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Abstract: Partially linear models (PLMs) are important generalizations
of linear models and are very useful for analyzing high-dimensional data.
Compared to linear models, the PLMs possess desirable flexibility of non-
parametric regression models because they have both linear and non-linear
components. Variable selection for PLMs plays an important role in practi-
cal applications and has been extensively studied with respect to the linear
component. However, for the non-linear component, variable selection has
been well developed only for PLMs with extra structural assumptions such
as additive PLMs and generalized additive PLMs. There is currently an un-
met need for variable selection methods applicable to general PLMs without
structural assumptions on the non-linear component. In this paper, we pro-
pose a new variable selection method based on learning gradients for general
PLMs without any assumption on the structure of the non-linear compo-
nent. The proposed method utilizes the reproducing-kernel-Hilbert-space
tool to learn the gradients and the group-lasso penalty to select variables.
In addition, a block-coordinate descent algorithm is suggested and some
theoretical properties are established including selection consistency and
estimation consistency. The performance of the proposed method is further
evaluated via simulation studies and illustrated using real data.
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1. Introduction

The partially linear model (PLM) is an important generalization of the linear
model [8]. During the past decades, it has become a useful tool in statisti-
cal analysis for parsimoniously modeling high dimensional data while reflecting
nonlinear trend of some continuous covariates [17, 24, 35, 38]. And it has been
applied to analyze data in many fields such as econometrics [51], biomedicine
[20, 23, 55], and environmetrics [34].

The PLM has the flexibility of a nonparametric regression model, while it
contains a linear component whose estimators have desirable asymptotic prop-
erties with simple interpretability. These features make it a very useful model
for analyzing high-dimensional data where variable selection plays an important
role. Variable selection for the linear component of the PLM has been well stud-
ied [3, 11, 33, 46]. However, existing variable selection methods for the non-linear
component usually rely on some extra structural assumptions, e.g., additivity is
a common assumption imposed on the structure of the non-linear component.
Variable selection procedures have been developed for both additive partially
linear models [27] and generalized additive partially linear models [45]. In addi-
tion, many other variable selection procedures proposed for additive models or
generalized additive models can be also extended to conduct variable selection
in additive partially linear models [18, 19, 26, 37, 47].

In this paper, we will develop a novel variable selection procedure, based on
the idea of gradient learning, for partially linear models without imposing any
assumption on the structure of the nonparametric component. The method of
learning gradients can be traced back to Mukherjee and Zhou [30]. Other de-
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velopments include Mukherjee and Wu [29] and De Brabanter et al. [7], which
mainly focus on estimating the gradient functions to do regression or classi-
fication. Recently, gradient learning technique has been employed to conduct
variable selection in non-parametric regression, such as Ying et al. [53], Ye and
Xie [52] and Yang et al. [49]. Although gradient learning procedures are model-
free, the computational cost for variable selection in the nonlinear component
is very high. Therefore, the model-free gradient learning procedures have been
only used for low dimensional data. In this paper, using partially linear models
as extensions of linear models for high dimensional data with the added flexibil-
ity of nonparametric regression models for selected covariates, we can make the
model-free gradient learning procedures applicable for high dimensional data.

In the literature, many nonparametric variable selection procedures [2, 6, 22,
28, 36] have been proposed via imposing structural assumptions. Lafferty and
Wasserman [22] proposed a greedy method called “rodeo”, for simultaneously
performing local bandwidth selection and variable selection in nonparametric
regression, which starts with a local linear estimator with large bandwidths, in-
crementally decreases the bandwidth of variables for which the gradient of the
estimator with respect to bandwidth is large, and then conducts a sequence of
hypothesis tests. Bertin and Lecue[2] proposed an l1-penalized procedure in the
non-parametric Gaussian regression model, but they only considered variable
selection at a fixed point. Miller and Hall [28] proposed their “LABAVS” al-
gorithm, along with several variable selection criteria including the local lasso,
hard thresholding, and backward stepwise, but its computational cost is very
high. Rosasco et al. [36] proposed a general nonparametric variable selection pro-
cedure, via modeling the regression function and penalizing its gradients. The
difference between [36] and [49] is that the former models the gradients indi-
rectly while the latter models the gradients directly. The current paper improves
computational efficiency and convergence on the method proposed in [49] to con-
duct variable selection in partially linear models without assuming structural
constraints on the nonlinear component. Similarly, we should be able to extend
the method proposed in [36] to conduct variable selection in partially linear
models. Finally, Comminges et al. [6] studied the asymptotic analysis of vari-
able selection in nonparametric regression and revealed two different regimes.
The setting considered in this paper belongs to the first regime.

The rest of the paper is organized as follows. In Section 2, we propose a
variable selection procedure based on gradient learning for partially linear mod-
els, along with an algorithm for implementing the procedure and a method for
selecting the tuning parameters. In Section 3, we study some asymptotic prop-
erties of the proposed procedure. In Section 4, we evaluate the performance of
the proposed procedure via simulation studies and real data applications. We
conclude the paper with some summary and discussion in Section 5.

2. Method

Assume data (yi,xi), i = 1, . . . , n, are independently generated from the par-
tially linear model,
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y = zTβ∗ + f∗(w) + ε, (2.1)

where y is the response variable, x = (zT ,wT )T consists of d = p+ q predictors
with z = (z(1), . . . , z(p))T and w = (w(1), . . . , w(q))T , E(ε) = 0, and V (ε) = σ2.
By convention, vectors are denoted by bold letters and their elements by non-
bold letters. In this model, we assume that the effects of predictors in z are linear
and the effects of predictors in w are non-linear, with β∗ and f∗ as their true
effects, respectively. There is no assumption about the structure of f∗, which is
only assumed to be twice differentiable.

As discussed in [12], statistical accuracy, model interpretability, and com-
putational complexity are three important pillars of any statistical procedures.
When the number of predictors d is large, variable selection plays a crucial rule
in strengthening these three pillars. For this aim, we assume that the true par-
tially linear model (2.1) is sparse in the sense that some elements of z and some
elements of w have no effect on the response variable. Specifically, in the linear
component, a predictor z(j) is noninformative if the corresponding effect β∗

j = 0,
j = 1, · · · , p, where p can be very large. In the nonlinear component, a predictor
w(l) is noninformative if g∗l (w) = ∂f∗(w)/∂w(l) ≡ 0, l = 1, · · · , q.

Denote β = (β1, · · · , βp)
T and xi = (zi,wi). Let g = (g1, · · · , gq)T , gl is the

gradient function of f∗ corresponding to w(l). The weighted square loss is

Ez,w(β,g) =
1

n(n− 1)

n∑
i,j=1

wij

(
yi − yj − βT (zi − zj)− gT (wi)(wi −wj)

)2
where the kernel weight wij = e−‖xi −xj ‖2

2/τ
2
n depends on the distance between

xi and xj and some pre-specified parameter τn. In order to conduct variable
selection in both the linear and nonlinear components, we propose to consider a
penalized procedure, minimizing the following objective function over the vector
of parameters β = (β1, · · · , βp)

T and functions g = (g1, · · · , gq)T ,

Ez,w(β,g) + λ1

p∑
l=1

πz,l|βl|+ λ2

q∑
l=1

πw,l‖gl‖K , (2.2)

where ‖ · ‖K is the norm of some reproducing kernel Hilbert space (RKHS) with
kernel K(·, ·). In addition, πz,l and πw,l are some weights to be discussed in Sub-
section 2.1, and λ1 and λ2 are tuning parameters that control the compromise
between goodness-of-fit and parsimony of the selected model to be discussed in
Subsection 2.2. The RKHS method is a very popular tool for modeling non-
parametric function. By the representer theorem [43], the minimizer of (2.2)

over gl satisfies ĝl(w) =
∑n

i=1 α
(l)
i K(w,wi). Denoting K = (K(wi,wj))n×n =

(K1, . . . ,Kn), αl = (α
(l)
1 , . . . , α

(l)
n )T , and α = (α1, . . . ,αq), the minimization

in (2.2) is equivalent to

argmin
α,β

{
L(α,β) + λ1

p∑
l=1

πz,l|βl|+ λ2

q∑
l=1

πw,l‖K1/2αl‖2

}
, (2.3)

where L(α,β) =
∑n

i,j=1 wij

(
yi− yj −βT (zi− zj)−KT

i α(wi−wj)
)2
/n(n− 1).
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Here are some remarks on the objective functions (2.2 and 2.3). First, the
proposed partially linear model is a special case of the nonparametric model
considered in Yang et al. [49], if we write the RKHS considered in Yang et al.
[49] as the direct sum of an RKHS of linear functions with respect to z and
an arbitrary one with respect to w. However, this special case is still worth
investigating, because (1) the number of parameters is reduced from (p + q)n
in a general RKHS in to p + qn in this special RKHS. Therefore, compared
with Yang et al. [49], our proposed method can be implemented much faster
and can be applied to high dimensional data, (2) the resulting penalty term
can be written as the summation of the well-known adaptive lasso penalty [56]
and the adaptive group-lasso penalty [44] and (3) the tuning can be respectively
considered for the linear component and the non-linear component.

Second, that the above penalized objective function can be used to conduct
variable selection is due to the two sparsity-inducing penalties that are incorpo-
rated. The first penalty is the lasso type of penalty, which is the lasso penalty
without weights πz,l [41] and is the adaptive lasso penalty with weights [56].
The second penalty is the group-lasso type of penalty, which is the group lasso
penalty without weights πw,l [54] and is the adaptive group-lasso penalty with
weights [44]. In particular, the group-lasso type of penalty on the nonparametric
gradient functions has the so-called “all-in-all-out” property. That is, when λ2

is large, some individual terms of the group-lasso penalty will become zero, that
is ‖gl‖K = 0 for some l’s, implying that gl(w) ≡ 0, for any w.

Third, the kernel weights wij are introduced, because f∗(wj) can be locally

approximated by f∗(wi)+g∗(wi)
T
(wj −wi). This idea of approximation comes

from kernel weighted regression [9]. For simplicity, the parameter τn in the kernel
weights is not considered as a tuning parameter, and can be set as the median
over the pairwise distances among all the sample points [30].

2.1. Implementation

First we consider weights πz,l and πw,l. As in [56], we select them as πz,l =

1/|β̃l|γ1 and πw,l = 1/‖g̃l‖γ2

2 , where β̃l and g̃l are the initial estimates of βl and
gl via the following,

argmin
α,β

{
L(α,β) + λ̃1‖β‖22 + λ̃2

q∑
l=1

‖gl‖22

}
, (2.4)

where tuning parameters λ̃1 and λ̃2 can be determined using cross validation
or generalized cross-validation [14]. The computation of the above minimization
problem with ridge type of penalties is fast, because the solutions have explicit
formulae.

Now we are ready to describe an algorithm to implement (2.3). Although
the proximal algorithm [1, 32] can be used, here we use the coordinate descent
algorithm [13], which was also used in [49]. For this aim, we alternatively update
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α and β. When α is given, we update β via the following minimization,

argmin
β

{
Lα(β) + λ1

p∑
l=1

πz,l|βl|
}
, (2.5)

where Lα(β) = L(α,β) is the loss function of β given α. This minimization can
be solved by using R package “glmnet”. Next we consider updating α given β.
Denote ᾱ = K1/2α = (ᾱ1, . . . , ᾱq) and Mij = (Ip ⊗K−1/2)

(
(wi −wj)⊗Ki

)
.

Given β, we can update ᾱ via the following minimization,

argmin
ᾱ

L̄β(ᾱ) + λ2

q∑
l=1

πw,l‖ᾱl‖2, (2.6)

where L̄β(ᾱ) =
∑

i �=j wij [yi − yj − βT (zi − zj) − ᾱTMij ]
2/n(n − 1). This is

because, by the representer theorem, g(wi)
T (wi −wj) = αT

(
(wi −wj)⊗Ki

)
.

This minimization can also be solved by using the R package “gglasso”.

2.2. Tuning

Let θ = (αT ,βT )T and λ = (λ1, λ2)
T . Assume that some appropriately tun-

ing parameters, λ̂ = (λ̂1, λ̂2), are selected, say, by the procedure discussed in

Subsection 2.2. Let θ̂λ̂ = (α̂T
λ̂
, β̂

T

λ̂ )
T be the minimizer of (2.2 and 2.3). Then

Sλ̂ = {l : θ̂λ̂l �= 0, l = 1, . . . , d} is the set of those selected variables for the par-
tially linear model under consideration, where Aλ̂ = {l : α̂λ̂l �= 0, l = 1, . . . , q}
is for the non-linear component and Bλ̂ = {l : β̂λ̂l �= 0, l = 1, . . . , p} is for
the linear component. We propose to select tuning parameters λ1 and λ2 us-
ing the selection stability procedure proposed by [39]. Here we briefly describe
this tuning procedure, and the reader is referred to [39] for more details. Given
λ = (λ1, λ2), let Sλ(D) denote the subset of variables selected for the partially
linear model under consideration based on training dataset D. Randomly par-
tition the original dataset D into two halves D1 and D2, we have Sλ(D1) and
Sλ(D2). Then we use Cohen’s kappa [5] to measure the agreement of these two
subsets and denote it as κ(Sλ(D1),Sλ(D2)). When B random partitions are
repeated, we obtain B copies of kappa measures, and denote their average as
stab(λ), which measures the selection stability given λ. Finally, we consider its

maximizer, λ̂ = argmaxλ{stab(λ)}, as an estimate for the tuning parameters.

3. Asymptotic theory

In this section, we derive the estimation consistency and variable selection con-
sistency of the proposed method under the following assumptions.

Assumption A1. The support Z of Z and support W of W are non-degenerate
compact subsets of Rp and Rq, respectively. Also, supw ‖H∗(w)‖2 ≤ c1 for
some constant c1, where H∗(w) = ∇2f∗(w) and ‖ · ‖2 is the l2 norm, denoted
as the largest eigenvalue of the matrix.
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Assumption A2. For some constant c2, the probability density p(x) of x exists
and satisfies |p(x)− p(x′)| ≤ c2dx(x,x

′), for any x and x′ in X , where dx(·, ·) is
the Euclidean distance on X .

Assumption A3. There exist constants c3 and c4 such that c3 ≤ limn→∞
min1≤l≤p0 πz,l ≤ limn→∞ max1≤l≤p0 πz,l ≤ c4, c3 ≤ limn→∞ min1≤l≤q0 πw,l ≤
limn→∞ max1≤l≤q0 πw,l ≤ c4, λ1πz,l → ∞ for l > p0 and n−3/2λ2πw,l → ∞ for
l > q0.

About the above three assumptions, Assumption A1 is often used in the liter-
ature of partially linear models [16], which can simplify the technical proof signif-
icantly. Assumption A2 specifies the smoothness of the density function of x by
the regular Lipschitz condition. Under Assumptions A1 and A3, the density p(x)
is continuous and bounded on X , and therefore there exists some constant c5
such that supx∈X p(x) ≤ c5. Moreover, if we denote Xt = {x ∈ X : dX(x, ∂X ) <
t}, where ∂X is the boundary of X and dx(x, ∂X ) = infu∈∂X dX(x,u), then
there exists some constant c6 such that Prob(Xt) ≤ c6t for any t. Assumption
A3 provides the convergence rate of adaptive Lasso weight, which will guarantee
the estimation and selection consistency.

Theorem 3.1. Under Assumptions A1–A3, if λ1 = n−1/8, λ2 = n−1/8 and

τn = n− 1
16(p+q+3) , then ‖β̂λ − β∗‖2 = Op

(
n− 1

16(p+q+3)
)

and ‖ĝλ − g∗‖2 =

Op

(
n− 1

16(p+q+3)
)
in probability, as n → ∞.

Compared with weak estimation consistency in Yang et al. [49], the strong
estimation convergence rate is established under Kernel norm regularization in
this paper. However, we only consider the estimation consistency in Theorem
3.1, which is the common practice in literature [10, 49, 56] and the sparsity level
will be discussed in Theorem 3.2.

Next, let S∗ = {j : β∗
j �= 0, j = 1, · · · , p} ∪ {l : g∗l (w) �= 0 for somew, l =

1, · · · , q} be the true subset consisting of all the truly informative variables in the

linear and nonlinear components, and let Ŝλ = {j : β̂λj �= 0, j = 1, · · · , p} ∪ {l :
ĝλl(w) �= 0 for somew, l = 1, · · · , q} be the estimated subset for given λ.

Theorem 3.2. Under Assumptions A1–A3, if λ1 = n−1/8, λ2 = n−1/8 and

τn = n− 1
16(p+q+3) , then Prob(Ŝλ = S∗) → 1, as n → ∞.

Theorem 3.2 assures that, with probability tending to 1, the selected variables
is exactly the same as the truly informative variables.

4. Numerical results

4.1. Simulation studies

We examine the performance of the proposed variable selection method for par-
tially linear models (referred to as PL), comparing against some other popular
variable selection methods in literature, including the variable selection method
for additive models proposed by [47], Cosso by [26], model free gradient learn-
ing method by [49] and regular gradient learning method [30], referred to as
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Add, Cosso, MF-GL and GL respectively. Note that most of the partially lin-
ear model based variable selection procedure, such as Cheng et al. [4], Liang
and Li [25], Liu et al. [27], Ni et al. [33] and Wang et al. [45], do not select
variables in the nonlinear part. Therefore, we will not include these methods
because their performance of nonlinear part selection is inferior than our pro-
posed method.

In all the numerical studies, Gaussian kernel K(x,x′) = e−‖x−x′ ‖2
2/2σ

2
n is

used, where scalar parameter σ2
n is set as the median over the pairwise distances

among all the sample points [30]. For all the four methods considered, the tuning
parameters are selected using the same criteria, the variable selection stability
criteria proposed by [39], as discussed in Subsection 2.2. For simplicity, we set
λ1 = λ2 in all the simulation examples. We consider the following two simulation
examples. The data generating model is additive partially linear in Example 1,
while is non-additive partially linear in Example 2.

Example 1. In this example, first generate predictors zi = (z
(1)
i , · · · , z(p)i )T and

wi = (w
(1)
i , · · · , w(q)

i )T , where z
(j)
i and w

(l)
i are independently generated from

U(−0.5, 0.5), j = 1, · · · , p and l = 1, · · · , q, for each i = 1, · · · , n. Then set

f∗(wi) = 2sin(πw
(1)
i )+ 2exp(−2w

(2)
i ) and generate response yi = 4

∑5
j=1 z

(j)
i +

f∗(wi) + εi, where εi ∼ N(0, σ2).

Example 2. In this example, first generate predictors zi = (z
(1)
i , · · · , z(p)i )T and

wi = (w
(1)
i , · · · , w(q)

i )T , where z
(j)
i and w

(l)
i are independently generated from

N(0, 1), j = 1, · · · , p and l = 1, · · · , q, for each i = 1, · · · , n. Then set f∗(wi) =

(3w
(1)
i − 1)(3w

(2)
i − 1) and generate response yi = 4

∑5
j=1 z

(j)
i + f∗(wi) + εi,

where εi ∼ N(0, σ2).

For each example, 9 different scenarios are considered, where (n, p, d) =
(150, 6, 10), (225, 16, 20) or (300, 46, 50) and σ2 = 0.1, 0.25 or 1. Here n is the
sample size, d is the total number of predictors, and p is the number of predic-
tors in the linear component. In both examples, the true submodel for the linear
component is A∗ = {1, · · · , 5}, the true submodel for the non-linear component
is B∗ = {1, 2}, and therefore the correct number of informative predictors is 7.

Each scenario is replicated 50 times, and the results are reported in Table 1
for Example 1 and Table 2 for Example 2. Specifically, column “Size” reports
the averaged number of selected variables, “TLP” and “TNP” reports the num-
ber of selected truly informative variables in the linear and nonlinear compo-
nents respectively, and “FLP” and “FNP” reports the number of selected truly
non-informative variables in the linear and nonlinear components respectively.
Columns “C”, “U”, and “O” report the times, out of 50 times, of correct-fitting,
under-fitting, and over-fitting, respectively.

From Table 1, we see that our newly proposed method (PL) is comparable
with the others when the data generating model is additive partially linear
model. From Table 2, we see that our method outperforms the others when the
data generating model is nonadditive partially linear model. First, the average
size of selected subsets by PL is closer to 7 than the other methods. Second,
most of TLP and TNP from our method are close to 5 and 2, while both FLP
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Table 1

The summarized results from 50 repetitions of Example 1

(n, p, d, σ2) Methods Size TLP FLP TNP FNP C U O

(150,6,10,0.1) PL 7.260 5.000 0.060 2.000 0.200 38 0 12
Cosso 7.100 5.000 0.000 2.000 0.100 45 0 5
Add 7.100 5.000 0.000 2.000 0.100 45 0 5

MF-GL 7.120 5.000 0.000 2.000 0.120 44 0 6
GL 6.800 4.600 0.240 1.840 0.320 12 18 20

(150,6,10,0.25) PL 7.160 5.000 0.040 2.000 0.120 42 0 8
Cosso 6.960 4.960 0.000 2.000 0.000 48 2 0
Add 7.040 5.000 0.040 2.000 0.000 48 0 2

MF-GL 7.040 5.000 0.040 2.000 0.000 48 0 2
GL 6.880 4.680 0.160 1.840 0.200 14 18 18

(150,6,10,1) PL 7.200 4.960 0.080 2.000 0.160 36 2 12
Cosso 7.100 4.960 0.040 2.000 0.100 41 2 7
Add 7.080 5.000 0.000 2.000 0.080 46 0 4

MF-GL 7.100 5.000 0.020 2.000 0.080 45 0 5
GL 6.780 4.600 0.200 1.800 0.180 17 15 18

(225,16,20,0.1) PL 7.120 5.000 0.100 2.000 0.020 45 0 5
Cosso 6.840 5.000 0.000 1.840 0.000 42 8 0
Add 7.040 5.000 0.020 2.000 0.020 48 0 2

MF-GL – – – – – – – –
GL 6.840 4.700 0.220 1.840 0.080 20 18 12

(225,16,20,0.25) PL 7.240 4.980 0.200 2.000 0.060 36 1 13
Cosso 6.820 5.000 0.000 1.820 0.000 41 9 0
Add 7.100 5.000 0.100 2.000 0.000 45 0 5

MF-GL – – – – – – – –
GL 6.960 4.700 0.320 1.840 0.100 17 18 15

(225,16,20,1) PL 7.100 4.980 0.160 1.940 0.020 38 3 9
Cosso 7.020 5.000 0.200 1.820 0.000 35 9 6
Add 7.020 5.000 0.040 1.980 0.000 47 1 2

MF-GL – – – – – – – –
GL 6.960 4.600 0.400 1.800 0.160 10 25 15

(300,46,50,0.1) PL 7.100 5.000 0.100 2.000 0.000 45 0 5
Cosso 7.200 5.000 0.100 2.000 0.100 40 0 10
Add 7.040 5.000 0.040 2.000 0.000 48 0 2

MF-GL – – – – – – – –
GL 6.780 4.880 0.100 1.800 0.000 31 14 5

(300,46,50,0.25) PL 7.100 5.000 0.100 2.000 0.000 45 0 5
Cosso 7.300 5.000 0.300 2.000 0.000 35 0 15
Add 7.000 5.000 0.000 2.000 0.000 50 0 0

MF-GL – – – – – – – –
GL 6.640 4.700 0.100 1.840 0.000 25 20 5

(300,46,50,1) PL 7.060 5.000 0.060 2.000 0.000 47 0 3
Cosso 7.220 5.000 0.180 2.000 0.040 39 0 11
Add 7.040 5.000 0.040 2.000 0.000 48 0 2

MF-GL – – – – – – – –
GL 6.640 4.700 0.140 1.800 0.000 24 20 6

and FNP are close to zero, which means that our method is good in selecting
the true subsets in both linear component and non-linear component. Third,
from column “C’, we see that our method has the largest number of times when
the true subset is selected exactly. Fourth, from columns “U” and “O”, we see
Cosso and Add are often under-fitting when n = 150, are often over-fitting
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Table 2

The summarized results from 50 repetitions of Example 2

(n, p, d, σ2) Methods Size TLP FLP TNP FNP C U O

(150,6,10,0.1) PL 7.040 4.940 0.120 1.900 0.080 35 6 9
Cosso 6.700 4.600 0.000 1.700 0.400 5 30 15
Add 7.200 4.900 0.100 1.960 0.240 30 7 13

MF-GL 7.340 4.940 0.100 2.000 0.300 34 3 13
GL 7.680 4.760 0.560 2.000 0.360 6 8 36

(150,6,10,0.25) PL 7.160 4.960 0.100 1.960 0.140 37 3 10
Cosso 6.380 4.500 0.000 1.700 0.180 20 21 9
Add 7.100 4.900 0.100 1.840 0.260 26 12 12

MF-GL 7.200 4.960 0.120 1.960 0.160 35 3 12
GL 7.600 4.840 0.600 1.960 0.280 8 8 34

(150,6,10,1) PL 7.260 4.980 0.080 1.900 0.300 32 4 14
Cosso 6.180 4.500 0.180 1.400 0.100 5 40 5
Add 6.400 4.700 0.000 1.600 0.100 27 18 5

MF-GL 7.180 4.980 0.000 1.900 0.200 35 5 10
GL 7.760 4.920 0.600 2.000 0.240 8 4 38

(225,16,20,0.1) PL 7.080 4.980 0.120 1.940 0.040 39 4 7
Cosso 6.780 4.800 0.380 1.600 0.000 14 25 11
Add 7.160 4.920 0.440 1.760 0.040 24 10 16

MF-GL – – – – – – – –
GL 8.280 4.980 0.900 2.000 0.400 10 1 39

(225,16,20,0.25) PL 7.200 5.000 0.240 1.960 0.000 36 2 12
Cosso 6.620 4.700 0.300 1.620 0.000 5 30 15
Add 7.200 4.860 0.500 1.700 0.140 24 10 16

MF-GL – – – – – – – –
GL 7.900 4.920 0.800 1.960 0.220 9 6 35

(225,16,20,1) PL 7.080 4.900 0.300 1.880 0.000 31 8 11
Cosso 6.600 4.800 0.300 1.500 0.100 5 35 10
Add 7.580 4.940 0.640 1.800 0.200 16 12 22

MF-GL – – – – – – – –
GL 8.400 4.960 1.000 2.000 0.440 8 2 40

(300,46,50,0.1) PL 7.100 5.000 0.100 2.000 0.000 45 0 5
Cosso 7.600 5.000 0.600 2.000 0.000 25 0 25
Add 6.400 5.000 0.600 1.800 0.000 15 10 25

MF-GL – – – – – – – –
GL 6.720 4.880 0.080 1.760 0.000 30 16 4

(300,46,50,0.25) PL 6.920 5.000 0.060 1.860 0.000 41 6 3
Cosso 7.400 5.000 0.400 1.900 0.100 20 5 25
Add 6.960 4.760 0.400 1.800 0.000 10 20 20

MF-GL – – – – – – – –
GL 6.900 5.000 0.040 1.720 0.000 34 14 2

(300,46,50,1) PL 6.940 5.000 0.000 1.940 0.000 47 3 0
Cosso 7.300 5.000 0.500 1.800 0.000 30 10 10
Add 6.400 4.600 0.200 1.600 0.000 17 25 8

MF-GL – – – – – – – –
GL 6.600 4.880 0.080 1.640 0.000 24 22 4

when n = 300, and are often over-fitting or under-fitting when n = 225. Fifth,
we find that GL always tends to over-fitting or under-fitting. This may be due
to the fact that GL selection procedure depends on the prespecified truncated
value. From both tables, we see that although the performance for MF-GL is
promising, the computational cost is relatively high, especially as the sample
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size and dimension increase. In addition, we see that as variance σ2 becomes
larger, it is more challenging to select the true subset.

4.2. Real data applications

We further examine the performance of the proposed variable selection method
using two real data applications, the digit recognition data [40] and Japanese
industrial chemical firms data [48], both of which are publicly available.

4.2.1. Digit recognition data

In the digit recognition data, each digit is described by an 8×8 gray-scale image
with each entry ranging from 0 to 16. Due to their similarity, it is challenging
to distinguish digits 3 and 5. Therefore, in this real data application, we only
consider digits 3 and 5, and the resultant dataset consists of 365 observations
and 64 attributes. Consider outcome variable y = 3 for digit 3 and y = 5
for digit 5. For the purpose of demonstration, we consider the partially linear
model as the predictive model, although other classification models may be more
appropriate. By some descriptive analysis, we find that these two digits mainly
differ on dimensions 19, 21, 22, 27 and 54. Therefore, in the partially linear
model, we put these 5 dimensions in the nonlinear component and the others in
the linear component.

In this analysis, all the variables are standardized, all the missing value obser-
vations are ignored, and all the four aforementioned variable selection procedures
(PL, Cosso, Add and MF-GL) are applied. The performance of the variable se-
lection procedures are compared based on the averaged prediction errors using
only the selected variables. The averaged prediction errors are estimated as what
follows. First, the dataset is randomly split into two parts, m = 35 observations
for testing and the remaining 330 observations for training. Second, partially lin-
ear model is fitted based on the training dataset, one submodel is selected, and
the average prediction error estimate is obtained. The results are summarized
in Table 3.

From Table 3, we see that the proposed variable selection procedure, PL,
selects less variables and has smaller prediction error than the other variable
selection procedures. Figure 1 shows two randomly selected digits of 3 and 5
in the right and middle panels respectively, and the two finally selected con-
tributes are displayed in the left panel. We can see the the two digits are clear
different at the two selected contributes. Although MF-GL provides competitive
performance, its computational cost is about 10 times higher than PL.

4.2.2. Japanese industrial chemical firms data

The Japanese industrial chemical firms dataset consists of 186 Japanese indus-
trial chemical firms listed on the Tokyo stock exchange, and the goal is to check
whether concentrated shareholding is associated with lower expenditure on ac-
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Table 3

Digit Recognition Data – the number of selected variables and the prediction errors by four
variable selection procedures

PL Cosso Add MF-GL GL

No. of variables 2 8 48 2 2
Pred.Err 1.832 1.878 1.871 1.857 1.857
Pred.Std 0.033 0.031 0.031 0.032 0.032

Fig 1. Digit Recognition Data – Left panel displays an example of digit 3, middle panel
displays an example of digit 5, and right panel display the two selected contributes using the
propose method

tivities with scope for managerial private benefits. The response variable is MH5
(the general sales and administrative expenses deflated by sales), and 12 predic-
tors are ASSETS (logarithm of assets), AGE (the age of the firm), LEVERAGE
(ratio of debt to total assets), VARS (variance of operating profits to sales), OP-
ERS (operating profits to sales), TOP10 (the percentage of ownership held by
the 10 largest shareholders), TOP5 (the percentage of ownership held by the 5
largest shareholders), OWNIND (ownership Herfindahl index), AOLC (amount
owed to largest creditor), SHARE (share of debt held by largest creditor), BD-
HIND (bank debt Herfindahl index), and BDA (bank debt to assets).

For the purpose of demonstration, we consider the partially linear model.
From some descriptive analysis, we find that variables LEVERAGE, VARS,
OPER2 and BDA are highly correlated with the MH5, and that the marginal
relationships of LEVERAGE, OPER2 and BDA with the response variable are
strongly linear. For other less correlated variables, the marginal scatter plot
shows that associations between MH5 with ASSETS, AGE, TOP5 and TOP10
are seemly linear. Therefore, we put LEVERAGE, OPER2, BDA, ASSETS,
AGE, TOP5 and TOP10 in linear part, while others in nonlinear part.

We apply the same strategy to compare those four variable selection proce-
dures. The only difference is that now we consider 100 times random split of the
dataset into a test dataset of m = 24 observations and a traning dataset of the
remaining observations. The results are summarized in Table 4. From Table 4,
we can see that PL has the smallest prediction error. Although Cosso, Add and
MF select less variables, their prediction errors are larger. Especially, the PL
method selects variable OWNIND, which are not selected by the other methods.
Figure 2 displays the scatterplot of MH5 against OWNIND. It seems that the
mean of MH5 does not change much with OWNIND, while its variance appears
to shrink as OWNIND increases.
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Table 4

The number of selected variables and the prediction errors by various selection methods in
Japanese industrial chemical firms dataset.

PL Cosso Add MF-GL GL

ASSETS
AGE

√

LEVERAGE
√ √ √ √ √

VARS
√ √ √ √ √

OPER2
√ √ √ √

TOP10
√

TOP5
√

OWNIND
√

AOLC
SHARE

√

BDHIND
√

BDA
√ √ √

Pred.Err 0.513 0.555 0.561 0.554 0.574
Pred.Std 0.0179 0.0194 0.0193 0.0191 0.0280

Fig 2. Japanese Industrial Chemical Firms Data – The scatterplot of MH5 versus OWNIND

5. Summary

There has been an unmet need for developing a novel variable selection proce-
dure for partially linear models without imposing structural constraints on the
non-parametric component. Both computational efficiency and model flexibility
are important for analyzing high dimensional data. Recently, the idea of gradient
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learning has become popular for variable selection, because it is model free [49].
However, model-free gradient learning is computationally expensive for high-
dimensional data in pure non-parametric setting. Therefore, gradient learning
is particularly suitable for partially linear models. In this paper, we propose
a variable selection procedure based on gradient learning for partially linear
models. The proposed procedure incorporates two sparsity-inducing penalties,
one for variable selection in the linear component and the other for variable
selection in the nonlinear component. Since the computational cost of variable
selection in the linear component is cheap, the proposed procedure is computa-
tionally feasible and applicable for the analysis of high-dimensional data. At the
same time, the variable selection in the nonlinear component is model-free, thus
without the need to impose any assumption on the structure of the nonlinear
component.

The proposed procedure is formulated in terms of reproducing kernel Hilbert
space, which provides a general framework for developing efficient implemen-
tation algorithm and deriving desirable theoretical properties. Specifically, a
block-wise coordinate decent algorithm is developed and estimation consistency
and selection consistency are both established. Two issues are crucial in apply-
ing the proposed methods. One issue is selecting the tuning parameters. We
propose to use stability selection for the tuning parameters, and other tuning
methods such as cross-validation can also be used. The other issue is the speci-
fication of the partially linear model, that is deciding which variables are in the
linear component and which variables are in the nonlinear component. In this
manuscript, we focus on variable selection and assume that the partially linear
model has been pre-specified. The reader is referred to [16] for the discussion of
partially linear model specification. Under similar assumptions, some existing
general variable selection procedure, such as Rosasco et al. [36], can also be
extended to partially linear models in a similar fashion.

Appendix: Technical proofs

Denote the first term in objective function (2.2) as Ez,w(β,g), and denote its
expectation as E(β,g), which is equal to

2σ2
s + E

{
w(x,x′)

[
(β∗ − β)T (z− z′) + f∗(w)− f∗(w′)− g(w)T (w −w′)

]2}
,

where w(x,x′) = exp{−‖x−x′‖22/τ2}, σ2
s = σ2E{w(x,x′)}, and the expecta-

tion is over random predictors.

Lemma 1. Let ϕ0(z,w) = Ez,w(β∗,g∗) − E(β∗,g∗), ϕ1(z,w) = E(β̂, ĝ) −
Ez,w(β̂, ĝ), and J(β,g) = λ1

∑p
l=1 πz,l|βl| + λ2

∑q
l=1 πw,l‖gl‖K . Then the fol-

lowing inequality holds,

E(β̂, ĝ) + J(β̂, ĝ)− 2σ2
s ≤ ϕ1(z,w) + ϕ0(z,w) + Λ,

where Λ = E(β∗,g∗)− 2σ2
s + λ1

∑p0

l=1 πz,l|β∗
l |+ λ2

∑q0
l=1 πw,l‖gl∗‖K .
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Proof of Lemma 1.

E(β̂, ĝ) + J(β̂, ĝ)− 2σ2
s

= E(β̂, ĝ)− Ez,w(β̂, ĝ) + Ez,w(β̂, ĝ) + J(β̂, ĝ)− 2σ2
s

≤ E(β̂, ĝ)− Ez,w(β̂, ĝ) + Ez,w(β∗,g∗) + J(β∗,g∗)− 2σ2
s

= ϕ1(z,w) + ϕ0(z,w) + E(β∗,g∗) + J(β∗,g∗)− 2σ2
s

= ϕ1(z,w) + ϕ0(z,w) + Λ.

The first inequality holds because β̂ and ĝ are the minimizer of Ez,w(β,g) +
J(β,g), the last equality is due to the fact that β∗

l = 0 for any l > p0 and g∗l = 0
for any l > q0.

Lemma 2. (McDiarmid’s Inequality) Let V1, ..., Vn be independent random vari-
ables taking values in a set V, and assume that f : Vn → R satisfies

sup
v1,...,vn,v′

i∈V
|f(v1, ..., vn)− f(v1, ..., v

′
i, ..., vn)| ≤ Ci,

for every i ∈ {1, 2, ..., n}. Then, for every t > 0,

P{|f(V1, ..., Vn)− E (f(V1, ..., Vn)) | ≥ t} ≤ 2 exp

(
− 2t2∑n

i=1 C
2
i

)
.

Lemma 3. Let S(R,λ1, λ2) = sup{|E(β,g)− Ez,w(β,g)| : (β,g) ∈ Hd
R}, where

Hd
R = {(β,g) : β ∈ Rp,g ∈ HK , J(β,g) ≤ R}. If |y| ≤ Mn and Assumptions

A1–A3 hold, then we have, for any constant R > 0 and t > 0,

P (|S(R, λ1, λ2)− E(S(R, λ1, λ2))| ≥ t) ≤ 2 exp

(
−nt2

8
(
Mn + czR

c3λ1
+ cwR

c3λ2

)4
)
,

P (|Ez,w(β∗,g∗)−E(β∗,g∗)| ≥ t)≤ 2 exp

(
−nt2

8
(
Mn +

∑p
l=1 |β∗

l |+
∑q

l=1 ‖g∗l ‖K
)4

)
.

Proof of Lemma 3. It suffices to verify the conditions required by the McDi-
armid’s inequality. Denote (z′,w′, y′) as a sample point drawn from the distri-
bution ρ(z,w, y) and independent of (zi,wi, yi). For any fixed (β,g) ∈ Hd

R, let
h(zi,wi, zj ,wj) = wij(yi − yj − (zi − zj)

Tβ − g(xi)
T (wi −wj))

2. Decompose
n(n− 1)Ez,w(β,g) as follows,

n∑
k �=i,j �=i

h(zk, zj ,wk,wj) +

n∑
j=1

h(zi, zj ,wi,wj) +

n∑
k=1

h(zk, zi,wk,wi).

Note that λ1c3
∑p

l=1 |βl| ≤ λ1

∑p
l=1 πz,l|βl| ≤ R and by assumption A3,

λ2c3

q∑
l=1

‖gl‖K ≤ λ2

q∑
l=1

πw,l‖gl‖K ≤ R
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Then if (z,w) is replaced by (z′,w′),

Ez,w(β,g)− Ez′,w′(β,g) ≤ 4(Mn + cz
∑p

l=1 |βl|+ cw
∑q

l=1 ‖gl‖K)2

n

≤
4
(
Mn + czR

c3λ1
+ cwR

c3λ2
)2

n
,

where the first inequality holds because supports Z and W are compact. Inter-
changing the roles of (z,w) and (z′,w′) yields that, for (β,g) ∈ Hd

R,

|Ez,w(β,g)− Ez′,w′(β,g)| ≤
4
(
Mn + czR

c3λ1
+ cwR

c3λ2

)2
n

.

Then applying the McDiarmid’s inequality, we obtain the first result of Lemma
3. For the second result of Lemma 3, we can easily verify that

Ci = 4(Mn + cz

p∑
l=1

|β∗
l |+ cw

q∑
l=1

‖g∗l ‖K)2/n.

Thus plugging Ci into the McDiarmid’s inequality, we obtain the second result
of the lemma.

Lemma 4. If |y| ≤ Mn, then there exists a constant c7 such that

|E(S(R, λ1, λ2))| ≤ c7
(Mn + czR

c3λ1
+ cwR

c3λ2
)2

√
n

.

Proof of Lemma 4. Denote ξ(z,w, y, z′,w′, y′) = w(x,x′)(y − y′ − β(z − z′) −
g(w)(w−w′))2, E(β,g) = E(z,w,y)E(z′,w′,y′)ξ(z,w, y, z′,w′, y′),

Ez,w(β,g) =
1

n(n− 1)

n∑
i,j=1

ξ(zi,wi, yi, zj ,wj , yj),

and then we get

|S(R, λ1, λ2)|

≤ sup
β,g∈Hd

R

∣∣∣E(β,g)− 1

n

n∑
j=1

E(z,w,y)ξ(z,w, y, zj ,wj , yj)
∣∣∣

+ sup
β,g∈Hd

R

∣∣∣ 1
n

n∑
j=1

E(z,w,y)ξ(z,w, y, zj ,wj , yj)− Ez,w(β,g)
∣∣∣

≤ sup
β,g∈Hd

R

E(z,w,y)

∣∣∣E(z′,w′,y′)ξ(z,w, y, z′,w′, y′)− 1

n

n∑
j=1

ξ(z,w, y, zj ,wj , yj)
∣∣∣

+
1

n

n∑
j=1

sup
β,g∈Hd

R

sup
(z′,w′,y′)

∣∣∣E(z,w,y)ξ(z,w, y, z′,w′, y′)
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− 1

n− 1

n∑
i �=j

ξ(zi,wi, yi, z
′,w′, y′)

∣∣∣
= S1 + S2,

where the first inequality dues to the triangle inequality and the second in-
equality dues to the relationship between expectation and absolute value. Let
σi, i = 1, . . . , n to be independent Rademacher variables. For the first term, by
using the properties of Rademacher complexities [42], we have

E(S1) = E(z,w,y) sup
β,g∈Hd

R

∣∣∣E(z′,w′,y′)ξ(z,w, y, z′,w′, y′)

− 1

n

n∑
j=1

ξ(z,w, y, zj ,wj , yj)
∣∣∣

≤ 2 sup
(z,w,y)

E sup
β,g∈Hd

R

∣∣∣ 1
n

n∑
j=1

σjw(x,xj)(yj − y − β(zj − z)

− g(wj)(wj −w))2
∣∣∣

≤ 4

(
Mn +

czR

c3λ1
+

cwR

c3λ2

) (
sup

(z,w,y)

E sup
β,g∈Hd

R

1

n

n∑
j=1

σj(yj − y

− β(zj − z)− g(wj)(wj −w)) +
Mn√
n

)
≤ c7

(Mn + czR
c3λ1

+ cwR
c3λ2

)2
√
n

.

Similary we can verify the second term S2 and therefore, |E(S(R, λ1, λ2))| ≤
c7

(Mn+
czR
c3λ1

+ cwR
c3λ2

)2

√
n

, where c7 is a fixed constant.

Lemma 5. Assume the Assumptions A1–A3 are satisfied. If Ez(0) =
1

n(n−1)

∑n
i,j=1(yi − yj)

2 is bounded by M0, then there exists a constant c8 such

that for any δ ∈ (0, 1), with probability at least 1− δ,

J(β̂, ĝ) ≤ c8
√

log(2/δ)
(
M2

nn
−1/2 + n−1/2λ−2

1 + n−1/2λ−2
2 + τp+q+4

n

+ λ1 + λ2

)
,

E(β̂, ĝ)− 2σ2
s ≤ c8

√
log(2/δ)

(
M2

nn
−1/2 + n−1/2λ−2

1 + n−1/2λ−2
2 + τp+q+4

n

+ λ1 + λ2

)
.

Proof of Lemma 5. By Lemma 4, have

E(S(R, λ1, λ2)) ≤ c7

(
Mn +

cz + cw
c3

(
R

λ1
+

R

λ2

))2

/
√
n,
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which, together with Lemma 3, implies that with probability at least 1− δ,

ϕ1(z,w) ≤ |S(R, λ1, λ2)| ≤ c7

√
log(2/δ)

n

(
Mn +

cz + cw
c3

(
R

λ1
+

R

λ2

))2

.

According to the second result in Lemma 3, we know that with probability at
least 1− δ,

ϕ0(z,w) ≤ |E(β∗,g∗)− Ez,w(β∗,g∗)| ≤ 3

√
log(2/δ)

n

(
Mn +

p∑
l=1

|β∗
l |

+

q∑
l=1

‖g∗l ‖K
)2

.

For Λ in Lemma 1, we can easily check that

Λ = E(x,x′)w(x,x′)
(
f∗(w)− f∗(w′)− g∗(w)T (w −w′)

)2
+ J(β∗,g∗)

≤ c1E(x,x′)w(x,x′)‖x−x′‖22 + J(β∗,g∗)

≤ c1τ
p+q+4
n + p0c6λ1 + q0c6λ2 = O(τp+q+4

n + λ1 + λ2).

By Lemma 1, we can see that there exists a constant c9 such that

E(β̂, ĝ) + J(β̂, ĝ)− 2σ2
s ≤ |ϕ1(z,w)|+ |ϕ0(z,w)|+ Λ

= c9
√

log(2/δ)
(
M2

nn
−1/2 + n−1/2R2λ−2

1 + n−1/2λ−2
2 + τp+q+4

n + λ1 + λ2

)
.

Noting that Ez,w(β̂, ĝ)+J(β̂, ĝ) ≤ Ez,w(0, 0)+J(0, 0) ≤ M0, we have β̂, ĝ ∈ Hd
R,

where R = M0. Therefore, there exists a constant c8 such that

E(β̂, ĝ) + J(β̂, ĝ)− 2σ2
s ≤ c8

√
log(2/δ)

(
M2

nn
−1/2 + n−1/2λ−2

1 + n−1/2λ−2
2

+ τp+q+4
n + λ1 + λ2

)
.

Combining the fact that E(β̂, ĝ) − 2σ2
s ≥ 0 and J(β̂, ĝ) ≥ 0, we obtain the

bounds for J(β̂, ĝ) and E(β̂, ĝ)− 2σ2
s as stated in Lemma (5).

Proof of Theorem 3.1. For given constant c8 > 0, denote event C as

C =
{
β̂, ĝ : E(β̂, ĝ)− 2σ2

s > c8
√
log(4/δ)

(
n−1/4 + n−1/2λ−2

1 + n−1/2λ−2
2

+ τp+q+4
n + λ1 + λ2

)}
.

Denote U = 1
n(n−1)

∑n
i,j=1(yi − yj)

2 and M0 = 4B2 + 2σ2 + 1 with B an upper

bound of zT β∗ + f∗(w). The constant B exists because f∗ is continuous and
set Z and W are compact. Then we split C into three different events as follows,

P (C) = P
(
C ∩

{
|y| ≤ n1/8, U ≤ M0

}c
)
+ P

(
C ∩

{
|y| ≤ n1/8, U ≤ M0

})
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≤ P (|y| > n1/8) + P (|y| ≤ n1/8, U > M0)

+ P
(
C ∩

{
|y| ≤ n1/8, U ≤ M0

})
,

Same as the proof in Yang et al. [49], we get P (|y| > n
1
8 ) = E(P (zT β∗+f∗(x)+

ε > n
1
8 |x)) ≤ O(n− 1

4 ) and P (|y| ≤ n1/8, U > M0) ≤ P (U > E(U) + 1
∣∣|y| ≤

n1/8) ≤ exp
{
− 1

16n
3/4

}
. For the third term, by Lemma 5, with probability at

least 1− δ,

E(β̂, ĝ)− 2σ2
s ≤ c8

√
log(2/δ)

(
n−1/4 + n−1/2λ−2

1 + n−1/2λ−2
2 + τp+q+4

n

+ λ1 + λ2

)
.

Therefore, P (C) ≤ O
(
n−1/4 + exp{− 1

16n
3/4}+ δ/2

)
. By Theorem 5 in Ye and

Xie [52] and assumption A2, we can verify that in set Cc,∫
z,w

∥∥∥(
β̂ − β∗, ĝ(w)− g∗(w)

)∥∥∥
2
dρz,w ≤

(
M2

0 τn + τn +
E(β̂, ĝ)− 2σ2

s

τp+q+3
n

)
,

which indicates that∫
z,w

‖β̂ − β∗‖2dρz,w ≤
(
M2

0 τn + τn +
E(β̂, ĝ)− 2σ2

s

τp+q+3
n

)
,

∫
z,w

‖ĝ(w)− g∗(w)‖2dρz,w ≤
(
M2

0 τn + τn +
E(β̂, ĝ)− 2σ2

s

τp+q+3
n

)
,

where ρz,w is the joint CDF of z and w. Therefore, we conclude that

‖β̂ − β∗‖2 ≤
(
M2

0 τn + τn +
E(β̂, ĝ)− 2σ2

s

τp+q+3
n

)
,

‖ĝ − g∗‖2 ≤
(
M2

0 τn + τn +
E(β̂, ĝ)− 2σ2

s

τp+q+3
n

)
.

As λ1 = λ2 = n−1/8 and τn = n− 1
16(p+q+3) , we have ‖β̂−β∗‖2 ≤ O

(
n− 1

16(p+q+3)
)

and ‖ĝ−g∗ ‖2 ≤ O
(
n− 1

16(p+q+3)
)
. Then as n → ∞, ‖β̂−β∗‖2 → 0, ‖ĝ−g∗‖2 → 0

and P (Cc) → 1. Thus Theorem 3.1 is proved.

Proof of Theorem 3.2. By Theorem 3.1, |β̂l| > 0 for any l ≤ p0. Now we show
that |βl| = 0 for any l > p0 by contradiction. Assume that |βl| > 0 for some
l > p0 in the linear part. Taking the derivative of the objective function with
respect to βl, we get

2

n(n− 1)

n∑
i,j=1

wij

(
yi − yj − (zi − zj)

T β̂ − ĝ(wi)
T (wi −wj)

)
(zil − zjl)
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= −λ1πz,lβ̂l

|β̂l|
. (5.1)

Note that the norm of the right-hand side of (5.1) is λ1πz,l, which diverges to ∞
by assumption A3. Denote Bz,w(β,g) = 2

n(n−1)

∑n
i,j=1 wij

(
yi−yj−βT (zi−zj)−

g(wi)
T (wi−wj)

)
. By Theorem 3.1, we have ‖β̂−β∗‖2 → 0 and J(β̂, ĝ) ≤ M0 in

probability, which implies that c3
∑q

l=1 ‖ĝl‖K ≤ M0, ‖ĝl‖K and |β̂l| is bounded
by a constant c9 in probability. Therefore, as wij ≤ 1 and the support Z and
W are compact, |Bz,w(β,g)| ≤ 4

n

∑n
i=1 |yi| + (p0 + q0)c9. Then by the central

limit theorem, the left hand side of (5.1) is bounded in probability. Thus, the

contradiction appears, and we conclude that |β̂l| = 0 for any l > p0 in the linear
component.

Similarly, we can show the selection consistency for the nonlinear component.
For this aim, taking the first derivative with respect to α(l), we have

2

n(n− 1)

n∑
i,j=1

wij

(
yi − yj − βT (zi − zj)− ĝ(xi)

T (xi − xj)
)
(wil − wjl)Kl

= −λ2πl K α̂(l)

‖K α̂(l)‖2
. (5.2)

Same as the argument above, each element in left-hand-side of (5.2) is bounded
in probability and therefore, the norm of left-hand-side of (5.2) divided by n1/2

is bounded in probability. Suppose the Kernel matrix K has smallest eigen-
value n−1, then the norm of the right-hand-side is larger than λ2πln

−1. Because
n−3/2λ2πl → ∞ by Assumption A3, the norm of right-hand-side divided by n1/2

goes to infinity, the contradiction appears. Thus, Theorem 3.2 is proved.

A remark on Assumption A3. We will show that Assumption A3 can be satis-
fied based on initial estimates from (2.4). If initial estimates β̃ and g̃ are via
(2.4), following the same argument as in the proof of Lemma 5, we have, given
|y| ≤ n1/8 and U < M0,

E(β̃, g̃)− 2σ2
s ≤ c10

√
log(2/δ)

(
M2

nn
−1/2 + n−1/2λ̃−1

1 + n−1/2λ̃−1
2 + τp+q+4

n

+ λ̃1 + λ̃2

)
.

Following the same argument as in the proof of Theorem 3.1, we can show
that the probability of the following event, denoted by as C̃, goes to one as as
n → ∞,{
β̃, g̃ : E(β̃, g̃)− 2σ2

s > c10
√
log(4/δ)

(
n−1/4 + n−1/2λ̃−1

1 + n−1/2λ̃−1
2

+ τp+q+4
n + λ̃1 + λ̃2

)}
.
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Same as the argument in theorem 3.1, we can verify that in set C̃c,

‖β̃ − β∗‖2 ≤
(
M2

0 τn + τn +
E(β̃, g̃)− 2σ2

s

τp+q+3
n

)
,

‖g̃ − g∗‖2 ≤
(
M2

0 τn + τn +
E(β̃, g̃)− 2σ2

s

τp+q+3
n

)
.

As λ̃1 = λ̃2 = n−1/4 and τn = n− 1
4(p+q+4) , ‖β̃ − β∗‖2 ≤ O

(
n− 1

4(p+q+4)
)
and

‖g̃ − g∗ ‖2 ≤ O
(
n− 1

4(p+q+4)
)
. Therefore, letting γ1 = 4(p + q + 4) and γ2 =

8(p+ q + 4), Assumption A3 can be satisfied.
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