

√
1 +K + γ log(1/ε)dε

≤ (1 +K) ∨ γ

∫ ∞

1/η

√
1 + log(x)

x2
dx < ∞

for any η > 0, in particular for η = 1. By Theorem 2.14.1 of van der Vaart and
Wellner (1996), we conclude that there exists a universal constant M̃ > 0 such
that

E[‖Gn‖F ] ≤ m M̃J(1,F)‖F̃‖P,2, and E[‖Gn‖2F ] ≤ m2 M̃2J(1,F)2‖F̃‖2P,2

and the result follows by taking M = max(M̃2J(1,F)2, 1). Now, we show (3).
Let mθt −mθ0 be an element in Mt,δ. We can write

(mθt −mθ0)(x)

= π
(
1− 1x≤μ1+t − 1x≤μ1−t

)
+ (1− π)

(
1− 1x≤μ2+t − 1x≤μ2−t

)
− π0
(
1− 1x≤μ0

1+t − 1x≤μ0
1−t

)
+ (1− π0)

(
1− 1x≤μ0

2+t − 1x≤μ0
2−t

)
= −π

(
1x≤μ1+t + 1x≤μ1−t

)
− (1− π)

(
1x≤μ2+t + 1x≤μ2−t

)
+π0
(
1x≤μ0

1+t + 1x≤μ0
1−t

)
+ (1− π0)

(
1x≤μ0

2+t + 1x≤μ0
2−t

)
= π0

(
1x≤μ0

1+t − 1x≤μ1+t

)
+ π0
(
1x≤μ0

1−t − 1x≤μ1−t

)
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+(1− π0)
(
1x≤μ0

2+t − 1x≤μ2+t

)
+ (1− π0)

(
1x≤μ0

2−t − 1x≤μ2−t

)
+(π − π0)

(
1x≤μ2+t − 1x≤μ1+t

)
+ (π − π0)

(
1x≤μ2−t − 1x≤μ1−t

)
= g1,t(x) + . . .+ g6,t(x)

Then, it is clear that

Mδ,t ⊂
6∑

j=1

Fj

with Fj = I for j = 1, . . . , 6, where I is the class defined in the first statement
of the theorem. On the other hand, we have that ‖gj,t‖∞ ≤ Fj,t, j = 1, . . . , 6
defined in (2.7). The claim follows from 2.

Proof of Theorem 2.2. Fix δ ∈ (0, 1]. Before returning to the inequality in (2.6),
we will find upper bounds for ‖Ft,j‖ for j = 1, . . . , 6. We have that

‖Ft,1‖2P,2 = (π0)2
∫ μ0

1+δ+t

μ0
1−δ+t

f0(x)dx

= (π0)2

{
π0

∫ δ+t

−δ+t

g0(x)dx+ (1− π0)

∫ μ0
1−μ0

2+δ+t

μ0
1−μ0

2−δ+t

g0(x)dx

}

≤
∫ t+δ

t−δ

g0(x)dx+

∫ μ0
2−μ0

1+δ−t

μ0
2−μ0

1−δ−t

g0(x)dx

using symmetry of g0 and max(π0, 1− π0) ≤ 1. Using the inequality
√
u+ v ≤√

u+
√
v for all u, v ≥ 0, we have that

‖Ft,1‖P,2 ≤
(∫ t+δ

t−δ

g0(x)dx

)1/2

+

(∫ μ0
2−μ0

1+δ−t

μ0
2−μ0

1−δ−t

g0(x)dx

)1/2

.

By assumption, g0 changes direction of monotonicity only a finite number of
times. This implies that for δ > 0 small enough

g0(x) ≤ max
(
g0(t− δ), g0(t+ δ)

)
≤ g0(t− δ) + g0(t+ δ),

for all x ∈ [t− δ, t + δ]. To see this, use the fact that the length of the interval
[t−δ, t+δ] is 2δ and hence should be included in a bigger interval on which g0 is
either increasing or decreasing. In the first case, g0(x) ≤ g0(t+ δ) wheres in the
second g0(x) ≤ g0(t− δ). Hence, using again the inequality

√
u+ v ≤ √

u+
√
v

and integrability of g
1/2
0 we have that

∫
R

(∫ t+δ

t−δ

g0(x)dx

)1/2

dt ≤ (2δ)1/2
(∫

R

g0(t− δ)1/2dt+

∫
R

(g0(t+ δ)1/2dt

)
= 23/2δ1/2

∫
R

(g0(x))1/2dx.
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Similarly, we get

∫
R

(∫ μ0
2−μ0

1+δ−t

μ0
2−μ0

1−δ−t

g0(x)dx

)1/2

≤ 23/2δ1/2
∫
R

(g0(x))1/2dx.

The calculations above imply that∫
R

‖Ft,1‖jP,2dt ≤ Djδj/2, j = 1, 2

where D > 0 is a constant depending only on g0.
In a very similar manner it can be shown that the same bounds apply for∫

R
‖Ft,i‖jP,2dt for i = 2, 3, 4 and j = 1, 2. Now, we turn to Ft,5 and Ft,6. We have

that

‖Ft,5‖2P,2 = δ2
∫ μ0

2+δ+t

μ0
1−δ+t

f0(x)dx

≤ δ2

(∫ μ0
2−μ0

1+δ+t

−δ+t

g0(x)dx+

∫ δ+t

μ0
1−μ0

2−δ+t

g0(x)dx

)
. (4.12)

The assumption that g0 changes direction of monotonicity only a finite number
of time implies that we can find −∞ < A < B < ∞ such that g0 is increasing
on (−∞, A) and decreasing on (B,∞). Furthermore, we know also that there
exists M > 0 such that g0 ≤ M on [A,B]. Hence,

∫
R

(∫ μ0
2−μ0

1+δ+t

−δ+t

g0(x)dx

)1/2

=

∫ A−δ−(μ0
2−μ0

1)

−∞

(∫ μ0
2−μ0

1+δ+t

−δ+t

g0(x)dx

)1/2

dt

+

∫ B+δ

A−δ−(μ0
2−μ0

1)

(∫ μ0
2−μ0

1+δ+t

−δ+t

g0(x)dx

)1/2

dt

+

∫ ∞

B+δ

(∫ μ0
2−μ0

1+δ+t

−δ+t

g0(x)dx

)1/2

dt

≤ (μ0
2 − μ0

1 + 2δ)1/2
∫ A−δ−(μ0

2−μ0
1)

−∞
(g0(μ0

2 − μ0
1 + δ + t))1/2dt

+(B −A+ 2δ + μ0
2 − μ0

1)(μ
0
2 − μ0

1 + 2δ)1/2M1/2

+(μ0
2 − μ0

1 + 2δ)1/2
∫ ∞

B+δ

(g0(−δ + t))1/2dt

≤ (μ0
2 − μ0

1 + 2δ)1/2
∫ A

−∞
(g0(x))1/2dx
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+(B −A+ 2δ + μ0
2 − μ0

1)(μ
0
2 − μ0

1 + 2δ)1/2M1/2

+(μ0
2 − μ0

1 + 2δ)1/2
∫ ∞

B

(g0(x))1/2dx

≤ D̃1

where D̃1 > 0 depends only on g0 and μ0
2−μ0

1. As the second term in (4.12) can
be handled similarly it follows that there exists a constant D̃ > 0 depending on
g0 and μ0

2 − μ0
1 only such that∫

R

‖Ft,5‖jP,2dt ≤ D̃jδj

for j = 1, 2. A similar bound applies for
∫
R
‖Ft,6‖jP,2dt.

Now, we turn to the inequality in (2.6). It follows from the calculations above,
that for any t ∈ R the class Mt,δ is VC of index at most 4 and with a finite en-
velope. It follows from Theorem 2.3, the cr−inequality and the bounds obtained
above that there exists a constant C1 > 0 depending only on g0 such that∫

R

E[‖
√
n(Pn − P)‖2Mt,δ

]dt =

∫
R

E[‖Gn‖2Mt,δ
]dt ≤ C1δ

for all δ ∈ (0, 1]. This in turn implies a bound on the maximal expectation of
the first term in the right side of (2.6):

√
n

∫
R

E

⎡⎣ sup
mθt−m

θ0t
∈Mδ,t

(Pn − P)2(mθt −mθ0
t
)

⎤⎦ dt =
1√
n

∫
R

E[‖Gn‖2Mt,δ
]dt

≤ C1δ√
n
. (4.13)

To tackle the second term, note that boundedness of g0 implies that there exists
a constant C ′ > 0 depending only on g0(0) and μ0

2 − μ0
1 such that

P|mθt −mθ0
t
| ≤ C ′δ

for all δ ∈ (0, 1] and t ∈ R. Indeed, we have that

P|mθt −mθ0
t
| ≤ ‖Ft,1‖P,1 + . . .+ ‖Ft,6‖P,1

where similar calculations to the those developed above show that

‖Ft,1‖P,1 ≤
∫ t+δ

t−δ

g0(x)dx+

∫ μ0
2−μ0

1+δ−t

μ0
2−μ0

1−δ−t

g0(x)dx (4.14)

≤ 4δg0(0)

and a similar bound applies for ‖Ft,2‖P,1, ‖Ft,3‖P,1 and ‖Ft,4‖P,1. Also,

‖Ft,5‖P,1 ≤ δ

(∫ μ0
2−μ0

1+δ+t

t−δ

g0(x)dx+

∫ t+δ

μ0
1−μ0

2+t−δ

g0(x)dx

)
, (4.15)
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≤ 2δ(μ0
2 − μ0

1 + 2δ)g0(0)

and a similar bound applies for ‖Ft,6‖P,1. It follows that there exists C ′ > 0
depending only on g0 and μ0

2 − μ0
1 such that

∫
R

E

⎡⎣√n sup
mθt−m

θ0t
∈Mδ,t

∣∣∣(Pn − P)(mθt −mθ0
t
)
∣∣∣
⎤⎦P∣∣mθt −mθ0

t

∣∣dt
≤ C ′δ

∫
R

E[‖Gn‖Mt,δ
]dt

≤ C2δ
3/2. (4.16)

To bound the maximal expectation of the third term in (2.6), we use the Cauchy-
Schwarz inequality:

E

⎡⎣∫
R

√
n sup

mθt−m
θ0t

∈Mδ,t

∣∣∣(Pn − P)(mθt −mθ0
t
)
∣∣∣ ∣∣∣(Pn − P)mθ0

t

∣∣∣dt
⎤⎦

≤
∫
R

E[‖Gn‖2Mt,δ
]1/2 E

[(
(Pn − P)mθ0

t

)2]1/2
dt

=
1√
n

∫
R

E[‖Gn‖2Mt,δ
]1/2 (Pm2

θ0
t
)1/2dt, since Pmθ0

t
= 0 by (1.4)

≤ 2C
1/2
1 δ1/2√

n
=

C3δ
1/2

√
n

using the fact that m2
θ0
t
≤ 4 and where C1 is the same constant in (4.13). Finally,

the fourth term can be bounded using the known inequality E[|X|] ≤ E[|X2|]1/2
for any random variable X combined with the already used fact that Pm2

θ0
t
≤ 4

and that there exists a constant C̃ ′ > 0 depending only on g0 and μ0
2 − μ0

1 such
that ∫

R

‖Ft,j‖P,1dt ≤ C̃ ′δ.

To see this for j = 1 and 5 for example, we can use the inequalities in (4.14)
and (4.15) combined with monotonicity of g0 as done above. The same holds
for j = 2, 3, 4 and 6. Thus, we obtain

E

[∫
R

∣∣∣√n(Pn − P)mθ0
t

∣∣∣P|mθt −mθ0
t
|dt
]

≤
∫
R

E[(
√
n(Pn − P)mθ0

t
)2]1/2P|mθt −mθ0

t
|dt

≤ 2

∫
R

6∑
j=1

‖Ft,j‖P,1dt
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≤ C4δ, with C4 = 2C̃ ′.

for a constant C4 > 0 depending only on g0. Using the fact that δ3/2 ≤ δ and
δ ≤ δ1/2 for all δ ∈ (0, 1] completes the proof of the theorem.

Proof of Proposition 2.4. It follows from Theorem 1 of Hunter et al. (2007) that
θ0 is the only element θ ∈ Θ = {(π, u1, u2) : π ∈ [0, 1],−∞ < u1 < u2 < ∞}
such that D(θ) = 0. Therefore, θ0 is the unique minimizer of D over the previous
set. Now the inequality of the proposition is guaranteed if the map θ �→ D2(θ) is
twice continuously differentiable on small neighborhood of θ0. In the sequel we
will write F , f , G and g for F 0, f0, G0 and g0 respectively. Also, the integrand
in D2(θ) will be denoted by

ψ(π, μ1, μ2, t) =
{
π(1− F (μ1 − t)− F (μ1 + t))

+(1− π)(1− F (μ2 − t)− F (μ2 + t))
}2

.

Also, let π ∈ (π0 − δ, π0 + δ), μ1 ∈ (μ0
1 − δ, μ0

1 + δ), μ2 ∈ (μ0
2 − δ, μ0

2 + δ) for some
δ > 0 smal enough such that δ ≤ (μ0

2 − μ0
1)/2. Now,

∂ψ

∂π

= 2
{
F (μ2 − t) + F (μ2 + t)− F (μ1 − t)− F (μ1 + t)

}
×
{
π(1− F (μ1 − t)− F (μ1 + t)) + (1− π)(1− F (μ2 − t)− F (μ2 + t))

}
.∣∣∣∣∂ψ∂π

∣∣∣∣ ≤ 4
{
|F (μ2 − t)− F (μ1 − t)|+ |F (μ2 + t)− F (μ1 + t)|

}
≤ 4
{
F (μ0

2 + δ − t)− F (μ0
1 − δ − t) + F (μ0

2 + δ + t)− F (μ0
1 − δ + t)

}
which is integrable since

∫∞
0

(1 − F (x))dx < ∞ and
∫ 0
−∞ F (t)dt < ∞, an easy

consequence of integrability of X ∼ F . By the Lebesgue dominated convergence
theorem, it follows that D2 admits a continuous first partial derivative with
respect to π in (π0 − δ, π0 + δ) and

∂D2

∂π
=

∫
R

∂ψ

∂π
dt.

Computing the second partial derivative yields

∂2ψ

∂π2
= 2
{
F (μ2 − t) + F (μ2 + t)− F (μ1 − t)− F (μ1 + t)

}2
≤ 4
{
(F (μ2 − t)− F (μ1 − t))2 + (F (μ2 + t)− F (μ1 + t))2

}
≤ 4
{
F (μ0

2 + δ − t)− F (μ0
1 − δ − t) + F (μ0

2 + δ + t)− F (μ0
1 − δ + t)

}
.
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Similar arguments show that D2 admits a continuous second partial derivative
with respect to π in (π0 − δ, π0 + δ) with

∂2D2

∂π2
=

∫
R

2
{
F (μ2 − t) + F (μ2 + t)− F (μ1 − t)− F (μ1 + t)

}2
dt.

Now, the partial derivative of ψ with respect to μ1 is given by

∂ψ

∂μ1

= −2π
(
f(μ1 − t) + f(μ1 + t)

)
×
{
π(1− F (μ1 − t)− F (μ1 + t)) + (1− π)(1− F (μ2 − t)− F (μ2 + t))

}
which implies that ∣∣∣∣ ∂ψ∂μ1

∣∣∣∣ ≤ 4
(
f(μ1 − t) + f(μ1 + t)

)
where

f(μ1 − t) = π0g(μ1 − μ0
1 − t) + (1− π0)g(μ1 − μ0

2 − t),

and

f(μ1 + t) = π0g(μ1 − μ0
1 + t) + (1− π0)g(μ1 − μ0

2 + t).

If we focus on the function t �→ g(μ1−μ0
1− t), we see that −t−δ ≤ μ1−μ0

1− t ≤
δ − t. Hence using the assumption that g changes monotonicity only a finite
number of times, we have that for δ small enough,

g(μ1 − μ0
1 − t) ≤ max

(
g(−t− δ), g(−t+ δ)

)
≤ g(−t− δ) + g(−t+ δ)

which is integrable. We can in a similar manner bound the remaining functions.
We conclude that f(μ1 − t) + f(μ1 + t) is bounded above by a nonnegative and
integrable function. It follows that D2 admits a continuous first partial derivative
with respect to μ1 in (μ0

1 − δ, μ0
1 + δ). Furthermore,

∂2ψ

∂μ2
1

= −2π
(
f ′(μ1 − t) + f ′(μ1 + t)

)
×
{
π(1− F (μ1 − t)− F (μ1 + t)) + (1− π)(1− F (μ2 − t)− F (μ2 + t))

}
+ 4π2

(
f(μ1 − t) + f(μ1 + t)

)2
.

Now, there exists M > 0 such that∣∣∣ − 2π
(
f ′(μ1 − t) + f ′(μ1 + t)

)
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×
{
π(1− F (μ1 − t)− F (μ1 + t)) + (1− π)(1− F (μ2 − t)− F (μ2 + t))

}∣∣∣
≤ M
{(

1− F (μ0
1 − δ − t) + F (μ0

1 + δ + t)
)
1t≤0

+
(
1− F (μ0

1 − δ + t) + F (μ0
1 + δ − t)

)
1t>0

}
+M
{(

1− F (μ0
2 − δ − t) + F (μ0

2 + δ + t)
)
1t≤0

+
(
1− F (μ0

2 − δ + t) + F (μ0
2 + δ − t)

)
1t>0

}
.

Above we used the fact that f ′ is bounded. The function on the right side
is integrable since any real a we have that

∫∞
0

(1 − F (a + |t|))dt < ∞ and∫
R
F (a − |t|)dt < ∞, a consequence of integrability of X ∼ F (implied by

integrability of Y ∼ G). Also, we have that

4π2
(
f(μ1 − t) + f(μ1 + t)

)2
≤ 8f(0)

(
f(μ1 − t) + f(μ1 + t)

)
which we have already shown to be bounded above by an integrable function.
We conclude that D2 admits a continuous second partial derivative with respect
to μ1 in (μ0

1 − δ, μ0
1 + δ) with

∂2D2

∂(μ0
1)

2

=

∫
R

2π
(
f ′(μ1 − t) + f ′(μ1 + t)

)
×
{
π(1− F (μ1 − t)− F (μ1 + t)) + (1− π)(1− F (μ2 − t)− F (μ2 + t))

}
dt

+ 4π2

∫
R

(
f(μ1 − t) + f(μ1 + t)

)2
dt.

Similar arguments can be used to show that D2 admits a continuous second
partial derivative with respect to μ2 in (μ0

2 − δ, μ0
2 + δ) with

∂2D2

∂(μ0
2)

2

=

∫
R

2(1− π)
(
f ′(μ2 − t) + f ′(μ2 + t)

)
×
{
π(1− F (μ1 − t)− F (μ1 + t)) + (1− π)(1− F (μ2 − t)− F (μ2 + t))

}
dt

+ 4(1− π)2
∫
R

(
f(μ1 − t) + f(μ1 + t)

)2
dt.

We compute the crossed partial derivative of ψ with respect to π and μ1:

∂2ψ

∂μ1∂π

= −2
{
f(μ1 − t) + f(μ1 + t)

}
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×
(
π(1− F (μ1 − t)− F (μ1 + t)) + (1− π)(1− F (μ2 − t)− F (μ2 + t))

)
−2π
{
f(μ1 − t) + f(μ1 + t)

}
×
(
F (μ2 − t) + F (μ2 + t)− F (μ1 − t)− F (μ1 + t)

)
.

so that ∣∣∣∣ ∂2ψ

∂μ1∂π

∣∣∣∣ ≤ 8
{
f(μ1 − t) + f(μ1 + t)

}
and we have already shown above that the function on the right side is bounded
by an integrable function. Similar arguments can be used for μ2. Finally, we
calculate

∂2ψ

∂μ2∂μ1
= 2π(1− π)

(
f(μ1 − t) + f(μ1 + t)

)(
f(μ2 − t) + f(μ2 + t)

)
which can be bounded by an integrable function by bounding each one of the
terms f(μ1 − t) + f(μ1 + t) and f(μ2 − t) + f(μ2 + t). We conclude that D2 is
twice continuously differentiable on a small neighborhood of θ0. Since θ0 is the
unique minimum of D2, it follows that the quadratic form

Q(h1, h2, h3)

=
∂2D2

∂π2
(θ0)h2

1 + 2
∂2D2

∂π∂μ1
(θ0)h1h2 + 2

∂2D2

∂π∂μ2
(θ0)h1h3 + 2

∂2D2

∂μ1∂μ2
(θ0)h2h3

+
∂2D2

∂(μ1)2
(θ0)h2

2 +
∂2D2

∂(μ2)2
(θ0)h2

3

= hBhT > 0,

with h = (h1, h2, h3) such that h1, h2, h3 are small enough and h �= (0, 0, 0).
Here B is the 3 × 3 matrix of second partial derivatives of D2 evaluated at θ0.
This implies that B has to be positive definite. Let λ0 be the smallest eigenvalue
of B with λ0 > 0. Then, there exists a small neighborhood of θ0 such that

D2(θ)− D2(θ0) = (θ − θ0)B(θ − θ0)
T + o(‖θ − θ0‖22)

where ‖ · ‖2 denotes the L2-norm in R3

≥ λ0‖θ − θ0‖2 + o(‖θ − θ0‖22)

≥ λ0

2
‖θ − θ0‖22 ≥ λ0

2
‖θ − θ0‖2∞.

Taking κ = λ0/2 completes the proof.

Proof of Proposition 2.5. Using the notation of van der Vaart and Wellner
(1996), we write M = −D2 and Mn = −D2

n. Then, the first two requirements of
their Theorem 3.2.5 are clearly satisfied. Furthermore, we have

φn(δ)

δ
= 1 +

δ−1/2

√
n
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is decreasing (and so the power α in their theorem is equal to 1). Also, if rn =√
n/2, then

r2nφn

(
1

rn

)
=

n

4

(
2√
n
+

1

n3/4

)
≤ n

4

4√
n
, for n large enough

=
√
n

and the result follows.

Supplementary Material

Supplement A: Proofs of Theorem 2.6 and 2.7 and some useful for-
mulae
(doi: 10.1214/17-EJS1311SUPP; .pdf). In this supplementary file we provide
proofs of Theorem 2.6 and 2.7 describing the weak limiting distribution of the
estimator of Hunter et al. (2007). Some formulae used in the derivation of this
limit are also given.
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